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Integrated cylindrical vector vortex (CVV) emitters have
been introduced and studied for their potential applications
in classical optics and quantum optics technologies. In this
work, we demonstrate that the emission angle of integrated
CVV emitters can be engineered by taking advantage of the
geometrical phase of a microring resonator. Two methods
to superimpose an arbitrary phase profile on top of the
integrated emitters are presented and compared. Angled
emission of integrated vector vortex beams enables the
use of chip-scale emitters for integrated nonlinear optics
and for beam steering applications with orbital angular
momentum. ©2020Optical Society of America

https://doi.org/10.1364/OL.412026

Cylindrical vector vortex (CVV) beams carry simultaneously
spin and orbital angular momentum (OAM). Spin angular
momentum (SAM) is the property of light that is associated
with its polarization, while OAM is a degree of freedom that
is associated with helical waveform, with topological charge,
generally denoted by the integer l . When solving Maxwell’s
equations in cylindrical coordinates, l is associated to the
azimuthal phase exp(ilφ). CVV beams have been used in a
wide range of applications, including in microscopy [1], optical
tweezers [2], optical trapping [3], and precision measurements
[4].

Recently, OAM has gained significant attention due to its
inherent properties. The unlimited topological charges and
their orthogonality may provide a tremendous resource for
increasing the channel capacity in classical telecommunication
systems [5]. Moreover, the high-dimensional states provided
by OAM show great potential for quantum communica-
tion [6], quantum information processing [7], and quantum
computation [8].

Driven by the attractiveness of developing compact, robust,
and complex integrated circuits that incorporate OAM, on-chip
CVV emitters based on microring resonators have been demon-
strated and widely investigated [9–16]. On top of the obvious
advantages provided by such integration, on-chip emitters
enable development of active devices [12], and engineering

of the state of polarization (SoP) of the emitted CVV beam
[13,14].

While the emission of vector vortex beams to free space has
been mainly considered for data transmission and linear inter-
actions, its use for nonlinear interactions remains challenging,
yet highly desired. For example, generation of on-demand
single photons at room temperature was recently demonstrated,
using four-wave mixing in a sub-micrometer atomic vapor
cell [17]. Moreover, conservation of total OAM in four-wave
mixing enables efficient transfer of OAM to the generated light
[18]. Thus, using CVV emitters for nonlinear interactions in
an atomic-nanophotonic chip [19,20] can lead toward devel-
opment of integrated single photon sources with engineered
SoP.

CVV emitters based on microring resonators use an angular
grating embedded in the inner sidewall of the ring to couple the
whispering gallery mode (WGM) of the microring to a CVV
mode that radiates perpendicular to the plane of the micro-
ring. However, efficient nonlinear interactions require phase
matching, which is generally achieved by tuning the angle of the
interacting beams in the nonlinear material.

Here we propose and compare two methods to generate CVV
beams propagating at a specific angle with respect to the axis
normal of the ring surface, by taking advantage of the geomet-
rical phase of the propagating wave in the microring resonator.
While the first method is straightforward and easy to imple-
ment, the other one presents an important feature, as it preserves
the ability to tailor the SoP of the emitted vector vortex beam.

Generally speaking, the angular grating embedded in the
microring resonator acts as a second-order grating, in which
the WGM is scattered out of plane by the grating elements.
In the small perturbation regime, each grating element can be
approximated as a radiating dipole, with a polarization defined
by the local optical field being scattered [13–15]. The SoP of the
emitted CVV beams is determined by the collective interference
of these radiative dipoles, and it can be engineered by tailor-
ing the geometrical dimensions of the microring waveguide
[13]. Constructive interference occurs when the angular phase
matching condition is satisfied,
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Fig. 1. (a) Sketch of slant emission of CVV beam by superimposing
a linear phase onto the ring emitter. (b) Radial and azimuthal field
components of the fundamental TE mode of a silicon waveguide with
3.9 µm radius, 450 nm width, and 180 nm height, at a wavelength of
1.55 µm. (c) Effective refractive index of the fundamental TE mode as
a function of the waveguide width, assuming a curved waveguide with
bending radius of 3.9µm.

l = p− g ∗ q, (1)

where l is the topological charge of the emitted beam, p is the
WGM mode order, g is an integer, and q is the number of grat-
ing elements. The latter is related to the grating period,30, by
q = 2π R/30, where R is the radius of the microring resonator.

Emitting CVV beams at an angle with respect to out of plane
normal axis requires us to superimpose a linear global phase,
1ϕ, to the ring resonator in a Cartesian direction, as illustrated
in Fig. 1(a). This phase can be implemented on the ring by
using two different methods. In the first approach, the linear
phase is obtained by varying the width of the ring waveguide,
while keeping the separation between the grating elements (30)
constant. Since the effective index of the propagating mode, neff,
depends on the geometry of the waveguide [Fig. 1(c)], the opti-
cal phase accumulated between two equally separated scattering
elements varies as function of the azimuthal coordinate, and it
can be written as δϕ = 2π R

λ

∫ φi+1φ

φi
neff(θ)dθ , where λ is the

wavelength of the light andφi is the azimuthal coordinate of the
i th grating element. Thus, a global phase can be implemented
by tuning the width of the waveguide between each element.

To demonstrate the ability to tune the emission angle of
the CVV emitters, we use 3D finite-difference-time-domain
(FDTD) solver (Lumerical). In order to limit the computation
time to a realistic value, we simulate fairly small silicon micro-
ring resonators at telecom wavelength, about 1550 nm. The
high index contrast of silicon enables operating ring radii down
to 3µm, which simplifies the FDTD calculations.

In order to demonstrate the ability to emit CVV beams at an
angle with respect to the z axis [Fig. 1(a)] by tuning the width of
the ring’s waveguide, we simulate a silicon microring resonator
with a radius of 3.9 µm, a waveguide width of 450 nm, and a
height of 180 nm, with 33 grating elements. The cross-sectional
electric field distribution of the fundamental TE mode is pre-
sented in Fig. 1(b), showing the radial component Er and the
azimuthal one i Eφ . The scattered field is highlighted as a green
box. The effective refractive index of the mode as function of the
waveguide width is presented in Fig. 1(c).

Fig. 2. (a) Sketch of a vertical emitter; (b) slant emitter based on
width variation. (c), (d) Far-field intensity emission with each concen-
tric ring (green) representing 10◦; (e), (f ) polarization map of the l = 0
emitted mode for the case of (c), (e) vertical emission and (d), (f ) slant
emission. (g) Emission angle and average polarization ellipticity of
the l = 0 mode as afunction of the width change1w in the microring
resonator. (h) Mode correlation as function of the emission angle. The
dashed line highlights mode correlation of 90%.

A comparison between the emitted CVV beams with topo-
logical phase l = 0, without and with superimposed linear phase
obtained by the variation of the waveguide width, is presented
in Fig. 2. The geometries of the microrings are illustrated in
Figs. 2(a) and 2(b). In both cases, the microring radius is 3.9µm,
and the waveguide height is 180 nm. The vertical emitter con-
sists of a constant waveguide width of 450 nm while width of
the slanted emitter waveguide varies by 1w=±50 nm, from
400 nm to 500 nm, along the y coordinate [defined in Fig. 1(a)].
In both cases, 33 equally spaced grating elements are used.
Each scatterer consists of a 100 nm wide, 200 nm long, and
180 nm high cuboid. The gap between the bus waveguide and
the microring is 50 nm. Figures 2(c) and 2(d) shows the far-field
intensity projection of the simulated field, propagated onto a
hemispherical surface of 1 m radius. The figure presents the
typical “doughnut” shape of CVV beams. The emission angle
obtained by tuning the waveguide dimensions is about2= 9◦.

Figures 2(e) and 2(f ) present a map of the polarization of
the emitted CCV beams. While the vertically emitted beam is
almost perfectly radially polarized, the polarization of the tilted
beam is more complex. This is mainly due to the fact that the
local polarization scattered by the grating elements varies with
the geometry of the waveguide [13]. Although the polarization
of CVVs varies in space, the cylindrical average global ellipticity
can be used to characterize the average polarization of the mode.
The average cylindrical polarization ellipticity is defined as
the ratio of the radial and azimuthal energy components of the
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CVV mode (i.e., ε2
= |Er |

2/|Eφ|2 or |Eφ|2/|Er |
2) such that

ε2
= 0 is linearly polarized (radially or azimuthally) and ε2

= 1
is circularly polarized. The average ellipticity of the vertically
emitted beam is ε2

= 0.023 and ε2
= 0.677 for the case of tilted

emission.
The emission angle and the average cylindrical ellipticity

as a function of the variation in waveguide width are pre-
sented in Fig. 2(g). The parameter 1w represents the relative
change from the nominal width of w0 = 450 nm, with wave-
guide width varying from w0 −1w to w0 +1w. The figure
shows that the emission angle increases monotonically, with
the increased variation of the waveguide width, such that
the global linear superimposed phase is 1ϕw = 2π R

λ
1neff,

with 1neff = neff(w0 +1w)− neff(w0 −1w). In parallel,
the average cylindrical ellipticity also changes, and the beam
polarization is altered. This is mainly due to the fact that the
polarization in the evanescent field scattered by the grating
elements changes with the waveguide width [13].

Another way to characterize the change in the emitted beam
is the mode correlation between the vertically emitted beam and
the slant emission. Mode correlation can measure the overall
similarity between two vector light fields, including intensity,
phase, and polarization [21,22]. It is presented in Fig. 2(h),
and as expected, the correlation drops with respect to the emis-
sion angle. Up to an emission angle of about 2.5◦, the mode
correlation is higher than 90%.

In the second approach, the width of the waveguide is kept
constant, and the superimposed linear phase is implemented by
chirping the angular grating. The accumulated phase between
two grating elements is 1ϕi =

2πneff R
λ

1φi , where 1φi is the
relative azimuthal distance between the two scatterers.

Mathematically, the angular phase matching condition
[Eq. (1)] arises from coupling mode theory, in which the grating
is considered as a small perturbation in the dielectric constant of
the microring that couples the unperturbed WGM of the ring
to free-space modes [9]. This condition can be generalized to∫ 2π

0 (l − p + f (φ))dφ = 0, where f (φ) is the instantaneous
angular frequency of the grating. Because l and p are integers,
f (φ)must fulfill the following condition:∫ 2π

0
f (φ) dφ = 2πm, (2)

where m is an integer that corresponds to the number of grating
elements and should satisfy the relation m = p − l .

It is trivial to show that when the instantaneous angular fre-
quency of the grating is constant f (φ)= const= g · q , with g
an integer and q = 2π R/30, the previous condition is fulfilled.

In order to induce a linear phase shift in one Cartesian
direction, we need to find the appropriate function f (φ).
Assuming that additional phase goes from 0 to 1ϕ when the
y -coordinated varies from 0 to 2 R, the linear phase ϕlin(φ) in
cylindrical coordinate system can be written as

ϕ lin (θ)=1ϕ/2R · y (φ)=1ϕ · sin2 (φ/2) , (3)

where we have expressed the y Cartesian coordinate as
y = 2Rsin2(φ/2) with 0≤ y ≤ 2R , instead of the more trivial
case of y = R sin(φ), with−R ≤ y ≤ R , for convenience.

The instantaneous angular frequency can be writ-
ten as f (φ)= a · ϕtot(φ)= a · [ϕ0 + ϕlin(φ)] = a ·
[2π R/30 +1ϕ · sin

2(φ/2)], where a is the normalization
constant, which fulfill the angular momentum phase matching
condition,

a=
2π ( p− l)∫ 2π
0 ϕ (φ) dφ

. (4)

The waveform of the grating is given by G(φ)= cos(F (φ)),
with F (φ)=

∫ φ
0 f (θ)dθ . For the case of a binary grating, each

grating element should be positioned at each cycle of the func-
tion G(φ).

To demonstrate the ability of our design to tune the emission
angle of CVV beams, we simulate a silicon microring resonator
with a radius of 3.1 µm, a waveguide width of 700 nm, and
height of 180 nm. In this case, we kept the number of grat-
ing elements to be 31, despite the non-uniform spacing. The
gap between the bus waveguide and the ring is 100 nm. The
comparison between vertical emission and slant emission, for
topological phases l =−1, 0, 1, is presented in Fig. 3. For
this simulation, the additional phase was 1ϕ = 3π/2, which
resulted in an emission angle of about2= 12◦.

The average cylindrical polarization ellipticity is also
affected by the superimposed linear phase. It changes from
ε2

0(l =−1)= 0.6304, ε2
0(l = 0)= 0.3993, ε2

0(l = 1)=
0.8855 at vertical emission to ε2

2(l =−1)= 0.4776,
ε2
2(l = 0)= 0.6594, and ε2

2(l = 1)= 0.7864 for topologi-
cal phases of−1, 0, and 1, respectively. The emission angle and

Fig. 3. (a), (b), (e), (f ), (i), (j) Far-field intensity emission; (c), (d), (g), (h), (k), (l) polarization map of the emitted modes with topological charge,
(a)–(d), l =−1; (e)–(h), l = 0; (i)–(l), l = 1, for the case of (a), (c), (e), (g), (i), (k) vertical emission and (b), (d), (f ), (h), (j), (l) slant emission.
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Fig. 4. (a) Emission angle and (b) average cylindrical ellipticity of
the CVV modes with topological charges l =−1, 0, 1, as a function of
the global superimposed phase. (c) Mode correlation as a function of
the emission angle. The dashed line represents correlation of 90%.

the average ellipticity as a function of the different superimposed
global linear phase1ϕ are presented in Figs. 4(a) and 4(b). The
different tendencies with respect to topological charges are not
trivial. This change is mainly due to the breaking of cylindrical
symmetry, since constructive interference of all the radiating
dipole, defined by the local electric field scattered by the grating
elements, now occurs at a nonzero angle with respect to the
center axis of the ring. However, in this approach, the SoP of the
local scattered field is decoupled from the global superimposed
phase, such that the ability to tailor the SoP of the CVV beams
is maintained. In order to see how the beam quality is affected
by the global phase, the mode correlation between the vertical
and slant emitted beam as a function of the emission angle is
also presented in Fig. 4(c). For an emission angle smaller than
∼5◦, the beam is well correlated with the vertical emission, with
>90% correlation.

In conclusion, we have presented two methods to tune the
angle of emission from integrated CVV emitters. The first
method is based on width variation of the ring’s waveguide,
which should be relatively easy to implement, however, at the
expense of significantly perturbation to the SoP of the emit-
ted beam. The second method is based on a chirped grating,
and it keeps the ability to tailor the SoP of the emitted beams
by decoupling the superimposed phase from the waveguide
geometry.

While the approach discussed here was focused on the linear
regime, slanted emission of CVVs could also become an impor-
tant feature for achieving phase matching in efficient nonlinear

processes, which are important building blocks for development
of new functionalities for chip-scale quantum technologies.
Moreover, the mathematical method presented here is not
limited to imprinting a linear phase in a Cartesian coordinate,
but it can be also used to apply any phase profile on the ring.
For example, more complex CVVs profiles composed of two or
more orthogonal modes, as in Ref. [16], can be generated.
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