SOLUTION TO THE EXAM 2004 (SUMMER COURSE)

P. CHIGANSKY

Problem 1.

(a) The optimal receiver is given by the Kalman formulae

$$
\begin{align*}
\widehat{X}_{n} & =\widehat{X}_{n-1}+\frac{b_{n} P_{n-1}}{1+b_{n}^{2} P_{n-1}}\left(Y_{n}-a_{n}-b_{n} \widehat{X}_{n-1}\right) \tag{1}\\
P_{n} & =P_{n-1}-\frac{b_{n}^{2} P_{n-1}^{2}}{1+b_{n}^{2} P_{n-1}} \tag{2}
\end{align*}
$$

subject to $\widehat{X}_{0}=0$ and $P_{0}=1$.
(b) Note that

$$
P_{n}=\frac{P_{n-1}}{1+b_{n}^{2} P_{n-1}}
$$

and

$$
Q_{n}:=P_{n}^{-1}=Q_{n-1}+b_{n}^{2}=1+\sum_{m=1}^{n} b_{m}^{2}
$$

so that

$$
P_{n}=\frac{1}{1+\sum_{m=1}^{n} b_{m}^{2}} .
$$

Since $\gamma_{n}=E\left(a_{n}+b_{n} X\right)^{2}=a_{n}^{2}+b_{n}^{2} \leq \gamma$ the choice $a_{n}=0$ and $b_{n}=\sqrt{\gamma}$ minimizes P_{n} for any $n \geq 1$ and keeps the power within the required limit $\gamma_{n} \leq \gamma$. The minimal error is then

$$
P_{n}=1 /(1+n \gamma)
$$

(c) If ξ_{1} were not Gaussian, smaller estimation error may be attained for any chosen transmitter (why?) - in particular for the transmitter from (b). Thus the error may only decrease.
(d) The generalized Kalman filter implements the optimal receiver: the optimal filter and the conditional mean square error are given by the same equations (1)-(2) with a_{n} depending on the past of Y.
(e) Y is not necessarily Gaussian, since a_{n} is allowed to depend nonlinearly on Y - e.g. if $a_{2}=\operatorname{sign}\left(Y_{1}\right), Y_{2}$ is non Gaussian (why?)
(f) Note that

$$
\begin{gather*}
\gamma_{n}=E\left(a_{n}\left(Y_{1}^{n-1}\right)+b_{n} X\right)^{2}=E\left(a_{n}\left(Y_{1}^{n-1}\right)+b_{n} \widehat{X}_{n-1}+b_{n}\left(X-\widehat{X}_{n-1}\right)\right)^{2}= \\
E\left(a_{n}\left(Y_{1}^{n-1}\right)+b_{n} \widehat{X}_{n-1}\right)^{2}+b_{n}^{2} P_{n-1} \leq \gamma . \tag{3}\\
1
\end{gather*}
$$

On the other hand, the equation of P_{n} depends only on b_{n} :

$$
P_{n}=P_{n-1} \frac{1}{b_{n}^{2} P_{n-1}+1}, \quad P_{0}=1
$$

By (3) $b_{n}^{2} P_{n-1} \leq \gamma$ and so the latter implies

$$
P_{n}=\prod_{k=1}^{n} \frac{1}{b_{k}^{2} P_{k-1}+1} \geq \prod_{k=1}^{n} \frac{1}{\gamma+1}=\left(\frac{1}{\gamma+1}\right)^{n}
$$

This bound is attained if $b_{n}^{2} P_{n-1}=\gamma$, which requires that $a_{n}\left(Y_{1}^{n-1}\right)=-\widehat{X}_{n-1}$ is chosen. Then

$$
b_{n}=\sqrt{\gamma / P_{n-1}}=\sqrt{\gamma(1+\gamma)^{n-1}}
$$

(g) As before

$$
P_{n}=P_{n-1} \frac{1}{1+b_{n}^{2}\left(Y_{1}^{n-1}\right) P_{n-1}}
$$

and so

$$
P_{n}=\prod_{k=1}^{n} \frac{1}{1+b_{k}^{2}\left(Y_{1}^{k-1}\right) P_{k-1}}=\exp \left\{\sum_{k=1}^{n}-\log \left(1+b_{k}^{2}\left(Y_{1}^{k-1}\right) P_{k-1}\right)\right\}
$$

Both $\exp (\cdot)$ and $-\log (\cdot)$ are convex functions and so

$$
E P_{n} \geq \exp \left\{\sum_{k=1}^{n}-\log \left(1+E b_{k}^{2}\left(Y_{1}^{k-1}\right) P_{k-1}\right)\right\}
$$

which in turn implies

$$
\begin{equation*}
E P_{n} \geq \prod_{k=1}^{n} \frac{1}{1+E b_{k}^{2}\left(Y_{1}^{k-1}\right) P_{k-1}} \tag{4}
\end{equation*}
$$

Now the power constraint gives

$$
\begin{aligned}
\gamma_{n}= & E\left(a_{n}\left(Y_{1}^{n-1}\right)+b_{n}\left(Y_{1}^{n-1}\right) X\right)^{2}= \\
& E\left(\left(a_{n}\left(Y_{1}^{n-1}\right)+b_{n}\left(Y_{1}^{n-1}\right) \widehat{X}_{n-1}\right)+b_{n}\left(Y_{1}^{n-1}\right)\left(X-\widehat{X}_{n-1}\right)\right)^{2}= \\
& E\left(a_{n}\left(Y_{1}^{n-1}\right)+b_{n}\left(Y_{1}^{n-1}\right) \widehat{X}_{n-1}\right)^{2}+E b_{n}^{2}\left(Y_{1}^{n-1}\right)\left(X-\widehat{X}_{n-1}\right)^{2}= \\
& E\left(a_{n}\left(Y_{1}^{n-1}\right)+b_{n}\left(Y_{1}^{n-1}\right) \widehat{X}_{n-1}\right)^{2}+E b_{n}^{2}\left(Y_{1}^{n-1}\right) P_{n-1} \leq \gamma
\end{aligned}
$$

and thus the lower bound in (4) implies

$$
E P_{n} \geq \prod_{k=1}^{n} \frac{1}{1+\gamma}
$$

The power constraint is clearly satisfied if $b_{n}^{2}\left(Y_{1}^{n-1}\right) P_{n-1}=\gamma$ and $a_{n}\left(Y_{1}^{n-1}\right)=-b_{n} \widehat{X}_{n-1}$ are set. Moreover in this case

$$
P_{n}=\prod_{k=1}^{n} \frac{1}{1+\gamma}=\left(\frac{1}{1+\gamma}\right)^{n}
$$

so that the lower bound for $E P_{n}$ is attained. So the optimal transmitter is given by

$$
\sqrt{\frac{\gamma}{P_{n-1}}}\left(Y_{n}-\widehat{X}_{n-1}\right)=\sqrt{\gamma(1+\gamma)^{n-1}}\left(Y_{n}-\widehat{X}_{n-1}\right) .
$$

Surprisingly no further improvement is gained by letting b_{n} depend on $\left\{Y_{1}, \ldots, Y_{n-1}\right\}$

Problem 2.

(a) Since $E X_{i}^{4}<\infty$, the strong (e.g. Cantelli) law of large numbers implies

$$
S_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \xrightarrow[P-a . s .]{n \rightarrow \infty} E X_{1}^{2}
$$

The function $1 / \sqrt{x}$ is continuous at $x=1$ and so $1 / \sqrt{S_{n}}$ converges P-a.s. and thus also in probability to 1 . Then

$$
\sqrt{n} Y^{n}(1)=\frac{\sqrt{n} X_{1}}{\sqrt{\sum_{i=1}^{n} X_{i}}}=\frac{X_{1}}{\sqrt{S_{n}}} \xrightarrow[P-a . s .]{n \rightarrow \infty} X_{1}
$$

and also in probability (see problem 1.8 in the exercises file \#1). Hence $Y^{n}(1)$ converges weakly as well. Since $Y^{n}(1)$ is bounded it also converges in \mathbb{L}^{2}.
(b) Suppose X_{1} is a standard Gaussian r.v. (without loss of generality $E X_{1}^{2}=1$ is assumed) and let U be an orthogonal matrix. Denote by X^{n} the vector with entries X_{1}, \ldots, X_{n}, so that $Y^{n}=X^{n} /\left\|X^{n}\right\|$. Then the rotated vector satisfies

$$
\tilde{Y}^{n}:=U Y^{n}=U X^{n} /\left\|X^{n}\right\|=U X^{n} /\left\|U X^{n}\right\|
$$

where the latter is due to $U U^{*}=I$. The vector $U X^{n}$ is Gaussian with zero mean and unit covariance (why?), so it is distributed exactly as X^{n}. So \widetilde{Y}^{n} is distributed as Y^{n} for any rotation U.

Clearly atomic X_{1} cannot lead to the uniform distribution, since rotations would translate the atoms all over the sphere.
(c) Since the uniform distribution is unique and can be realized by Gaussian $X_{i}{ }^{\prime} \mathrm{s}, Y^{n}(1)$ should converge to a Gaussian r.v. weakly (in distribution). Obviously it may not converge in probability - imagine that for each n independent X_{i} 's are used!

Problem 3.

(a) Since

$$
\begin{aligned}
& P\left(Z_{n}=1\right)=P\left(X_{n}=1, \ldots, X_{0}=1\right)= \\
& P\left(X_{n}=1 \mid X_{n=1}=1\right) \ldots P\left(X_{1}=1 \mid X_{0}=1\right) p(1)=\left(\lambda_{11}\right)^{n} p(1) \xrightarrow{n \rightarrow \infty} 0
\end{aligned}
$$

Z_{n} converges to zero in probability and hence in law. Since $\left|Z_{n}\right| \leq 1$, it also converges in \mathbb{L}^{2}. Moreover since $\sum_{n=0}^{\infty} P\left(Z_{n}=1\right)<\infty, P\left(Z_{n}=1\right.$, i.o. $)=0$ and so Z_{n} converges to zero P-a.s. by the Borel-Cantelli lemma.
(b) Clearly

$$
E P\left(Z_{n}=1 \mid Y_{1}^{n}\right)=P\left(Z_{n}=1\right)
$$

and thus $P\left(Z_{n}=1 \mid Y_{1}^{n}\right)$ also converges to zero in prob., weakly and \mathbb{L}^{2}.
(c) Z is a Markov process:

$$
\begin{aligned}
& P\left(Z_{n}=1 \mid Z_{0}^{n-1}\right)=E\left(Z_{n} \mid Z_{0}^{n-1}\right)=Z_{n-1} E\left(X_{n} \mid Z_{0}^{n-1}\right)=Z_{n-1} E\left(X_{n} \mid Z_{n-1}=1\right)= \\
& Z_{n-1} E\left(X_{n} \mid X_{0}=1, \ldots, X_{n-1}=1\right)=Z_{n-1} P\left(X_{n}=1 \mid X_{n-1}=1\right)=Z_{n-1} \lambda_{1}
\end{aligned}
$$

The transition probabilities are

$$
P\left(Z_{n}=0 \mid Z_{n-1}=0\right)=1, \quad P\left(Z_{n}=1 \mid Z_{n-1}=1\right)=\lambda_{1} .
$$

(d) Apply the formulae, developed in class

$$
\pi_{n}=\left(1+\frac{f\left(Y_{n}\right)\left(\left(1-\lambda_{1}\right) \pi_{n-1}+\lambda_{0}\left(1-\pi_{n-1}\right)\right)}{f\left(Y_{n}-1\right)\left(\lambda_{1} \pi_{n-1}+\left(1-\lambda_{0}\right)\left(1-\pi_{n-1}\right)\right)}\right)^{-1}
$$

subject to $\pi_{0}=p(1)=1 / 2$.
(e) Let $r_{n}:=G\left(Y_{n} ; Y_{1}^{n-1}\right)$, then

$$
E\left(\left(Z_{n}-G\left(Y_{n} ; Y_{1}^{n-1}\right)\right) \varphi\left(Y_{n}\right) \mid Y_{1}^{n-1}\right)=0
$$

for any bounded $\varphi(x)$. The left hand side gives

$$
E\left(Z_{n} \varphi\left(Y_{n}\right) \mid Y_{1}^{n-1}\right)=E\left(Z_{n} \varphi\left(X_{n}+\varepsilon_{n}\right) \mid Y_{1}^{n-1}\right)=\ldots=\widehat{Z}_{n \mid n-1} \int_{\mathbb{R}} \varphi(u) f(u-1) d u
$$

and so ${ }^{1}$

$$
\widehat{Z}_{n}=\frac{\widehat{Z}_{n \mid n-1} f\left(Y_{n}-1\right)}{f\left(Y_{n}-1\right)\left(\lambda_{1} \pi_{n-1}+\left(1-\lambda_{0}\right)\left(1-\pi_{n-1}\right)\right)+f\left(Y_{n}\right)\left(\left(1-\lambda_{1}\right) \pi_{n-1}+\lambda_{0}\left(1-\pi_{n-1}\right)\right)}
$$

as usual. Further

$$
\begin{aligned}
\widehat{Z}_{n \mid n-1}= & E\left(Z_{n} \mid Y_{1}^{n-1}\right)=E\left(Z_{n-1} E\left(X_{n} \mid X_{n-1}\right) \mid Y_{1}^{n-1}\right)= \\
& E\left(Z_{n-1}\left[\lambda_{1} X_{n-1}+\left(1-\lambda_{0}\right)\left(1-X_{n-1}\right)\right] \mid Y_{1}^{n-1}\right)= \\
& \lambda_{1} \widehat{Z}_{n-1}+\left(1-\lambda_{0}\right)\left(1-\widehat{Z}_{n-1}\right)
\end{aligned}
$$

where the latter follows since $Z_{n-1} X_{n-1}=Z_{n-1}$. So

$$
\widehat{Z}_{n}=\frac{f\left(Y_{n}-1\right)\left(\lambda_{1} \widehat{Z}_{n-1}+\left(1-\lambda_{0}\right)\left(1-\widehat{Z}_{n-1}\right)\right)}{f\left(Y_{n}-1\right)\left(\lambda_{1} \pi_{n-1}+\left(1-\lambda_{0}\right)\left(1-\pi_{n-1}\right)\right)+f\left(Y_{n}\right)\left(\left(1-\lambda_{1}\right) \pi_{n-1}+\lambda_{0}\left(1-\pi_{n-1}\right)\right)}
$$

or

$$
\widehat{Z}_{n}=\frac{\lambda_{1} \widehat{Z}_{n-1}+\left(1-\lambda_{0}\right)\left(1-\widehat{Z}_{n-1}\right)}{\lambda_{1} \pi_{n-1}+\left(1-\lambda_{0}\right)\left(1-\pi_{n-1}\right)} \pi_{n}
$$

[^0]
Problem 4.

(a) Clearly

$$
B_{1}=\int_{0}^{1} d B_{s}
$$

(b) By the Itô formula $B_{t}^{2}=\int_{0}^{t} 2 B_{u} d B_{u}+t$ and so

$$
B_{1}=1+\int_{0}^{1} 2 B_{u} d B_{u}
$$

(c) Applying the Itô formula to $B_{t} t$ one gets the integration by parts rule

$$
d\left(B_{t} t\right)=B_{t} d t+t d B_{t} \quad \Longrightarrow \quad B_{1}=\int_{0}^{1} B_{t} d t+\int_{0}^{1} t d B_{t}
$$

So

$$
\begin{equation*}
\int_{0}^{1} B_{t} d t=B_{1}-\int_{0}^{1} t B_{t}=\int_{0}^{1}(1-t) B_{t} \tag{5}
\end{equation*}
$$

(d) Apply the Itô formula to B_{t}^{3}

$$
B_{1}^{3}=3 \int_{0}^{1} B_{t}^{2} d B_{t}+\frac{1}{2} \int_{0}^{1} 6 B_{t} d t
$$

Combining this with (5) one gets

$$
B_{1}^{3}=\int_{0}^{1} 3\left(B_{t}^{2}+1-t\right) d B_{t}
$$

(e) Apply the Itô formula to $e^{B_{t}-t / 2}$:

$$
d\left(e^{B_{t}-t / 2}\right)=-\frac{1}{2} e^{B_{t}-t / 2} d t+e^{B_{t}-t / 2} d B_{t}+\frac{1}{2} e^{B_{t}-t / 2} d t=e^{B_{t}-t / 2} d B_{t}
$$

which implies

$$
e^{B_{1}-1 / 2}-1=\int_{0}^{1} e^{B_{t}-t / 2} d B_{t}
$$

or

$$
e^{B_{1}}=e^{1 / 2}+\int_{0}^{1} e^{\left(B_{t}-t / 2+1 / 2\right)} d B_{t}
$$

(f) Apply the Itô formula to $e^{t / 2} \sin B_{t}$:

$$
\begin{aligned}
& d\left(e^{t / 2} \sin B_{t}\right)=\frac{1}{2} e^{t / 2} \sin B_{t} d t+e^{t / 2} d \sin B_{t}= \\
& \quad \frac{1}{2} e^{t / 2} \sin B_{t} d t+e^{t / 2}\left(\cos B_{t} d B_{t}-\frac{1}{2} \sin B_{t} d t\right)=e^{t / 2} \cos B_{t} d B_{t}
\end{aligned}
$$

and so

$$
e^{1 / 2} \sin B_{1}=\int_{0}^{1} e^{t / 2} \cos B_{t} d B_{t} \quad \Longrightarrow \quad \sin B_{1}=\int_{0}^{1} e^{(t-1) / 2} \cos B_{t} d B_{t}
$$

[^0]: ${ }^{1}$ the right hand side is calculated as in the case of π_{n}

