RANDOM PROCESSES. THE FINAL TEST SOLUTION. June, 26th, 2000

Problem 1.

(a) $\mathbf{E}[\mathbf{E}(X \mid Y) \mid X] \stackrel{?}{=} X$. Wrong. E.g. if X and Y are independent, then $\mathbf{E}(X \mid Y)=\mathbf{E} X$ and $\mathbf{E}[\mathbf{E}(X \mid Y) \mid X]=\mathbf{E} X \neq X$
(b) $\mathbf{E}(X \mid Y) \equiv \mathbf{E} X \quad \xlongequal{?} \quad X$ and Y indepedent. Wrong. E.g. let ξ be a r.v. with zero mean and $Y \in\{0,1\}$ with prob. $\{1-p, p\}$. ξ and Y are independent. Set $X=\xi Y$ Consider the pair (X, Y). Clearly:

$$
\mathbf{E}(X \mid Y)=\mathbf{E}(\xi Y \mid Y)=Y \mathbf{E} \xi=0 \equiv \mathbf{E} X
$$

Let us show that X and Y depend:

$$
\mathbf{E}|X| Y=\mathbf{E}|\xi Y| Y=\mathbf{E}|\xi| Y^{2}=\mathbf{E}|\xi| Y=p \mathbf{E}|\xi|
$$

on the other hand:

$$
\mathbf{E}|X| \cdot \mathbf{E} Y=\mathbf{E}|\xi Y| \cdot p=p^{2} \mathbf{E}|\xi|
$$

That is:

$$
\mathbf{E}|X| Y \neq \mathbf{E}|X| \mathbf{E} Y
$$

(c) $\mathbf{E}(X \mid Y) \stackrel{?}{=} \mathbf{E}[X \mid \mathbf{E}(X \mid Y)]$. Correct. By definition

$$
\mathbf{E}[X \mid \mathbf{E}(X \mid Y)]=\phi(\mathbf{E}(X \mid Y))
$$

such that:

$$
\begin{equation*}
\mathbf{E}[X-\phi(\mathbf{E}(X \mid Y))] g(\mathbf{E}(X \mid Y))=0 \tag{1}
\end{equation*}
$$

for all bounded g. Take $\phi(x)=x$ and note that $g(\mathbf{E}(X \mid Y))$ is actually a function of Y, so that (1) holds. Due to uniqueness of cond. expectation with prob. 1 , we conclude that the statement is correct.
(d) $\{X, Y, Z\}$ is Gaussian, such that $\mathbf{E} X=0$ and Y and Z are independent, then

$$
\mathbf{E}(X \mid Y, Z)=\mathbf{E}(X \mid Y)+\mathbf{E}(X \mid Z)
$$

This is correct and verified e.g. by explicit calculation (see also lecture notes)

$$
\begin{align*}
& \mathbf{E}(X \mid Y, Z)=\operatorname{Cov}(X, Y) / \operatorname{Cov}(Y, Y)(Y-\mathbf{E} Y)+ \\
& +\operatorname{Cov}(X, Z) / \operatorname{Cov}(Z, Z)(Z-\mathbf{E} Z)=\mathbf{E}(X \mid Y)+\mathbf{E}(X \mid Z) \tag{2}
\end{align*}
$$

(e) If $\{X, Y, Z\}$ is non Gaussian, then (2) is generally false. Assume $\mathbf{E} X=0$ and let $X=Z Y$, so that Z and Y are independent and with zero mean. Then $\mathbf{E}(X \mid Y, Z)=Z Y \neq \mathbf{E}(X \mid Y)+\mathbf{E}(X \mid Z)=0$
(f) (I) If $\mathbf{E}(X \mid Y)=c_{0}+c_{1} Y$, then $\mathbf{E}(X \mid Y)=\widehat{\mathbf{E}}(X \mid Y)$ with prob. 1 . Let us show that

$$
\begin{aligned}
& \mathbf{E}(\mathbf{E}(X \mid Y)-\widehat{\mathbf{E}}(X \mid Y))^{2}=0 \\
& \mathbf{E}(\mathbf{E}(X \mid Y)-\widehat{\mathbf{E}}(X \mid Y))^{2}=\mathbf{E}(\mathbf{E}(X \mid Y)-X+X-\widehat{\mathbf{E}}(X \mid Y))^{2}= \\
& =\mathbf{E}(\mathbf{E}(X \mid Y)-X)^{2}-2 \mathbf{E}(\mathbf{E}(X \mid Y)-X)(X-\widehat{\mathbf{E}}(X \mid Y))+ \\
& +\mathbf{E}(X-\widehat{\mathbf{E}}(X \mid Y))^{2}
\end{aligned}
$$

But (why?)
$\mathbf{E}(\mathbf{E}(X \mid Y)-X)(X-\widehat{\mathbf{E}}(X \mid Y))=\mathbf{E}(\mathbf{E}(X \mid Y)-X)(X-\mathbf{E}(X \mid Y))$
so
$\mathbf{E}(\mathbf{E}(X \mid Y)-\widehat{\mathbf{E}}(X \mid Y))^{2}=\mathbf{E}(X-\widehat{\mathbf{E}}(X \mid Y))^{2}-\mathbf{E}(X-\mathbf{E}(X \mid Y))^{2}$
Clearly $\mathbf{E}(X-\widehat{\mathbf{E}}(X \mid Y))^{2} \geq \mathbf{E}(X-\mathbf{E}(X \mid Y))^{2}$.
But since $\mathbf{E}(X \mid Y)$ is linear in Y, we have $\mathbf{E}(X-\widehat{\mathbf{E}}(X \mid Y))^{2} \leq$
$\mathbf{E}(X-\mathbf{E}(X \mid Y))^{2}$ (recall that orthogonal projection is the best linear estimate). This implies (3).
(II) Since $\mathbf{E} X^{2}<\infty$ and $\mathbf{E} Y^{2}<\infty$ for any linear function $\ell(x)$

$$
\mathbf{E}(X-\mathbf{E}(X \mid Y)) \ell(Y)=0
$$

Since $\mathbf{E}(X \mid Y)=c_{0}+c_{1} Y$ (i.e. linear (affine) in Y) and by uniqueness of the orthogonal projection we conclude $\mathbf{E}(X \mid Y)=$ $\widehat{\mathbf{E}}(X \mid Y)$.
(g) (I) E.g. let ξ be a r.v. with $\mathbf{E} \xi=1$ and Y be a r.v. with $\mathbf{E} Y=0$, $\mathbf{E} Y^{2}<\infty . \xi$ and Y are independent. Define $X=\xi Y$. Then

$$
\mathbf{E}(X \mid Y)=\mathbf{E}(\xi Y \mid Y)=Y \mathbf{E} \xi=Y
$$

Note that $\mathbf{E} X=0$ and
$\widehat{\mathbf{E}}(X \mid Y)=\frac{\operatorname{Cov}(X, Y)}{\operatorname{Cov}(Y, Y)}(Y-\mathbf{E} Y)=\frac{\mathbf{E} X Y}{\mathbf{E} Y^{2}} Y=\frac{\mathbf{E} \xi Y^{2}}{\mathbf{E} Y^{2}} Y=Y \cdot \mathbf{E} \xi=Y$
(II) Simply pick any independent $X=c_{0}+c_{1} Y$. Or X and Y independent (in this case $c_{0}=\mathbf{E} X$ and $c_{1}=0$.)
(h) $X>Y \xlongequal{?} \widehat{\mathbf{E}}(X \mid Z)>\widehat{\mathbf{E}}(Y \mid Z)$. Wrong. A simple example is $Y \equiv C<0$ and $X=|\xi|$, where ξ is e.g. Gaussian. Clearly $X>Y$. Moreover $\widehat{\mathbf{E}}(Y \mid Z) \equiv C$ and $\widehat{\mathbf{E}}(X \mid Z)=\alpha+\beta Z$, where α and β are some constants $(\alpha=\mathbf{E}|\xi|$, etc.). Clearly Z can be chosen so that $\mathbf{P}\{\alpha+\beta Z<C\}>0$ (e.g. choose Z Gaussian), which means that $\mathbf{P}\{\widehat{\mathbf{E}}(X \mid Z)<\widehat{\mathbf{E}}(Y \mid Z)\}>0$.

In several particular cases, the property holds, e.g. X and Y are orthogonal to Z :

$$
\widehat{\mathbf{E}}(X \mid Z)=\mathbf{E} X, \quad \widehat{\mathbf{E}}(Y \mid Z)=\mathbf{E} Y
$$

But

$$
X>Y \Longrightarrow \mathbf{E} X>\mathbf{E} Y
$$

Problem 2.

(a) Given θ, the process $\left(X_{n}, Y_{n}\right)_{n \geq 1}$ is Gaussian.

Introduce Gaussian processes $\left(X_{n}^{(i)}, Y_{n}^{(i)}\right)_{n \geq 0}, i=1, \ldots, d$, generated by:

$$
\begin{aligned}
X_{n}^{(i)} & =a(i) X_{n-1}+b(i) \varepsilon_{n}, \quad X_{0}^{(i)}=X_{0} \\
Y_{n}^{(i)} & =X_{n-1}^{(i)}+\sigma \xi_{n}, \quad n \geq 1
\end{aligned}
$$

and let $\phi_{n}^{i}\left(\lambda_{0}^{n}, \mu_{1}^{n}\right)$ denote its characteristic function:

$$
\phi_{n}^{i}\left(\lambda_{0}^{n}, \mu_{1}^{n}\right)=\mathbf{E} \exp \left\{i \sum_{\ell=0}^{n} \lambda_{\ell} X_{\ell}^{(i)}+i \sum_{\ell=1}^{n} \mu_{\ell} Y_{\ell}^{(i)}\right\}
$$

where λ_{i} and μ_{i} are real numbers.
Let $\phi_{n}\left(\lambda_{0}^{n}, \mu_{1}^{n} ; \theta\right)$ denote the conditional characteristic function of (X_{n}, Y_{n}), i.e.

$$
\phi_{n}\left(\lambda_{0}^{n}, \mu_{1}^{n} ; \theta\right)=\mathbf{E} \exp \left\{i \sum_{\ell=0}^{n} \lambda_{\ell} X_{\ell}+i \sum_{\ell=1}^{n} \mu_{\ell} Y_{\ell} \mid \theta\right\}
$$

Clearly

$$
\phi_{n}\left(\lambda_{0}^{n}, \mu_{1}^{n} ; \theta\right)=\sum_{i=1}^{d} \phi_{n}^{i}\left(\lambda_{0}^{n}, \mu_{1}^{n}\right) I(\theta=i)
$$

so that $\phi_{n}\left(\lambda_{0}^{n}, \mu_{1}^{n} ; \theta\right)$ has a form of a Gaussian characteristic function (depending of θ, of course)
(b) Set $m_{n}:=\mathbf{E}\left(X_{n} \mid \theta\right)$, then:

$$
\begin{aligned}
m_{n} & =\mathbf{E}\left(X_{n} \mid \theta\right)=\mathbf{E}\left(a(\theta) X_{n-1} \mid \theta\right)+\mathbf{E}\left(b(\theta) \varepsilon_{n} \mid \theta\right)= \\
& =a(\theta) \mathbf{E}\left(X_{n-1} \mid \theta\right)=a(\theta) m_{n-1}
\end{aligned}
$$

Similarly:

$$
V_{n}=a^{2}(\theta) V_{n-1}+b^{2}(\theta)
$$

(c) $\left(X_{n}, Y_{n}\right)_{n \geq 1}$ is not a Gaussian process, e.g. the distribution of X_{1} is non Gaussian, in fact it is a Gaussian mixture:

$$
f(x)=\frac{d \mathbf{P}\left\{X_{1} \leq x\right\}}{d x}=\sum_{i} p_{i} \varphi_{i}(x)
$$

where $\varphi_{i}(x)$ is the density of a Gaussian r.v. with zero mean and variance $a^{2}(i)+b^{2}(i)$.
(d) Note that $\left(X_{n}, Y_{n}\right)_{n \geq 1}$ is Gaussian, conditioned on $\{\theta=i\}$. So the optimal estimate $\widehat{X}_{n}(i)=\mathbf{E}\left(X_{n} \mid Y_{1}^{n}, \theta=i\right)$ is given by the Kalman
filter $(n \geq 1)$:

$$
\begin{align*}
\widehat{X}_{n}(i) & =a(i) \widehat{X}_{n-1}(i)+\frac{a P_{n-1}(i)}{P_{n-1}(i)+\sigma^{2}}\left(Y_{n}-\widehat{X}_{n-1}(i)\right) \tag{4}\\
P_{n}(i) & =a^{2}(i) P_{n-1}(i)+b^{2}(i)-\frac{a^{2}(i) P_{n-1}^{2}(i)}{P_{n-1}(i)+\sigma^{2}}
\end{align*}
$$

subject to $\widehat{X}_{0}(i)=0$ and $P_{0}(i)=1, i \in S$.
I.e.

$$
\widehat{X}_{n}(\theta)=\sum_{i=1}^{d} \widehat{X}_{n}(i) I(\theta=i)
$$

(e) Clearly:

$$
\widehat{X}_{n}=\mathbf{E}\left(X_{n} \mid Y_{1}^{n}\right)=\sum_{j} \mathbf{P}\left\{\theta=j \mid Y_{1}^{n}\right\} \mathbf{E}\left(X_{n} \mid Y_{1}^{n}, \theta=j\right)=\sum_{j} \pi_{n}(j) \widehat{X}_{n}(j)
$$

i.e. the optimal on-line filter in this case can be constructed by a combination of a bank of d Kalman filters and a Wonham filter (as we will see shortly)
(f) The conditional probability $\pi_{n}(i)$ is found as a function $G\left(x ; Y_{1}^{n-1}\right)$, such that:

$$
\begin{equation*}
\mathbf{E}\left[I(\theta=i) h\left(Y_{n}\right) \mid Y_{1}^{n-1}\right]=\mathbf{E}\left[G\left(Y_{n} ; Y_{1}^{n-1}\right) h\left(Y_{n}\right) \mid Y_{1}^{n-1}\right] \tag{5}
\end{equation*}
$$

for any bounded h.
The left hand side:

$$
\begin{aligned}
& \mathbf{E}\left(I(\theta=i)\left[h\left(Y_{n}\right) \mid \theta=i, Y_{1}^{n-1}\right] \mid Y_{1}^{n-1}\right)= \\
& =\mathbf{E}\left(I(\theta=i) \int h(x) \varphi_{i}(x) d x \mid Y_{1}^{n-1}\right)= \\
& =\pi_{n-1}(i) \int h(x) \varphi_{i}(x) d x
\end{aligned}
$$

where $\varphi_{i}(x)$ is a Gaussian density with mean $\widehat{X}_{n-1}(i)$ and variance $P_{n-1}(i)+\sigma^{2}$, i.e.

$$
\varphi_{i}(x)=\frac{1}{\sqrt{2 \pi\left(P_{n-1}(i)+\sigma^{2}\right)}} \exp \left\{-\frac{\left(x-\widehat{X}_{n-1}(i)\right)^{2}}{2\left(P_{n-1}(i)+\sigma^{2}\right)}\right\}
$$

This follows from the fact that given $\theta=i$, the conditional distribution of Y_{n} given Y_{1}^{n-1} is Gaussian. Calculating the right hand side of (5) and using the arbitrariness of $h(x)$ we arrive at:

$$
\begin{equation*}
\pi_{n}(i)=\frac{\pi_{n-1}(i) \varphi_{i}\left(Y_{n}\right)}{\sum_{j} \pi_{n-1}(j) \varphi_{j}\left(Y_{n}\right)} \tag{6}
\end{equation*}
$$

subject to $\pi_{0}(i)=p(i)$.

Problem 3.

(a) See lecture note 9 (optimal filtering of finite state Markov chain)
(b) See lecture note 9 (optimal linear filtering of finite state Markov chain)
(c) (I) Let I_{n} be a vector with elements $I\left(\theta_{n}=a_{i}\right), a_{i} \in S$. Then (these formulae have been derived in class)

$$
I_{n}=\Lambda^{\top} I_{n-1}+\nu_{n}
$$

where $\left(\nu_{n}\right)_{n \geq 1}$ is a vector sequence such that:

$$
\begin{aligned}
& \mathbf{E} \nu_{n} \equiv 0, \quad \mathbf{E} \nu_{n} \nu_{m}^{\top}=\delta(n-m) D_{n} \\
& D_{n}=\operatorname{diag}\left(V_{n}\right)-\Lambda^{\top} \operatorname{diag}\left(V_{n-1}\right) \Lambda
\end{aligned}
$$

and

$$
V_{n}=\Lambda^{\top} V_{n-1}
$$

subject to $V_{n}=p$.
Introduce an augmented state vector (in \mathbb{R}^{d+1}):

$$
X_{n}:=\left(\begin{array}{c}
I_{n} \\
-- \\
\xi_{n}
\end{array}\right)
$$

Then

$$
\begin{aligned}
& X_{n}=\underbrace{\left(\begin{array}{cc}
\Lambda^{\top} & 0 \\
0 & \gamma
\end{array}\right)}_{:=\Gamma} X_{n-1}+\widetilde{\varepsilon}_{n} \\
& Y_{n}=\widetilde{S}^{\top} X_{n}=\widetilde{S}^{\top} \Gamma X_{n-1}+\widetilde{S}^{\top} \widetilde{\varepsilon}_{n}
\end{aligned}
$$

where

$$
\widetilde{S}=\left(\begin{array}{c}
H\left(a_{1}\right) \\
H\left(a_{2}\right) \\
\vdots \\
H\left(a_{d}\right) \\
1
\end{array}\right) \in \mathbb{R}^{d+1}
$$

and $\left(\widetilde{\varepsilon}_{n}\right)_{n \geq 1}$ is an \mathbb{R}^{d+1} valued sequence of zero mean r.v. such that:

$$
\mathbf{E} \widetilde{\varepsilon}_{n} \widetilde{\varepsilon}_{m}=\delta(n-m)\left(\begin{array}{cc}
D_{n} & 0 \\
0 & 1
\end{array}\right):=Q_{n}
$$

The linear optimal estimate is given by the Kalman filter:

$$
\begin{align*}
\widehat{X}_{n}= & \Gamma \widehat{X}_{n-1}+\left(\Gamma P_{n-1} \Gamma^{\top} \widetilde{S}^{\top}+Q_{n} \widetilde{S}\right) \cdot \tag{7}\\
& \cdot\left(\widetilde{S}^{\top} \Gamma P_{n-1} \Gamma^{\top} \widetilde{S}+\widetilde{S}^{\top} Q_{n} \widetilde{S}\right)^{+}\left(Y_{n}-\widetilde{S} \Gamma \widehat{X}_{n-1}\right) \\
P_{n}= & \Gamma P_{n-1} \Gamma^{\top}+Q_{n}-\left(\Gamma P_{n-1} \Gamma^{\top} \widetilde{S}^{\top}+Q_{n} \widetilde{S}\right) \cdot \\
& \cdot\left(\widetilde{S}^{\top} \Gamma P_{n-1} \Gamma^{\top} \widetilde{S}+\widetilde{S}^{\top} Q_{n} \widetilde{S}\right)^{+}\left(\Gamma P_{n-1} \Gamma^{\top} \widetilde{S}^{\top}+Q_{n} \widetilde{S}\right)^{\top} \tag{8}
\end{align*}
$$

and $\widehat{\theta}_{n}=\widehat{\mathbf{E}}\left(\theta_{n} \mid Y_{1}^{n}\right)=\sum_{j} a_{j} \widehat{X}_{n}(j)$.
(II) Let \mathcal{H} be a vector with elements $H\left(a_{i}\right), \nu_{n}:=I_{n}-\Lambda^{\top} I_{n-1}$ and J denote the identity matrix:

$$
\begin{aligned}
& Y_{n}=\theta_{n}+\xi_{n}=\mathcal{H}^{\top} I_{n}+\gamma \xi_{n-1}+\varepsilon_{n}=\mathcal{H}^{\top} I_{n}+\gamma\left(Y_{n-1}-\mathcal{H}^{\top} I_{n-1}\right)+\varepsilon_{n} \\
& =\mathcal{H}^{\top}\left(\Lambda^{\top} I_{n-1}+\nu_{n}\right)+\gamma\left(Y_{n-1}-\mathcal{H}^{\top} I_{n-1}\right)+\varepsilon_{n}= \\
& =\mathcal{H}^{\top}\left(\Lambda^{\top}-\gamma J\right) I_{n-1}+\gamma Y_{n-1}+\mathcal{H}^{\top} \nu_{n}+\varepsilon_{n}
\end{aligned}
$$

Together with $I_{n}=\Lambda^{\top} I_{n-1}+\nu_{n}$, a linear model, suitable for the Kalman filter is obtained.
(d) Following the standard technique, we look for a function $G\left(x ; Y_{1}^{n-1}\right)$ such that:

$$
\begin{equation*}
\mathbf{E}\left[I\left(\theta_{n}=a_{i}\right) h\left(Y_{n}\right) \mid Y_{1}^{n-1}\right]=\mathbf{E}\left[G\left(Y_{1} ; Y_{1}^{n-1}\right) h\left(Y_{n}\right) \mid Y_{1}^{n-1}\right] \tag{9}
\end{equation*}
$$

First calculate:

$$
\begin{aligned}
& \mathbf{E}\left[I\left(\theta_{n}=a_{i}\right) h\left(Y_{n}\right) \mid \theta_{n-1}, Y_{1}^{n-1}\right]= \\
& =\mathbf{E}\left[\sum_{\ell} I\left(\theta_{n-1}=a_{\ell}\right) I\left(\theta_{n}=a_{i}\right) h\left(H\left(a_{i}\right)+\gamma \xi_{n-1}+\varepsilon_{n}\right) \mid \theta_{n-1}, Y_{1}^{n-1}\right]= \\
& =\sum_{\ell} I\left(\theta_{n-1}=a_{\ell}\right) \lambda_{\ell i} \int h\left(H\left(a_{i}\right)+\gamma\left(Y_{n-1}-a_{\ell}\right)+x\right) f(x) d x
\end{aligned}
$$

Taking the conditional expectation with respect to Y_{1}^{n-1} of the latter equation we arrive at an expression for the left hand side of (9):
$\sum_{\ell} \pi_{n-1}(\ell) \lambda_{\ell i} \int h(x) f\left(x-H\left(a_{i}\right)-\gamma\left(Y_{n-1}-H\left(a_{\ell}\right)\right)\right) d x$
By similar calculations one obtains an expression for the right hand side, which finally lead to the filter:

$$
\begin{equation*}
\pi_{n}(i)=\frac{\sum_{\ell} f\left(Y_{n}-H\left(a_{i}\right)-\gamma\left(Y_{n-1}-H\left(a_{\ell}\right)\right)\right) \lambda_{\ell i} \pi_{n-1}(\ell)}{\sum_{i} \sum_{\ell} f\left(Y_{n}-H\left(a_{i}\right)-\gamma\left(Y_{n-1}-H\left(a_{\ell}\right)\right)\right) \lambda_{\ell i} \pi_{n-1}(\ell)}, \quad n \geq 2 \tag{10}
\end{equation*}
$$

Since $\xi_{0}=0, Y_{1}=\theta_{1}+\xi_{1}=\theta_{1}+\varepsilon_{1}$:

$$
\begin{equation*}
\pi_{1}(i)=\frac{\sum_{\ell} f\left(Y_{1}-H\left(a_{i}\right)\right) \lambda_{\ell i} p(\ell)}{\sum_{i} \sum_{\ell} f\left(Y_{1}-H\left(a_{i}\right)\right) \lambda_{\ell i} p(\ell)} \tag{11}
\end{equation*}
$$

Note that for $\gamma=0$, this filter is reduced to the conventional Wonham filter.

