RANDOM PROCESSES - SOLUTION OF THE FINAL EXAM

 2001PAVEL CHIGANSKY

Problem 1.

a. $\mathbf{E}(\widehat{\mathbf{E}}(\xi \mid \eta) \mid \eta)=\mathbf{E}(\xi \mid \eta)$ is generally $\mathbf{F A L S E}$, since $\mathbf{E}(\widehat{\mathbf{E}}(\xi \mid \eta) \mid \eta)=\widehat{\mathbf{E}}(\xi \mid \eta)$, P-a.s. (see b.)
b. $\mathbf{E}(\widehat{\mathbf{E}}(\xi \mid \eta) \mid \eta)=\widehat{\mathbf{E}}(\xi \mid \eta)$ is TRUE, since $\widehat{\mathbf{E}}(\xi \mid \eta)$ is a (linear) function of η.
c. $\widehat{\mathbf{E}}(\mathbf{E}(\xi \mid \eta) \mid \eta)=\mathbf{E}(\xi \mid \eta)$ is generally $\mathbf{F A L S E}$, since the left side expression is a linear function of η, and the conditional expectation on the right side is nonlinear function of η generally.
d. $\widehat{\mathbf{E}}(\mathbf{E}(\xi \mid \eta) \mid \eta)=\widehat{\mathbf{E}}(\xi \mid \eta)$ is TRUE. Indeed:
(1.1) $\widehat{\mathbf{E}}(\mathbf{E}(\xi \mid \eta) \mid \eta)=\mathbf{E} \mathbf{E}(\xi \mid \eta)+\frac{\mathbf{E E}(\xi \mid \eta) \eta}{\mathbf{E} \eta^{2}}(\eta-\mathbf{E} \eta) \stackrel{\dagger}{=} \mathbf{E} \xi+\frac{\mathbf{E} \xi \eta}{\mathbf{E} \eta^{2}}(\eta-\mathbf{E} \eta)=\widehat{\mathbf{E}}(\xi \mid \eta)$ where \dagger follows from the definition of cond. exp.

Problem 2. To show convergence in \mathbb{L}^{2} sense (and hence also in prob. and in law) it suffices to verify the Cauchy property:
$\mathbf{E}\left(I\left(X_{n}=i\right)-I\left(X_{m}=i\right)\right)^{2}=p_{n}(i)+p_{m}(i)-2 \mathbf{P}\left(X_{n}=i \mid X_{m}=i\right) p_{m}(i) \xrightarrow{n, m \rightarrow \infty} 0$ where $p_{n}(i)=\mathbf{P}\left(X_{n}=i\right)$ for convenience.

Calculate the probabilities $p_{n}(i), i=-1,0,1$:

$$
\begin{aligned}
& p_{n}(0)=\mathbf{P}\left(X_{n}=0\right)=\mathbf{P}\left(X_{n}=0 \mid X_{0}=0\right) \beta=(1 / 4)^{n} \beta, \quad n \geq 0 \\
& p_{n}(-1)=\mathbf{P}\left(X_{n}=-1\right)=1 \cdot \mathbf{P}\left(X_{n-1}=-1\right)+1 / 4 \mathbf{P}\left(X_{n-1}=0\right) \\
& =p_{n-1}(-1)+1 / 4 p_{n-1}(0)
\end{aligned}
$$

so

$$
\begin{aligned}
p_{n}(-1) & =\alpha+1 / 4 \beta \sum_{i=0}^{n-1}(1 / 4)^{i}=\alpha+1 / 4 \beta \frac{1-(1 / 4)^{n}}{1-1 / 4}= \\
& =\alpha+1 / 3 \beta-1 / 3 \beta(1 / 4)^{n}
\end{aligned}
$$

and similarly

$$
\begin{aligned}
p_{n}(1) & =p_{n-1}(1)+1 / 2 p_{n-1}(0)=\gamma+1 / 2 \beta \sum_{i=0}^{n-1}(1 / 4)^{i}= \\
& =\gamma+1 / 2 \beta \frac{1-(1 / 4)^{n}}{1-1 / 4}=\gamma+2 / 3 \beta-2 / 3 \beta(1 / 4)^{n}
\end{aligned}
$$

Now (say for $n \geq m$)

$$
\begin{gathered}
\begin{array}{c}
p_{n}(0)+p_{m}(0)-2 \mathbf{P}\left(X_{n}=0 \mid X_{m}=0\right) p_{m}(0)= \\
=\beta(1 / 4)^{m}+\beta(1 / 4)^{n}-2(1 / 4)^{n-m} \beta(1 / 4)^{m}= \\
=\beta(1 / 4)^{m}-\beta(1 / 4)^{n} \xrightarrow{n, m \rightarrow \infty} 0
\end{array} \\
p_{n}(-1)+p_{m}(-1)-2 \mathbf{P}\left(X_{n}=-1 \mid X_{m}=-1\right) p_{m}(-1)=p_{n}(-1)-p_{m}(-1)= \\
=1 / 3 \beta(1 / 4)^{n}-1 / 3 \beta(1 / 4)^{m} \xrightarrow{n, m \rightarrow \infty} 0
\end{gathered}
$$

and

$$
\begin{aligned}
& p_{n}(1)+p_{m}(1)-2 \mathbf{P}\left(X_{n}=1 \mid X_{m}=1\right) p_{m}(1)=p_{n}(1)-p_{m}(1)= \\
& =2 / 3 \beta(1 / 4)^{n}-2 / 3 \beta(1 / 4)^{m} \xrightarrow{n, m \rightarrow \infty} 0
\end{aligned}
$$

which means that X_{n} is a \mathbb{L}^{2} Cauchy sequence and thus converges to a limit, which is a random variable, say X.

The sequence converges also with probability one. To show this it suffices (why ?) to verify that

$$
\mathbf{E}\left\|I_{n}-I\right\|^{q} \leq C \rho^{n}
$$

for some $C, q>0$ and $0<\rho<1$, where

$$
I_{n}=\left[\begin{array}{c}
I\left(X_{n}=-1\right) \\
I\left(X_{n}=0\right) \\
I\left(X_{n}=1\right)
\end{array}\right]
$$

and I is its limit. Since I_{n} converges in \mathbb{L}^{2},

$$
I=I_{0}+\sum_{m=1}^{\infty}\left(I_{m}-I_{m-1}\right)
$$

so that we have to verify (e.g. for $q=1$)

$$
\sum_{m=n+1}^{\infty} \sqrt{\mathbf{E}\left(I\left(X_{m}=i\right)-I\left(X_{m-1}=i\right)\right)^{2}} \leq C(i) \rho(i)^{n}
$$

for $i=-1,0,1$. Obviously

$$
\begin{aligned}
& \mathbf{E}\left(I\left(X_{m}=0\right)-I\left(X_{m-1}=0\right)\right)^{2}=\beta(1 / 4)^{m-1}(1-1 / 4) \\
& \mathbf{E}\left(I\left(X_{m}=1\right)-I\left(X_{m-1}=1\right)\right)^{2}=\beta 1 / 3(1 / 4)^{m-1}(1-1 / 4) \\
& \mathbf{E}\left(I\left(X_{m}=-1\right)-I\left(X_{m-1}=-1\right)\right)^{2}=\beta 2 / 3(1 / 4)^{m-1}(1-1 / 4)
\end{aligned}
$$

so that e.g.

$$
\begin{aligned}
\sum_{m=n+1}^{\infty} \sqrt{\mathbf{E}\left(I\left(X_{m}=0\right)-I\left(X_{m-1}=0\right)\right)^{2}} & \leq \text { const. } \sum_{m=n+1}^{\infty}(1 / 2)^{m-1} \\
& \leq \text { const. }(1 / 2)^{n}
\end{aligned}
$$

b.

$$
F_{n}(x):=\mathbf{P}\left(X_{n} \leq x\right)= \begin{cases}0 & x \in(-\infty,-1) \\ \alpha+1 / 3 \beta-1 / 3 \beta(1 / 4)^{n} & x \in[-1,0) \\ \alpha+1 / 3 \beta+2 / 3 \beta(1 / 4)^{n} & x \in[0,1) \\ 1 & x \in[1, \infty)\end{cases}
$$

Clearly $\lim _{n \rightarrow \infty} \sup _{x \in \mathbb{R}}\left|F_{n}(x)-F(x)\right|=0$, where

$$
F(x):= \begin{cases}0 & x \in(-\infty,-1) \\ \alpha+1 / 3 \beta & x \in[-1,1) \\ 1 & x \in[1, \infty)\end{cases}
$$

which means that $X=\lim _{n \rightarrow \infty} X_{n}$ is a random variable with values $\{-1,1\}$ and $\mathbf{P}(X=-1)=\alpha+1 / 3 \beta$ and $\mathbf{P}(X=1)=\gamma+2 / 3 \beta$.
c. Clearly X is deterministic only if $\alpha=1$ or $\gamma=1$.

Problem 3.

a. A standard derivation of the optimal filter: put $\pi_{n \mid n-1}(i)=\mathbf{P}\left(X_{n}=a_{i} \mid Y_{0}^{n-1}\right)$ and $\pi_{n}(i)=\mathbf{P}\left(X_{n}=a_{i} \mid Y_{0}^{n}\right):=G\left(Y_{n} ; Y_{0}^{n-1}\right)$. Fix an arbitrary function $h(x): \mathbb{R} \rightarrow$ \mathbb{R}. The cond. exp. $G\left(Y_{n} ; Y_{0}^{n-1}\right)$ should satisfy \mathbf{P}-a.s.

$$
\mathbf{E}\left(I\left(X_{n}=a_{i}\right) h\left(Y_{n}\right) \mid Y_{0}^{n-1}\right)=\mathbf{E}\left(h\left(Y_{n}\right) G\left(Y_{n} ; Y_{0}^{n-1}\right) \mid Y_{0}^{n-1}\right)
$$

The left hand side gives:

$$
\begin{aligned}
& \mathbf{E}\left(I\left(X_{n}=a_{i}\right) h\left(Y_{n}\right) \mid Y_{0}^{n-1}\right)= \\
& =\mathbf{E}\left(I\left(X_{n}=a_{i}\right)\left[I\left(a_{i} \in \mathcal{J}\right) h(1)+I\left(a_{i} \notin \mathcal{J}\right) h(0)\right] \mid Y_{0}^{n-1}\right)= \\
& =\pi_{n \mid n-1}(i)\left[I\left(a_{i} \in \mathcal{J}\right) h(1)+I\left(a_{i} \notin \mathcal{J}\right) h(0)\right]
\end{aligned}
$$

Similarly the right hand side gives:

$$
\begin{aligned}
& \mathbf{E}\left(h\left(Y_{n}\right) G\left(Y_{n} ; Y_{0}^{n-1}\right) \mid Y_{0}^{n-1}\right)= \\
& =\mathbf{E}\left[I\left(X_{n} \in \mathcal{J}\right) h(1) G\left(1 ; Y_{0}^{n-1}\right)+I\left(X_{n} \notin \mathcal{J}\right) h(0) G\left(1 ; Y_{0}^{n-1}\right) \mid Y_{0}^{n-1}\right]= \\
& =\mathbf{P}\left(X_{n} \in \mathcal{J} \mid Y_{0}^{n-1}\right) h(1) G\left(1 ; Y_{0}^{n-1}\right)+\mathbf{P}\left(X_{n} \notin \mathcal{J} \mid Y_{0}^{n-1}\right) h(0) G\left(0 ; Y_{0}^{n-1}\right)= \\
& =h(1) G\left(1 ; Y_{0}^{n-1}\right) \sum_{i \in \mathcal{J}} \pi_{n \mid n-1}(i)+h(0) G\left(0 ; Y_{0}^{n-1}\right) \sum_{i \notin \mathcal{J}} \pi_{n \mid n-1}(i)
\end{aligned}
$$

comparing the above expressions we arrive at

$$
\pi_{n}(i)=\frac{\pi_{n \mid n-1}(i) I\left(a_{i} \in \mathcal{J}\right)}{\sum_{i \in \mathcal{J}} \pi_{n \mid n-1}(i)} I\left(Y_{n}=1\right)+\frac{\pi_{n \mid n-1}(i) I\left(a_{i} \notin \mathcal{J}\right)}{\sum_{i \notin \mathcal{J}} \pi_{n \mid n-1}(i)} I\left(Y_{n}=0\right)
$$

so (ii) is correct.
Remark: the correct answer can be found also by excluding answers, which do not satisfy obvious requirements, e.g. $\sum_{i} \pi_{n}(i) \equiv 1$, or $\pi_{n}(i) \equiv 0$ if $Y_{n}=1$ and $i \notin \mathcal{J}$, etc.
b. Use familiar state-space representation for Markov chains:

$$
I_{n}=\Lambda^{*} I_{n-1}+\varepsilon_{n}
$$

where ε_{n} is a sequence of zero mean vector random variables such that

$$
\mathbf{E} \varepsilon_{n} \varepsilon_{m}^{*}=0, \quad n \neq m
$$

and

$$
\mathbf{E} \varepsilon_{n} \varepsilon_{n}^{*}=\operatorname{diag}\left(p_{n}\right)-\Lambda \operatorname{diag}\left(p_{n-1}\right) \Lambda^{*}:=D_{n}
$$

where $p_{n}=\mathbf{E} I_{n}$. Note also that $Y_{n}=u^{*} I_{n}=u^{*} \Lambda^{*} I_{n-1}+u^{*} \varepsilon_{n}$, where u is a column vector with ones at indices corresponding to \mathcal{J} and zeros otherwise. So the Kalman filter recursion is

$$
\begin{aligned}
\widehat{\pi}_{n}= & \Lambda^{*} \widehat{\pi}_{n-1}+\left(\Lambda^{*} P_{n-1} \Lambda+D_{n}\right) u\left(u^{*} \Lambda^{*} P_{n-1} \Lambda u+u^{*} D_{n} u\right)^{+}\left(Y_{n}-u^{*} \Lambda^{*} \widehat{\pi}_{n-1}\right) \\
P_{n}= & \Lambda^{*} P_{n-1} \Lambda+D_{n}- \\
& -\left(\Lambda^{*} P_{n-1} \Lambda+D_{n}\right) u\left(u^{*} \Lambda^{*} P_{n-1} \Lambda u+u^{*} D_{n} u\right)^{+} u^{*}\left(\Lambda^{*} P_{n-1} \Lambda+D_{n}\right)
\end{aligned}
$$

subject to $\widehat{\pi}_{0}=p_{0}$ and $P_{0}=\operatorname{diag}\left(p_{0}\right)-p_{0} p_{0}^{*}$.

Problem 4.

a. The pair $\left(\theta, Y_{n}\right)$ is Gaussian and obeys the model $\left(\theta_{n} \equiv \theta\right)$

$$
\begin{aligned}
& \theta_{n}=\theta_{n-1} \\
& Y_{n}=\theta_{n-1}+\xi_{n}, \quad n \geq 1
\end{aligned}
$$

subject to $\theta_{0}=\theta$. The optimal estimate is given by Kalman filter

$$
\begin{aligned}
m_{n} & =m_{n-1}+\frac{P_{n-1}^{m}}{P_{n-1}^{m}+1}\left(Y_{n}-m_{n-1}\right) \\
P_{n}^{m} & =P_{n-1}^{m}-\frac{\left(P_{n-1}^{m}\right)^{2}}{P_{n-1}^{m}+1}
\end{aligned}
$$

or

$$
\begin{aligned}
m_{n} & =m_{n-1}+P_{n}^{m}\left(Y_{n}-m_{n-1}\right) \\
P_{n}^{m} & =\frac{P_{n-1}^{m}}{P_{n-1}^{m}+1}
\end{aligned}
$$

subject to $m_{0}=0$ and $P_{0}^{m}=1$.
b. From the mouse point of view the signal (cat's position) is m_{n} and the observation is θ, i.e. it sees the following model

$$
\begin{aligned}
m_{n} & =\left(1-P_{n}^{m}\right) m_{n-1}+P_{n}^{m}\left(\theta_{n-1}+\xi_{n}\right) \\
\theta_{n} & =\theta_{n-1}
\end{aligned}
$$

Let $c_{n}=\mathbf{E}\left(m_{n} \mid \theta\right) \equiv \mathbf{E}\left(m_{n} \mid \theta_{0}^{n}\right)$ and $P_{n}^{c}=\mathbf{E}\left(m_{n}-c_{n}\right)^{2}$. The pair $\left(\theta, m_{n}\right)$ is Gaussian so the optimal estimate is given by Kalman filter:

$$
\begin{aligned}
c_{n} & =\left(1-P_{n}^{m}\right) c_{n-1}+P_{n}^{m} \theta_{n-1} \equiv\left(1-P_{n}^{m}\right) c_{n-1}+P_{n}^{m} \theta \\
P_{n}^{c} & =\left(1-P_{n}^{m}\right)^{2} P_{n-1}^{c}+\left(P_{n}^{m}\right)^{2}
\end{aligned}
$$

subject to $c_{0}=0$ and $P_{0}^{c}=0$ (why?)
c. Consider a simple average estimate of $\breve{m}_{n}=\frac{1}{n} \sum_{k=1}^{n} Y_{n}$. Clearly $\mathbf{E}\left(\theta-m_{n}\right)^{2} \leq$ $\mathbf{E}\left(\theta-\breve{m}_{n}\right)^{2} \xrightarrow{n \rightarrow \infty} 0$, so $\lim _{n \rightarrow \infty} P_{n}^{m}=0$. Now consider a simple constant estimate $\breve{c}_{n} \equiv \theta$. Clearly
(1.2) $P_{n}^{c}=\mathbf{E}\left(c_{n}-m_{n}\right)^{2} \leq \mathbf{E}\left(\breve{c}_{n}-m_{n}\right)^{2}=\mathbf{E}\left(\theta-m_{n}\right)^{2}=P_{n}^{m} \xrightarrow{n \rightarrow \infty} 0$
d. The correct answer is $P_{n}^{c} \leq P_{n}^{m}$ as follows from (1.2).
e. The relation of (d) holds also generally by the very same argument as in (1.2): let $\left(\theta_{n}, Y_{n}\right)_{n \geq 0}$ be a pair of random sequences, then

$$
P_{n}^{c}=\mathbf{E}\left[\mathbf{E}\left(\theta_{n} \mid Y_{0}^{n}\right)-\mathbf{E}\left(\mathbf{E}\left(\theta_{n} \mid Y_{0}^{n}\right) \mid \theta_{0}^{n}\right)\right]^{2} \leq \mathbf{E}\left[\mathbf{E}\left(\theta_{n} \mid Y_{0}^{n}\right)-\theta_{n}\right]^{2}=P_{n}^{m}
$$

