
STOCHASTIC PROCESSES. SOLUTIONS TO HOME
ASSIGNMENTS

7. Wiener Process and Stochastic Integral

Problem 7.1

Verify the axiomatic definition of Wiener process.
(1) Zt =

√
εWt/ε. For any ε > 0, Z0 = 0, the paths of Zt are almost

surely continuous (like Wt) and any vector

[Zt1 , ..., Ztk ] =
√

ε[Wt1/ε, ..., Wtk/ε]

is Gaussian. Moreover:

EZt = 0, EZtZs = εEWt/εWs/ε = εmin(t/ε, s/ε) = min(t, s)

(2) Z ′t = Wt+s −Ws for any fixed s > 0. Clearly Z ′0 = Ws −Ws = 0.
The continuity of Z ′t is directly implied by continuity of Wt. Any
vector

[Z ′t1 , ..., Z
′
tk

] = [Wt1+s −Ws, ...,Wtk+s −Ws]

is clearly Gaussian. Also EZ ′t = 0 and

EZ ′tZ
′
u = E(Wt+s −Ws)(Wu+s −Ws) = min(t + s, u + s)−min(s, u + s)

− min(t + s, s) + min(s, s) = min(t, u) + s− s− s + s = min(t, u)

(3) Z ′′t = tW1/t. Let us verify that l.i.m.t→0 Z ′′t = 0

E(Z ′′t )2 = t2/t = t → 0, t → 0

So that if Z ′′0 = 0 is defined, the process Z ′′t has continuous trajec-
tories almost surely. Further:

EZ ′′t Z ′′s = EtW1/tsW1/s = tsmin(1/t, 1/s) = ts/max(t, s) = min(t, s)

Problem 7.2

Verify the reflection principle:

Proposition 7.1. Let Wt be a Wiener process and τa = inf{t : Wt ≥ a}.
Then:

P{Wt ≤ x|τa ≤ t} = P{Wt ≥ 2a− x|τa ≤ t} (7.1)
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Figure 1. Geometrical interpretation of the reflection principle

Proof. Let W τa
0 be the events generated by {Wu, u ≤ τa}.

P{Wt ≤ x|W τa
0 } = P{Wt −Wτa ≤ x− a|W τa

0 } = (7.2)
†
= P{Wt −Wτa ≥ a− x|W τa

0 } = P{Wt ≥ 2a− x|W τa
0 }

where the equality † is due to the fact that Wt − a is distributed symmetri-
cally around 0, conditioned on W τa

0 (e.g. E(Wt − a|W τa
0 ) = 0).

Taking conditional expectation with respect to {τa ≤ t} from both sides
of (6.2), the desired result is obtained. ¤

By virtue of the reflection principle we have

P{Wt > a|τa < t} = P{Wt < a|τa < t} = 1/2

since P{Wt > a|τa < t}+ P{Wt < a|τa < t} ≡ 1, P-a.s.
Then:

1/2 ≡ P{Wt > a|τa < t} =
P{τa < t|Wt > a}P{Wt > a}

P{τa < t} =
P{Wt > a}
P{τa < t}

which implies
P{τa < t} = 2P{Wt > a}.

So

P{τa ≤ t} = 2P{Wt > a} =
2√
2πt

∫ ∞

a
e−x2/(2t)dx =

√
2
π

∫ ∞

a/
√

t
e−z2/2dz
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and finally:

pτ (t; a) =
d

dt
P{τa ≤ t} = ... =

a√
2πt3

e−a2/(2t)

Since for large t, pτ (t; a) ∝ O(t−3/2), the first hitting time τa has infinite
mean:

Eτa =
∫ ∞

0
tpτ (t; a)dt = ∞

Problem 7.3

Assume X0 = 0 for brevity, so that mt ≡ 0. Note that for t ≥ s

Xt = Xs +
∫ t

s
auXudu +

∫ t

s
budWu

Multiply both sides by Xs and take expectation

K(t, s) = EXtXs = Vs +
∫ t

s
auK(u, s)du

which leads to

K(t, s) = Vs exp
{∫ t

s
audu

}
,

where Vs = EX2
s .

To find Vt, apply the Ito formula to X2
t :

d(Xt)2 = +2XtdXt + b2
t dt =

2X2
t atdt + 2XtbtdWt + b2

t dt

and take expectation:
V̇t = 2atVt + b2

t .

For X to be stationary one may require that at ≡ a < 0 and bt ≡ b and
that X0 = 0 and EX2

0 = −b2/(2a). Indeed in this case Vt ≡ V = −b2/(2a)
and

K(t, s) = V ea|t−s|

Since X is Gaussian, stationarity in the wide sense implies stationarity. The
spectral density is then

S(λ) =
∫

R
K(v)e−iλvdv ∝ 1

λ2 + a2

Problem 7.4

Consider the following estimate

θ̂t(Y ) =

∫ t
0 asdYs∫ t
0 a2

sds
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and let ∆t = θ̂t − θ. Then

∆t =
θ
∫ t
0 a2

sds +
∫ t
0 asdWs∫ t

0 a2
sds

− θ =

∫ t
0 asdWs∫ t
0 a2

sds

which suggests that

E∆2
t =

E
(∫ t

0 asdWs

)2

(∫ t
0 a2

sds
)2 =

1∫ t
0 a2

sds

t→∞−−−→ 0

under assumptions of the problem. So θ̂t converges to θ at the rate indepen-
dent of θ. By the way, this is nothing but the Maximum likelihood estimate
of θ.

Problem 7.5

(1) Apply Ito formula to ξt = cos(Wt) and to ζt = sin(Wt):

dξt = − sin(Wt)dWt − 1/2 cos(Wt)dt = −ζtdWt − 1/2ξtdt

dζt = cos(Wt)dWt − 1/2 sin(Wt)dt = ξtdWt − 1/2ζtdt

which implies

Ċt = −1/2Ct

Ṡt = −1/2St

So
Ct = e−t/2, St ≡ 0

Let Pn(t) = Wn
t , then

dPn(t) = nWn−1
t dWt + 1/2n(n− 1)Wn−2

t dt

Taking expectation we find

Ṁn(t) = 1/2n(n− 1)Mn−2(t)

Now M1(t) = EWt ≡ 0 - this implies that Mk(t) ≡ 0 for k = 1, 3, 5, ... and
t ≥ 0. On the other hand, M2(t) = t, so that M4(t) = 1/2 · 4 · 3 ∫ t

0 sds =
1/2 · 4 · 3t2/2 = 3t2. Other moments are calculated similarly.

Note that in both cases application of Ito formula is easier than integration
vs. Gaussian density.

Problem 7.6

(1) Heuristically, for δ > 0 small enough,

Xt+δ = Xt + rXtδ + σXt(Wt+δ −Wt)

i.e. at time t+δ the change in asset price is built up by deterministic growth
rate r (the positive term rXtδ) and stochastic risky part σXtξ, where ξ is
Gaussian random variable with variance δ. Of course, strictly speaking this
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is nonsense, since e.g. ξt can be negative enough to make Xt negative, which
cannot be.

(2) Guess the answer

Zt = X0 exp
{
σWt + (r − 1/2σ2)t

}

and verify it with Ito formula

dZt = Zt

(
σdWt + (r − 1/2σ2)dt

)
+ 1/2Ztσ

2dt = rZtdt + σZtdWt

and Z0 = X0. Clearly Zt > 0 with probability one.
Note: This model stands behind the famous Black-Scholes formulae for

option pricing.

Problem 7.7

(1) Note that

Z4 =
√

W 2
4 + V 2

4 =
√

(W4 −W3 + W3)2 + (V4 − V3 + V3)2

where (W4 − W3, W3, V4 − V3, V3) is a Gaussian vector with independent
entries. So

E(Z4|W3, V3) = Ẽ
√

(ξ̃ + W3)2 + (θ̃ + V3)2 (7.3)

where expectation Ẽ is with respect to the vector1(ξ̃, θ̃), a pair of auxil-
iary Gaussian random variables, independent and with zero means and unit
variances. Now use Jensen inequality to obtain the upper bound

E(Z4|W3, V3) ≤
√
Ẽ(ξ̃ + W3)2 + Ẽ(θ̃ + V3)2 =

√
Ẽξ̃2 + +Ẽθ̃2 + W 2

3 + V 2
3 =

√
2 + W 2

3 + V 2
3

The lower bound can be obtained by means of Ito formula. Let R(x, y) =√
x2 + y2 Clearly

∂

∂x
R(x, y) = Rx(x, y) =

x

R

and

Ry =
y

R
, Rxx =

1
R
− x2

R3
, Ryy =

1
R
− y2

R3

1here V3 and W3 are hold fixed and the equality in (6.3) is of course P -a.s. Make sure
you understand this point
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and Ito formula gives

dZt =
Wt

Zt
dWt +

Vt

Zt
dVt +

1
2

(
1
Zt
− W 2

t

Z3
t

)
dt +

1
2

(
1
Zt
− V 2

t

Z3
t

)
dt =

=
1
Zt

dt− 1
2

V 2
t + W 2

t

Z3
t

dt +
Wt

Zt
dWt +

Vt

Zt
dVt =

=
1
2

1
Zt

dt +
Wt

Zt
dWt +

Vt

Zt
dVt

and hence

Z4 = Z3 +
∫ 4

3

1
2Zs

ds +
∫ 4

3

(
Ws

Zs
dWs +

Vs

Zs
dVs

)

Taking conditional expectation from both sides gives the lower bound

E(Z4|V3,W3) = Z3 + E
(∫ 4

3

1
2Zs

ds
∣∣V3,W3

)
≥ Z3

Problem 7.8

a. Let P (x, t; y, s) denote the transition distribution of (Xt)t≥0, i.e.

P (x, t; y, s) = P(Xt ≤ x|Xs)∣∣
Xs := y

Any Markov process obeys Chapman-Kolmogorov equation:

P (x, t; y, τ) =
∫

z∈R
P (x, t; z, s)dP (z, s; y, τ) (7.4)

Since (Xt)t≥0 is a Gaussian process (assuming R(t, t) > 0):

E(Xt|Xτ )∣∣
Xτ := y

=
R(t, τ)
R(τ, τ)

y (7.5)

On the other hand

E(Xt|Xτ )∣∣
Xτ := y

=
∫

x∈R
xdP (x, t; y, τ) = (7.6)

=
∫

x∈R
x

∫

z∈R
dP (x, t; z, s)dP (z, s; y, τ) =

∫

z∈R
R(t, s)
R(s, s)

zdP (z, s; y, τ) =

=
R(t, s)
R(s, s)

R(s, τ)
R(τ, τ)

y

Comparing (6.5) and (6.6), we conclude that for any t ≥ s ≥ τ

R(t, τ) =
R(t, s)R(s, τ)

R(s, s)
(7.7)

b. Let R(t, τ) be a solution of eq. (6.7). Since R(t, τ) satisfies (6.7) for
any s ∈ [τ, t], fix some s′ ∈ [τ, t] and define e.g. f(t) := R(t, s′) and
g(τ) := R(s′, τ)/R(s′, s′). Now set R◦(u, v) := f

(
max(u, v)

)
g
(
min(u, v)

)
.
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It is straightforward to check that for any t ≥ τ , R◦(u, v) satisfies (6.7) and
also R(t, τ) ≡ R◦(t, τ).
c. The objective is to construct a Gaussian Markov process (Zt)t≥0, with
covariance function R(t, τ) = f

(
max(t, τ)

)
g
(
min(t, τ)

)
, where f(t) and g(t)

are some specified functions. Define ν(t) = g(t)/f(t). We claim that ν(t) is
a positive (R(t, t) = f(t)g(t) > 0, so g(t)/f(t) > 0 as well) nondecreasing
function. Indeed by virtue of Cauchy-Schwarz inequality

R(t, τ) ≤
√

R(t, t)R(τ, τ)

i.e. e.g. t ≥ τ

f(t)g(τ) ≤
√

f(t)g(t)f(τ)g(τ) =⇒ 1 ≤
√

ν(t)
√

1/ν(τ) =⇒ ν(τ) ≤ ν(t)

Let Wt be the Wiener process. Define Zt = f(t)Wν(t). Since f(t) and g(t)
are some deterministic functions, Zt is Gaussian and for t ≥ τ

Rz(t, τ) = EZtZτ = f(t)f(τ)min(ν(t), ν(τ)) = f(t)f(τ)ν(τ) = f(t)g(τ)

by the same arguments, flipping t and τ , one arrives at the desired form of
the correlation function:

Rz(t, τ) = f
(
max(t, τ)

)
g
(
min(t, τ)

)

Since ν(t) is non decreasing, Zt is Markov, for any bounded function ϕ(x) :
R→ R and for any τ ≤ t

E
(
ϕ(Zt)|Zs, s ≤ τ

)
= E

(
ϕ(f(t)Wν(t))|f(s)Wν(s), s ≤ τ

)
=

= E
(
ϕ(f(t)Wν(t))|f(s)Wν(τ)

)
= E

(
ϕ(Zt)|Zτ

)

d. Note that
e−|t−s| = e−max(t,s)emin(t,s)

Following the results of the previous questions,

Xt = e−tWe2t

where (Wt)t≥0 is the Wiener process.
e. Any Gaussian Markov process satisfies (6.7). Since Xt is stationary,
R(t, s) = R(t− s). Set ρ(t− s) = R(t− s)/R(0), then

R(t− τ) =
R(t− s)R(s− τ)

R(0)
=⇒ ρ(t− τ) = ρ(t− s)ρ(s− τ)

or by appropriate change of variables

ρ(u + v) = ρ(u)ρ(v)

The solution of this equation in the class of continuous functions is well
know to be

ρ(t) = e−λ|t|

where λ > 0 is some constant, which is proved as follows. Fix integers m
and n, then

ρ(m/n) = ρ(1/n + ... + 1/n) = ρm(1/n) (7.8)
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In particular

ρ(1) = ρn(1/n) (7.9)

Combine (6.8) and (6.9) to obtain:

ρ(m/n) = ρ(1)m/n (7.10)

Since m and n have been chosen arbitrary and since ρ(t) is continuous (6.10)
holds for any t > 0, i.e.

ρ(t) = ρ(1)t =⇒ ρ(t) = eλt

where λ = log(ρ(1)). Note that ρ(1) = R(1)/R(0) < 1, so that λ < 0. By
symmetry we obtain the desired result.

Problem 7.9

a) Apply the Ito formula to r2
t = X2

t + Y 2
t

dr2
t =2XtdXt + 2YtdYt + X2

t dt + Y 2
t dt =

−X2
t dt− 2XtYtdBt − Y 2

t dt + 2XtYtdt + X2
t dt + Y 2

t dt ≡ 0,

that is r2
t = r2

0 = x2 + y2.

b) Analogously applying the Ito formula to θt = arctan(Xt/Yt) one gets

dθt = dBt

subject to θ0 = arctan(x/y). That is the process (Xt, Yt) may be regarded
as a Brownian motion on a circle, i.e. eiBt .

Problem 7.10

Immediate implication of the Ito formula.


