RANDOM PROCESSES. THE SOLUTION TO FINAL TEST.

April, 2000

Problem 1.

(a) The optimal linear estimate $\widetilde{\xi}_{0}=\sum_{k \neq 0} a_{k} \xi_{k}$ satisfies the orthogonality principle:

$$
\mathbf{E}\left(\xi_{0}-\sum_{k \neq 0} a_{k} \xi_{k}\right) \xi_{\ell}=0, \quad \ell \neq 0
$$

Note that if we set $a_{0} \equiv 0$ and choose some constant γ (which does not necessarily equals 0), the orthogonality eq. becomes:

$$
\mathbf{E}\left(\xi_{0}-\sum_{k=-\infty}^{\infty} a_{k} \xi_{k}\right) \xi_{\ell}=\gamma \delta_{\ell}, \quad \text { for all } \ell
$$

Let $R(m)=\mathbf{E} \xi_{n} \xi_{n+m}$, then

$$
R(\ell)-\sum_{k=-\infty}^{\infty} a_{k} R(k+\ell)=\gamma \delta_{\ell}, \quad \text { for all } \ell
$$

Now calculate the Fourier transform of both sides:

$$
f(\lambda)-A^{*}(\lambda) f(\lambda)=\gamma
$$

Clearly $A(\lambda)$ is real and since $f(\lambda)>0$:

$$
A(\lambda)=1-\frac{\gamma}{f(\lambda)}
$$

The constant γ is determined by the constrain $a_{0} \equiv 0$:

$$
a_{0}=\frac{1}{2 \pi} \int_{[-\pi, \pi]} A(\lambda) d \lambda=1-\gamma \frac{1}{2 \pi} \int_{[-\pi, \pi]} 1 / f(\lambda) d \lambda \equiv 0
$$

which implies:

$$
\gamma=\frac{2 \pi}{\int_{[-\pi, \pi]} d \lambda / f(\lambda)}
$$

Now the filter is completely specified.
(b)

$$
\begin{aligned}
\widetilde{P}= & \mathbf{E}\left(\xi_{0}-\sum_{k=-\infty}^{\infty} a_{k} \xi_{k}\right)^{2}=R(0)-2 \sum_{k} a_{k} R(k)+\sum_{k} \sum_{m} a_{k} a_{m} R(k-m) \\
& =\frac{1}{2 \pi} \int_{[-\pi, \pi]}\left(f(\lambda)-2 A(\lambda) f(\lambda)+A(\lambda)^{2} f(\lambda)\right) d \lambda= \\
& =\frac{1}{2 \pi} \int_{[-\pi, \pi]} f(\lambda)(1-A(\lambda))^{2} d \lambda=\frac{1}{2 \pi} \int_{[-\pi, \pi]} \frac{\gamma^{2}}{f(\lambda)} d \lambda=\gamma
\end{aligned}
$$

(c) For white noise (i.e. $f(\lambda) \equiv \sigma^{2}$), we expect that $\widetilde{\xi}_{0} \equiv 0$. Indeed, in this case $A(\lambda) \equiv 0$.
(d) Of course, the solution can be obtained as a special case of (a).

Alternatively, if one notes that $\left\{\xi_{k}, k \neq 0\right\}$ and $\left\{\xi_{1}, \xi_{-1}, \varepsilon_{k}, k \neq\right.$ $0,1\}$ are related by a one-to-one linear transformation, the solution can be simplified, since then ${ }^{1}$ with prob. one

$$
\mathbf{E}\left(\xi_{0} \mid \xi_{k}, k \neq 0\right)=\mathbf{E}\left(\xi_{0} \mid \xi_{1}, \xi_{-1}, \varepsilon_{k}, k \neq 0,1\right\}=\mathbf{E}\left(\xi_{0} \mid \xi_{1}, \xi_{-1}\right)
$$

where the last equality follows from independence of $\left\{\varepsilon_{k}, k \neq 0,1\right\}$ and $\left\{\xi_{-1}, \xi_{0}, \xi_{1}\right\}$. Now the problem is reduced to estimating a component of a Gaussian vector:

$$
\begin{aligned}
\xi_{1} & =a \xi_{0}+b \varepsilon_{1} \\
\xi_{-1} & =\xi_{0} / a-b / a \varepsilon_{0}
\end{aligned}
$$

Since the process is stationary

$$
\mathbf{E} \xi_{n}=0, \quad \mathbf{E} \xi_{n}^{2}=\frac{b^{2}}{1-a^{2}}
$$

and

$$
\begin{aligned}
\mathbf{E} \xi_{0} \xi_{1}= & \mathbf{E} \xi_{0}\left(a \xi_{0}+b \varepsilon_{1}\right)=a b^{2} /\left(1-a^{2}\right) \\
\mathbf{E} \xi_{0} \xi_{-1}= & \mathbf{E} \xi_{-1}\left(a \xi_{-1}+b \varepsilon_{0}=a b^{2} /\left(1-a^{2}\right)\right. \\
\mathbf{E} \xi_{-1} \xi_{1}= & \mathbf{E}\left(a \xi_{0}+b \varepsilon_{1}\right)\left(\xi_{0} / a-b / a \varepsilon_{0}\right)=\mathbf{E} \xi_{0}^{2}-b \mathbf{E} \xi_{0} \varepsilon_{0}= \\
& =b^{2} /\left(1-a^{2}\right)-b^{2}=b^{2} a^{2} /\left(1-a^{2}\right)
\end{aligned}
$$

So that:

$$
\begin{aligned}
\mathbf{E}\left(\xi_{0} \mid \xi_{1}, \xi_{-1}\right) & =\left(\begin{array}{ll}
\mathbf{E} \xi_{0} \xi_{1} & \mathbf{E} \xi_{0} \xi_{-1}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{E} \xi_{1} \xi_{1} & \mathbf{E} \xi_{0} \xi_{1} \\
\mathbf{E} \xi_{0} \xi_{1} & \mathbf{E} \xi_{1} \xi_{1}
\end{array}\right)^{-1}\binom{\xi_{1}}{\xi_{-1}}= \\
& =\frac{a b^{2}}{1-a^{2}}\left(\begin{array}{ll}
1 & 1
\end{array}\right)\left(\frac{b^{2}}{1-a^{2}}\right)^{-1}\left(\begin{array}{cc}
1 & a^{2} \\
a^{2} & 1
\end{array}\right)^{-1}\binom{\xi_{1}}{\xi_{-1}}= \\
& =\frac{a}{1-a^{4}}\left(\begin{array}{ll}
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -a^{2} \\
-a^{2} & 1
\end{array}\right)^{-1}\binom{\xi_{1}}{\xi_{-1}}= \\
& =\frac{a}{1+a^{2}}\left[\begin{array}{ll}
\xi_{1}+\xi_{-1}
\end{array}\right]
\end{aligned}
$$

[^0]To calculate the corresponding error note that:

$$
\begin{aligned}
& \frac{a}{1+a^{2}}\left[\xi_{1}+\xi_{-1}\right]=\frac{a}{1+a^{2}}\left((a+1 / a) \xi_{0}+b \varepsilon_{1}-b / a \varepsilon_{0}\right)= \\
& =\xi_{0}+\left(b \varepsilon_{1}-b / a \varepsilon_{0}\right)
\end{aligned}
$$

from which it follows that:

$$
P=\mathbf{E}\left(\xi-\widehat{\xi}_{0}\right)^{2}=\frac{b^{2}}{1+a^{2}}
$$

(e) Note that vectors $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\}$ and $\left\{\xi_{1}, \varepsilon_{2}, \ldots, \varepsilon_{2}\right\}$ are related by one-to-one linear transformation. Then with probability one

$$
\widehat{\mathbf{E}}\left(\xi_{0} \mid \xi_{1}^{n}\right)=\widehat{\mathbf{E}}\left(\xi_{0} \mid \xi_{1}, \varepsilon_{2}^{n}\right)=\widehat{\mathbf{E}}\left(\xi_{0} \mid \xi_{1}\right)
$$

where the last inequality follows from independence of ξ_{1} and ε_{k}, $k>1$.

For $n \geq 1$:

$$
\widehat{\xi}_{0}(n)=\frac{\mathbf{E} \xi_{0} \xi_{1}}{\mathbf{E} \xi_{1}^{2}} \xi_{1}=\frac{a b^{2} /\left(1-a^{2}\right)}{a^{2} b^{2} /\left(1-a^{2}\right)+b^{2}} \xi_{1}=a \xi_{1}
$$

and the error is:

$$
P=\mathbf{E}\left(\xi_{0}-a \xi_{1}\right)^{2}=\mathbf{E}\left(\xi_{0}\left(1-a^{2}\right)-a b \varepsilon_{1}\right)^{2}=b^{2}
$$

(f) Identical to (e)

Problem 2

(a) Introduce:

$$
X_{n}=\left[\begin{array}{c}
I\left(\theta_{n}=a_{1}\right) \\
I\left(\theta_{n}=a_{2}\right) \\
\vdots \\
I\left(\theta_{n}=a_{d}\right)
\end{array}\right], \quad J=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{d}
\end{array}\right]
$$

Clearly $\theta_{n}=J^{\top} X_{n}$ and $Y_{n}=J^{\top} X_{n}+\gamma J^{\top} X_{n-1}+\xi_{n}$. Let $\left(X_{n}^{\prime}, Y_{n}^{\prime}\right)$ be generated by a recursion:

$$
\begin{aligned}
X_{n}^{\prime} & =\Lambda^{\top} X_{n-1}^{\prime}+\varepsilon_{n} \\
Y_{n}^{\prime} & =J^{\top} X_{n}^{\prime}+\gamma J^{\top} X_{n-1}^{\prime}+\xi_{n}
\end{aligned}
$$

where ε_{n} is a sequence of independent Gaussian vector r.v. in \mathbb{R}^{d}, such that:

$$
\mathbf{E} \varepsilon_{n}=0, \quad \mathbf{E} \varepsilon_{n} \varepsilon_{n}^{\top}=\operatorname{diag}\left(p_{n}\right)-\Lambda^{\top} \operatorname{diag}\left(p_{n-1}\right) \Lambda:=D_{n}
$$

and

$$
p_{n}=\Lambda^{\top} p_{n-1}, \quad \text { subject to } p_{0}
$$

Note that X_{n} and X_{n}^{\prime} have the same correlation structure (see lecture note No. 9), so that the optimal linear estimate of X_{n} from Y_{1}^{n} is
obtained by applying the Kalman filter for the pair $\left(X_{n}^{\prime}, Y_{n}^{\prime}\right)$ to the observations Y_{n} :

$$
\begin{aligned}
\widehat{X}_{n} & =\Lambda^{\top} \widehat{X}_{n-1}+P_{n-1}^{x y}\left[P_{n-1}^{y}\right]^{-1}\left(Y_{n}-J^{\top} \Lambda^{\top} \widehat{X}_{n-1}-\gamma \Lambda^{\top} \widehat{X}_{n-1}\right) \\
P_{n} & =P_{n-1}^{x}-P_{n-1}^{x y}\left[P_{n-1}^{y}\right]^{-1}\left[P_{n-1}^{x y}\right]^{\top}
\end{aligned}
$$

where

$$
\begin{aligned}
P_{n-1}^{x} & =\Lambda^{\top} P_{n-1} \Lambda+D_{n} \\
P_{n-1}^{x y} & =\Lambda^{\top} P_{n-1}(\Lambda J+\gamma J)+D_{n} J \\
P_{n-1}^{y} & =\left(J^{\top} \Lambda^{\top}+\gamma J^{\top}\right) P_{n-1}(\Lambda J+\gamma J)+J^{\top} D_{n} J+\mathbf{E} \xi_{n}^{2}
\end{aligned}
$$

(b) Let:

$$
\pi_{n}(i)=\mathbf{P}\left\{\theta_{n}=a_{i} \mid Y_{1}^{n}\right\}=\mathbf{E}\left[I\left(\theta_{n}=a_{i}\right) \mid Y_{1}^{n}\right]:=G\left(Y_{n}, Y_{1}^{n-1}\right)
$$

and

$$
\pi_{n \mid n-1}(i)=\mathbf{P}\left\{\theta_{n}=a_{i} \mid Y_{1}^{n-1}\right\}=\mathbf{E}\left[I\left(\theta_{n}=a_{i}\right) \mid Y_{1}^{n-1}\right]
$$

Then for any bounded $h(x)$ and $H\left(x_{1}, \ldots, x_{n-1}\right)$

$$
\mathbf{E} h\left(Y_{n}\right) H\left(Y_{1}, \ldots, Y_{n-1}\right)\left[I\left(\theta_{n}=a_{i}\right)-G\left(Y_{n}, Y_{1}^{n-1}\right)\right]=0
$$

or equivalently:

$$
\mathbf{E}\left(h\left(Y_{n}\right)\left[I\left(\theta_{n}=a_{i}\right)-G\left(Y_{n}, Y_{1}^{n-1}\right)\right] \mid Y_{1}^{n-1}\right)=0
$$

Calculate each term separately:

$$
\begin{align*}
& \mathbf{E}\left[I\left(\theta_{n}=a_{i}\right) h\left(Y_{n}\right) \mid Y_{1}^{n-1}\right]=\mathbf{E}\left\{\mathbf{E}\left[I\left(\theta_{n}=a_{i}\right) h\left(Y_{n}\right) \mid Y_{1}^{n-1}, \theta_{n-1}\right] \mid Y_{1}^{n-1}\right\} \\
& =\mathbf{E}\left\{\mathbf{E}\left[I\left(\theta_{n}=a_{i}\right) h\left(a_{i}+\gamma \theta_{n-1}+\xi_{n}\right) \mid Y_{1}^{n-1}, \theta_{n-1}\right] \mid Y_{1}^{n-1}\right\}= \\
& =\sum_{j} \pi_{n-1}(j) \int_{\mathbb{R}} \lambda_{j i} h\left(a_{i}+\gamma a_{j}+x\right) f(x) d x= \\
& =\int_{\mathbb{R}} \sum_{j} \pi_{n-1}(j) \lambda_{j i} h(x) f\left(x-a_{i}-\gamma a_{j}\right) d x \tag{1}
\end{align*}
$$

and similarly:

$$
\begin{align*}
& \mathbf{E}\left(h\left(Y_{n}\right) G\left(Y_{n}, Y_{1}^{n-1}\right) \mid Y_{1}^{n-1}\right)=\mathbf{E E}\left\{\left(h\left(\theta_{n}+\gamma \theta_{n-1}+\xi_{n}\right) .\right.\right. \\
& \left.\left.\cdot G\left(\theta_{n}+\gamma \theta_{n-1}+\xi_{n}, Y_{1}^{n-1}\right) \mid \theta_{n-1}, Y_{1}^{n-1}\right)\right\}= \tag{2}\\
& \sum_{j} \pi_{n-1}(j) \sum_{i} \int_{\mathbb{R}} \lambda_{j i} h\left(a_{i}+\gamma a_{j}+x\right) G\left(a_{i}+\gamma a_{j}+x, Y_{1}^{n-1}\right) f(x) d x= \\
& =\int_{\mathbb{R}} \sum_{j} \pi_{n-1}(j) \sum_{i} \lambda_{j i} h(x) G\left(x, Y_{1}^{n-1}\right) f\left(x-a_{i}-\gamma a_{j}\right) d x
\end{align*}
$$

Since (1) and (2) should be equal for any $h(x)$, we deduce:

$$
\begin{aligned}
& \sum_{j} \pi_{n-1}(j) \lambda_{j i} f\left(x-a_{i}-\gamma a_{j}\right)= \\
& =\sum_{j} \pi_{n-1}(j) \sum_{i} \lambda_{j i} G\left(x, Y_{1}^{n-1}\right) f\left(x-a_{i}-\gamma a_{j}\right)
\end{aligned}
$$

or:

$$
\begin{equation*}
G\left(x, Y_{1}^{n-1}\right)=\frac{\sum_{j} \pi_{n-1}(j) \lambda_{j i} f\left(x-a_{i}-\gamma a_{j}\right)}{\sum_{i} \sum_{j} \pi_{n-1}(j) \lambda_{j i} f\left(x-a_{i}-\gamma a_{j}\right)} \tag{3}
\end{equation*}
$$

and the recursion is obtained by $\pi_{n}(j)=G\left(Y_{n}, Y_{1}^{n-1}\right)$.
(c) If $\gamma=0$, a conventional Wonham filter is obtained.
(d) Note that Y_{n} is a Gaussian r.v. given θ_{n} and θ_{n-1} with mean:

$$
\mathbf{E}\left(Y_{n} \mid \theta_{n}, \theta_{n-1}\right)=\theta_{n}+\gamma \theta_{n-1}
$$

and variance:
$\mathbf{E}\left(\left[Y_{n}-\mathbf{E}\left(Y_{n} \mid \theta_{n}, \theta_{n-1}\right)\right]^{2} \theta_{n}, \theta_{n-1}\right)=\theta_{n-1}^{2} \sigma_{\gamma}^{2}+\sigma_{\xi}^{2}:=\sigma^{2}\left(\theta_{n-1}\right)$
So (1) reads:

$$
\begin{aligned}
& \mathbf{E}\left[I\left(\theta_{n}=a_{i}\right) h\left(Y_{n}\right) \mid Y_{1}^{n-1}\right]=\cdots= \\
= & \sum_{j} \pi_{n-1}(j) \int_{\mathbb{R}} \lambda_{j i} h(x) \varphi\left(x, a_{i}+\gamma a_{j}, \sigma\left(a_{j}\right)\right) d x
\end{aligned}
$$

where

$$
\varphi(x, a, b)=\frac{1}{\sqrt{2 \pi b^{2}}} \exp \left\{-\frac{(x-a)^{2}}{2 b^{2}}\right\}
$$

Similarly modifying (2), we conclude that the optimal filter is given by (3), with $f\left(Y_{n}-a_{i}-\gamma a_{j}\right)$ replaced by $\varphi\left(Y_{n}, a_{i}+\gamma a_{j}, \sqrt{a_{j}^{2} \sigma_{\gamma}^{2}+\sigma_{\xi}^{2}}\right)$.

Problem 3

Let for brevity ${ }^{2} g(x)=|x| /(|x|+1)$.

[^1]etc.
(a) For any $\varepsilon>0$
$\mathbf{P}\left\{\left|\xi_{n}-\xi\right|>\varepsilon\right\}=\mathbf{P}\left\{g\left(\xi_{n}-\xi\right)>g(\varepsilon)\right\} \leq \frac{\mathbf{E} g\left(\xi_{n}-\xi\right)}{g(\varepsilon)} \rightarrow 0, \quad n \rightarrow \infty$
where the equality holds since $g(x)$ is one to one and Chebyshev inequality holds (non trivially) since $g(x)$ is bounded $\left(\mathbf{E} g\left(\xi_{n}-\xi\right)<\right.$ $\infty)$.
(b) By the way, note that since $g(x)$ is a continuous function (see exam 1999)
$\xi_{n} \xrightarrow{\mathbf{P}} \xi \Longrightarrow \xi_{n}-\xi \xrightarrow{\mathbf{P}} 0 \Longrightarrow g\left(\xi_{n}-\xi\right) \xrightarrow{\mathbf{P}} g(0)=0$
So that the sequence $\zeta_{n}:=g\left(\xi_{n}-\xi\right)$ converges to 0 in probability. Since $0 \leq \zeta_{n}<1$, we conclude (why?) that $\mathbf{E} \zeta_{n} \rightarrow 0$, which completes the proof.

A straight forward approach is also possible: note that $g(x)<1$, so for any $\varepsilon>0$

$$
\begin{aligned}
& d\left(\xi_{n}, \xi\right)=\mathbf{E} g\left(\xi_{n}-\xi\right)= \\
& =\mathbf{E} g\left(\xi_{n}-\xi\right) I\left(\left|\xi_{n}-\xi\right|>\varepsilon\right)+\mathbf{E} g\left(\xi_{n}-\xi\right) I\left(\left|\xi_{n}-\xi\right| \leq \varepsilon\right) \leq \\
& \leq 1 \cdot \mathbf{P}\left\{\left|\xi_{n}-\xi\right|>\varepsilon\right\}+g(\varepsilon) \rightarrow g(\varepsilon), \quad n \rightarrow \infty
\end{aligned}
$$

Since $g(\varepsilon)$ is a strictly decreasing function of ε and ε can be chosen arbitrary small we conclude:

$$
d\left(\xi_{n}, \xi\right) \rightarrow 0, \quad n \rightarrow \infty
$$

The proof of (a) and (b) can be also easily deduced from
Lemma 1.1. For any fixed $\varepsilon>0$:

$$
\begin{equation*}
\mathbf{E} \frac{|X|}{1+|X|}-\frac{\varepsilon}{1+\varepsilon} \leq \mathbf{P}(|X| \geq \varepsilon) \leq \frac{1+\varepsilon}{\varepsilon} \mathbf{E} \frac{|X|}{1+|X|} \tag{4}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
& \mathbf{E} \frac{|X|}{1+|X|}=\mathbf{E} \frac{|X|}{1+|X|} I(|X| \geq \varepsilon)+\mathbf{E} \frac{|X|}{1+|X|} I(|X|<\varepsilon) \geq \\
& \geq \mathbf{E} \frac{\varepsilon}{1+\varepsilon} I(|X| \geq \varepsilon)=\frac{\varepsilon}{1+\varepsilon} \mathbf{P}(|X| \geq \varepsilon)
\end{aligned}
$$

which implies the upper bound. The lower bound is derived similarly

$$
\begin{aligned}
& \mathbf{E} \frac{|X|}{1+|X|}=\mathbf{E} \frac{|X|}{1+|X|} I(|X| \geq \varepsilon)+\mathbf{E} \frac{|X|}{1+|X|} I(|X|<\varepsilon) \leq \\
& \leq \mathbf{E} I(|X| \geq \varepsilon)+\frac{\varepsilon}{1+\varepsilon}
\end{aligned}
$$

(c)
(I) For example $d^{\prime}\left(\xi_{n}, \xi\right)=\mathbf{E}\left|\xi_{n}-\xi\right|$, i.e. convergence in prob. does not imply convergence in the mean (take e.g. $\xi_{n}=\xi / n$ with ξ a r.v. with $\mathbf{E} \xi=\infty$)
(II) For another example, set $d^{\prime \prime}\left(\xi_{n}, \xi\right)=\mathbf{E} I\left(\xi_{n} \neq \xi\right)=\mathbf{P}\left\{\xi_{n} \neq \xi\right\}$. It is indeed a metric (with prob. 1): for any two r.v. η and ξ
(i) $\xi \equiv \eta \Longrightarrow d^{\prime \prime}(\eta, \xi)=0$ and
$d^{\prime \prime}(\xi, \eta)=0 \Longrightarrow \mathbf{P}\{\xi \neq \eta\}=0 \Longrightarrow \xi=\eta$ with prob. 1
(ii) $d^{\prime \prime}(\xi, \eta)>0$
(iii) For any numbers a, b, c

$$
I(a \neq b) \leq I(a \neq c)+I(b \neq c)
$$

(which is verified by trying all the combinations $a=b \neq c$, $a \neq b \neq c$, etc.) Using this inequality with r.v. and taking expectation from both sides leads to the triangle inequality.
Now take some ξ_{n}, so that $\xi_{n} \xrightarrow{\mathbf{P}} 0$ and $\mathbf{P}\left\{\xi_{n} \neq 0\right\}=1$, clearly $d^{\prime \prime}\left(\xi_{n}, \xi\right) \nrightarrow 0$.
(d) The idea is to define a metric, convergence in which will be equivalent to convergence in distribution. Once such metric is chosen, one can pick a sequence which converges in distribution and does not converge in probability. Construction of such metric is possible ${ }^{3}$, but non trivial.
(e) Since $\xi_{n} \xrightarrow{d} C$, by definition for any bounded and continuous function $f(x)$:

$$
\mathbf{E} f\left(\xi_{n}\right) \rightarrow \mathbf{E} f(C)
$$

Take special function $f^{\prime}(x)=|x-C| /(|x-C|+1)$, then:

$$
\mathbf{E} f^{\prime}\left(\xi_{n}\right) \rightarrow \mathbf{E} f^{\prime}(C) \equiv 0
$$

which is nothing but

$$
d\left(\xi_{n}, C\right) \rightarrow 0 \Longrightarrow \xi_{n} \xrightarrow{\mathbf{P}} C
$$

[^2]
[^0]: ${ }^{1}$ since ξ_{n} is Gaussian, the orthogonal projection is replaced by conditional expectation

[^1]: ${ }^{2}$ By the way, $d(X, Y)=\mathbf{E} g(X-Y)$ is indeed a metric. All the properties are obvious, except maybe for the triangle inequality. This is proved as follows: we should verify that for any z :

 $$
 \frac{|x-y|}{|x-y|+1} \leq \frac{|x-z|}{|x-z|+1}+\frac{|z-y|}{|z-y|+1}
 $$

 To prove this, not that for fixed x and y the right hand side expression obeys a global minimum, which equals to the left hand side and attained at $z=x$ and $z=y$. E.g. let $z>y>x$, then:

 $$
 \frac{|x-z|}{|x-z|+1}+\frac{|z-y|}{|z-y|+1}=\frac{z-x}{z-x+1}+\frac{z-y}{z-y+1} \geq \frac{z-x}{z-x+1} \geq \frac{y-x}{y-x+1}
 $$

[^2]: $3_{\text {refer }}$ 'Probability', Second edition, A.N. Shiryaev - look for weak convergence and Prokhorov-Levy metric

