
RANDOM PROCESSES: 2004 EXAM SOLUTION.

P.CHIGANSKY

Problem 1.

(a) The process X is not Gaussian. Suppose it is, then e.g. if d = 2 and r1 =
−r2 = 1, p1 = p2 = 1/2 then EX0X1 = EX2

0Ea + EX0Eε1 = 0 implies that X0

and X1 are independent and thus

E
(
ϕ(X1)|X0

)
= Eϕ(X1)

should hold for any function ϕ, such that E|ϕ(X1)| < ∞. The latter fails for
ϕ(x) = x2:

E(X2
1 |X0) = E(X2

0a2 + 2X0aε1 + ε2
1|X0) = X2

0 + 1.

(b) Given a, Xn is a linear combination of εi’s, (which are independent of a!) and
hence is conditionally Gaussian. Namely

(1.1) Xn = anX0 +
n∑

i=1

εia
n−i,

i.e. Xn = αnεn, where αn is the appropriate row vector, depending on a, and εn is
the vector with εi as entries. Hence

E
(
exp{iλαnεn}|a)

=
∫

Rn

exp{iλαnx} 1
(2π)n/2

exp

{
−

n∑

i

x2
i /2

}
dx1...dxn =

exp
{
−1

2
λ2‖αn‖2

}
(why is the last equality correct?)

(c) Given a, X is a conditionally Gaussian process. The proof is by similar argu-
ments as in (b) (αn is a matrix this time).

(d) a is not Gaussian, conditioned on Xn
0 . One may be tempted to give (wrong)

positive answer, since given Xn
0 , a is a linear combinations of εi’s. Note however

that this time εi’s depend on the condition Xn
0 ! Again if d = 2, r1 = −r2 = 1,

p1 = p2 = 1/2, then e.g. P (|a| ≤ 0.17|Xn
0 ) = 0, so that P (a ≤ x|Xn

0 ) cannot have
Gaussian density. In fact the conditional distribution is lattice (discrete) as claimed
below.

(e) By standard arguments πn(i) := Gi(Xn−1
0 , Xn) should satisfy

E
(
I(a = ri)h(Xn)|Xn−1

0

)
= E

(
Gi(Xn−1

0 , Xn)h(Xn)|Xn−1
0

)
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for any test function h. Then

E
(
I(a = ri)h(Xn)|Xn−1

0

)
= E

(
I(a = ri)h(riXn−1 + εn)|Xn−1

0

)
=

πn−1(i)
∫

R
ψ(u− riXn−1)h(u)du

where ψ(x) is the standard Gaussian density. Similar arguments for the right hand
side of the above condition and arbitrariness of h imply

πn(i) =
πn−1(i)ψ(Xn − riXn−1)∑d

j=1 πn−1(j)ψ(Xn − rjXn−1)
, π0(i) = pi.

(f) No - by the same argument as in (a).

(g) Yes - by the same argument as in (b).

(h) Yes - by the same argument as in (c).

(i) a is conditionally Gaussian given Xn
0 . The proof can be found in Problem 5.3

of home assignments.

(j) Xn does not converge to zero in probability: fix any constant −1 < r < 1

P
(|Xn| ≥ ε

)
= EI

(|Xn| ≥ ε
) ≥ EI

(|Xn| ≥ ε
)
I
(|a| ≤ r

)
=

EP
(|Xn| ≥ ε|a)

I
(|a| ≤ r

)

Recall that Xn is conditionally Gaussian given a with zero mean and conditional
variance Vn(a) = E(X2

n|a), satisfying the recursion Vn(a) = a2Vn−1(a) + 1, subject
to V0 = 1. Note that Vn(a) increases and 1 ≤ Vn(a) ≤ (1− r2)−1 P -a.s. on the set
{|a| ≤ r} for all n ≥ 0. In particular

P
(|Xn| ≥ ε|a)

=
∫

|x|≥ε

1√
2πVn

exp{−x2/(2Vn)}dx ≥

1− 2ε√
2πVn(a)

≥ 1− 2ε
√

1− r2

√
2π

:= c > 0

So we have
P

(|Xn| ≥ ε
) ≥ cP

(|a| ≤ r
)

> 0, ∀n
and clearly P

(|Xn| ≥ ε
) 6→ 0 for any ε > 0. Hence it does not converge neither in L1

nor P -a.s. The latter means that P (limn→∞Xn = 0) < 1. In fact P (limn→∞Xn =
0) = 0 in this case, since

{ lim
n→∞

Xn = 0} ⊆ { lim
n→∞

|Xn − aXn−1| = 0} = { lim
n→∞

εn = 0},
whereas the latter set obviously has zero probability (e.g. by Borel-Cantelli lemma).

It doesn’t converge in law to zero, since then it would converge to zero in prob-
ability. In fact it doesn’t converge in law at all (i.e. to any random variable) -
why?

(k) The solution (1.1) implies EXn = 0 and so a is orthogonal to Xn for any n ≥ 0:

EaXn = Ean+1EX0 +
n∑

i=1

Ean−i+1Eεi = 0.
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Then obviously Ê(a|Xn
0 ) = 0 and E(a− ân)2 = Ea2 = 1.

(l) If a is Gaussian, then X is conditionally Gaussian, meaning that the generalized
Kalman filter generates the required conditional expectation (see Problem 5.3 in
home assignments). The filtering model is

an = an−1

Xn = Xn−1an−1 + εn

subject to (a,X0). The filtering equations for ā = E(a|Xn
0 ) = E(an|Xn

0 ) and
P̄n = E

[
(a− ān)2

∣∣Xn
0

]
are

ān = ān−1 +
Xn−1P̄n−1

X2
n−1P̄n−1 + 1

(
Xn −Xn−1ān−1

)

P̄n = P̄n−1 −
X2

n−1P̄
2
n−1

X2
n−1P̄n−1 + 1

subject to ā0 = 0 and P̄ = 1. Note that the obtained estimate is nonlinear, as
expected.

(m) Let Qn = P̄+
n (i.e. Qn = I(P̄n > 0)/P̄n). Then

Qn = Qn−1 + X2
n−1 = 1 +

n∑

i=1

X2
i−1.

or
P̄n =

1
1 +

∑n
i=1 X2

i−1

, n ≥ 1.

Intuitively P̄n should converge to zero, since the denominator grows to infinity. We
claim that P̄n converges to zero P -a.s. and thus also in probability and in law.
Since P̄n ≤ 1, this implies convergence in Lp, p ≥ 1.

Note that

{ lim
n→∞

P̄n 6= 0} = { lim
n→∞

n∑

i=1

X2
i < ∞} ⊆ { lim

n→∞
Xn = 0}.

Since by (j) P (limn→∞Xn = 0) = 0, we conclude that P (limn→∞ P̄n 6= 0) = 0.
Remark: convergence P -a.s. roughly means that the square error converges to

zero on any (possible) trajectory of Xn, while convergence in L1 means that the
mean square error goes to zero.

Problem 2.

(a) Taking expectation from both sides of
dxt = ytdt

dyt = −xtdt− 2yt(βdt + σdWt),

one gets
dx̄t = ȳtdt

dȳt = −x̄tdt− 2βȳtdt,

which means that on average the system behaves as the unperturbed pendulum for
any β > 0. Since the initial conditions have zero mean, Ext = 0 and Eyt = 0 for
any t ≥ 0.
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(b) By the Ito formula

dqt =d(x2
t ) = 2xtdxt = 2xtytdt = 2utdt

drt =d(y2
t ) = 2yt

(
− xtdt− 2yt(βdt + σdWt)

)
+ 4σ2y2

t dt =

4(σ2 − β)y2
t dt− 2xtytdt− 4y2

t σdWt = 4(σ2 − β)rtdt− 2utdt− 4rtσdWt

dut =d(xtyt) = ytdxt + xtdyt = y2
t dt− x2

t dt− 2ytxt(βdt + σdWt) =
rtdt− qtdt− 2βutdt− 2utσdWt

(c) Taking the expectation we get

dq̄t =2ūtdt

dr̄t =4(σ2 − β)r̄tdt− 2ūtdt

dūt =r̄tdt− q̄tdt− 2βūtdt

or in matrix notation for Zt = (q̄t, r̄t, ūt)

Żt =




0 0 2
0 4(σ2 − β) −2
−1 1 −2β


Zt

subject to Z0 = (1, 1, 0).

(d) The latter is a linear system with constant coefficients and its stability is
completely determined by the eigenvalues of the coeff. matrix. Let z = 4(σ2 − β)
for brevity. First note that z = 0 (σ =

√
β)is a ”suspicious” point, for which the

system has zero eigenvalue and thus is unstable.
The eigenvalues are the roots of the polynomial

p(λ) = det



−λ 0 2
0 z − λ −2
−1 1 −2β − λ


 =

− λ
{
− (z − λ)(2β + λ) + 2

}
+ 2(z − λ) = λ

{
(z − λ)(2β + λ)− 2

}
+ 2(z − λ)

Assume that z > 0, then

p(λ) = λ
{

(|z| − λ)(2β + λ)− 2
}

+ 2(|z| − λ) =

λ
{

(|z| − λ)(2β + λ)
}

+ 2(|z| − 2λ) := p1(λ)− p2(λ)

The polynomial p1(λ) has roots at 0, |z|,−2β < 0 and decreases (increases) to −∞
(∞) as λ →∞ (λ → −∞). The line p2(λ) = −2(|z| − 2λ) crosses the abscissa axis
at |z|/2 > 0 and has a positive slope. Hence it crosses p1(λ) at some λ∗ ∈ (|z|/2, |z|)
- see Figure. So the system has a positive root and is unstable for all z > 0, i.e. for
all σ2 ≥ β. By the same arguments it is clear that the real root λ∗ is negative when
z < 0 and λ∗ ∈ (z/2, 0). Expand the polynomial p(λ), when z < 0, i.e. z = −|z|
−p(λ) = λ3−λ2(z− 2β)−λ(2βz− 4)− 2z = λ3 +λ2(|z|+2β)+λ(2β|z|+4)+2|z|
Assume that the other two roots are complex (conjugate), denoted by λ′ and λ̄′

and recall that
−b1 = λ∗ + 2<{λ′}
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Figure 1. Case z > 0

where b1 is the polynomial coefficient corresponding to power two. Since λ∗ < 0

−(|z|+ 2β) = −|λ∗|+ 2<{λ′} =⇒ 2<{λ′} = −(|z|+ 2β) + |λ∗|
Recall that λ∗ ∈ (−|z|/2, 0) in this case, so <{λ′} ≤ −β−|z|/2 < 0, i.e. the system
is stable.

Suppose now that the roots λ1 and λ2 are real. Recall that

−b3 = λ∗λ1λ2 = −|λ∗|λ1λ2

where b3 = 2|z| is the free coefficient. Then λ1 and λ2 have the same sign. Using
again

−b1 = λ∗ + λ1 + λ2 =⇒ λ1 + λ2 = −(|z|+ 2β) + |λ∗|
we conclude that λ1 + λ2 < −2β − |z|, and thus both roots are negative.

In summary, σ ≥ √
β destabilizes the pendulum, while for σ <

√
β it remains

stable.
Remark: the same conclusion may be obtained faster via Routh-Hurwitz Theo-

rem.
Remark: a much more delicate analysis shows that σ may exceed

√
β, while

stability is preserved in e.g. P -a.s. sense.


