A game theoretic approach identifies conditions that foster vaccine-rich to vaccine-poor country donation of surplus vaccines

Abstract:

Background: Scarcity in supply of COVID-19 vaccines and severe international inequality in their allocation present formidable challenges. These circumstances stress the importance of identifying the conditions under which self-interested vaccine-rich countries will voluntarily donate their surplus vaccines to vaccine-poor countries.

Methods: We develop a game-theoretical approach to identify the vaccine donation strategy that is optimal for the vaccine-rich countries as a whole; and to determine whether the optimal strategy is stable (Nash equilibrium or self-enforcing agreement). We examine how the results depend on the following parameters: the fraction of the global unvaccinated population potentially covered if all vaccine-rich countries donate their entire surpluses; the expected emergence rate of variants of concern (VOC); and the relative cost of a new VOC outbreak that is unavoidable despite having surplus doses.

Results: We show that full or partial donations of the surplus stock are optimal in certain parameter ranges. Notably, full surplus donation is optimal if the global amount of surplus vaccines is sufficiently large. Within a more restrictive parameter region, these optimal strategies are also stable.

Conclusions: Our results imply that, under certain conditions, coordination between vaccine-rich countries can lead to significant surplus donations even by strictly self-interested countries. However, if the global amount that countries can donate is small, we expect no contribution from self-interested countries. The results provide guidance to policy makers in identifying the circumstances in which coordination efforts for vaccine donation are likely to be most effective.

Publisher's Version

Last updated on 10/02/2022