Publications

2025
Einav Scharf and Banin, Uri . 3/25/2025. Physics And Photophysics Of Quantum Dots For Display Applications. In Quantum Dot Display Science And Technologies, Pp. 1-22. John Wiley and Sons Ltd. . Publisher's Version Abstract

Quantum dots (QDs) are prominent nanometric light emitters, featuring quantum behavior due to the quantum confinement effect. This effect is responsible for the size-dependent optoelectronic properties of QDs, which makes them a versatile building block for various applications. Moreover, the bright emission of QDs and narrow spectral lines make them ideal for display applications. However, QDs also undergo nonradiative processes that can impair their functionality in display devices. This chapter delves into the physics and photophysics of QDs. It discusses quantum confinement and size and shape effects, heterostructures and surface effects, the absorption and emission spectra, charge dynamics, stability, and collective effects, aiming to shed light on the intricate nature of the QDs' photophysics.

Shira Gigi, Cohen, Tal , Florio, Diego , Levy, Adar , Stone, David , Katoa, Ofer , Li, Junying , Liu, Jing , Remennik, Sergei , Camargo, Franco VA, Cerullo, Giulio , Frenkel, Anatoly I, and Banin, Uri . 1/6/2025. Photocatalytic Semiconductor-Metal Hybrid Nanoparticles: Single-Atom Catalyst Regime Surpasses Metal Tips. Acs Nano, In Press. . Publisher's Version Abstract

Semiconductor–metal hybrid nanoparticles (HNPs) are promising materials for photocatalytic applications, Shira 2025such as water splitting for green hydrogen generation. While most studies have focused on Cd containing HNPs, the realization of actual applications will require environmentally compatible systems. Using heavy-metal free ZnSe-Au HNPs as a model, we investigate the dependence of their functionality and efficiency on the cocatalyst metal domain characteristics ranging from the single-atom catalyst (SAC) regime to metal-tipped systems. The SAC regime was achieved via the deposition of individual atomic cocatalysts on the semiconductor nanocrystals in solution. Utilizing a combination of electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy, we established the presence of single Au atoms on the ZnSe nanorod surface. Upon increased Au concentration, this transitions to metal tip growth. Photocatalytic hydrogen generation measurements reveal a strong dependence on the cocatalyst loading with a sharp response maximum in the SAC regime. Ultrafast dynamics studies show similar electron decay kinetics for the pristine ZnSe nanorods and the ZnSe-Au HNPs in either SAC or tipped systems. This indicates that electron transfer is not the rate-limiting step for the photocatalytic process. Combined with the structural-chemical characterization, we conclude that the enhanced photocatalytic activity is due to the higher reactivity of the single-atom sites. This holistic view establishes the significance of SAC-HNPs, setting the stage for designing efficient and sustainable heavy-metal-free photocatalyst nanoparticles for numerous applications.