SOLUTION TO EXAM 2002

Problem 1

(a) false: e.g. take $Y \sim \mathcal{N}(0,1)$ and $X=\xi Y$, where ξ is an independent symmetric random sign. Then X is Gaussian (check its characteristic function) and $\mathbf{E} X Y=$ $\mathbf{E} \xi Y^{2}=\mathbf{E} \xi=0$. However the vector (X, Y) is not Gaussian, since e.g.

$$
P(X+Y=0)=1 / 2
$$

i.e. linear combination of the two has an atom.
(b) true: if $\widehat{\mathbf{E}}(X \mid Y)=\alpha+\beta Y$ and its variance is nonzero, then $\beta \neq 0$ and hence $Y=(\widehat{\mathbf{E}}(X \mid Y)-\alpha) / \beta$. So Y is a linear function of a Gaussian random variable and hence itself is Gaussian.
(c) false: example similar to (a), let $Y \sim \mathcal{N}(0,1)$ and $X=(\xi+1) Y$. Then

$$
\mathbf{E}(X \mid Y)=Y \mathbf{E}(\xi+1)=Y
$$

and so also (why?) $\widehat{\mathbf{E}}(X \mid Y)=Y$. Moreover Y is Gaussian (with positive variance) and hence also $\mathbf{E}(X \mid Y)$, however (X, Y) is still not, e.g.

$$
P(X=0)=1 / 2
$$

(d) true by direct calculation (the case $\mathbf{E} Y^{2}=0$ is trivial)

$$
\mathbf{E} X \widehat{\mathbf{E}}(X \mid Y)=\frac{\mathbf{E} X Y}{\mathbf{E} Y^{2}} \mathbf{E} X Y=0 \quad \Longrightarrow \quad \mathbf{E} X Y=0
$$

(e) false, in the example of (a) we have $\mathbf{E}(X \mid Y)=0$ so that $\mathbf{E}(X \mid Y)$ and X are independent, however X and Y clearly depend, e.g.

$$
\mathbf{E}\left(X^{2} \mid Y\right)=Y^{2}
$$

(f) true, by direct calculation

$$
\begin{aligned}
& \widehat{\mathbf{E}}(\widehat{\mathbf{E}}(Z \mid X) \mid Y)=Y \frac{\mathbf{E} \widehat{\mathbf{E}}(Z \mid X) Y}{\mathbf{E} Y^{2}}=Y \frac{\mathbf{E} \frac{\mathbf{E} Z X}{\mathbf{E} X^{2}} X Y}{\mathbf{E} Y^{2}}= \\
& Y \frac{\frac{\mathbf{E} Z X}{\mathbf{E} X^{2}} \alpha \mathbf{E} X^{2}}{\mathbf{E} Y^{2}}=Y \frac{\mathbf{E} Z(\alpha X+V)}{\mathbf{E} Y^{2}}=Y \frac{\mathbf{E} Z Y}{\mathbf{E} Y^{2}}=\widehat{\mathbf{E}}(Z \mid Y)
\end{aligned}
$$

(g) true: for any bounded function ψ

$$
\begin{aligned}
& \mathbf{E} \psi(Y) \mathbf{E}(\mathbf{E}(Z \mid X) \mid Y)=\mathbf{E} \psi(Y) \mathbf{E}(Z \mid X)=\mathbf{E} \psi(\alpha X+V) \mathbf{E}(Z \mid X)= \\
& \mathbf{E} \int \psi(\alpha X+s) \mathbf{E}(Z \mid X) d F_{v}(s)=\mathbf{E E}\left(Z \int \psi(\alpha X+s) d F_{v}(s) \mid X\right)= \\
& \mathbf{E}\left(Z \int \psi(\alpha X+s) d F_{v}(s)\right)=\mathbf{E E}(Z \psi(\alpha X+V) \mid X, Z)= \\
& \mathbf{E E}(Z \psi(Y) \mid X, Z)=\mathbf{E} \psi(Y) Z
\end{aligned}
$$

where $F_{v}(s)=\mathbf{P}(V \leq s)$. The claim follows from the definition of conditional expectation.

Problem 2

(a) As usual we look for $G\left(Y_{2}^{n-1} ; Y_{n}\right)$, such that

$$
\begin{equation*}
\mathbf{E}\left(I\left(X_{n}=1\right) h\left(Y_{n}\right) \mid Y_{2}^{n-1}\right)=\mathbf{E}\left(G\left(Y_{2}^{n-1} ; Y_{n}\right) h\left(Y_{n}\right) \mid Y_{2}^{n-1}\right) \tag{1}
\end{equation*}
$$

The right hand side becomes

$$
\begin{aligned}
& \mathbf{E}\left(I\left(X_{n}=1\right) h\left(Y_{n}\right) \mid Y_{2}^{n-1}\right)= \\
& \mathbf{E}\left(I\left(X_{n}=1\right) h\left(1-X_{n-1}\right) \mid Y_{2}^{n-1}\right)=1 / 2\left\{h(0) \pi_{n-1}+h(2)\left(1-\pi_{n-1}\right)\right\}
\end{aligned}
$$

whereas the left hand side is

$$
\begin{aligned}
& \mathbf{E}\left(G\left(Y_{2}^{n-1} ; Y_{n}\right) h\left(Y_{n}\right) \mid Y_{2}^{n-1}\right)= \\
& \mathbf{E}\left(G\left(Y_{2}^{n-1} ; X_{n}-X_{n-1}\right) h\left(X_{n}-X_{n-1}\right) \mid Y_{2}^{n-1}\right)= \\
& \mathbf{E}\left(I\left(X_{n}=1\right) G\left(Y_{2}^{n-1} ; 1-X_{n-1}\right) h\left(1-X_{n-1}\right) \mid Y_{2}^{n-1}\right)+ \\
& \mathbf{E}\left(I\left(X_{n}=-1\right) G\left(Y_{2}^{n-1} ;-1-X_{n-1}\right) h\left(-1-X_{n-1}\right) \mid Y_{2}^{n-1}\right)= \\
& 1 / 2\left(G\left(Y_{2}^{n-1} ; 0\right) h(0) \pi_{n-1}+G\left(Y_{2}^{n-1} ; 2\right) h(2)\left(1-\pi_{n-1}\right)\right)+ \\
& 1 / 2\left(G\left(Y_{2}^{n-1} ; 0\right) h(0)\left(1-\pi_{n-1}\right)+G\left(Y_{2}^{n-1} ;-2\right) h(-2) \pi_{n-1}\right)
\end{aligned}
$$

Comparing $h(0), h(-2)$ and $h(2)$ terms in the above expressions we find:

$$
\pi_{n}=G\left(Y_{2}^{n-1} ; Y_{n}\right)= \begin{cases}1 & Y_{n}=2 \tag{2}\\ \pi_{n-1} & Y_{n}=0 \\ 0 & Y_{n}=-2\end{cases}
$$

The same answer can be obtained by a shortcut - note that $Y_{n} \in\{2,0,-2\}$. If $\left\{Y_{n}=2\right\}$ then $\left\{X_{n}=1, X_{n-1}=-1\right\}$; if $\left\{Y_{n}=-2\right\}$ then $\left\{X_{n}=-1, X_{n-1}=1\right\}$. $\left\{Y_{n}=0\right\}$ means that $\left\{X_{n}=X_{n-1}\right\}$, so

$$
\begin{aligned}
& \mathbf{P}\left(X_{n}=1 \mid Y_{2}^{n-1}, Y_{n}=0\right)= \\
& \mathbf{P}\left(X_{n}=1 \mid Y_{2}^{n-1}, X_{n}=X_{n-1}\right)= \\
& \mathbf{P}\left(X_{n-1}=1 \mid Y_{2}^{n-1}, X_{n}=X_{n-1}\right)= \\
& \mathbf{P}\left(X_{n-1}=1 \mid Y_{2}^{n-1}, X_{n}=1\right)= \\
& \mathbf{P}\left(X_{n-1}=1 \mid Y_{2}^{n-1}\right)=\pi_{n-1}
\end{aligned}
$$

Summarizing the above we get (2) subject to $\pi_{1}=1 / 2$ or which is the same (why ?)

$$
\pi_{n}=\frac{1-2 \pi_{n-1}}{8} Y_{n}^{2}+\frac{1}{4} Y_{n}+\pi_{n-1}
$$

(b) The model suitable for Kalman filter application is

$$
\begin{aligned}
& \theta_{n}=X_{n} \\
& Y_{n}=\theta_{n}-X_{n-1}, n \geq 2
\end{aligned}
$$

Now $\widehat{\theta}_{n \mid n-1}=\widehat{\mathbf{E}}\left(\theta_{n} \mid Y_{2}^{n-1}\right)=\widehat{\mathbf{E}}\left(X_{n} \mid Y_{2}^{n-1}\right)=0$, since Y_{2}^{n-1} is a linear combination of $\left\{X_{1}, \ldots, X_{n-1}\right\} ; \widehat{Y}_{n \mid n-1}=\widehat{\mathbf{E}}\left(Y_{n} \mid Y_{2}^{n-1}\right)=\widehat{\mathbf{E}}\left(\theta_{n}-X_{n-1} \mid Y_{2}^{n-1}\right)=-\widehat{\theta}_{n-1}$. So $P_{n \mid n-1}^{\theta}=\mathbf{E} \theta_{n}^{2}=1 ; P_{n \mid n-1}^{Y}=\mathbf{E}\left(\theta_{n}-\left(\theta_{n-1}-\widehat{\theta}_{n-1}\right)\right)^{2}=1+P_{n-1}$, where $P_{n-1}=$ $\mathbf{E}\left(\theta_{n-1}-\widehat{\theta}_{n-1}\right)^{2}$. Finally $P_{n \mid n-1}^{\theta Y}=\mathbf{E} \theta_{n}\left(\theta_{n}-\left(\theta_{n-1}-\widehat{\theta}_{n-1}\right)\right)=1$. Hence

$$
\begin{aligned}
\widehat{\theta}_{n} & =\frac{1}{1+P_{n-1}}\left(Y_{n}+\widehat{\theta}_{n-1}\right) \\
P_{n} & =1-\frac{1}{1+P_{n-1}}
\end{aligned}
$$

subject to $\widehat{\theta}_{1}=0$ and $P_{1}=1$.
(c) Once again the conventional approach works (see (1)):

$$
\begin{aligned}
& \mathbf{E}\left(I\left(X_{n}=1\right) h\left(Z_{n}\right) \mid Z_{2}^{n-1}\right)= \\
& \mathbf{E}\left(I\left(X_{n}=1\right) h\left(X_{n} / X_{n-1}\right) \mid Z_{2}^{n-1}\right)= \\
& \mathbf{E}\left(I\left(X_{n}=1\right) h\left(X_{n-1}\right) \mid Z_{2}^{n-1}\right)= \\
& 1 / 2\left\{h(1) \rho_{n-1}+h(-1)\left(1-\rho_{n-1}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbf{E}\left(G\left(Z_{2}^{n-1} ; Z_{n}\right) h\left(Z_{n}\right) \mid Z_{2}^{n-1}\right)= \\
& \mathbf{E}\left(G\left(Z_{2}^{n-1} ; X_{n} / X_{n-1}\right) h\left(X_{n} / X_{n-1}\right) \mid Z_{2}^{n-1}\right)= \\
& 1 / 2\left(G\left(Z_{2}^{n-1} ; X_{n-1}\right) h\left(X_{n-1}\right) \mid Z_{2}^{n-1}\right)+ \\
& 1 / 2\left(G\left(Z_{2}^{n-1} ;-X_{n-1}\right) h\left(-X_{n-1}\right) \mid Z_{2}^{n-1}\right)= \\
& 1 / 2\left(G\left(Z_{2}^{n-1} ; 1\right) h(1) \rho_{n-1}+G\left(Z_{2}^{n-1} ;-1\right) h(-1)\left(1-\rho_{n-1}\right)\right)+ \\
& 1 / 2\left(G\left(Z_{2}^{n-1} ;-1\right) h(-1) \rho_{n-1}+G\left(Z_{2}^{n-1} ; 1\right) h(1)\left(1-\rho_{n-1}\right)\right)= \\
& 1 / 2 G\left(Z_{2}^{n-1} ; 1\right) h(1)+1 / 2 G\left(Z_{2}^{n-1} ;-1\right) h(-1)
\end{aligned}
$$

which leads to the conclusion

$$
\rho_{n}= \begin{cases}\rho_{n-1}, & Z_{n}=1 \\ 1-\rho_{n-1}, & Z_{n}=-1\end{cases}
$$

Now since $\rho_{2}=\mathbf{P}\left(X_{2} \mid X_{2} / X_{1}\right)=1 / 2$, we get $\rho_{n} \equiv 1 / 2$.
The answer can be obtained intuitively - we feel that Z_{2}^{n} contains ${ }^{1}$ no information about X_{n}, since it "scrambles" the signal, i.e. $\rho_{n} \equiv \mathbf{P}\left(X_{n}=1\right)=1 / 2$. To prove

[^0]fix $\psi: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$, then
\[

$$
\begin{align*}
& \mathbf{E}\left(I\left(X_{n}=1\right) \psi\left(Z_{2}, \ldots, Z_{n}\right)\right)= \\
& \mathbf{E E}\left(I\left(X_{n}=1\right) \psi\left(Z_{2}, \ldots, Z_{n}\right) \mid X_{1}^{n-1}\right)= \\
& \mathbf{E E}\left(I\left(X_{n}=1\right) \psi\left(Z_{2}, \ldots, Z_{n-1}, X_{n} / X_{n-1}\right) \mid X_{1}^{n-1}\right)= \tag{3}\\
& \mathbf{E}\left(I\left(X_{n}=1\right) \psi\left(Z_{2}, \ldots, 1 / X_{n-1}\right) \mid X_{1}^{n-1}\right)= \\
& 1 / 2 \mathbf{E}\left(\psi\left(Z_{2}, \ldots, X_{n-1}\right)\right)
\end{align*}
$$
\]

On the other hand

$$
\begin{align*}
& \mathbf{E}\left(\psi\left(Z_{2}, \ldots, Z_{n}\right)\right)=\mathbf{E} \psi\left(Z_{2}, \ldots, X_{n} / X_{n-1}\right)= \\
& 1 / 2 \mathbf{E} \psi\left(Z_{2}, \ldots, X_{n-1}\right)+1 / 2 \mathbf{E} \psi\left(Z_{2}, \ldots,-X_{n-1}\right)= \\
& 1 / 2 \mathbf{E} \psi\left(Z_{2}, \ldots, X_{n-1}\right)+1 / 2 \mathbf{E} \psi\left(X_{2} / X_{1}, \ldots, X_{n-1} / X_{n-2},-X_{n-1}\right)= \\
& 1 / 2 \mathbf{E} \psi\left(Z_{2}, \ldots, X_{n-1}\right)+1 / 2 \mathbf{E} \psi\left(-X_{2} /-X_{1}, \ldots,-X_{n-1} /-X_{n-2},-X_{n-1}\right) \stackrel{\dagger}{ } \tag{4}\\
& 1 / 2 \mathbf{E} \psi\left(Z_{2}, \ldots, X_{n-1}\right)+1 / 2 \mathbf{E} \psi\left(X_{2} / X_{1}, \ldots, X_{n-1} / X_{n-2}, X_{n-1}\right)= \\
& \mathbf{E} \psi\left(Z_{2}, \ldots, X_{n-1}\right)
\end{align*}
$$

where the equality \dagger is due to symmetry of the distribution of $\left\{X_{1}, X_{2}, \ldots, X_{n-1}\right\}$.
Eq. (3) and (4) imply $\rho_{n} \equiv 1 / 2$.
(d) It immediately follows from (c) that $\widehat{\mathbf{E}}\left(X_{n} \mid Z_{2}^{n}\right)=0$ and $\mathbf{E}\left(\left(X_{n}-\widehat{\mathbf{E}}\left(X_{n} \mid Z_{2}^{n}\right)\right)^{2}=\right.$ 1 , for any $n \geq 1$.
(e), (d) Note that $X_{n}=X_{1}+\sum_{k=2}^{n} Y_{k}$, so that

$$
\mathbf{E}\left(X_{n} \mid Y_{2}^{n}\right)=\mathbf{E}\left(X_{1} \mid Y_{2}^{n}\right)+\sum_{k=2}^{n} Y_{k}
$$

and hence

$$
\mathbf{E}\left(X_{1}-\mathbf{E}\left(X_{1} \mid Y_{2}^{n}\right)\right)^{2}=\mathbf{E}\left(X_{n}-\mathbf{E}\left(X_{n} \mid Y_{2}^{n}\right)\right)^{2}
$$

Both from (a) and (b) it can be seen that $\lim _{n \rightarrow \infty} \mathbf{E}\left(X_{n}-\mathbf{E}\left(X_{n} \mid Y_{2}^{n}\right)\right)^{2}=0$, which means that $\mathbf{E}\left(X_{1} \mid Y_{2}^{n}\right)$ converges to X_{1} in \mathbb{L}^{2} (hence also in \mathbb{L}^{1} and with probability and in law). P-a.s. convergence follows from Borel-Cantelli Lemma, since

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{E}\left(X_{1} \mid Y_{2}^{n}\right) \neq X_{1}\right)=\mathbf{P}\left(Y_{2}=0, Y_{3}=0, \ldots, Y_{n}=0\right)= \\
& 1 / 2 \mathbf{P}\left(Y_{2}=0, \ldots, Y_{n}=0 \mid X_{1}=1\right)+1 / 2 \mathbf{P}\left(Y_{2}=0, \ldots, Y_{n}=0 \mid X_{1}=-1\right)= \\
& 1 / 2 \mathbf{P}\left(X_{2}=1, \ldots, X_{n}=1 \mid X_{1}=1\right)+1 / 2 \mathbf{P}\left(X_{2}=-1, \ldots, X_{n}=-1 \mid X_{1}=-1\right)= \\
& =(1 / 2)^{n-1}
\end{aligned}
$$

so that $\sum_{k} \mathbf{P}\left(\mathbf{E}\left(X_{1} \mid Y_{2}^{k}\right) \neq X_{1}\right)<\infty$.
By (c) we get $\mathbf{E}\left(X_{1} \mid Z_{2}^{n}\right) \equiv 0$ (i.e. trivially converges to zero in all senses).

Problem 3

(a) Since $\widehat{\theta}_{t}=Y_{t} / t=\left(t \theta+W_{t}\right) / t=\theta+W_{t} / t$, we have

$$
\mathbf{E}(\theta-\widehat{\theta})=0, \quad \mathbf{E}(\theta-\widehat{\theta})^{2}=\frac{\mathbf{E} W_{t}^{2}}{t^{2}}=\frac{1}{t}
$$

(b) By Itô formula

$$
d \widehat{\theta}_{t}=-\frac{Y_{t}}{t^{2}} d t+\frac{d Y_{t}}{t}=-\frac{1}{t} \widehat{\theta}_{t} d t+\frac{1}{t} d Y_{t}=\frac{1}{t}\left(d Y_{t}-\widehat{\theta}_{t} d t\right)
$$

(c) We have

$$
\begin{aligned}
& \mathbf{E} \frac{1}{1+\exp \left\{t / 2-Y_{t}\right\}}=\mathbf{E} \frac{1}{1+\exp \left\{(1 / 2-\theta) t-W_{t}\right\}} \stackrel{\dagger}{=} \\
& =\frac{1}{2} \mathbf{E} \frac{1}{1+\exp \left\{-1 / 2 t-W_{t}\right\}}+\frac{1}{2} \mathbf{E} \frac{1}{1+\exp \left\{1 / 2 t-W_{t}\right\}}= \\
& =\frac{1}{2} \mathbf{E} \frac{1}{1+\exp \left\{-1 / 2 t-W_{t}\right\}}+\frac{1}{2} \mathbf{E} \frac{\exp \left\{-1 / 2 t+W_{t}\right\}}{\exp \left\{-1 / 2 t+W_{t}\right\}+1} \stackrel{\ddagger}{=} \\
& =\frac{1}{2} \mathbf{E} \frac{1}{1+\exp \left\{-1 / 2 t-W_{t}\right\}}+\frac{1}{2} \mathbf{E} \frac{\exp \left\{-1 / 2 t-W_{t}\right\}}{\exp \left\{-1 / 2 t-W_{t}\right\}+1}= \\
& \frac{1}{2} \mathbf{E}\left(\frac{1}{1+\exp \left\{-1 / 2 t-W_{t}\right\}}+\frac{\exp \left\{-1 / 2 t-W_{t}\right\}}{\exp \left\{-1 / 2 t-W_{t}\right\}+1}\right) \equiv 1 / 2
\end{aligned}
$$

where \dagger is due to independence of θ and W_{t} and \ddagger is due to symmetry of the distribution of W_{t}. So $\mathbf{E}\left(\pi_{t}-\theta\right)=0$, i.e. the estimate is unbiased.
(d) Let $\xi_{t}=\exp \left\{t / 2-Y_{t}\right\}$. Then by Ito formula

$$
\begin{aligned}
d \xi_{t} & =\exp \left\{t / 2-Y_{t}\right\}\left(1 / 2 d t-d Y_{t}\right)+1 / 2 \exp \left\{t / 2-Y_{t}\right\} d t= \\
& =\exp \left\{t / 2-Y_{t}\right\} d t-\exp \left\{t / 2-Y_{t}\right\} d Y_{t}=\xi_{t} d t-\xi_{t} d Y_{t}
\end{aligned}
$$

Now since $\pi_{t}=1 /\left(1+\xi_{t}\right)$ and $\xi_{t}=1 / \pi_{t}-1$ we have

$$
\begin{aligned}
d \pi_{t} & =-\frac{1}{\left(1+\xi_{t}\right)^{2}} d \xi_{t}+\frac{1}{\left(1+\xi_{t}\right)^{3}} \xi_{t}^{2} d t= \\
& =-\frac{1}{\left(1+\xi_{t}\right)^{2}} \xi_{t}\left(d t-d Y_{t}\right)+\frac{1}{\left(1+\xi_{t}\right)^{3}} \xi_{t}^{2} d t \\
& =-\pi_{t}^{2}\left(1 / \pi_{t}-1\right)\left(d t-d Y_{t}\right)+\pi_{t}^{3}\left(1 / \pi_{t}-1\right)^{2} d t= \\
& =-\pi_{t}\left(1-\pi_{t}\right)\left(d t-d Y_{t}\right)+\pi_{t}\left(1-\pi_{t}\right)^{2} d t= \\
& =\pi_{t}\left(1-\pi_{t}\right)\left(-d t+d Y_{t}+\left(1-\pi_{t}\right) d t\right)= \\
& =\pi_{t}\left(1-\pi_{t}\right)\left(d Y_{t}-\pi_{t} d t\right)
\end{aligned}
$$

Appendix: what so special about π_{t} anyway?

It can be shown that $\pi_{t}=\mathbf{E}\left(\theta \mid Y_{0}^{t}\right)$, and moreover it is the particular case of the Wonham filter for continuous time processes. This is of course beyond the scope of
the course. But let's see that π_{t} is a at least better estimate than $\widehat{\theta}_{t}$.

$$
\begin{aligned}
Q_{t} & =\mathbf{E}\left(\theta-\pi_{t}\right)^{2}=\mathbf{E}\left(\theta-\frac{1}{1+\exp \left\{(1 / 2-\theta) t-W_{t}\right\}}\right)^{2}= \\
& =\frac{1}{2} \mathbf{E}\left(\frac{1}{1+\exp \left\{1 / 2 t-W_{t}\right\}}\right)^{2}+\frac{1}{2} \mathbf{E}\left(1-\frac{1}{1+\exp \left\{-1 / 2 t-W_{t}\right\}}\right)^{2}= \\
& =\frac{1}{2} \mathbf{E}\left(\frac{1}{1+\exp \left\{1 / 2 t-W_{t}\right\}}\right)^{2}+\frac{1}{2} \mathbf{E}\left(\frac{1}{\exp \left\{1 / 2 t+W_{t}\right\}+1}\right)^{2}= \\
& =\frac{1}{2} \mathbf{E}\left(\frac{1}{1+\exp \left\{1 / 2 t-W_{t}\right\}}\right)^{2}+\frac{1}{2} \mathbf{E}\left(\frac{1}{\exp \left\{1 / 2 t-W_{t}\right\}+1}\right)^{2}= \\
& =\mathbf{E}\left(\frac{1}{1+\exp \left\{1 / 2 t+W_{t}\right\}}\right)^{2}
\end{aligned}
$$

Let $\eta(t)$ be a Gaussian random variable with $\mathbf{E} \eta(t)=t / 2$ and variance $\mathbf{E}(\eta(t)-$ $t / 2)^{2}=t$, then

$$
\begin{equation*}
Q_{t}=\mathbf{E} \frac{1}{(1+\eta(t))^{2}}=\frac{1}{\sqrt{2 \pi t}} \int_{-\infty}^{\infty} \frac{1}{\left(1+e^{x}\right)^{2}} e^{-(x-t / 2)^{2} / 2 t} d x \tag{5}
\end{equation*}
$$

Note that the function $\left(1+e^{x}\right)^{-2}$ is less than 1 for any x and less than $e^{-2 x} \leq e^{-x}$ for $x \geq 0$. So the integral in (5) can be bounded as

$$
Q_{t} \leq \frac{1}{\sqrt{2 \pi t}} \int_{-\infty}^{0} e^{-(x-t / 2)^{2} / 2 t} d x+\frac{1}{\sqrt{2 \pi t}} \int_{0}^{\infty} e^{-x} e^{-(x-t / 2)^{2} / 2 t} d x:=I_{1}+I_{2}
$$

Integrating I_{1} w.r.t $y=(x-t / 2) / \sqrt{t}$ we get, $t \geq 0$

$$
I_{1}=\frac{1}{\sqrt{2 \pi t}} \int_{-\infty}^{-\sqrt{t} / 2} e^{-y^{2} / 2} \sqrt{t} d y=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{-\sqrt{t} / 2} e^{-y^{2} / 2} d y=\mathbf{P}(\zeta \leq-\sqrt{t} / 2)
$$

where ζ is a standard Gaussian r.v.
Similarly

$$
\begin{aligned}
I_{2} & =\frac{1}{\sqrt{2 \pi t}} \int_{0}^{\infty} e^{-x} e^{-(x-t / 2)^{2} / 2 t} d x=\frac{1}{\sqrt{2 \pi t}} \int_{0}^{\infty} e^{-(x+t / 2)^{2} / 2 t} d x= \\
& =\frac{1}{\sqrt{2 \pi}} \int_{\sqrt{t} / 2}^{\infty} e^{-y^{2} / 2} d x=\mathbf{P}(\zeta \geq \sqrt{t} / 2)
\end{aligned}
$$

That is

$$
Q_{t} \leq 2 P(\zeta \geq \sqrt{t} / 2)
$$

so using the well known bound

$$
\mathbf{P}(\zeta \geq x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-s^{2} / 2} d s \leq \frac{1}{\sqrt{2 \pi}} \frac{e^{-2 x^{2}}}{x+\sqrt{x^{2}+2 / \pi}}
$$

we get

$$
\begin{equation*}
Q_{t} \leq \frac{1}{\sqrt{2 \pi}} \frac{e^{-t^{2}}}{\sqrt{t} / 2+\sqrt{t / 2+2 / \pi}} \tag{6}
\end{equation*}
$$

which is much better than the rate in the linear case.

[^0]: $1_{\text {it can }}$ be even shown that $\left\{Z_{2}, \ldots, Z_{n}, X_{n}\right\}$ is an i.i.d. vector.

