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Abstract
There is a long history of experiments in which participants are instructed to generate a long

sequence of binary random numbers. The scope of this line of research has shifted over the

years from identifying the basic psychological principles and/or the heuristics that lead to

deviations from randomness, to one of predicting future choices. In this paper, we used gen-

eralized linear regression and the framework of Reinforcement Learning in order to address

both points. In particular, we used logistic regression analysis in order to characterize the

temporal sequence of participants’ choices. Surprisingly, a population analysis indicated

that the contribution of the most recent trial has only a weak effect on behavior, compared to

more preceding trials, a result that seems irreconcilable with standard sequential effects

that decay monotonously with the delay. However, when considering each participant sepa-

rately, we found that the magnitudes of the sequential effect are a monotonous decreasing

function of the delay, yet these individual sequential effects are largely averaged out in a

population analysis because of heterogeneity. The substantial behavioral heterogeneity in

this task is further demonstrated quantitatively by considering the predictive power of the

model. We show that a heterogeneous model of sequential dependencies captures the

structure available in random sequence generation. Finally, we show that the results of the

logistic regression analysis can be interpreted in the framework of reinforcement learning,

allowing us to compare the sequential effects in the random sequence generation task to

those in an operant learning task. We show that in contrast to the random sequence genera-

tion task, sequential effects in operant learning are far more homogenous across the popu-

lation. These results suggest that in the random sequence generation task, different

participants adopt different cognitive strategies to suppress sequential dependencies when

generating the “random” sequences.
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Introduction

The Unpredictability of Behavior
In every-day experience, some aspects of human and animal behaviors seem unpredictable.
Similarly, in laboratory settings, we are rarely able to fully predict behavior. For example, when
humans are instructed to repeatedly generate the same hand trajectory, substantial trial-to-trial
variability in the hand trajectory is observed [1]. Another example is in perceptual tasks, where
there is a trial-by-trial variability in the response to the same stimuli [2]. Yet another example
is that when repeatedly instructed to choose from the same set of options, human choices are
often inconsistent, a phenomenon termed stochastic choice [3]. Indeed, when modeling behav-
ior, it is standard to incorporate a stochastic term to account for the unexplained variance.
While this unpredictability is typically referred to as stochastic and is regarded as a nuisance
noise, it may also serve a function, e.g. in strategic settings [4] or to enable exploration [5]. Sto-
chastic behavior is also, in some cases, the only self-consistent behavior in Partially Observable
Markov Decision Processes [6]. Supporting the functional role of stochasticity are several stud-
ies demonstrated that the level of unpredictability can be learned (for a review see [7]).

The Predictability of ‘Random’ Behavior
There is a long tradition of experiments, in which human participants are explicitly instructed
to generate or evaluate random sequences of discrete symbols, e.g. Heads (denoted as H or 1)
and Tails (denoted as T or 0) [8]. These studies report systematic deviations from randomness
[4,9–20], as demonstrated in more details in the Results section. Previous studies have shown
that central executive component of working memory are involved in the task of random
sequences generation (RSG) [20,21]. As a supportive evidence, consider that frontal lobe
lesions, neurodegeneration and other diseases affecting the central nervous system result in
impairments in this task (see [22] for review).

Over the years, there have been several attempts to model deviations from randomness in
RSG tasks [12]. The alternation bias, namely, the tendency to alternate more than expected by
chance, has received a lot of attention and was quantified using a first-order Markov model
[23]. However, by construction, this model was unable to account for higher-order statistics
observed in behavior (see also below). Similarly, the local representativeness hypothesis [24]
focuses on the first moment, computed over a small number of trials in RSG, and tends to dis-
regard the higher order moments of the statistics, e.g. the effect on the next coin generation of
past trials beyond the recent one. A quantitative version of this model was indeed able to
explain some of the observed deviations from randomness, however, the model’s assumptions
were inconsistent with the behavior of a substantial fraction of the participants [4]. Modern
approaches focused on predicting of next choice in the sequence using Machine Learning
methods. For example, in one study, a pattern-based approach was used to train a predictor of
the next choice by minimizing a non-linear distance function [22]. In another study, a linear-
support-vector-machines (SVM) was used for prediction [25]. While these models were par-
tially successful in predicting behavior, the cognitive processes underlying deviations from ran-
domness patterns remain elusive.

While some deviations from randomness are evident when averaging over the different par-
ticipants, there are also substantial differences between participants. For example, one study
has reported that 71% of the participants exhibited the alternation bias described above, while
a minority of participants exhibited an opposite bias–an inertia bias [23]. Moreover, taking
participants’ heterogeneity into account was shown to increase the predictive power of a pat-
tern-based model [22,25]. These results suggest that different participants employ different
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cognitive strategies in RSG tasks. In this study we quantify this heterogeneity and compare it to
the one observed in Operant Learning.

Sequential Effects in Behavior
It is well established that in sequential tasks, participants’ behavior depends upon previous tri-
als in a systematic manner [26]. For example, in perception, such sequential effects may reflect
statistical learning [27]. The alternation and inertia biases described above are merely particu-
lar examples of first-order sequential effects: the response of the participant is biased by her
response in the preceding trial.

In order to quantify sequential effects in the RSG task, we use the logistic regression model
[28]. According to this model, the probability of choosing an action a at time t (at), assuming
there are only two available actions, a and �a, is given by:

PrðatÞ ¼
1

1þ expð�DQtÞ
ð1Þ

where ΔQt is a linear function of past actions, such that

DQt ¼
XL

k¼1

bkðat�k � �at�kÞ þ b0 ð2Þ

where at–k 2 {0,1} and �at�k 2 f0; 1g are index variables that denote the history of past choices,
βk are parameters and L is the model horizon (also known as order or duration in terms of
trials).

To gain insight into Eq (2), we note that random, unbiased sequence emerges if all parame-
ters vanish i.e. βi = 0. A general preference in favor of a will manifest as β0 > 0. Finally, the
value of β1 will determine whether the subject has a propensity to alternate (β1 < 0) or whether
she is biased towards inertia (β1 > 0).

Contribution of this Study
Utilizing logistic regression to analyze behavior in the RSG task allows us to go beyond previ-
ous studies in quantifying deviations from randomness in this task. In particular, this frame-
work allows us to quantify sequential effects, study their stationarity and their heterogeneity
between participants. We find that deviations from randomness are primarily due to sequential
effects at a time scale of several trials and that these deviations are stable over hundreds of tri-
als. Moreover, heterogeneity between participants dominates sequential effects in this task. We
further show that the logistic regression framework is a reminiscence of the valuation system
framework in operant learning. This allows us to compare the level of heterogeneity in the
sequential effects in the two tasks. We find that (reward-independent) sequential effects in
operant learning are larger and more homogeneous than sequential effects in the RSG task.
These results suggest that the RSG task is associated with the suppression of sequential effects,
and that different participants use different cognitive strategies to suppress these sequential
effects.

Results

Sequential Effects of Random Choice
30 participants were instructed to generate a sequence of 1,000 random binary numbers 1 and
0, representing H, and T, respectively; [15], see also Materials and Methods. In order to quan-
tify sequential effects of random number generation in a model-free fashion, we computed the
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conditional probabilities Pr(at = 1|at–k = 1) of generatingH in a current trial (at = 1), conditioned
on actionH k trials ago (at–k = 1). Note that for a sequence generated by independent tosses of an
unbiased coin, all conditional probabilities are equal to 0.5, Pr(at = 1|at–k = 1) = 0.5.

By contrast, averaging over all trials, we found, as depicted in Fig 1A, significant deviations
of the conditional probabilities from 0.5 (for k = 2,3,4,5,10, P< 0.001).

In typical sequential effects, the influence of a trial on subsequent trials decays with the
number of interleaving trials e.g. in perception [27] and in operant learning (OL) [29]. By con-
trast, in the RSG task, the most recent trial (k = 1) seemed to have little effect on the current
trial, whereas more preceding trials seemed to have a larger effect on behavior. This seeming
contradiction is addressed in the next section.

In Fig 1A we considered the influence of each past trial separately. In order to study the
joint influence of the sequence of past trials, we used the logistic regression model (Eqs 1 and
2). Fig 1B (blue) depicts the regression coefficients that maximize the likelihood of the observed
sequence given this model. These coefficients are qualitatively similar to the conditional proba-
bilities depicted in Fig 1A and significantly different from zero (for k = 0,1,2,3,5,6,7,
P< 0.001).

Heterogeneity of Sequential Effects
The conditional probabilities and the regression coefficients depicted in Fig 1A and 1B, respec-
tively, were based on a population analysis and thus ignored possible individual differences
between the participants. In order to study these individual differences, we estimated the
regression coefficients for each participant separately. The results of this analysis are presented
in Fig 2A, where we plot the distribution of the first five regression coefficients, (βk, k = 0,. . .,4)
over the population of participants. The averages of these coefficients across the participants μ
(βk), which correspond to the common or the homogeneous components of the sequential

Fig 1. Sequential effects in random sequence generation task. A. The conditional probabilities Pr(x0 = H|xk = H) of
generating H in a current trial (x0 = H), conditioned on a choiceH–k trials ago. B. Logistic regression model's coefficients.
Dashed gray line represents the null hypothesis of no sequential effect. Error bars represents the confidence interval at
significance level of 0.005 (Bonferroni correction for multiple comparison) and stars denoted statistical significance assuming
normal distribution of noise (t-test).

doi:10.1371/journal.pone.0157643.g001
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effect, are qualitatively similar to the regression coefficients computed using the pooled data
(compare Fig 2B to Fig 1B). In particular, the average coefficients analysis implies that the
most recent trial has a relatively small effect on behavior (μ(β1) = -0.09 (CI = [-.45, .2], P> .4)).
However, when considering the regression coefficients of each participant separately (Fig 2A),
we find that the value β1 of most participants was significantly and substantially different from
zero (for 20 out of 30 of the participants P< 0.05/30, where the division by 30 corresponds to
Bonferroni correction for multiple comparison). It was positive for some participants and neg-
ative for others, such that the magnitude of the average, μ(β1) is small.

To further measure individual sequential effects, we quantified the magnitude of the regres-

sion coefficients by computing the quadratic mean of the coefficients (
ffiffiffiffiffiffiffiffiffiffiffi
mðb2

kÞ
q

). As depicted in

Fig 2C, the magnitude of the coefficients decays with the number of interleaving trials, in line
with standard sequential effects in other fields of psychology. Thus, the atypical (non-monoto-
nous) regression coefficients depicted in Fig 1 and Fig 2B are due to substantial heterogeneity
in sequential effects between participants.

The relative contribution of participants’ coefficients heterogeneity to their behavior can be
further quantified by computing, for each coefficient, the signal to noise ratio (SNR): the ratio
of the absolute mean |μ(βk)| to the standard deviation σ(βk) across the population. The SNR is
a non-negative statistic where the larger the value of the SNR, the more similar is the temporal
dependency of participants in sequence generation. As depicted in Fig 2C, heterogeneity is

Fig 2. Heterogeneity of sequential effects in random sequence generation task, quantified using the coefficients of a logistic regression of
memory size L = 10. A. The distribution of the coefficients across participants for the bias and lags 1–4 coefficients. The statistics of these coefficients are

summarized in B, C and D for the mean (μ), magnitude (
ffiffiffiffiffiffiffiffiffiffiffi
mðb2

kÞ
q

) and the signal to noise ratio (SNR), respectively, as a function of the lag (k), where the bias

terms (k = 0) is at the right of k = -1). Error bars represents the 95% confidence intervals computed by 100-fold bootstrapping (Bonferroni corrected for
multiple comparison).

doi:10.1371/journal.pone.0157643.g002
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maximal for the first two coefficients and is substantially lower for longer intervals. This is par-
ticularly true for lag 3, where participants were unanimously biased in favor of choosing a sym-
bol that is opposite to that of three trials ago. In summary, we find substantial sequential effects
in the RSG that decay with the temporal lag. For short lags, associated with large magnitude
coefficients, sequential effects are dominated by participants’ heterogeneity whereas for long
lags, associated with small magnitude coefficients, participants are substantially more similar.

Reproducing Deviations from Randomness
To test the logistic model consistency with previously-reported deviations from randomness,
we used the individual participant regression coefficients (computing then up to a maximum
lag of L = 3) to simulate synthetic sequences per participant. We compared the results of the
simulation with the empirical data in view of two previously-reported common deviations
from randomness [15]. First, previous studies have reported that people tend to generate
sequences that are more balanced (equal fraction of Heads and Tails) than expected by chance.
This is depicted in Fig 3A, where we plot the probability of number of Heads in a sequence of
length 10. In line with previous studies, the histogram of the participants’ behavior (blue) is
narrower than expected by chance (gray, P< 10−74, t-test on Monte-Carlo simulation) and the
bin at 5 (balanced sequence) is higher than expected by chance (P< 10−144). Similar results,
namely narrower histogram and a larger fraction of balanced sequences than expected by
chance is also observed in the simulated sequences (red dots, P< 10−3 and P< 10−24, respec-
tively). Moreover, it is well-known that participants tend to alternate (act differently from last
action) more than expected by chance. One way of quantifying this effect is to consider the
probability of alternation as a function of the preceding running lengths (RL), which is the
length of the preceding sequence that is devoid of alternations. This is depicted in Fig 3B,
which shows that indeed participants are more likely to alternate than expected by chance after
a 1-trial RL (compare blue to gray, P< 10−33). However, they tend to alternate less than pre-
dicted by chance for long RLs, a phenomenon which can be regarded as an “anti-gambler fal-
lacy” [15]. Similar to the experimental data, the model (red) can account for these anomalies

Fig 3. Deviations from randomness (gray) in behavior (blue) and logistic model (red). A. The distribution of Heads’ counts in ten consecutive trials. B.
The probability to alternate after a RL trials devoid of alternations (strike). Error bars are SEM.

doi:10.1371/journal.pone.0157643.g003
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qualitatively. Yet, there are quantitative differences which may be the result of the limitation of
the logistic model, as discussed below.

Testing the Model Predictive Power
The results presented in the previous section (Figs 1 and 2) indicate that sequential effects,
modeled using the logistic-regression model, can qualitatively account for some of the devia-
tions of the generated sequences from randomness (Fig 3). Moreover, this model also allows us
to quantitatively test the fraction of regularity in the human behavior that is captured by these
previously-reported deviations from regularity, as well as to qualitatively estimate the extent to
which regularities in the RSG are subject-specific. To that goal, we compared the predictive
power of alternative homogeneous and heterogeneous models that predict the current trial
based on the preceding L trials. For each model, we computed the prediction error (see Materi-
als and Methods) as a function of the model memory length (characterized by the maximum
lag coefficient L) and considered the minimal prediction error over the different values of L as
a measure of the performance of the model (Fig 4A).

Fig 4. Predicting choices in the RSG task. A. Prediction-error probability for different models: Negative Recency (red), Balance (mustard), Levenshtein
(green), Logistic (blue) and Hamming NN (purple). Dark and light colors correspond to the heterogeneous versions (a different set of parameters for each
participant) and homogeneous versions (a single set of parameters for all participants) of the models, respectively. The model memory lengths (L) were
chosen to minimize the generalization error: Negative Recency, L = 1; Balance, L = 7; Heterogeneous Levenshtein, L = 3; Homogeneous Levenshtein, L = 4;
Heterogeneous Logistic, L = 3; Homogeneous Logistic, L = 8; Heterogeneous NN, L = 4; Homogeneous NN, L = 8. B., The predicted probability for Heads
versus the empirical one (in the test set) for the logistic model is depicted in panel B (blue) over the diagonal (gray). B. Empirical probability ofH as a function
the predicted probability of H. The data was divided into 20 equally populated bins according to the predicted probability of H and the fraction of H was
computed for each bin. Error bars represent the SEM.

doi:10.1371/journal.pone.0157643.g004
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We first considered two parameter-free baseline models, which are based on the previously-
described regularities in RSG. First, the negative-recencymodel (red, L = 1) predicts alternation
from previous trial. We found that the predictive power of the negative-recency model is not-
significantly different from chance (Fig 4A; .48, CI = [.45, .52], P = 0.2, t-test over participants),
consistent with our finding that Pr(at = 1|at–k = 1) is not significantly different from 0.5 (Fig
1A). Next, we considered a balancemodel (mustard), in which the generated symbol is chosen
as to balance the number of Heads and Tails in the local sequence, in line with the local repre-
sentativeness hypothesis (see Introduction). We found that the balance model was slightly but
significant better than chance (.46 CI = [.44, .47], P< 10−6).

In addition to the two parameter-free baseline models, we considered three models: (1) the
logistic regression model discussed above (blue); (2) the recently-used pattern-matching
Levenshtein Distance model [22] (green) and (3) a Hamming nearest-neighbor (NN) model
(purple; Materials and Methods) that in the limit of an infinite number of samples is nearly
optimal [30]. By comparing the predictive power of the logistic regression model to the
Levenshtein and NNmodels, we can assess the extent that the specific logistic framework cap-
tures the regularities present in behavior in the RSG task.

The negative recency and balance models, which are typically considered when discussing
regularity in the RSG task do not take into account individual differences. To study the role of
these individual differences in predicting behavior, we considered a homogeneous version and a
heterogeneous version of the models. In the former, a model was fitted to the entire population
of participants, ignoring individual differences. In the latter, a model was fitted individually to
each participant. Note that the homogeneous models ignore individual differences and there-
fore, with a large enough training set, they are sure do worse than their heterogeneous counter-
parts. However, this additional predictive potential comes at the expense of a larger sensitivity
to parameters’ overfitting. Therefore, there is no theoretical guarantee that with a finite training
set the predictive power of the heterogeneous models will be larger than that of the homoge-
neous models.

Considering the heterogeneous versions, the logistic regression model (blue) outperformed
the Levenshtein Distance model (P = 0.006, pair-wise t-test over participants), with a predic-
tion error of .39 (CI = [.36, .41], P< 10−9) and there was no significant difference between the
performances of the logistic regression and the NN models (P = .1, CI = [0.35, 0.40]). These
results indicate that the logistic regression model captures the regularities present in the behav-
ior of the participants in the RSG task. Comparing the homogeneous and heterogeneous ver-
sions of the models we found that the predictive power of the homogeneous version of the
three models (light colors) is significantly and substantially lower than that of the correspond-
ing heterogeneous version (dark colors in Fig 4A, P< 10−6). In particular, while the prediction
error of the homogeneous logistic regression model is 46%±1%, it is 39%±3% for the heteroge-
neous logistic regression model. In other words, by ignoring population heterogeneity we can
account for less than half of the regularity in behavior in the task. These results emphasize the
role of individual differences in regularities observed in the RSG task (note that the number of
parameters is not and should not be controlled here because the out-of-sample predictive
power, rather than the fit to the data, is compared between the different models).

As the logistic regression model is only a particular model in a larger family of generalized
linear models, we tested whether the particular non-linearity used in the logistic regression is
consistent with the data. To that goal, we computed the frequency of H as a function of the pre-
dicted probability ofH. As depicted in Fig 4B, the observed probability is almost a linear func-
tion of the predicted probability (R = .99, P< 10−17), indicating that behavior is consistent
with the particular non-linearity of the logistic regression model.
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Stationarity Analysis
An underlying assumption of the logistic model presented above (as well as the other models
depicted in Fig 4) is stationarity, i.e., the parameters of the model do not change over time
(trial number). To test this stationarity assumption, we studied whether better predictions can
be achieved if the model parameters themselves are dynamic variables that slowly change over
time. Specifically, we defined a discounting parameter that quantifies the weighting of past trials
in the parameter estimation procedure and considered the discounting parameter that best pre-
dicts behavior (see Materials and Methods). The reciprocal of this discounting factor is a mea-
sure of the stationarity of the sequence. We found that the median and mean of the best-
predictive reciprocal of the discounting factor over the participants was 500 and 2,000 trials,
respectively (CI = [300, 1,000] and CI = [350, 5,400], respectively by bootstrapping 100 times).
These results indicate that in the time-scale of the experiment (1,000 trials), the parameters
that describe the behavior of the participants are relatively stable.

Comparison to Operant Learning
The results presented in the preceding sections indicate that subject-to-subject heterogeneity
dominates sequential effects in the RSG task. However, sequential effects are also present in other
psychophysical tasks raising the question of whether heterogeneity dominates sequential effects
also in these other tasks. To address this question, we quantified sequential effects in an operant
learning (OL) task, in which participants repeatedly choose between two alternatives that provide
monetary reward stochastically, according to their choices [31], see Materials andMethods).

It is generally believed that OL is achieved through the synergy of two processes. First, the
values of different actions (or more generally, state-actions), which are a measure of their
“attractiveness” are learned iteratively from past actions and their subsequent rewards. Second,
these learned values are used to choose among the different actions such that actions associated
with a higher value are more likely to be chosen again [32,33] (see [34] and [35], for review).
Typically, a softmax function is used to model the mapping from values to actions [5] yielding
Eq (1) where ΔQ denotes the normalized value of the two actions. While in machine-learning
models the value of an action is simply a measure of the expected reward associated with that
action, it is known that in human and animal behavior, reward-independent sequential effects
also play a role in operant learning tasks [36–38]. Therefore, to model behavior in the operant
learning task, we posit that choice probability is described by Eq (1), where

DQ ¼
XL

k¼1

ðat�k � �at�kÞðakrt�k þ bkÞ þ b0 ð3Þ

To gain insight to this equation we note that the first term in the second parenthesis in the
right hand side of Eq (3) corresponds to the effect of the interaction of reward and action on
behavior and therefore serves the traditional role of a “value”. In particular, if βl = 0 (l 2
{0,1,2,. . .,L}), ak ¼ 1

T
� gk where T> 0 and 0< γ< 1 are parameters then in the limit of large L

these equations simply describe the well-known Time Difference (TD) learning algorithm [5].
The second term of the right hand side of Eq (3) denotes sequential effects, as in Eq (2). There-
fore, the parameters βl correspond to the residual, reward-independent sequential effects. By
comparing the population heterogeneity in βl within the operant learning task with those
parameters in the RSG task, we can study the extent to which the dominance of heterogeneity
in the RSG task is a property of the task or a property of sequential effects in general.

For each participant, we estimated the parameters of Eq (3) and the results are depicted in
Fig 5. Similar to the RSG task, there are significant residual sequential effects (Fig 5A), which

Heterogeneous Suppression of Sequential Effects in Random Sequence Generation

PLOS ONE | DOI:10.1371/journal.pone.0157643 August 18, 2016 9 / 16



decrease with the temporal lag (B and C). However, in contrast to the RSG task, these coefficients,
averaged over the population, decrease monotonously with the lag, indicating that sequential effects
in the operant learning are far more homogenous than in the RSG task. Considering the largest two

terms, both in terms of their average value, μ(βk), and in terms of their quadratic mean
ffiffiffiffiffiffiffiffiffiffiffi
mðb2

kÞ
q

, β1

and β2, we find that these coefficients are substantially and significantly larger in the operant
task than in the RSG task (μ(β1)

OL – μ(β1)
RSG = 3.3, CI = [2.6,4], P* 0, μ(β2)

OL – μ(β2)
RSG =

1.4, CI = [.9,1.8], P< 10−7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðb1

2ÞOL
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðb1

2ÞRSG
q

¼ 3:6;CI ¼ ½2:7; 4:6�; P < 10�5 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðb2

2ÞOL
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðb2

2ÞRSG
q

¼ 1:8;CI ¼ ½1:1; 2:4�; P ¼ 0:003).

Nonetheless, the SNR of these coefficients in the OL task is far smaller than that in the RSG task
(SNROL

1 ¼ 0:15;CI ¼ ½0� 0:5�; SNRRSG
1 ¼ 1:7;CI ¼ ½1:5� 1:8�; P � 0 and SNROL

2 ¼ 0:2;CI ¼
½0� 0:6�; SNRRSG

2 ¼ 1:2;CI ¼ ½1; 1:4�; P � 0). These results indicate that the substantial hetero-
geneity observed in the values of the first two coefficients in the RSG task is unique to that task, and
reflects differences in the individual strategies of pseudo-random number generation.

Discussion

Summary of Results
We studied the cognitive mechanisms underlying the generation of random sequences by
human participants. We found that a valuation-system approach, modeled using a logistic

Fig 5. Heterogeneity of sequential effects in Operant Learning task quantified by the coefficients of a logistic regression of memory size L = 10.
Panel A represents the distribution of the coefficients across participants for the bias and lags 1–4 coefficients. The statistics of these coefficients are

summarized in Panel B, C and D for the mean (μ), standard deviation (
ffiffiffiffiffiffiffiffiffiffiffi
mðb2

kÞ
q

) and the signal to noise ratio (SNR), respectively. Error bars represents the

95% confidence intervals computed by 100-fold bootstrapping (Bonferroni corrected for multiple comparison).

doi:10.1371/journal.pone.0157643.g005
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regression function, can qualitatively account for several previously-reported deviations from
randomness and can be used to quantitatively predict the next generated symbol in the
sequence. This approach also allowed us to quantify sequential effect in this task and compare
them to an OL task. We found that sequential effects in the RSG task are substantially smaller
than those in the OL task. Surprisingly, the heterogeneity in the sequential effects in the RSG
task was substantially larger than that of the OL task. These results suggest that the RSG task is
performed by a heterogeneous suppression of sequential effects.

Heterogeneity: Random Sequence Generation vs. Operant Learning
The fact that there are differences in the behaviors of different people is obvious to even the
most casual observer [39]. However, the extent that this contribution is important for under-
standing the cognitive strategies adopted by the different participants remains an open ques-
tion. Here we found that in the RSG task, considering heterogeneity has proven to be essential
both for predicting behavior and for understanding the seemingly non-monotonous sequential
effect. By contrast, heterogeneity of sequential effects in an OL task is substantially smaller.
This result is consistent with our previous study, in which we found that when predicting
human preference in an OL task, the contribution of the heterogeneity to the predictive power
is small [40].

It should be noted that the heterogeneity between participants in the RSG task is conceptu-
ally different from between-participants’ heterogeneities in other sequential tasks. In other
tasks, the participant interacts or responds to external stimuli. For example, in an OL task, par-
ticipants change their choice behavior in response to the sequence of past reinforcements. Con-
ceptually, the behavior of the participant is a function from the sequence of external stimuli to
a generated sequence of actions. This function is characterized by parameters such as the learn-
ing rate, which can be considered as a “traits” (although substantial heterogeneities between
days in the same subject have also been reported [41]). Indeed, heterogeneity between partici-
pants in the learning rate, has been observed in the laboratory [40] as well as in natural condi-
tions [42]. By contrast, the generation of random sequences is autonomous and should not be a
function of external input. If done correctly, the RSG task is parameter-free and therefore we
expect similarity in the behavior of the participants. Nevertheless, we find that rather than
being “random”, people behave as if they utilize their past own actions as inputs to the “ran-
dom” sequence generation, resulting in sequential dependencies. These sequential dependen-
cies vary between participants, resulting in substantial heterogeneity in behavior. These results
suggest that the RSG task involves active suppression of sequential dependencies, and that the
cognitive strategies underlying this suppression differ between the different participants. Fur-
ther studies should investigate the stability of these strategies over time spans larger than the
one analyzed in the current experiment.

Learning to be Stochastic
Previous studies have demonstrated that stochasticity can be learned by feedback in humans
and in animals [9,43]. In our framework, such learning would correspond to decreasing the
absolute value of sequential coefficients βl in Eq (3). Thus, one potential interpretation to the
heterogeneity in these coefficients is that it results from heterogeneities in this learning process,
prior to the experiment.

Valuation System
When studying OL, a dominant view is that the values in Eq (3) are not merely a phenomeno-
logical description of behavior. Rather, the reward-dependent components of ΔQ are explicitly
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represented by the activities of single neurons in the brain [32,33] (see [34] and [35], for
review). Intriguingly, sequential effects in Eq (3) are comparable to these values, bringing up
the possibility that in those OL tasks, the neural activity of “value” neurons also incorporate the
sequential effects as in Eq (3). Experimentally, this hypothesis implies that the activity of those
“value” neurons is also correlated with past actions, independently of the resultant rewards.
Taking this possibility one-step further, these “value” neurons may also reflect the sequential
effects of the RSG task. More generally, these results are consistent with the hypothesis that
choice preferences in the brain are encoded through the valuation system, even when the
choice outcome is not associated with primary rewards [44,45].

It will be difficult to test this hypothesis for the RSG task using monkey electrophysiology
because of the obvious difficulty of instructing non-human primates to generate random
sequences (but see [43]). However, it may be possible to do it by comparing brain activities of
humans in OL and RSG tasks using functional Magnetic Resonance Imaging (fMRI).

Predictability of Behavior
In this study we demonstrated that it is possible to correctly predict approximately 60% of a
sequence in a RSG task based on previous choices. To what extent can we improve our predic-
tions by using more data? Our stationary analysis indicates that the participants’ parameters
are stationary at the time-scale of the experiment. These results suggest that the predictive
power of the model is expected to increase if longer sequences are used. Nevertheless, when
testing the predictive power of the model as a function of the training set size we find that per-
formance saturates at approximately 500 trials (not shown), indicating that the improvement
associated with a larger training set will not be substantial.

Can we make better predictions by using more sophisticated models? To address this ques-
tion, we used an alternative nearest-neighbor model (under a Hamming distance function) in
order to predict behavior. This model is approximately optimal in the limit of an infinite number
of samples and stationarity. This model does not significantly outperform the logistic regression
model (Fig 4A). This illustrates that the logistic model, at least in its heterogonous version, is
close to the optimal non-parametric methods, albeit with a smaller number of parameters.

What is the source of the residual, unexplained stochasticity? One possibility is that it
reflects irrelevant external inputs, not accounted for by the experimentalists. Another possibil-
ity is that this stochasticity reflects the macroscopic dynamics of the brain, e.g., a complex cog-
nitive strategy such as a strategy that implements chaotic dynamics. A third alternative is that
the unexplained stochasticity reflects trial-to-trial variability in the activities of individual neu-
rons, and as such, amplifies microscopic variability. It is not clear how to experimentally disso-
ciate these two possibilities and addressing this question awaits future studies [7].

Randomness Cost
A recent theory has suggested that random choice behavior results from computational limitations
on the policy [46]. In this framework, optimal policy is assumed to be a tradeoff between expected
reward and expected information cost. Information-wise, a stochastic policy is preferable to a deter-
ministic one. Therefore, everything else being equal, the agent should behave randomly. Our results
suggest that by contrast to that assumption that randomness is information-wise cheap and thus
cognitively easy, a stochastic policy is a cognitive challenge for human participants.

Methodological Note: Insight versus Prediction
The predictive powers of the heterogenic version of the logistic model, the Levenshtein model
and the NN-hamming model are comparable. However, we believe that for the study of
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cognitive processes in sequential tasks, the logistic model is more useful than the two latter mod-
els. The Levenshtein and the NN-hamming models are pattern based. They make predictions by
seeking the previous outcomes of “similar” sequences. By contrast, the logistic model is restricted
to simple linear non-linear dependencies. The advantage of the pattern-based approach is that
given sufficient data, it can learn very complex strategies in stationary sequences. However, this
lack of restrictions in the pattern-based approach results in models that are characterized by a
large number of parameters (in the limit of a large dataset, 2L parameters in the pattern-based
models vs. L parameters in the logistic regression model) and complex dependencies that are
very difficult to interpret in terms of a cognitive strategy. In this study, the logistic regression
model enabled us to sheds light on the sequential effects and the nature of the variability between
participants at no cost with respect to the predictive power of the model.

Materials and Methods

Experimental Design
The random sequence generation task. The experiment was carried by [15] and the full

details of the task, participants and protocols appear in the original publication [15]. In short,
30 undergraduate students, who participated for course credit and received no payment, were
asked to imagine that 100 people had tossed a coin, each 10 times, and the results had been
recorded in a table of 100 rows and 10 columns, with each row recording the outcomes of the
10 tosses by 1 person. They were asked to produce a table of the same size in such a way that if
it were compared with the one that represented actual coin tosses, it would not be possible to
tell with statistical tests which table represented the actual coin tosses and which did not. We
treated each participant’s sequence as a stream of 1,000 choices.

The operant learning task. The experiment was carried by [31] and the full details of the
task, participants and protocols appear in the original publication [31]. In short, 200 partici-
pants were instructed to repeatedly choose between two unmarked alternatives in blocks of 100
trials. In each trial, pressing a button resulted in the delivery of a monetary payoff. Different
blocks (problems) differed in reward schedule parameters. Each participant was tested in 12
problem sets. In total there were, 120 different problems, 2400 blocks and 240,000 trials.

Data Analysis
Data analysis was conducted using MATLAB1 (version 8.3) and statistical functions of the
Statistics Toolbox (version 9.0). Of special importance for the paper were the functions for
logistic regression model estimation and evaluation (glmfit and glmval, respectively). Both
functions were used with default parameters. Note that these function assume independence
between samples conditioned on the predictors (past action). This should not be confused with
the dependency of the sequence itself and therefore the methods are valid.

For the heterogeneous models, prediction error rates were estimated by a ten-fold cross vali-
dation and averaged across folds and participants. For the homogenous models, we used a vari-
ation of a “leave-one-out” cross validation scheme to estimate these rates, where each
participant data was predicted by training on other participants.

For the discounting model, according to which recent trials received higher weight (see Sta-
tionary Analysis), we used the glmfit with a vector of prior weights, which are equivalent to the
inverses of the relative variances of the different observations (see glmfit documentation for
more details). Testing started from the middle sample (501) for each participant, where train-
ing utilized all preceding trials. The exponential weight given for sample k trials ago was (1–η)�
ηk, and the values of η that were tested were zero and 25 non-zero values, between 10−6 and 1,
evenly distributed on a logarithmic scale.
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