Scope People with fatty liver could be subject to acute infections such as sepsis. The aim of the study is to evaluate the effect of high fat diets (HFD) of olive oil and palm stearin on liver inflammation induced by lipopolysaccharides (LPS). Methods and results C57BL/6J male mice were treated with high fat diets with different sources of oils: palm stearin and olive oil for 8 weeks followed by LPS injection. The proinflammatory effect of olive oil was also studied using gavage treatment and IP injection of LPS. Animals fed with HFDs showed an increase in body weight, elevated blood glucose levels, and fatty liver phenotype. HFDs aggravated the effect of LPS treatment to induce inflammatory response compared to low fat diet (LFD) effect. Following HFD supplementation, LPS induced hyperinsulinemia, more liver damage than in animals that consumed LFD. In addition, both gavage and long-term feeding with high lipids in the presence of LPS resulted in inhibition of gluconeogenic genes expression. Conclusion HFDs of both monounsaturated and saturated fat potentiated liver inflammation induced by LPS treatment indicate that the total amount of fat consumed is the main proinflammatory factor rather than the type of fat.
Plant litter decomposition in drylands is not well understood, and even less is known about decay of the abundant standing dead residues. Here, we followed decomposition of standing and surface litter, and assessed the underlying drivers and mechanisms.
Shirin Elhaik Goldman, Goez, David , Last, David , Naor, Sharone , Liraz Zaltsman, Sigal , Sharvit-Ginon, Inbal , Atrakchi-Baranes, Dana , Shemesh, Chen , Twitto-Greenberg, Rachel , Tsach, Shoval , Lotan, Roni , Leikin-Frenkel, Alicia , Shish, Aviv , Mardor, Yael , Beeri, Michal Schnaider , ו Cooper, Itzik . 2018. “High-Fat Diet Protects The Blood-Brain Barrier In An Alzheimer's Disease Mouse Model.”. Aging Cell, 17, 5, Pp. e12818. doi:10.1111/acel.12818. תקציר
Type 2 diabetes (T2D) is associated with increased risk of Alzheimer's disease (AD). There is evidence for impaired blood-brain barrier (BBB) in both diseases, but its role in the interplay between them is not clear. Here, we investigated the effects of high-fat diet (HFD), a model for T2D, on the Tg2576 mouse model of AD, in regard to BBB function. We showed that HFD mice had higher weight, more insulin resistance, and higher serum HDL cholesterol levels, primarily in Tg2576 mice, which also had higher brain lipids content. In terms of behavior, Tg2576 HFD mice were less active and more anxious, but had better learning in the Morris Water Maze compared to Tg2576 on regular diet. HFD had no effect on the level of amyloid beta 1-42 in the cortex of Tg2576 mice, but increased the transcription level of insulin receptor in the hippocampus. Tg2576 mice on regular diet demonstrated more BBB disruption at 8 and 12 months accompanied by larger lateral ventricles volume in contrast to Tg2576 HFD mice, whose BBB leakage and ventricular volume were similar to wild-type (WT) mice. Our results suggest that in AD, HFD may promote better cognitive function through improvements of BBB function and of brain atrophy but not of amyloid beta levels. Lipid metabolism in the CNS and peripheral tissues and brain insulin signaling may underlie this protection.
We report a method to prepare highly stretchable and UV curable hydrogels for high resolution DLP based 3D printing. Hydrogel solutions were prepared by mixing self-developed high-efficiency water-soluble TPO nanoparticles as the photoinitiator with an acrylamide-PEGDA (AP) based hydrogel precursor. The TPO nanoparticles make AP hydrogels UV curable, and thus compatible with the DLP based 3D printing technology for the fabrication of complex hydrogel 3D structures with high-resolution and high-fidelity (up to 7 μm). The AP hydrogel system ensures high stretchability, and the printed hydrogel sample can be stretched by more than 1300%, which is the most stretchable 3D printed hydrogel. The printed stretchable hydrogels show an excellent biocompatibility, which allows us to directly 3D print biostructures and tissues. The great optical clarity of the AP hydrogels offers the possibility of 3D printing contact lenses. More importantly, the AP hydrogels are capable of forming strong interfacial bonding with commercial 3D printing elastomers, which allows us to directly 3D print hydrogel-elastomer hybrid structures such as a flexible electronic board with a conductive hydrogel circuit printed on an elastomer matrix.
A fast, ultrasensitive electrochemical sensing platform based on graphitic carbon nitride-electrochemically deposited-poly(3,4-ethylenedioxythiophene) (g-C3N4-E-PEDOT) composite was constructed by in-situ electropolymerization and applied for the quantitative determination of acetaminophen (AP). E-PEDOT was introduced as the conducting matrix for developing g-C3N4 composite to complement the poor conductivity disadvantage of g-C3N4. The strong affinity and synergetic effect between g-C3N4 and E-PEDOT, which were analyzed by PM6 computational calculation, highly improved the electron transfer property and remarkably enhanced the electrochemical catalytic activity of the composite. The g-C3N4-E-PEDOT modified glassy carbon electrode (GCE) demonstrated better electrocatalytic activity towards the oxidation of AP than bare, g-C3N4 and E-PEDOT modified ones. Under the optimized conditions, the oxidation peak currents at the g-C3N4-E-PEDOT/GCE increased linearly in the concentration range of AP from 0.01 to 2 mu M and 2-100 mu M, and an ultra-low limit of detection (LOD) of 34.28 nM was obtained (S/N = 3). In addition, the g-C3N4-E-PEDOT/GCE was successfully applied for the AP determination in the clinical human serum, and also exhibited excellent selectivity, reproducibility and stability. Except the novel AP determination approach, moreover, this work provided a new electrochemical application angle of graphitic carbon nitride theoretically as well as experimentally. (C) 2017 Elsevier Ltd. All rights reserved.
BACKGROUND: Genomic analysis technologies can promote efficient fruit tree breeding. Genotyping by sequencing (GBS) enables generating efficient data for high-quality genetic map construction and QTL analysis in a relatively accessible way. Furthermore, High-resolution genetic map construction and accurate QTL detection can significantly narrow down the putative candidate genes associated with important plant traits.
RESULTS: We genotyped 162 offspring in the F1 'Spadona' x 'Harrow Sweet' pear population using GBS. An additional 21 pear accessions, including the F1 population's parents, from our germplasm collection were subjected to GBS to examine diverse genetic backgrounds that are associated to agriculturally relevant traits and to enhance the power of SNP calling. A standard SNP calling pipeline identified 206,971 SNPs with Asian pear ('Suli') as the reference genome and 148,622 SNPs with the European genome ('Bartlett'). These results enabled constructing a genetic map, after further stringent SNP filtering, consisting of 2036 markers on 17 linkage groups with a length of 1433 cM and an average marker interval of 0.7 cM. We aligned 1030 scaffolds covering a total size of 165.5 Mbp (29%) of the European pear genome to the 17 linkage groups. For high-resolution QTL analysis covering the whole genome, we used phenotyping for vegetative budbreak time in the F1 population. New QTLs associated to vegetative budbreak time were detected on linkage groups 5, 13 and 15. A major QTL on linkage group 8 and an additional QTL on linkage group 9 were confirmed. Due to the significant genotype-by-environment (GxE) effect, we were able to identify novel interaction QTLs on linkage groups 5, 8, 9 and 17. Phenotype-genotype association analysis in the pear accessions for main genotype effect was conducted to support the QTLs detected in the F1 population. Significant markers were detected on every linkage group to which main genotype effect QTLs were mapped.
CONCLUSIONS: This is the first vegetative budbreak study of European pear that makes use of high-resolution genetic mapping. These results provide tools for marker-assisted selection and accurate QTL analysis in pear, and specifically at vegetative budbreak, considering the significant GxE and phenotype-plasticity effects.
Bimetallic core–shell nanostructures are of great interest because of their unique properties. Although bimetallic core–shell nanostructures with plenty of shapes are prepared, synthesis of core–shell nanostructures with asymmetric core and shells is still elusive. This work reports a facile seed‐mediated synthesis of Au@Ag right bipyramids with high yield (>95%) and broadly tunable edge length (from ≈130 to ≈230 nm) as well as tunable localized surface plasmon resonance properties. For the first time, a four‐leaf‐clover‐like tetramer of bipyramids is obtained through self‐assembly of the synthesized Au@Ag right bipyramids. The as‐assembled structure performs well in surface‐enhanced Raman spectroscopy with an analytical enhancement factor up to 1.4 × 107 because of the existence of both sharp tips and “hot‐spots.” The present work not only develops a new kind of nanomaterials, but also shows promising applications in optics and sensing.
The Sea of Galilee has great significance as a natural habitat and a freshwater source for Israel. Anthropogenic impacts have been placing significant pressure on the species inhabiting this lake, among which is Sarotherodon galilaeus, an omnivorous fish with a relatively large population and significance for commercial fishing. An alarming decline in annual catch towards 2008 suggested that this unique population might be at risk. With that in mind, we characterized the current genetic variation of this species in Israel with reference to fish from Ghana, based on D-loop and microsatellite markers. Genetic variation and differentiation were found mostly among fish from Ghanaian localities and between fish from Israel and Ghana, whereas fish from all Israeli localities had uniform and limited variation, a signature compatible with historical founder effect followed by local adaptations. Such historical processes could leave a population vulnerable as reflected in the sudden and recent population decline. Comparing genetic variation between archived 30 year-old scales and modern lake fish revealed further reduction in genetic variation coincident with the recent population decline. Thus, a recently occurring genetic bottleneck had placed this unique and isolated population at an even higher risk. We carefully discuss the events leading to the current risk status for S. galilaeus in Israel and highlight the need for vigilant monitoring and active management to support a more sustainable future for this and other fish communities in this important habitat.
The Historical Dictionary of the Mongol World Empire examines the history of the Mongol Empire, the pre-imperial era of Mongolian history that preceded it, and the various Mongol successor states that continued to dominate Eurasia long after the breakdown of Mongol unity.
This second edition contains a chronology, an introduction, appendixes, and an extensive bibliography. The dictionary section has over 900 cross-referenced entries on important personalities, politics, economy, foreign relations, religion, and culture of the Mongol Empire. This book is an excellent resource for students, researchers, and anyone wanting to know more about the Mongol Empire.
There have been recent advances in the phonological reconstruction of the South-Central (“Kuki}-Chin”) branch of Trans-Himalayan (Tibeto-Burman), in particular by VanBik (2009). However, the Northwestern (“Old} Kuki”) subgroup, generally considered to be conservative, is not represented in this work as reliable data have not been available. The present study provides a comprehensive documentation of the historical phonology of one Northwestern language, Monsang. The unexpected finding is that Monsang cannot be considered conservative in its phonological development. A large number of sound changes have occurred across all phonological domains. The majority of sound changes are mergers, and with small exceptions, no unusual sound changes are found. As a result, the diachronic development of Monsang can be considered a case of reduction in phonological complexity.