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Problem 1.

a. E
(
Ê(ξ|η)

∣∣η)
= E(ξ|η) is generally FALSE, since E

(
Ê(ξ|η)

∣∣η)
= Ê(ξ|η), P-a.s.

(see b.)

b. E
(
Ê(ξ|η)

∣∣η)
= Ê(ξ|η) is TRUE, since Ê(ξ|η) is a (linear) function of η.

c. Ê
(
E(ξ|η)

∣∣η)
= E(ξ|η) is generally FALSE, since the left side expression is a

linear function of η, and the conditional expectation on the right side is nonlinear
function of η generally.

d. Ê
(
E(ξ|η)

∣∣η)
= Ê(ξ|η) is TRUE. Indeed:

(1.1) Ê
(
E(ξ|η)

∣∣η)
= EE(ξ|η)+

EE(ξ|η)η
Eη2

(
η−Eη

) †
= Eξ +

Eξη

Eη2
(η−Eη) = Ê(ξ|η)

where † follows from the definition of cond. exp.

Problem 2. To show convergence in L2 sense (and hence also in prob. and in law)
it suffices to verify the Cauchy property:

E
(
I(Xn = i)− I(Xm = i)

)2 = pn(i)+ pm(i)− 2P(Xn = i|Xm = i)pm(i)
n,m→∞−−−−−→ 0

where pn(i) = P(Xn = i) for convenience.
Calculate the probabilities pn(i), i = −1, 0, 1:

pn(0) = P(Xn = 0) = P(Xn = 0|X0 = 0)β = (1/4)nβ, n ≥ 0

pn(−1) = P(Xn = −1) = 1 ·P(Xn−1 = −1) + 1/4P(Xn−1 = 0)
= pn−1(−1) + 1/4pn−1(0)

so

pn(−1) = α + 1/4β

n−1∑
i=0

(1/4)i = α + 1/4β
1− (1/4)n

1− 1/4
=

= α + 1/3β − 1/3β(1/4)n

and similarly

pn(1) = pn−1(1) + 1/2pn−1(0) = γ + 1/2β
n−1∑
i=0

(1/4)i =

= γ + 1/2β
1− (1/4)n

1− 1/4
= γ + 2/3β − 2/3β(1/4)n

1
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Now (say for n ≥ m)

pn(0) + pm(0)− 2P(Xn = 0|Xm = 0)pm(0) =
= β(1/4)m + β(1/4)n − 2(1/4)n−mβ(1/4)m =

= β(1/4)m − β(1/4)n n,m→∞−−−−−→ 0

pn(−1) + pm(−1)− 2P(Xn = −1|Xm = −1)pm(−1) = pn(−1)− pm(−1) =

= 1/3β(1/4)n − 1/3β(1/4)m n,m→∞−−−−−→ 0

and

pn(1) + pm(1)− 2P(Xn = 1|Xm = 1)pm(1) = pn(1)− pm(1) =

= 2/3β(1/4)n − 2/3β(1/4)m n,m→∞−−−−−→ 0

which means that Xn is a L2 Cauchy sequence and thus converges to a limit, which
is a random variable, say X.

The sequence converges also with probability one. To show this it suffices (why
?) to verify that

E‖In − I‖q ≤ Cρn

for some C, q > 0 and 0 < ρ < 1, where

In =

I(Xn = −1)
I(Xn = 0)
I(Xn = 1)


and I is its limit. Since In converges in L2,

I = I0 +
∞∑

m=1

(Im − Im−1)

so that we have to verify (e.g. for q = 1)
∞∑

m=n+1

√
E

(
I(Xm = i)− I(Xm−1 = i)

)2 ≤ C(i)ρ(i)n

for i = −1, 0, 1. Obviously

E
(
I(Xm = 0)− I(Xm−1 = 0)

)2 = β(1/4)m−1(1− 1/4)

E
(
I(Xm = 1)− I(Xm−1 = 1)

)2 = β1/3(1/4)m−1(1− 1/4)

E
(
I(Xm = −1)− I(Xm−1 = −1)

)2 = β2/3(1/4)m−1(1− 1/4)

so that e.g.
∞∑

m=n+1

√
E

(
I(Xm = 0)− I(Xm−1 = 0)

)2 ≤ const.
∞∑

m=n+1

(1/2)m−1

≤ const.(1/2)n

b.

Fn(x) := P(Xn ≤ x) =


0 x ∈ (−∞,−1)
α + 1/3β − 1/3β(1/4)n x ∈ [−1, 0)
α + 1/3β + 2/3β(1/4)n x ∈ [0, 1)
1 x ∈ [1,∞)
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Clearly limn→∞ supx∈R |Fn(x)− F (x)| = 0, where

F (x) :=

 0 x ∈ (−∞,−1)
α + 1/3β x ∈ [−1, 1)
1 x ∈ [1,∞)

which means that X = limn→∞Xn is a random variable with values {−1, 1} and
P(X = −1) = α + 1/3β and P(X = 1) = γ + 2/3β.

c. Clearly X is deterministic only if α = 1 or γ = 1.

Problem 3.

a. A standard derivation of the optimal filter: put πn|n−1(i) = P(Xn = ai|Y n−1
0 )

and πn(i) = P(Xn = ai|Y n
0 ) := G(Yn;Y n−1

0 ). Fix an arbitrary function h(x) : R →
R. The cond. exp. G(Yn;Y n−1

0 ) should satisfy P-a.s.

E
(
I(Xn = ai)h(Yn)|Y n−1

0

)
= E

(
h(Yn)G(Yn;Y n−1

0 )|Y n−1
0

)
The left hand side gives:

E
(
I(Xn = ai)h(Yn)|Y n−1

0

)
=

= E
(
I(Xn = ai)

[
I(ai ∈ J )h(1) + I(ai 6∈ J )h(0)

]
|Y n−1

0

)
=

= πn|n−1(i)
[
I(ai ∈ J )h(1) + I(ai 6∈ J )h(0)

]
Similarly the right hand side gives:

E
(
h(Yn)G(Yn;Y n−1

0 )|Y n−1
0

)
=

= E
[
I(Xn ∈ J )h(1)G(1;Y n−1

0 ) + I(Xn 6∈ J )h(0)G(1;Y n−1
0 )|Y n−1

0

]
=

= P(Xn ∈ J |Y n−1
0 )h(1)G(1;Y n−1

0 ) + P(Xn 6∈ J |Y n−1
0 )h(0)G(0;Y n−1

0 ) =

= h(1)G(1;Y n−1
0 )

∑
i∈J

πn|n−1(i) + h(0)G(0;Y n−1
0 )

∑
i 6∈J

πn|n−1(i)

comparing the above expressions we arrive at

πn(i) =
πn|n−1(i)I(ai ∈ J )∑

i∈J πn|n−1(i)
I(Yn = 1) +

πn|n−1(i)I(ai 6∈ J )∑
i 6∈J πn|n−1(i)

I(Yn = 0)

so (ii) is correct.

Remark: the correct answer can be found also by excluding answers, which do not
satisfy obvious requirements, e.g.

∑
i πn(i) ≡ 1, or πn(i) ≡ 0 if Yn = 1 and i 6∈ J ,

etc.

b. Use familiar state-space representation for Markov chains:

In = Λ∗In−1 + εn

where εn is a sequence of zero mean vector random variables such that

Eεnε∗m = 0, n 6= m

and
Eεnε∗n = diag(pn)− Λdiag(pn−1)Λ∗ := Dn
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where pn = EIn. Note also that Yn = u∗In = u∗Λ∗In−1 + u∗εn, where u is a
column vector with ones at indices corresponding to J and zeros otherwise. So the
Kalman filter recursion is

π̂n = Λ∗π̂n−1 +
(
Λ∗Pn−1Λ + Dn

)
u
(
u∗Λ∗Pn−1Λu + u∗Dnu

)+(
Yn − u∗Λ∗π̂n−1

)
Pn = Λ∗Pn−1Λ + Dn −

−
(
Λ∗Pn−1Λ + Dn

)
u(u∗Λ∗Pn−1Λu + u∗Dnu

)+
u∗

(
Λ∗Pn−1Λ + Dn

)
subject to π̂0 = p0 and P0 = diag(p0)− p0p

∗
0.

Problem 4.

a. The pair (θ, Yn) is Gaussian and obeys the model (θn ≡ θ)

θn = θn−1

Yn = θn−1 + ξn, n ≥ 1

subject to θ0 = θ. The optimal estimate is given by Kalman filter

mn = mn−1 +
Pm

n−1

Pm
n−1 + 1

(
Yn −mn−1

)
Pm

n = Pm
n−1 −

(Pm
n−1)

2

Pm
n−1 + 1

or

mn = mn−1 + Pm
n

(
Yn −mn−1

)
Pm

n =
Pm

n−1

Pm
n−1 + 1

subject to m0 = 0 and Pm
0 = 1.

b. From the mouse point of view the signal (cat’s position) is mn and the observa-
tion is θ, i.e. it sees the following model

mn = (1− Pm
n )mn−1 + Pm

n

(
θn−1 + ξn

)
θn = θn−1

Let cn = E(mn|θ) ≡ E(mn|θn
0 ) and P c

n = E(mn−cn)2. The pair (θ, mn) is Gaussian
so the optimal estimate is given by Kalman filter:

cn = (1− Pm
n )cn−1 + Pm

n θn−1 ≡ (1− Pm
n )cn−1 + Pm

n θ

P c
n = (1− Pm

n )2P c
n−1 + (Pm

n )2

subject to c0 = 0 and P c
0 = 0 (why?)

c. Consider a simple average estimate of m̆n = 1
n

∑n
k=1 Yn. Clearly E(θ −mn)2 ≤

E(θ− m̆n)2 n→∞−−−−→ 0, so limn→∞ Pm
n = 0. Now consider a simple constant estimate

c̆n ≡ θ. Clearly

P c
n = E(cn −mn)2 ≤ E(c̆n −mn)2 = E(θ −mn)2 = Pm

n
n→∞−−−−→ 0(1.2)

d. The correct answer is P c
n ≤ Pm

n as follows from (1.2).
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e. The relation of (d) holds also generally by the very same argument as in (1.2):
let (θn, Yn)n≥0 be a pair of random sequences, then

P c
n = E

[
E(θn|Y n

0 )−E
(
E(θn|Y n

0 )|θn
0

)]2 ≤ E
[
E(θn|Y n

0 )− θn

]2 = Pm
n


