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Diffractive optical elements able to generate zero-order ~on-axis! distributions with phase as well as
amplitude distributions are described. The proposed elements are surface relief plates, i.e., phase-only
elements, that are based on the concept of computer-generated masks followed by common etching
processes. The encoding method assumes fixed spatial partitioning of the cell and a phase-only value
allocated to each subelement. The reconstructed amplitude and phase distributions contain imperfec-
tions ~noise! resulting from the encoding process. Methods of error reduction and improvements are
provided. © 1997 Optical Society of America
1. Introduction

Holography has played a major role in optical data
processing.1,2 The common method use for display-
ing complex function was by means of modulating
the spatial information on a carrier signal. In optics
this consisted of a modulated grating. The recon-
struction displayed the desired function along the
first diffraction order ~off-axis holography!. Meth-
ods of synthetic generation of holographic elements
were first introduced by Brown and Lohmann3

and Lohmann and Paris,4 who invented the first com-
puterized encoding method for holograms. The
computer-generated holograms produced by this ap-
proach were binary and were allowed to yield desired
complex function distributions at arbitrary planes
along the direction of the first diffraction order.

For far-field reconstructions, the Fourier transform
of the desired distribution to be reconstructed is eval-
uated at discrete cell locations called pixels. In one
implementation, the amplitude of each pixel is en-
coded by the plotting of a binary square inside the
area of the hologram’s pixel. The normalized area of
the plotted square is inversely proportional to the
amplitude to be encoded in that pixel, while the out-
of-center position of the square within the pixel is
used to encode the phase. Different encoding proce-
dures were later suggested by Lee,5 Burckhart,6
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Hsueh and Sawchuck,7 Gallagher and Bucklew,8 and
Matic and Hensen.9 In each approach a specific
mathematical relation that connects the out-of-center
location and the area of a blocking pattern ~commonly
square! to the phase and the amplitude, respectively,
to be encoded has been derived. A common feature of
all these methods is that the reconstructed image is
displayed along the first order of diffraction, and the
conjugated image is obtained along the opposite order.

One of the main disadvantages of obtaining a re-
construction along the first diffraction order is that
the reconstruction accuracy is highly dependent on
the illumination wavelength. If deviation of the
wavelength l occurs in the illumination source, as
often happens in practical optical systems with com-
monly available light sources, the quality of recon-
struction rapidly decreases with the amount of
deviation. Moreover, working along the first diffrac-
tion order increases the complexity of the system,
does not allow on-line operation, and often decreases
significantly the light efficiency of the system.

In view of the above, zero-order encoding methods
might yield superior performances. The main draw-
back of these methods is that the implementation of zero-
order holograms is in general more difficult because it
requires several etching steps if one desires nonbinary
operation. Nevertheless, owing to rapid developments
in microelectronics, in recent years improvement in etch-
ing accuracy has developed rapidly and thus fabrication
of many etching depth levels is easy to achieve through,
for example, controlling the coating deposition thickness.
Therefore lately the implementation of zero-order holo-
grams has become much more feasible.

The history of phase-only diffractive optical ele-
ments ~kinoforms! was initiated in 1969 by Lesem
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et al.10 Their approach for encoding phase-only in-
formation was to modulate a sawtooth phase struc-
ture. The periodic structure generates a beam in
the direction of the first diffraction order, which car-
ries the phase information by virtue of the modula-
tion introduced on the sawtooth grating. In this
approach the amplitude information of the wave front
is assumed to be constant on the basis of the assump-
tion that, for the reconstruction, the phase informa-
tion of a wave front is much more significant than the
amplitude information. Horner and Leger11 too an-
alyzed the behavior of phase-only elements when
they are used as matched filters in correlation setups.

The assumption that phase information is more
important than amplitude information does not
hold for all cases. Indeed, an improvement to the
kinoform approach that also enables the encoding of
amplitude information has been suggested by Kirk
and Jones.12 According to their method, the recon-
structed image is obtained in any desired order,
including zero diffraction order, by modulating the
amplitude information on a high-frequency phase
carrier that diffracts the undesired light into higher
orders. However, the spatial frequency needed to
encode the amplitude should be high so that errors
are reduced. Therefore, in addition to the high-
phase resolution ~etching depth resolution! needed
to encode the phase, this method also requires high
spatial resolution to handle the amplitude informa-
tion.

A simplification of this method was suggested by
Florence and Juday.13 In their approach the ampli-
tude information is modulated by the division of each
pixel, now designated macropixel, into only two equal
subpixels with a different phase allocated to each
subpixel. A limited spatial resolution is now
needed, however, for this encoding procedure results
in a very large error.

We investigate variations of these encoding tech-
niques that are able to produce a much better per-
formance. In Section 2 this approach is analyzed
in detail for the first time. This analysis is neces-
sary for estimating the relatively large error terms,
as derived in Section 3, in the reconstructed image.
Section 4 presents modifications that provide major
improvements to the basic approach and signifi-
cantly reduce the error factors while the required
spatial resolution is kept relatively low. Com-
puter simulations that prove the capability of the
proposed encoding approaches are shown in Section
5.

2. Encoding Procedure

The basic zero-order phase-only encoding procedure
as shown by Florence and Juday13 is based on re-
garding the mask plane as being composed of mac-
ropixels. Each macropixel consists of two equal
regions, each region manufactured ~etched! in a
way such that it displays a uniform phase value.
The aim of the subdivision is the encoding of am-
plitude as well as phase information by phase-only
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elements. Therefore the procedure described re-
lies on using pure phase-only functions that may be
fabricated with techniques such as plasma etching
and chemical etching, among others. The obtained
resulting beam is generated with relatively high
light efficiency. Moreover those devices can be
replicated with ease and are cost effective. The
encoding approach requires spatial resolution lower
than that needed for conventional first-order ele-
ments because the encoded free parameters are the
phases etched in each one of the partitions rather
than the locations. The required amplitude and
phase of each cell ~macropixel! converts into a spe-
cific phase value that is assigned to each cell’s par-
tition ~pixel!.

A two-dimensional top view construction of the ba-
sic encoding cell elements ~m, n! is illustrated in Fig.
1, and a typical etching profile is shown schematically
in Fig. 2. Each cell in this basic representation is
encoded through two sections of equal widths. Two
free parameters exist in this representation: fm,n

~1!

and fm,n
~2! ~shown in Fig. 2!, which are the phases

etched in each one of the two partitions of the cell ~m,
n!. These free parameters are shown to produce the
necessary phase and the amplitude encoding of that
cell. The mathematical expression for the filter rep-
resented by all cells is given by

H~nx, ny! 5 (
m

(
n

rectSny

dnDrectS2nx

dn D
p (exp~ifm,n

~1! !HdFnx 2 Sm 1
1
4DdnG

3 dFny 2 Sn 1
1
2DdnGJ 1 exp~ifm,n

~2! !

3 dFnx 2 Sm 1
3
4DdnGdFny 2 Sn 1

1
2DdnG) ,

(1)

where p denotes convolution, dn is the lateral dimen-
sion of the pixel, and d is the Dirac impulse function.

Fig. 1. Top view of one cell ~m, n!.



Let h~x, y! be the inverse Fourier transform of H~nx,
ny!. We then have

h~x, y! 5 *
2`

`

*
2`

`

H~nx, ny!exp@i2p~xnx 1 yny!#dnxdny.

(2)

Thus one obtains

h~x, y! 5
dn2

2
expSi2py

dn

2 DexpSi2px
dn

4 DsincSdnx
2 D

3 sinc~dny! (
m

(
n
Fexp~ifm,n

~1! ! 1 exp~ifm,n
~2! !

3 expSi2px
1
2

dnDGexp@i2pdn~xm 1 yn!#, (3)

where sinc~x! is defined as

sinc~x! 5
sin~px!

px
. (4)

Because the inverse Fourier transform of the encoded
function is displayed along the zero diffraction order,
we restrict our interest to regions of ~x, y! correspond-
ing to x, y ,, 1ydn. Therefore

dnx ,, 1, dny ,, 1, (5)

and, as a result,

sinc~dnx!, sinc~dny! < 1, exp~i2pxdn!, exp~i2pydn! < 1.

(6)

Equation ~3! now becomes

h~x, y! <
dn2

2 (
m

(
n

@exp~ifm,n
~1! ! 1 exp~ifm,n

~2! !#

3 exp@i2pdn~xm 1 yn!#. (7)

In a discrete system, the filter H~nxny! should repre-
sent an arbitrary complex distribution that in cell ~m,
n! is given by

H~mdn, ndn! 5 Am,n exp~ifm,n!. (8)

Fig. 2. Etching profile of cell ~m, n!.
The Fourier integral of Eq. ~2! is then transformed to
a summation:

h~x, y! < ~dn!2 (
m

(
n

H~mdn, ndn!

3 exp@i2p~xm 1 yn!dn#. (9)

The expression in the left-hand square brackets of
expression ~7! can be mathematically manipulated to
provide

h~x, y! 5 ~dn!2 (
m

(
n

cosSfm,n
~1! 2 fm,n

~2!

2 D
3 expSi

fm,n
~1! 1 fm,n

~2!

2 Dexp@i2p~xm 1 yn!dn#.

(10)

If we normalize the amplitude values such that 0 #
Am,n # 1, a comparison between expression ~9! and
Eq. ~10! yields that the amplitude and the phase of
each cell are determined uniquely by the values of
fm,n

~1! and fm,n
~2! so that

Am,n 5 cosSfm,n
~1! 2 fm,n

~2!

2 D , (11)

fm,n 5 Sfm,n
~1! 1 fm,n

~2!

2 D . (12)

Hence, if the samples of the Fourier transform of the
desired image are given by the discrete values
H~mdn, ndn! as defined in Eq. ~8!, then fm,n

~1! and fm,n
~2!

should satisfy the following equations:

fm,n
~1! 5 fm,n 1 cos21~Am,n!, (13)

fm,n
~2! 5 fm,n 2 cos21~Am,n!. (14)

Note that the above-described method reconstructs
the Fourier transform of the encoded function along
the optical axis, in the zero-diffraction-order direc-
tion. However, the approach can be applied to other
optical transformations as well. For example, the
reconstruction might be applied over the Fresnel
transform or the fractional Fourier transform of the
encoded function with exactly the same encoding pro-
cedure. In addition, this method is appropriate also
for holography, i.e., image plane reconstruction.

3. Error Terms

The main cause for performance reduction of the en-
coding method of Section 2 is that there is a spatial
shift between the two different phases that encode
the amplitude and the phase of each cell. If the two
phases could be superposed, there might be less per-
formance reduction. It is well known that the Fou-
rier transform of a shifted object contains an
additional linear phase factor. This phase is the
term exp@i2px~dny2!#, multiplying exp~ifm,n

~2! ! in Eq.
~3!. Best performance would be obtained if the
terms that multiply exp~ifm,n

~1! ! and exp~ifm,n
~2! ! would
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be as similar as possible. Such would be the case if
an interferometric setup, whereby each cell would be
composed of two superimposed phase functions,
would be possible. The implementation and the
alignment requirements of such a setup are prohibi-
tive. If this does not happen, a distorted image will
indeed be obtained. As an example, assume Am,n 5
1 and fm,n 5 0 for every ~m, n!. According to Eqs.
~13! and ~14!, fm,n

~1! 5 fm,n
~2! 5 0. The reconstructed

object h~x, y! @see Eq. ~3!# is expected within the win-
dow uxudn # 1y2. At the center x 5 0, we indeed
obtain

expSi2px
dn

2 D 5 1,

exp~ifm,n
~1! ! 1 expSi2px

dn

2 Dexp~ifm,n
~2! !

2
5 1, (15)

which is fine, but at the edge for X 5 1y2dn we obtain

expSi2px
dn

2 D 5 i,

exp~ifm,n
~1! ! 1 expSi2px

dn

2 Dexp~ifm,n
~2! !

2
5

1 1 i
2

, (16)

which provides a rather large error. As one can see,
the error is a function of the x coordinate. At x 5 0
there is no error and at x 5 1y2dn the error is max-
imal. To estimate the error, one should define an
accuracy predictor ~AP!, which is the ratio of the co-
efficients of exp~ifm,n

~1! ! and exp~ifm,n
~2! ! in Eq. ~3!,

which results in

AP 5 expSi2px
dn

2 D . (17)

uAPu should be as close as possible to 1, and its phase
should be close to zero to achieve the same contribu-
tion from those two terms everywhere. Without any
corrections, we have just seen that at x 5 1y2dn we
obtain AP 5 i. As we discussed, such an error is
large and should be reduced.

4. Error Reduction Schemes

We describe several ways for reducing the effect of
these errors and analyze their effect.

A. Oversampling

We considered sampling the hologram ~Fourier trans-
form information! at a rate higher than the minimum
necessary one ~Shannon rate!. The best practical
way to increase the sampling is to surround the orig-
inal object with zeros, which is equivalent to reducing
the incremental frequency step dn after the Fourier
transform operation. Let the original object size be
umax; the added strip of zeros increases it to Umax.
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The new incremental frequency step dn is 1yUmax.
The oversampling factor P is defined as:

P 5
Umax

umax
. (18)

The reconstructed image will have a size Umax.
However, the interest is restricted to the umax so that
Xmax in Eq. ~17! is now restricted to Xmax 5 umaxy2 5
1ydnumax, and the AP is at the limit portion of the
image:

AP 5 expSi2pXmax

dn

2 D 5 expSi2p
1

4PD .

B. One-Dimensional Symmetric Partition

Instead of dividing the cell into two fixed partitions
~which is an asymmetrical structure!, we propose to
divide the cell into four fixed partitions, which allows
allocating the two phase values in a symmetric fash-
ion ~see Fig. 3!. The value of the two inner partitions
is determined to be exp~ifm,n

~2! !, whereas the value of
the two outer partitions is set to exp~ifm,n

~1! !. Such a
filter is accordingly represented by

H~nx, ny! 5 (
m

(
n

rectSny

dnDrectS4nx

dnD
p (exp~ifm,n

~1! !HdFnx 2 Sm 1
1
8DdnG

1 dFnx 2 Sm 1
7
8DdnGJ1 exp~ifm,n

~2! !

3 HdFnx 2 Sm 1
3
8DdnG1 dFnx 2 Sm 1

5
8DdnGJ)

3 dFny 2 Sn 1
1
2DdnG .

(19)

Fig. 3. Top view of one cell; 1-D symmetrical structure.



The distribution of the reconstructed beam is thus
given by

h~x, y! 5
~dn!2

4
expSi2py

dn

2 DexpSi2px
dn

2 DsincSdnx
4 D

3 sinc~dny!(
m

(
n
Hexp~ifm,n

~1! !

3 FexpS2i2p
3
8

dnD 1 expSi2p
3
8

dnDG
1 exp~ifm,n

~2! !FexpS2i2px
1
8

dnD
1 expSi2p

1
8

dnDGJexp@i2pdn~xm 1 yn!#.

(20)

Rearranging the elements of Eq. ~20! and using ap-
proximation ~6!, one obtains

h~x, y! <
~dn!2

2 (
m

(
n
Fexp~ifm,n

~1! !cosS2px
3
8

dnD
1 exp~ifm,n

~2! !cosS2px
1
8

dnDG
3 exp@i2pdn~xm 1 yn!#. (21)

Combining the one-dimensional ~1-D! symmetric
structure approach with the oversampling approach
described in Section 3 results in better accuracy.
The AP at the image edge, where the error is at the
maximum level, is given by

AP 5
cos~py8p!

cos~3py8p!
. (22)

For example, using the symmetrical code p 5 4, one
gets AP 5 1.04. For a fair comparison with the
asymmetric approach, one should use p 5 8 because
the symmetric approach needs twice the resolution of
the asymmetric approach. One then obtains that
AP for that asymmetric approach is AP 5 exp@i~py
16!# 5 0.98 1 0.19i, which is worse than the one

Fig. 4. Top view of one cell; 2-D symmetrical structure.
evaluated for the symmetric case because of the com-
plex value.

C. Two-Dimensional Symmetric Structure

The 1-D symmetric structure can be expanded into a
two-dimensional ~2-D! symmetric structure as shown
in Fig. 4. The filter is now

H~nx, ny! 5 (
m

(
n

rectS4ny

dn DrectS4nx

dn D
p [(exp~ifm,n

~1! !HdFnx 2 Sm 1
1
8DdnG

1 dFnx 2 Sm 1
7
8DdnGJ 1 exp~ifm,n

~2! !

3 HdFnx 2 Sm 1
3
8DdnG

1 dFnx 2 Sm 1
5
8DdnGJ)

3 HdFny 2 Sm 1
3
8DdnG

1 dFny 2 Sm 1
5
8

dnDGJ 1 (exp~ifm,n
~2! !

3 HdFnx 2 Sm 1
1
8DdnG1 dFnx 2 Sm 1

7
8DdnGJ

1 exp~ifm,n
~1! !HdFnx 2 Sm 1

3
8DdnG

1 dFnx 2 Sm 1
5
8DdnGJ)HdFny 2 Sm 1

1
8DdnG

1 dFny 2 Sm 1
7
8DdnGJ] . (23)

Considerations the same as in Eqs. ~20! and ~21! lead
to

h~x, y! <
~dn!2

2 (
m

(
n
Hexp~ifm,n

~1! !FcosS2px
3
8

dnD
3 cosS2py

1
8

dnD1 cosS2px
1
8

dnDcosS2py
3
8

dnDG
1 exp~ifm,n

~2! !FcosS2px
3
8

dnDcosS2py
3
8

dnD
1 cosS2px

1
8

dnDcosS2py
1
8

dnDGJ
3 exp@i2pdn~xm 1 yn!#. (24)

A combination of the 2-D symmetric approach with
the above oversampling conclusion results in

AP 5
cos~3py8p! 1 cos~py8p!

2cos~3py8p!cos~py8p!
. (25)
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Fig. 5. ~a! 1-D top-hat object to be encoded, ~b! obtained recon-
struction for original method, ~c! obtained reconstruction using 1-D
symmetrical structure.

Table 1. Accuracy Predictor for Basic Approach, Including
Improvements

P Basic Approach 1-D Structure 2-D Structure

1 1 ,
p

2
2.41 1.84

2 1 ,
p

4
1.17 1.11

4 1 ,
p

8
1.04 1.02

8 1 ,
p

16
1.01 1

16 1 ,
p

32
1 1
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For example, for P 5 2 Eq. ~25! indicates that AP 5
1.11 while for the 1-D symmetric structure AP is 1.17
@see Eq. ~22!#. Moreover, the basic encoding method
~asymmetric approach! results in AP 5 0.92 1 0.38i.
The superiority of the 2-D symmetric structure is
evident.

Table 1 provides a summary of the expected per-
formances of the basic approach and its two improve-
ment variations, expressed by the AP. One can see
that the AP for the basic approach is a complex num-

Fig. 6. ~a! 2-D image to be encoded, ~b! obtained reconstruction for
original method, ~c! obtained reconstruction using 2-D symmetri-
cal structure.



ber while the AP for the symmetrical approach is
real. The complex number represents a phase error,
which might be more dangerous than an amplitude
error in the reconstruction plane. It is also evident
from this table that for a given value of p the accuracy
predictor achieved by the 2-D structure is better than
that achieved by the 1-D structure.

5. Computer Simulations

To demonstrate the capabilities of the proposed zero-
order encoding method, we carried out computer sim-

Fig. 7. ~a! 2-D image to be encoded, ~b! obtained reconstruction for
original method, ~c! obtained reconstruction using 2-D symmetri-
cal structure.
ulations. Figure 5~a! shows a 1-D top-hat ~box!
object that was encoded with the two-fixed-partitions
method. The zero-order region of the output plane is
shown in Fig. 5~b! ~for p 5 40!. Figure 5~c! shows
the same region achieved with the 1-D symmetric
structure approach ~for p 5 20!. One can see that
the quality of the reconstruction is good and that high
uniformity is achieved.

To test the method on 2-D images, we present a 2-D
image in Fig. 6~a!. Figure 6~b! is the obtained re-
construction around the zero order achieved by the
encoding of the image using the two-fixed-partitions
method ~p 5 4!. Figure 6~c! shows the same region
achieved with the 2-D symmetric structure approach
~p 5 2!. Figure 7~a! is the outline of Fig. 6~a!. The
same reconstruction is shown again in Figs. 7~b! and
7~c!. Once again the reconstruction is good and un-
blurred, i.e., the high frequencies were resolved.

6. Conclusions

Approaches for encoding arbitrary phase and ampli-
tude distributions are proposed. The suggested
methods are based on phase-only filter ~produced by
a plasma etching device!, thus resulting in relatively
high light efficiency. The hologram mask was de-
signed to reconstruct around the zero order of diffrac-
tion and therefore is insensitive to variations in the
wavelength of the illuminating source. The sug-
gested implementation is suited for high-resolution
phase-etching production and low spatial resolution,
while a previous described approach ~Ref. 12! re-
quires both spatial resolution and depth resolution to
be high. Thus this approach offers great potential
for dynamic elements that are based on spatial light
modulators. The obtained elements are ready to re-
place the binary amplitude computer-generated
holograms in a variety of applications such as optical
correlators, displays, beam shaping devices, and so
forth. Computer simulations have shown that the
methods can cope successfully in reconstructing dif-
ferent types of objects and have emphasized the bet-
ter reconstruction results achieved by those methods
in comparison with the other phase-only zero-order
hologram approaches.
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