FINAL TEST SOLUTION RANDOM PROCESSES 2003

P. CHIGANSKY

Problem 1.

(a)

$$
\begin{aligned}
& \mathbb{E} X_{n}=\mathbb{E} \sum_{j=1}^{X_{n-1}} \xi_{n, j}=\mathbb{E} \sum_{\ell=0}^{\infty} I\left(X_{n-1}=\ell\right) \mathbb{E}\left(\sum_{j=1}^{\ell} \xi_{n, j} \mid X_{n-1}\right)= \\
& \mathbb{E} \sum_{\ell=0}^{\infty} I\left(X_{n-1}=\ell\right) \ell(p+2 q)=(p+2 q) \mathbb{E} X_{n-1}
\end{aligned}
$$

and thus $X_{n} \xrightarrow[n \rightarrow \infty]{\mathbb{L}^{1}} 0$ if $p+2 q<1$.
(b) Set $\rho=p+2 q$ for brevity. Clearly

$$
\begin{equation*}
X_{n}=\sum_{j=1}^{X_{n-1}}\left(\xi_{n, j}-\rho\right)+X_{n-1} \rho \tag{1.1}
\end{equation*}
$$

Moreover

$$
\mathbb{E} X_{n-1} \sum_{j=1}^{X_{n-1}}\left(\xi_{n, j}-\rho\right)=\mathbb{E} X_{n-1} E\left(\sum_{j=1}^{X_{n-1}}\left(\xi_{n, j}-\rho\right) \mid X_{n-1}\right)=0
$$

and

$$
\begin{aligned}
& \mathbb{E}\left(\sum_{j=1}^{X_{n-1}}\left(\xi_{n, j}-\rho\right)\right)^{2}=\mathbb{E}\left(\sum_{\ell=0}^{\infty} I\left(X_{n-1}=\ell\right) \sum_{j=1}^{\ell}\left(\xi_{n, j}-\rho\right)\right)^{2}= \\
& \mathbb{E} \sum_{\ell=0}^{\infty} I\left(X_{n-1}=\ell\right) \mathbb{E}\left(\sum_{j=1}^{\ell}\left(\xi_{n, j}-\rho\right)\right)^{2}= \\
& \mathbb{E} \sum_{\ell=0}^{\infty} I\left(X_{n-1}=\ell\right) \ell \operatorname{Var}\left(\xi_{1,1}\right)=\text { const. } \mathbb{E} X_{n-1}=\text { const. } \rho^{n}
\end{aligned}
$$

Squaring the eq. (1.1), obtain

$$
\mathbb{E} X_{n}^{2}=\text { const. } \rho^{n}+\rho^{2} \mathbb{E} X_{n-1}^{2}
$$

that is

$$
\mathbb{E} X_{n}^{2}=N^{2} \rho^{2 n}+\text { const. } \sum_{k=0}^{n} \rho^{n-k} \rho^{2 k}=N^{2} \rho^{2 n}+\text { const. } \rho^{n} \underbrace{\sum_{k=0}^{n} \rho^{k}}_{\leq 1 /(1-\rho)} \xrightarrow{n \rightarrow \infty} 0
$$

and hence the required condition is $\rho=p+2 q<1$.
(c) Let us verify first convergence in probability. Note that

$$
\left\{\exists k \in[1, n]: \xi_{k, 1}=0, \ldots, \xi_{k, \widetilde{N}}=0\right\} \subseteq\left\{X_{n}=0\right\}
$$

Let $\varepsilon=(1-p-q)^{\widetilde{N}}$. Then

$$
P\left(X_{n}=0\right) \geq P\left\{\exists k \in[1, n]: \xi_{k, 1}=0, \ldots, \xi_{k, \tilde{N}}=0\right\}=1-(1-\varepsilon)^{n} \xrightarrow{n \rightarrow \infty} 1
$$

and convergence in probability follows.
Now verify P-a.s. convergence. Note that

$$
\left\{\exists n: \xi_{n, 1}=0, \ldots, \xi_{n, \widetilde{N}}=0\right\} \subseteq\left\{\lim _{n \rightarrow \infty} X_{n}=0\right\}
$$

For any fixed m

$$
P\left\{\exists n \leq m: \xi_{n, 1}=0, \ldots, \xi_{n, \widetilde{N}}=0\right\}=1-(1-\varepsilon)^{m}
$$

and since

$$
\left\{\exists n \leq m: \xi_{n, 1}=0, \ldots, \xi_{n, \widetilde{N}}=0\right\} \nearrow\left\{\exists n: \xi_{n, 1}=0, \ldots, \xi_{n, \widetilde{N}}=0\right\}, \quad \text { as } m \rightarrow \infty
$$

it follows

$$
P\left(\lim _{n \rightarrow \infty} X_{n}=0\right) \geq P\left\{\exists n: \xi_{n, 1}=0, \ldots, \xi_{n, \widetilde{N}}=0\right\}=1-\lim _{m \rightarrow \infty}(1-\varepsilon)^{m}=1
$$

$\mathbb{L}^{p}, p>0$ convergence follows from convergence in probability, since $X_{n} \leq \widetilde{N}$.

Problem 2.

(a) First note that $\mathbb{E}\left(X_{n} \mid X_{1}^{n-1}\right)=\mathbb{E}\left(\varepsilon_{n}+\varepsilon_{n-1} \mid X_{1}^{n-1}\right)=\mathbb{E}\left(\varepsilon_{n-1} \mid X_{1}^{n-1}\right):=\widehat{\varepsilon}_{n-1}$.

Since ε is Gaussian, $\widehat{\varepsilon}_{n-1}=\widehat{\mathbb{E}}\left(\varepsilon_{n-1} \mid X_{1}^{n-1}\right)$ and can be calculated recursively:

$$
\begin{aligned}
& \widehat{\varepsilon}_{n \mid n-1}=\widehat{\mathbb{E}}\left(\varepsilon_{n} \mid X_{1}^{n-1}\right)=0 \\
& \widehat{X}_{n \mid n-1}=\widehat{\mathbb{E}}\left(X_{n} \mid X_{1}^{n-1}\right)=\widehat{\varepsilon}_{n-1} \\
& P_{n \mid n-1}^{\varepsilon}=\mathbb{E}\left(\varepsilon_{n}-\widehat{\varepsilon}_{n \mid n-1}\right)^{2}=1 \\
& P_{n \mid n-1}^{\varepsilon x}=\mathbb{E}\left(\varepsilon_{n}-\widehat{\varepsilon}_{n \mid n-1}\right)\left(X_{n}-\widehat{\mathbb{E}}\left(X_{n} \mid X_{1}^{n-1}\right)\right)=\mathbb{E} \varepsilon_{n}\left(\varepsilon_{n}+\varepsilon_{n-1}-\widehat{\varepsilon}_{n-1}\right)=1 \\
& P_{n \mid n-1}^{x}=\mathbb{E}\left(X_{n}-\widehat{\mathbb{E}}\left(X_{n} \mid X_{1}^{n-1}\right)\right)^{2}=\mathbb{E}\left(\varepsilon_{n}+\varepsilon_{n-1}-\widehat{\varepsilon}_{n-1}\right)^{2}=1+P_{n-1}
\end{aligned}
$$

and thus $n \geq 1$

$$
\begin{aligned}
& \widehat{\varepsilon}_{n}=1 /\left(1+P_{n-1}\right)\left(X_{n}-\widehat{\varepsilon}_{n-1}\right) \\
& P_{n}=1-1 /\left(1+P_{n-1}\right)
\end{aligned}
$$

subject to $\widehat{\varepsilon}_{0}=0$ and $P_{0}=1$.
The sequence $R_{n}=1 / P_{n}$ satisfies

$$
R_{n}=1+R_{n-1}, \quad R_{0}=1
$$

and thus $R_{n}=n+1$, i.e. $P_{n}=1 /(n+1), n \geq 0$. This leads to

$$
\widehat{\varepsilon}_{n}=\frac{n}{n+1}\left(X_{n}-\widehat{\varepsilon}_{n-1}\right), \quad \widehat{\varepsilon}_{0}=0, \quad n \geq 1
$$

and in turn

$$
\widehat{X}_{n+1}=\frac{n}{n+1}\left(X_{n}-\widehat{X}_{n}\right), \quad \widehat{X}_{1}=0, \quad n \geq 1 .
$$

(b) $Q_{n}=P_{n \mid n-1}^{x}=1+P_{n-1}=1+1 / n, n \geq 2$.
(c) Note that given ε_{0} and X_{1}, \ldots, X_{n}, the output of the recursion

$$
\widehat{\varepsilon}_{n}^{\prime}=X_{n}-\widehat{\varepsilon}_{n-1}^{\prime}, \quad \widehat{\varepsilon}_{0}^{\prime}=\varepsilon_{0}
$$

gives ε_{n} exactly (just try to unroll this recursion to see this), i.e. $\widehat{\varepsilon}_{n} \equiv \varepsilon_{n}$ and thus it is the conditional expectation. Since $\widehat{X}_{n+1}^{\circ}=\widehat{\varepsilon}_{n}^{\prime}$, it follows that

$$
\widehat{X}_{n+1}^{\circ}=X_{n}-\widehat{X}_{n}^{\circ}, \quad \widehat{X}_{1}^{\circ}=\varepsilon_{0}
$$

(d) Since $\widehat{X}_{n+1}^{\circ}=\widehat{\varepsilon}_{n}^{\prime} \equiv \varepsilon_{n}, Q_{n+1}^{\circ}=\mathbb{E}\left(X_{n+1}-\widehat{X}_{n+1}^{\circ}\right)^{2}=\mathbb{E}\left(\varepsilon_{n+1}+\varepsilon_{n}-\varepsilon_{n}\right)^{2} \equiv 1$.

Problem 3.

(a) Let $\xi_{n}^{a}\left(\xi_{n}^{b}\right)$ be the sequence of requests (say, taking value 1 when service is requested and 0 otherwise) from client A (B). Clearly ξ_{n}^{a} and ξ_{n}^{b} are independent i.i.d. sequences with $P\left(\xi_{n}^{a}=1\right)=P\left(\xi_{n}^{b}=1\right)=p$. Introduce an i.i.d. sequence η_{n} (independent of ξ_{n}^{a} and ξ_{n}^{b}) with $P\left(\eta_{n}=A\right)=P\left(\eta_{n}=B\right)=1 / 2$.

Then X_{n} satisfies the following recursion ${ }^{1}$

$$
\begin{align*}
X_{n}=\xi_{n}^{a} \xi_{n}^{b}\left[A I \left(X_{n-1}=\right.\right. & \left.A)+B I\left(X_{n-1}=B\right)+\eta_{n} I\left(X_{n-1}=I\right)\right] \\
& +A \xi_{n}^{a}\left(1-\xi_{n}^{b}\right)+B\left(1-\xi_{n}^{a}\right) \xi_{n}^{b}+I\left(1-\xi_{n}^{a}\right)\left(1-\xi_{n}^{b}\right) \tag{1.2}
\end{align*}
$$

Due to independence of $\left(\xi_{n}^{a}, \xi_{n}^{b}, \eta_{n}\right)$ and X_{0}^{n-1}, X_{n} is a Markov chain regardless of distribution of $\left(\xi_{n}^{a}, \xi_{n}^{b}, \eta_{n}\right)$ (i.e. none of the conditions ruins the Markov property)
(b) From (1.2)

$$
\left.\begin{array}{l}
P\left(X_{n}=A \mid X_{n-1}=A\right)=\mathbb{E}\left\{\xi_{n}^{a} \xi_{n}^{b}+\xi_{n}^{a}\left(1-\xi_{n}^{b}\right)\right\}=p^{2}+p(1-p)=p \\
P\left(X_{n}=I \mid X_{n-1}=A\right)=\mathbb{E}\left(1-\xi_{n}^{a}\right)\left(1-\xi_{n}^{b}\right)=(1-p)^{2} \\
P\left(X_{n}=B \mid X_{n-1}=A\right)=\mathbb{E}\left(1-\xi_{n}^{a}\right) \xi_{n}^{b}=(1-p) p \\
P\left(X_{n}=A \mid X_{n-1}=I\right)=1 / 2 \mathbb{E} \xi_{n}^{a} \xi_{n}^{b}+\mathbb{E} \xi_{n}^{a}\left(1-\xi_{n}^{b}\right)=1 / 2 p^{2}+p(1-p)=p-p^{2} / 2 \\
P\left(X_{n}=I \mid X_{n-1}=I\right)=\mathbb{E}\left(1-\xi_{n}^{a}\right)\left(1-\xi_{n}^{b}\right)=(1-p)^{2} \\
P\left(X_{n}=B \mid X_{n-1}=I\right)=1 / 2 \mathbb{E} \xi_{n}^{a} \xi_{n}^{b}+\mathbb{E} \xi_{n}^{b}\left(1-\xi_{n}^{a}\right)=1 / 2 p^{2}+p(1-p)=p-p^{2} / 2 \\
P\left(X_{n}=A \mid X_{n-1}=B\right)=\mathbb{E} \xi_{n}^{a}\left(1-\xi_{n}^{b}\right)=p(1-p) \\
P\left(X_{n}=I \mid X_{n-1}=B\right)=\ldots=(1-p)^{2} \\
P\left(X_{n}=B \mid X_{n-1}=B\right)=\ldots=p \\
\text { i.e. } \Lambda=\left(\begin{array}{cc}
p & (1-p)^{2} \\
p-p^{2} / 2 & (1-p)^{2} \\
p(1-p) & (1-p)^{2}
\end{array} \quad p\right.
\end{array}\right) .
$$

(c) Let $f_{\lambda}(t)=\lambda \exp \{-\lambda t\}$ and $\mathcal{F}_{n-1}=\left\{\alpha_{1}^{n-1}, \beta_{1}^{n-1}\right\}$ for brevity.

[^0]Let $\pi_{t}(I)=G\left(\alpha_{n}, \beta_{n} ; \mathcal{F}_{n-1}\right)$ and fix a bounded function $h(s, t)$. Then G should satisfy

$$
\mathbb{E}\left(I\left(X_{n}=I\right) h\left(\alpha_{n}, \beta_{n}\right) \mid \mathcal{F}_{n-1}\right)=\mathbb{E}\left(G\left(\alpha_{n}, \beta_{n} ; \mathcal{F}_{n-1}\right) h\left(\alpha_{n}, \beta_{n}\right) \mid \mathcal{F}_{n-1}\right)
$$

The left hand side becomes

$$
\begin{aligned}
& \mathbb{E}\left(I\left(X_{n}=I\right) \int_{0}^{\infty} \int_{0}^{\infty} h(t, s) f_{1}(s) f_{1}(t) d t d s \mid \mathcal{F}_{n-1}\right)= \\
& \pi_{n \mid n-1}(I) \int_{0}^{\infty} \int_{0}^{\infty} h(t, s) f_{1}(s) f_{1}(t) d t d s
\end{aligned}
$$

whereas the right hand side is equal to

$$
\begin{aligned}
& \mathbb{E}\left(\left[I\left(X_{n}=A\right)+I\left(X_{n}=I\right)+I\left(X_{n}=B\right)\right] G\left(\alpha_{n}, \beta_{n} ; \mathcal{F}_{n-1}\right) h\left(\alpha_{n}, \beta_{n}\right) \mid \mathcal{F}_{n-1}\right)= \\
& \quad \pi_{n \mid n-1}(A) \int_{0}^{t} \int_{0}^{t} G\left(s, t ; \mathcal{F}_{n-1}\right) h(s, t) f_{\lambda}(s) f_{1}(t) d s d t+ \\
& \quad \pi_{n \mid n-1}(I) \int_{0}^{t} \int_{0}^{t} G\left(s, t ; \mathcal{F}_{n-1}\right) h(s, t) f_{1}(s) f_{1}(t) d s d t+ \\
& \quad \pi_{n \mid n-1}(B) \int_{0}^{t} \int_{0}^{t} G\left(s, t ; \mathcal{F}_{n-1}\right) h(s, t) f_{1}(s) f_{\lambda}(t) d s d t \\
& \text { So }^{2} \\
& G\left(s, t ; \mathcal{F}_{n-1}\right)=\frac{\pi_{n \mid n-1} f_{1}(s) f_{1}(t)}{\pi_{n \mid n-1}(A) f_{\lambda}(s) f_{1}(t)+\pi_{n \mid n-1}(I) f_{1}(s) f_{1}(t)+\pi_{n \mid n-1}(B) f_{1}(s) f_{\lambda}(t)}
\end{aligned}
$$

and thus

$$
\begin{aligned}
& \pi_{n}(I)=\frac{\pi_{n \mid n-1}(I) f_{1}\left(\alpha_{n}\right) f_{1}\left(\beta_{n}\right)}{\pi_{n \mid n-1}(A) f_{\lambda}\left(\alpha_{n}\right) f_{1}\left(\beta_{n}\right)+\pi_{n \mid n-1}(I) f_{1}\left(\alpha_{n}\right) f_{1}\left(\beta_{n}\right)+\pi_{n \mid n-1}(B) f_{1}\left(\alpha_{n}\right) f_{\lambda}\left(\beta_{n}\right)}= \\
& \frac{\pi_{n \mid n-1}(I) \exp \left\{-\alpha_{n}-\beta_{n}\right\}}{\lambda \pi_{n \mid n-1}(A) \exp \left\{-\lambda \alpha_{n}-\beta_{n}\right\}+\pi_{n \mid n-1}(I) \exp \left\{-\alpha_{n}-\beta_{n}\right\}+\lambda \pi_{n \mid n-1}(B) \exp \left\{-\alpha_{n}-\lambda \beta_{n}\right\}}= \\
& \frac{\pi_{n \mid n-1}(I)}{\lambda \pi_{n \mid n-1}(A) \exp \left\{(1-\lambda) \alpha_{n}\right\}+\pi_{n \mid n-1}(I)+\lambda \pi_{n \mid n-1}(B) \exp \left\{(1-\lambda) \beta_{n}\right\}}
\end{aligned}
$$

Problem 4.

(a) Since $\mathbb{E} \int_{0}^{t} S_{u} d W_{u}=0, m_{t}=\mathbb{E} S_{t}=1-\int_{0}^{t} r \mathbb{E} S_{u} d u$ and hence $\dot{m}_{t}=-r m_{t}$, $m_{0}=1$.
(b) Apply the Ito formula to S_{t}^{2}

$$
d S_{t}^{2}=2 S_{t} d S_{t}+\frac{1}{2} 2 S_{t}^{2} \sigma^{2} d t
$$

that is

$$
S_{t}^{2}=S_{0}^{2}-2 \int_{0}^{t} r S_{u}^{2} d u+2 \int_{0}^{t} \sigma S_{u}^{2} d W_{u}+\int_{0}^{t} S_{t}^{2} \sigma^{2} d t
$$

[^1]Taking $\mathbb{E}(\cdot)$ from both sides obtain equation for $Q_{t}=\mathbb{E} S_{t}^{2}$

$$
\dot{Q}_{t}=\left(-2 r+\sigma^{2}\right) Q_{t}
$$

(c) True. The solution of this equation is ${ }^{3}$,

$$
S_{t}=\exp \left\{\sigma W_{t}-\left(r+\sigma^{2} / 2\right) t\right\}>0
$$

Indeed, $S_{0}=1$ and by Ito formula

$$
d S_{t}=S_{t} \sigma d W_{t}-r S_{t} d t-1 / 2 \sigma^{2} S_{t} d t+1 / 2 S_{t} \sigma^{2} d t=-r S_{t} d t+\sigma S_{t} d W_{t}
$$

(d) False. The process can not be Gaussian since e.g. $S_{t} \geq 0$ for all t.
(e) True. From (a) we know that S_{t} converges in \mathbb{L}^{1} and hence in probability.
(f) True. If $p=1$, the claim holds by (a).

With integer $p>1$, apply the Ito formula to S_{t}^{p}
$d S_{t}^{p}=p S^{p-1} d S_{t}+\frac{1}{2} p(p-1) S^{p-2} \sigma^{2} S_{t}^{2} d t=-r p S_{t}^{p} d t+p \sigma S_{t}^{p} d W_{t}+\frac{1}{2} p(p-1) S_{t}^{p} \sigma^{2} d t$
Set $Q_{t}^{p}=\mathbb{E} S_{t}^{p}$ and take $\mathbb{E}(\cdot)$ from both sides to obtain

$$
\dot{Q}_{t}^{p}=\left[-p r+\frac{1}{2} p(p-1) \sigma^{2}\right] Q_{t}^{p}
$$

Clearly this equation is stable if $p r>1 / 2 p(p-1) \sigma^{2}$ or $\sigma^{2}<2 r /(p-1)$.

[^2]
[^0]: ${ }^{1}$ The multiplication for symbols A, B, I is symbolic, e.g. $A 1=A, A 0=0, A+0=A(A+B$ is of course not defined and never happens!)

[^1]: 2^{2} this answer may be guessed - it should be the similar to the scalar observation case

[^2]: ${ }^{3}$ See exercise 8.7

