
RANDOM PROCESSES - SOLUTION OF THE FINAL EXAM 2001 (B)

PAVEL CHIGANSKY

Problem 1.

(a) E
(
η|Ê(η|ξ)

)
= E(η|ξ) is (generally) TRUE if and only if α := Eηξ/Eξ2 6= 0, since in this case

ξ and Ê(η|ξ) are related by one to one correspondence, i.e. Ê(η|ξ) = αξ.

(b) Ê
(
η|E(η|ξ)

)
= E(η|ξ) is TRUE:

Ê
(
η|E(η|ξ)

)
=

EηE(η|ξ)
E
(
E(η|ξ)

)2 E(η|ξ) = E(η|ξ)

(if E
(
E(η|ξ)

)2 = 0 the statement holds by definition).
Another argument is that η − E(η|ξ) is orthogonal to any (integrable) function of ξ and thus

in particular to random variables of the form α + βE(η|ξ) for any α, β. The result follows by
uniqueness (P-a.s) of the orthogonal projection.

(c) in view of (b) Ê
(
η|E(η|ξ)

)
= Ê(η|ξ) is obviously FALSE, whenever E(η|ξ) 6= Ê(η|ξ).

(d) Ê
(
η|Ê(η|ξ)

)
= Ê(η|ξ) is TRUE:

Ê
(
η|Ê(η|ξ)

)
=

EηÊ(η|ξ)
E
(
Ê(η|ξ)

)2 Ê(η|ξ) =
αEηξ

α2Eξ2
αξ = Ê(η|ξ)

Alternatively, the argument similar to (b) can be used.

(e) the statement is TRUE:

Ê(η|ξ) = ξ =⇒ E(η − ξ)ξ = 0

Ê(ξ|η) = η =⇒ E(η − ξ)η = 0

By subtracting the two equations one obtains:

E(η − ξ)2 = 0

that is η = ξ, P− a.s.

(f) the statement is TRUE:

E
(
E(η|ξ)− η

)2 = EE(η|ξ)
(
E(η|ξ)− η

)
−Eη

(
E(η|ξ)− η

)
= 0

where the first term vanishes by virtue of orthogonality property of cond. expectation and the
second term equals zero, since E

(
E(η|ξ)|η

)
= η and Eη2 < ∞ implies Eη(E(η|ξ)− η) = 0.
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Problem 2.

(a) The solution is quite standard - fix an arbitrary function h : {0, 1} 7→ R, then

E
(
I(Xn = i)h(νn)|νn−1

1

)
= E

(
I(Xn = i)

∑
j

I(Xn−1 = j)h(νn)|νn−1
1

)
= h(0)E

(
I(Xn = i)I(Xn−1 = i)|νn−1

1

)
+ h(1)E

(∑
j 6=i

I(Xn = i)I(Xn−1 = j)|νn−1
1

)
= h(0)λiiπn−1(i) + h(1)

∑
j 6=i

λjiπn−1(j)

So that if πn(i) = G(νn; νn−1
1 ), then

E
(
h(νn)G(νn; νn−1

1 )|νn−1
1

)
= ...

= h(0)G(0; νn−1
1 )

∑
`

λ``πn−1(`) + h(1)G(1; νn−1
1 )

∑
i

∑
j 6=i

λjiπn−1(j)

Comparing h(0) and h(1) terms in the above equation obtain:

πn(i) =
λiiπn−1(i)∑
j λjjπn−1(j)

I(νn = 0) +

∑
` 6=i λ`iπn−1(`)∑

k

∑
` 6=k λ`kπn−1(`)

I(νn = 1)

(b) Similarly, fix a pair of bounded functions h : {0, 1} 7→ R and g : R → R, then

E
(
I(Xn = i)h(νn)g(Yn)

∣∣νn−1
1 , Y n−1

1

)
=

= h(0)E
(
I(Xn = i)I(Xn−1 = i)g(ai + ξn)

∣∣νn−1
1 , Y n−1

1

)
+

+h(1)E
(∑

j 6=i

I(Xn = i)I(Xn−1 = j)g(ai + ξn)
∣∣νn−1

1 , Y n−1
1

)
=

= h(0)λiiζn−1(i)
∫

g(ai + x)f(x)dx + h(1)
∑
j 6=i

λjiζn−1(j)
∫

g(ai + x)f(x)dx

from where it is not difficult to guess the correct answer:

ζn(i) =
λiiζn−1(i)f(Yn − ai)∑
j λjjζn−1(j)f(Yn − aj)

I(νn = 0) +
f(Yn − ai)

∑
` 6=i λ`iζn−1(`)∑

k f(Yn − ak)
∑

` 6=k λ`kζn−1(`)
I(νn = 1)

Problem 3.

(a)(1) (Xn) converges in all mentioned senses, since Qn := EX2
n → 0:

Qn =
(

3
4

)2

Qn−1 +
(

3
4

)2

Qn−1Eε2
1 =

(
9
16

+
9
16
· 1
3

)
Qn−1

(2) (Xn) does not converge in L2:

Qn =
(

9
16

+
9
16
· 1
)

Qn−1 =⇒ Qn ↗∞

Still we have other types of convergence, since µn = E|Xn| obeys

µn = µn−1E
∣∣∣∣34 +

3
4
ε1

∣∣∣∣ = µn−1

(
0 +

1
2

∣∣∣∣34 +
3
4

∣∣∣∣) =
3
4
µn−1
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and hence E|Xn| → 0, as n →∞.

(3) Obviously Xn is a Markov chain with two possible values: ±1 - moreover , since P(ε1 = 1) =
1/2, (Xn)n≥1 is i.i.d. sequence, and hence it converges in distribution to an equiprobable binary
random variable. Clearly it does not converge in any strong sense (e.g. it is not fundamental in
Cauchy sense) !

(4) It is easy to see that Xn does not converge (to zero) neither in L2:

Qn = Qn−1

(
1 +

1
4
· 1
)

=⇒ Qn ↗∞

nor in L1:

µn = µn−1

(
1
2
· 3
2

+
1
2
· 1
2

)
= µn−1 =⇒ µn ≡ 1

It is logical to use Chebyshev inequality for lower moments to discover convergence in probability:
let ξ be a positive r.v. with Eξq < ∞ for some q > 0, then with ε > 0

Eξq = EξqI(ξ ≥ ε) + EξqI(ξ < ε) ≥ EξqI(ξ ≥ ε) ≥ εqP(ξ ≥ ε) =⇒ P(ξ ≥ ε) ≤ Eξq/εq

Try q = 1/2:

E
√
|Xn| = E

√
|Xn−1|E

√
|1 + 1/2ε1| =

= E
√
|Xn−1|

(
1
2

√
3
2

+
1
2

√
1
2

)
︸ ︷︷ ︸

≤0.97

=⇒ E|Xn|1/2 → 0

so Xn converges to zero in probability and hence also in distribution.

Note: it is possible to use the strong law of large numbers to show the convergence (how ?)

(b) Define mn = EXn, ∆n = Xn −mn and Vn = E∆2
n. Then

Xn = αXn−1 + βXn−1εn = αXn−1 + βmn−1εn + β(Xn−1 −mn−1)εn

Set ε̃n = (Xn−1 −mn−1)εn, so that the signal/observation model is obtained:

Xn = αXn−1 + βmn−1εn + βε̃n

Yn = Xn−1 + εn

Note that (ε̃n) is an orthogonal sequence, and it is uncorrelated with (εn):

Eε̃nεk = E(Xn−1 −mn−1)εkEεn = 0, k < n

Eε̃nεn = E(Xn−1 −mn−1)Eε2
n = 0

Eε̃nεk = E(Xn−1 −mn−1)εnEεk = 0, k > n

So we can apply the Kalman filter:

X̂n = αX̂n−1 +
αPn−1 + βmn−1

Pn−1 + 1
(
Yn − X̂n−1

)
Pn = α2Pn−1 + β2m2

n−1 + β2Vn−1 −
(
αPn−1 + βmn−1

)2
Pn−1 + 1

(1.1)

where mn and Qn = Vn + m2
n = EX2

n are generated by

mn = αmn−1, m0 = 1
Qn = (α2 + β2)Qn−1, Q0 = 1
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(c) For the special case under consideration Xn can be precisely estimated out of Y n
1 , e.g.

E(Xn|Y n
1 ) = Y 2

n /2− 1 = (1 + 2Xn−1εn + 1)/2− 1 = Xn−1εn = Xn

It is not difficult (e.g. from the previous question), however, to verify that the optimal linear filter
gives a trivial estimate X̂n ≡ 0, n ≥ 1


