
RANDOM PROCESSES. THE SOLUTION TO FINAL TEST.

April, 2000

Problem 1.

(a) The optimal linear estimate ξ̃0 =
∑

k 6=0 akξk satisfies the orthogo-
nality principle:

E
(
ξ0 −

∑
k 6=0

akξk

)
ξ` = 0, ` 6= 0

Note that if we set a0 ≡ 0 and choose some constant γ (which does
not necessarily equals 0), the orthogonality eq. becomes:

E
(
ξ0 −

∞∑
k=−∞

akξk

)
ξ` = γδ`, for all `

Let R(m) = Eξnξn+m, then

R(`)−
∞∑

k=−∞
akR(k + `) = γδ`, for all `

Now calculate the Fourier transform of both sides:

f(λ)−A∗(λ)f(λ) = γ

Clearly A(λ) is real and since f(λ) > 0:

A(λ) = 1− γ

f(λ)

The constant γ is determined by the constrain a0 ≡ 0:

a0 =
1
2π

∫
[−π,π]

A(λ)dλ = 1− γ
1
2π

∫
[−π,π]

1/f(λ)dλ ≡ 0

which implies:

γ =
2π∫

[−π,π] dλ/f(λ)

Now the filter is completely specified.
1
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(b)

P̃ = E(ξ0 −
∞∑

k=−∞
akξk)2 = R(0)− 2

∑
k

akR(k) +
∑

k

∑
m

akamR(k −m)

=
1
2π

∫
[−π,π]

(
f(λ)− 2A(λ)f(λ) + A(λ)2f(λ)

)
dλ =

=
1
2π

∫
[−π,π]

f(λ) (1−A(λ))2 dλ =
1
2π

∫
[−π,π]

γ2

f(λ)
dλ = γ

(c) For white noise (i.e. f(λ) ≡ σ2), we expect that ξ̃0 ≡ 0. Indeed, in
this case A(λ) ≡ 0.

(d) Of course, the solution can be obtained as a special case of (a).
Alternatively, if one notes that {ξk, k 6= 0} and {ξ1, ξ−1, εk, k 6=

0, 1} are related by a one-to-one linear transformation, the solution
can be simplified, since then 1 with prob. one

E(ξ0|ξk, k 6= 0) = E(ξ0|ξ1, ξ−1, εk, k 6= 0, 1} = E(ξ0|ξ1, ξ−1)

where the last equality follows from independence of {εk, k 6= 0, 1}
and {ξ−1, ξ0, ξ1}. Now the problem is reduced to estimating a com-
ponent of a Gaussian vector:

ξ1 = aξ0 + bε1

ξ−1 = ξ0/a− b/aε0

Since the process is stationary

Eξn = 0, Eξ2
n =

b2

1− a2

and

Eξ0ξ1 = Eξ0(aξ0 + bε1) = ab2/(1− a2)
Eξ0ξ−1 = Eξ−1(aξ−1 + bε0 = ab2/(1− a2)
Eξ−1ξ1 = E(aξ0 + bε1)(ξ0/a− b/aε0) = Eξ2

0 − bEξ0ε0 =
= b2/(1− a2)− b2 = b2a2/(1− a2)

So that:

E(ξ0|ξ1, ξ−1) =
(
Eξ0ξ1 Eξ0ξ−1

) (
Eξ1ξ1 Eξ0ξ1

Eξ0ξ1 Eξ1ξ1

)−1 (
ξ1

ξ−1

)
=

=
ab2

1− a2

(
1 1

) (
b2

1− a2

)−1 (
1 a2

a2 1

)−1 (
ξ1

ξ−1

)
=

=
a

1− a4

(
1 1

) (
1 −a2

−a2 1

)−1 (
ξ1

ξ−1

)
=

=
a

1 + a2
[ξ1 + ξ−1]

1since ξn is Gaussian, the orthogonal projection is replaced by conditional expectation
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To calculate the corresponding error note that:
a

1 + a2
[ξ1 + ξ−1] =

a

1 + a2

(
(a + 1/a)ξ0 + bε1 − b/aε0

)
=

= ξ0 +
(
bε1 − b/aε0

)
from which it follows that:

P = E(ξ − ξ̂0)2 =
b2

1 + a2

(e) Note that vectors {ξ1, ξ2, ..., ξn} and {ξ1, ε2, ..., ε2} are related by
one-to-one linear transformation. Then with probability one

Ê(ξ0|ξn
1 ) = Ê(ξ0|ξ1, ε

n
2 ) = Ê(ξ0|ξ1)

where the last inequality follows from independence of ξ1 and εk,
k > 1.

For n ≥ 1:

ξ̂0(n) =
Eξ0ξ1

Eξ2
1

ξ1 =
ab2/(1− a2)

a2b2/(1− a2) + b2
ξ1 = aξ1

and the error is:

P = E(ξ0 − aξ1)2 = E
(
ξ0(1− a2)− abε1

)2 = b2

(f) Identical to (e)

Problem 2

(a) Introduce:

Xn =


I(θn = a1)
I(θn = a2)

...
I(θn = ad)

 , J =


a1

a2
...

ad


Clearly θn = J>Xn and Yn = J>Xn + γJ>Xn−1 + ξn. Let (X ′

n, Y ′
n)

be generated by a recursion:

X ′
n = Λ>X ′

n−1 + εn

Y ′
n = J>X ′

n + γJ>X ′
n−1 + ξn

where εn is a sequence of independent Gaussian vector r.v. in Rd,
such that:

Eεn = 0, Eεnε>n = diag (pn)− Λ>diag (pn−1) Λ := Dn

and
pn = Λ>pn−1, subject to p0

Note that Xn and X ′
n have the same correlation structure (see lecture

note No. 9), so that the optimal linear estimate of Xn from Y n
1 is
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obtained by applying the Kalman filter for the pair (X ′
n, Y ′

n) to the
observations Yn:

X̂n = Λ>X̂n−1 + P xy
n−1[P

y
n−1]

−1(Yn − J>Λ>X̂n−1 − γΛ>X̂n−1)

Pn = P x
n−1 − P xy

n−1[P
y
n−1]

−1[P xy
n−1]

>

where

P x
n−1 = Λ>Pn−1Λ + Dn

P xy
n−1 = Λ>Pn−1(ΛJ + γJ) + DnJ

P y
n−1 = (J>Λ> + γJ>)Pn−1(ΛJ + γJ) + J>DnJ + Eξ2

n

(b) Let:

πn(i) = P{θn = ai|Y n
1 } = E[I(θn = ai)|Y n

1 ] := G(Yn, Y n−1
1 )

and

πn|n−1(i) = P{θn = ai|Y n−1
1 } = E[I(θn = ai)|Y n−1

1 ]

Then for any bounded h(x) and H(x1, ..., xn−1)

Eh(Yn)H(Y1, ..., Yn−1)
[
I(θn = ai)−G(Yn, Y n−1

1 )
]

= 0

or equivalently:

E
(
h(Yn)

[
I(θn = ai)−G(Yn, Y n−1

1 )
]
|Y n−1

1

)
= 0

Calculate each term separately:

E
[
I(θn = ai)h(Yn)|Y n−1

1

]
= E

{
E

[
I(θn = ai)h(Yn)|Y n−1

1 , θn−1

]∣∣Y n−1
1

}
= E

{
E

[
I(θn = ai)h(ai + γθn−1 + ξn)|Y n−1

1 , θn−1

]∣∣Y n−1
1

}
=

=
∑

j

πn−1(j)
∫

R
λjih(ai + γaj + x)f(x)dx =

=
∫

R

∑
j

πn−1(j)λjih(x)f(x− ai − γaj)dx (1)

and similarly:

E
(
h(Yn)G(Yn, Y n−1

1 )|Y n−1
1

)
= EE

{(
h(θn + γθn−1 + ξn)·

·G(θn + γθn−1 + ξn, Y n−1
1 )|θn−1, Y

n−1
1

)}
= (2)∑

j

πn−1(j)
∑

i

∫
R

λjih(ai + γaj + x)G(ai + γaj + x, Y n−1
1 )f(x)dx =

=
∫

R

∑
j

πn−1(j)
∑

i

λjih(x)G(x, Y n−1
1 )f(x− ai − γaj)dx



5

Since (1) and (2) should be equal for any h(x), we deduce:∑
j

πn−1(j)λjif(x− ai − γaj) =

=
∑

j

πn−1(j)
∑

i

λjiG(x, Y n−1
1 )f(x− ai − γaj)

or:

G(x, Y n−1
1 ) =

∑
j πn−1(j)λjif(x− ai − γaj)∑

i

∑
j πn−1(j)λjif(x− ai − γaj)

(3)

and the recursion is obtained by πn(j) = G(Yn, Y n−1
1 ).

(c) If γ = 0, a conventional Wonham filter is obtained.
(d) Note that Yn is a Gaussian r.v. given θn and θn−1 with mean:

E(Yn|θn, θn−1) = θn + γθn−1

and variance:

E
([

Yn −E(Yn|θn, θn−1)
]2

θn, θn−1

)
= θ2

n−1σ
2
γ + σ2

ξ := σ2(θn−1)

So (1) reads:

E
[
I(θn = ai)h(Yn)|Y n−1

1

]
= · · · =

=
∑

j

πn−1(j)
∫

R
λjih(x)ϕ (x, ai + γaj , σ(aj)) dx

where

ϕ(x, a, b) =
1√
2πb2

exp
{
−(x− a)2

2b2

}
Similarly modifying (2), we conclude that the optimal filter is given
by (3), with f(Yn−ai−γaj) replaced by ϕ

(
Yn, ai+γaj ,

√
a2

jσ
2
γ + σ2

ξ

)
.

Problem 3

Let for brevity2g(x) = |x|/(|x|+ 1).

2By the way, d(X, Y ) = Eg(X − Y ) is indeed a metric. All the properties are obvious,
except maybe for the triangle inequality. This is proved as follows: we should verify that
for any z:

|x− y|
|x− y|+ 1

≤ |x− z|
|x− z|+ 1

+
|z − y|

|z − y|+ 1

To prove this, not that for fixed x and y the right hand side expression obeys a global
minimum, which equals to the left hand side and attained at z = x and z = y. E.g. let
z > y > x, then:

|x− z|
|x− z|+ 1

+
|z − y|

|z − y|+ 1
=

z − x

z − x + 1
+

z − y

z − y + 1
≥ z − x

z − x + 1
≥ y − x

y − x + 1

etc.



6

(a) For any ε > 0

P{|ξn − ξ| > ε} = P {g(ξn − ξ) > g(ε)} ≤ Eg(ξn − ξ)
g(ε)

→ 0, n →∞

where the equality holds since g(x) is one to one and Chebyshev
inequality holds (non trivially) since g(x) is bounded (Eg(ξn − ξ) <
∞).

(b) By the way, note that since g(x) is a continuous function (see exam
1999)

ξn
P−→ ξ =⇒ ξn − ξ

P−→ 0 =⇒ g(ξn − ξ) P−→ g(0) = 0

So that the sequence ζn := g(ξn − ξ) converges to 0 in probabil-
ity. Since 0 ≤ ζn < 1, we conclude (why?) that Eζn → 0, which
completes the proof.

A straight forward approach is also possible: note that g(x) < 1,
so for any ε > 0

d(ξn, ξ) = Eg(ξn − ξ) =
= Eg(ξn − ξ)I(|ξn − ξ| > ε) + Eg(ξn − ξ)I(|ξn − ξ| ≤ ε) ≤
≤ 1 ·P{|ξn − ξ| > ε}+ g(ε) → g(ε), n →∞

Since g(ε) is a strictly decreasing function of ε and ε can be chosen
arbitrary small we conclude:

d(ξn, ξ) → 0, n →∞
The proof of (a) and (b) can be also easily deduced from

Lemma 1.1. For any fixed ε > 0:

E
|X|

1 + |X|
− ε

1 + ε
≤ P

(
|X| ≥ ε

)
≤ 1 + ε

ε
E

|X|
1 + |X|

(4)

Proof.

E
|X|

1 + |X|
= E

|X|
1 + |X|

I(|X| ≥ ε) + E
|X|

1 + |X|
I(|X| < ε) ≥

≥ E
ε

1 + ε
I(|X| ≥ ε) =

ε

1 + ε
P

(
|X| ≥ ε

)
which implies the upper bound. The lower bound is derived similarly

E
|X|

1 + |X|
= E

|X|
1 + |X|

I(|X| ≥ ε) + E
|X|

1 + |X|
I(|X| < ε) ≤

≤ EI(|X| ≥ ε) +
ε

1 + ε

�

(c)
(I) For example d′(ξn, ξ) = E|ξn−ξ|, i.e. convergence in prob. does

not imply convergence in the mean (take e.g. ξn = ξ/n with ξ
a r.v. with Eξ = ∞)
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(II) For another example, set d′′(ξn, ξ) = EI(ξn 6= ξ) = P{ξn 6= ξ}.
It is indeed a metric (with prob. 1): for any two r.v. η and ξ

(i) ξ ≡ η =⇒ d′′(η, ξ) = 0 and

d′′(ξ, η) = 0 =⇒ P{ξ 6= η} = 0 =⇒ ξ = η with prob. 1

(ii) d′′(ξ, η) > 0
(iii) For any numbers a, b, c

I(a 6= b) ≤ I(a 6= c) + I(b 6= c)

(which is verified by trying all the combinations a = b 6= c,
a 6= b 6= c, etc.) Using this inequality with r.v. and
taking expectation from both sides leads to the triangle
inequality.

Now take some ξn, so that ξn
P−→ 0 and P{ξn 6= 0} = 1, clearly

d′′(ξn, ξ) 6→ 0.
(d) The idea is to define a metric, convergence in which will be equivalent

to convergence in distribution. Once such metric is chosen, one
can pick a sequence which converges in distribution and does not
converge in probability. Construction of such metric is possible3,
but non trivial.

(e) Since ξn
d−→ C, by definition for any bounded and continuous func-

tion f(x):
Ef(ξn) → Ef(C)

Take special function f ′(x) = |x− C|/(|x− C|+ 1), then:

Ef ′(ξn) → Ef ′(C) ≡ 0

which is nothing but

d(ξn, C) → 0 =⇒ ξn
P−→ C

3refer ’Probability’, Second edition, A.N. Shiryaev - look for weak convergence and
Prokhorov-Levy metric


