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The dominant computational approach to model operant

learning and its underlying neural activity is model-free

reinforcement learning (RL). However, there is accumulating

behavioral and neuronal-related evidence that human (and

animal) operant learning is far more multifaceted. Theoretical

advances in RL, such as hierarchical and model-based RL

extend the explanatory power of RL to account for some of

these findings. Nevertheless, some other aspects of human

behavior remain inexplicable even in the simplest tasks. Here

we review developments and remaining challenges in relating

RL models to human operant learning. In particular, we

emphasize that learning a model of the world is an essential

step before or in parallel to learning the policy in RL and discuss

alternative models that directly learn a policy without an explicit

world model in terms of state-action pairs.
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Model-free RL
The computational problem in many operant learning

tasks can be formulated in a framework known as

Markov Decision Processes (MDP) [1]. In MDPs, the

world can be in one of several states, which determine

the consequences of the agent’s actions with respect to

the future rewards and world states. A policy defines the

agent behavior at a given situation. In MDPs, a policy

is a mapping from the states of the environment to

actions to be taken when in those states [1]. Finding

the optimal policy is difficult because actions may have

both immediate and long-term consequences. How-

ever, this problem can be simplified by estimating

values, the expected cumulative (discounted) rewards
www.sciencedirect.com 
associated with these states and actions and using these

values to choose the actions (for a detailed character-

ization of the mapping from values to actions in

humans, see [2�]).

Model-free RL, as its name suggests, is a family of RL

algorithms devised to learn the values of the states with-

out learning the full specification of the MDP. In a class of

model-free algorithms, known as temporal-difference

learning, the learning of the values is based on the

reward-prediction error (RPE), the discrepancy between

the expected reward before and after an action is taken

(taking into account also the ensuing obtained reward).

The hypothesis that the brain utilizes model-free RL for

operant learning holds considerable sway in the fields of

neuroeconomics. This hypothesis is supported by exper-

iments demonstrating that in primates, the phasic

activity of mid-brain dopaminergic neurons is correlated

with the RPE [3,4]. In mice, this correlation was also

shown to be causal: optogenetic activation of dopamin-

ergic neurons is sufficient to drive operant learning,

supporting the hypothesis that the dopaminergic neurons

encode the RPE, which is used for operant learning [5�].
Other putative brain regions for this computation are the

striatum, whose activity is correlated with values of the

states and/or actions [6,7] and the nucleus accumbens

and pallidum, which are involved in the selection of the

actions [8]. In addition to its neural correlates, model-free

RL has been used to account for the trial-by-trial

dynamics (e.g., [2�]) and for several robust aggregate

features of human behavior such as risk aversion [9],

recency [10] and primacy [2�]. Moreover, model-free RL

has been proven useful in the field of computational

psychiatry as a way of diagnosing and characterizing

different pathologies [11–13,14�].

However, there is also evidence that the correspon-

dence between dopaminergic neurons and the RPE is

more complex and diverse than was previously thought

[15]. First, dopaminergic neurons increase their firing

rate in response to both surprisingly positive and

negative reinforcements [16,17]. Second, dopamin-

ergic activity is correlated with other variables of

the task, such as uncertainty [18]. Third, the RPE is

not exclusively represented  by dopamine, as additional

neuromodulators, in particular serotonin, are also cor-

related with the RPE [19]. Finally, some findings

suggest that reinforcement and punishment signals

are not local but rather ubiquitous in the human brain

[20]. These results challenge the dominance of the

anatomically modular model-free RL as a model for

operant learning.
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Model-based RL
When training is intense, task-independent reward deva-

luation, for example, through satiety, has only a little

immediate effect on behavior. This habitual learning is

consistent with model-free RL because in this frame-

work, the value of an action is updated only when it is

executed. By contrast, when training is moderate, the

response to reward devaluation is immediate and sub-

stantial [21]. This and other behaviors (e.g., planning) are

consistent with an alternative RL approach, known as

model-based RL, in which a model of the world, that is, the

parameters that specify the MDP are learned before

choosing a policy. The effect of reward devaluation after

moderate training can be explained by model-based RL

because a change in a world parameter (e.g., the devalua-

tion of the reward as a result of satiety) can be used to

update (off-line) the values of other states and actions.

If the parameters of the MDP are known, one can

compute the values of all states and actions, for example

by means of dynamic programming or Monte-Carlo simu-

lation. Alternatively, one could choose an action by

expanding a look-ahead decision tree on-line [1]. How-

ever, a full expansion of a look-ahead tree is computa-

tionally difficult because the number of branches

increases exponentially with the height of the tree, so

pruning of the tree is a necessary approximation. Indeed,

a recent study has suggested that humans prune the

decision-tree, by trimming branches associate with large

losses [14�].

Whether or not model-based and model-free learning are

implemented by two anatomically distinct systems is a

subject of debate. In support of anatomical modularity

are findings that the medial striatum is more engaged

during planning whereas the lateral striatum is more

engaged during choices in extensively trained tasks

[22]. In addition, the state prediction error, which signals

the discrepancy between the current model and the

observed state transitions is correlated with activity in

the intraparietal sulcus and lateral prefrontal cortex,

spatially separated from the main correlate of the RPE

in the ventral striatum [23]. Findings that negate ana-

tomical modularity include reports of signatures of both

model-based and model-free learning in the ventral

striatum [24�].

The curse of dimensionality and the blessing
of hierarchical RL
There are theoretical reasons why the RL models

described above cannot fully account for operant learning

in natural environments. First, the computational pro-

blem of finding the values is bedeviled by the ‘curse of

dimensionality’: the number of states is exponential with

the number of variable, which define a state [1]. Second,

when the state of the world is only partially known (i.e.,

the environment is a partially observable MDP
Current Opinion in Neurobiology 2014, 25:93–98 
(POMDP), applying model-free algorithms such as Q-

learning may converge to a solution that is far from

optimality or may fail to converge altogether [25]. One

approach to addressing these problems is to break down

the learning task into a hierarchy of simpler learning

problems, a framework known as Hierarchical Reinforce-
ment Learning (HRL) [26]. Neuroimaging studies have

indeed found neural responses that are consistent with

subgoal-related RPE, as is predicted by HRL [27�].

Challenges in relating human behavior to RL
algorithms
Despite the many successes of the different RL algor-

ithms in explaining some of the observed human operant

learning behaviors, others are still difficult to account for.

For example, humans tend to alternate rather than repeat

an action after receiving a positively surprising payoff.

This behavior is observed both in simple repeated two-

alternative force choice tasks with probabilistic rewards

(also known as the 2-armed bandit task, Figure 1a) and in

the stock market [28]. Moreover, a recent study found

that the behavior of half of the participants in a 4-alterna-

tive version of the bandit task, known as the Iowa gam-

bling task, is better explained by the simple ad-hoc

heuristic ‘win-stay, lose-shift’ (WSLS) than by RL models

[29�]. Another challenge to the current RL models is the

tremendous heterogeneity in reports on human operant

learning, even in simple bandit tasks, measured in differ-

ent laboratories in slightly different conditions. For

example, as was described above, the WSLS observed

in 4-arm bandit [29�] is inconsistent with the alternation

after positively surprising payoffs discussed above [28].

Additionally, probability matching, the tendency to choose

an action in proportion to the probability of reward

associated with that action, has been a subject of debate

over half-a-century. On one hand, there are numerous

reports supporting this law of behavior both in the labora-

tory and when humans gamble substantial amounts of

money on the outcome of real-life situations [30]. On the

other hand, there is abundant literature arguing that

people deviate from probability matching in favor of

choosing the more rewarding action (maximization)

[31]. Finally, there is substantial heterogeneity not only

between subjects and laboratories but also within subjects

over time. A recent study has demonstrated substantial

day-to-day fluctuations in the learning behavior of mon-

keys in the two-armed bandit task and has shown that

these fluctuations are correlated with day-to-day fluctu-

ations in the neural activity in the putamen [32].

Heterogeneity in world model
The lack of uniformity regarding behavior even in simple

tasks could be due to heterogeneity in the prior expec-

tations of the participants. From the experimentalist

point of view, the two-armed bandit task, for example,

is simple: the world is characterized by a single state and

two actions (Figure 1a). However, from the participant
www.sciencedirect.com
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Repertoire of possible world models. In this example, a participant is tested in the two-armed bandit task. (a) From the experimentalist’s point of view

(scientist caricature), the world is characterized by a single state (S0) and two actions: left (blue, L) or right (red, R) button press. However, from the

participant’s point of view there is an infinite repertoire of possible world models characterized by different sets of states and actions. (b) With respect

to the action sets, she may assume that there is only a single available action, pressing any button, regardless of its location (purple, L/R). (c) With

respect to the state sets, the participant may assume that the state is defined by her last action (SL and SR, for previous L and R action, respectively).

(d) Moreover, the participant may assume she is playing a penny-matching game with another human. (e) These and other possible assumptions may

lead to very different predictions in the framework of RL.
point of view there is, theoretically, an infinite repertoire

of possible world models characterized by different sets of

states and actions. This could be true even when precise

instructions are given due to, for example, lack of trust,

inattention or forgetfulness. With respect to the actions

set, the participant may assume that there is only a single

available action, the pressing of any button, regardless of

its properties (Figure 1b). Alternatively, differences in the

timing of the button press, the finger used, among others,

could all define different actions. Such precise definition

of action, which is irrelevant to the task, may end with

non-optimal behavior [32]. With respect to the states set,

the participant may assume that there are several states

that depend on the history of actions and/or rewards. For

example, the participant may assume that the state is

defined by the last action (Figure 1c), the last action and

the last reward, or a function of the long history of actions

[33]. Finally, the participant may assume a strategic game

setting such as a matching-pennies game (Figure 1d).

These and other possible assumptions (Figure 1e) may
www.sciencedirect.com 
lead to very different predictions on behavior [34]. In

support of this possibility, experimental manipulations

such as instructions, which are irrelevant to the reward

schedule, but may change the prior belief about the

number of states can have a considerable effect on human

behavior [35]. Finally, humans and animals have been

shown to develop idiosyncratic and stereotyped super-

stitious behaviors even in simple laboratory settings [36].

If participants fail to recognize the true structure of a

learning problem in simple laboratory settings, they may

also fail to identify the relevant states and actions when

learning from rewards in natural environments. For

example, professional basketball players have been

shown to overgeneralize when learning from their

experience [37].

Learning the world model
Many models of operant learning often take as given that

the learner has already recognized the available sets of

states and actions (Figure 2a). Hence, when attempting to
Current Opinion in Neurobiology 2014, 25:93–98
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Figure 2
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Alternative models of operant learning. In operant learning, experience (left trapezoid), composed of present and past observations, actions and

rewards, is used to learn a policy. (a) Standard RL models typically assume that the learner (brain gray icon) has access to the relevant states and

actions set (represented by a bluish world icon) before the learning of the policy. Alternative suggestions are that the state and action sets are learned

from experience and from prior expectations (different world icons) before (b) or in parallel (c) to the learning of the policy. (d) Alternatively, the agent

may directly learn without an explicit representation of states and actions, but rather by tuning a parametric policy (cog wheels icon), for example,

using stochastic gradient methods on this policy’s parameters.
account for human behavior they fail to consider the

necessary preliminary step of identifying them (correctly

or incorrectly). In machine learning, classification is often

preceded by an unsupervised dimension-reduction for

feature extraction [38,39]. Similarly, it has been suggested

that operant learning is a two-step process (Figure 2b): in

the first step, the state and action sets are learned from the

history (possibly using priors on the world), where in the

second step RL algorithms are utilized to find the optimal

policy given these sets [40]. An interesting alternative is

that the relevant state-action sets and the policy are

learned in parallel (Figure 2c). For example, in a new

approach in RL, known as feature RL, the state set and the

values of the states are learned simultaneously from the

history of observations, actions and rewards. One crucial

property of feature RL is that it neither requires nor learns

a model of the complete observation space, but rather
Current Opinion in Neurobiology 2014, 25:93–98 
learns a model that is based on the reward-relevant

observations [41].

Learning without states
Operant learning can also be accomplished without an

explicit representation of states and actions, by directly

tuning a parametric policy (Figure 2d). A plausible imple-

mentation of such direct policy learning algorithms is

using stochastic policy-gradient methods [42–44]. The

idea behind these methods is that the gradient of the

average reward (with respect to policy parameter) can be

estimated on-line by perturbing a neural network model

with noise and considering the effect of these pertur-

bations on the stream of payoffs delivered to the learning

agent. Changes in the policy in the direction of this

estimated gradient are bound, under certain assumptions,

to improve performance. However, local minima may
www.sciencedirect.com
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prevent the learning dynamics from converging to the

optimal solution.

Direct policy methods have been proposed to explain

birdsong learning [45] and have received some exper-

imental support [46,47]. In humans, a model for gradient

learning in spiking neurons [48,49] has been shown to be

consistent with the dynamics of human learning in two-

player games [50]. Under certain conditions, gradient-like

learning can be implemented using covariance-based

synaptic plasticity. Interestingly, operant matching (not

to be confused with probability matching) naturally

emerges in this framework [51,52]. A model based on

attractor dynamics and covariance-based synaptic

plasticity has been shown to quantitatively account for

free operant learning in rats [53]. However, the exper-

imental evidence for gradient-based learning, imple-

mented at the level of single synapses, awaits future

experiments.

Concluding remarks
RL is the dominant theoretical framework to operant

learning in humans and animals. RL models were par-

tially successful in quantitative modeling of learning

behavior and provided important insights into the

putative role of different brain structures in operant

learning. Yet, substantial theoretical as well as exper-

imental challenges remain, indicating that these models

may be substantially oversimplified. In particular, how

state-space representations are learned in operant learn-

ing remain important challenges for future research.
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