STOCHASTIC PROCESSES. SOLUTIONS TO HOME ASSIGNMENTS

7. Wiener Process and Stochastic Integral

Problem 7.1

Verify the axiomatic definition of Wiener process.
(1) $Z_{t}=\sqrt{\varepsilon} W_{t / \varepsilon}$. For any $\varepsilon>0, Z_{0}=0$, the paths of Z_{t} are almost surely continuous (like W_{t}) and any vector

$$
\left[Z_{t_{1}}, \ldots, Z_{t_{k}}\right]=\sqrt{\varepsilon}\left[W_{t_{1} / \varepsilon}, \ldots, W_{t_{k} / \varepsilon}\right]
$$

is Gaussian. Moreover:
$\mathbb{E} Z_{t}=0, \quad \mathbb{E} Z_{t} Z_{s}=\varepsilon \mathbb{E} W_{t / \varepsilon} W_{s / \varepsilon}=\varepsilon \min (t / \varepsilon, s / \varepsilon)=\min (t, s)$
(2) $Z_{t}^{\prime}=W_{t+s}-W_{s}$ for any fixed $s>0$. Clearly $Z_{0}^{\prime}=W_{s}-W_{s}=0$. The continuity of Z_{t}^{\prime} is directly implied by continuity of W_{t}. Any vector

$$
\left[Z_{t_{1}}^{\prime}, \ldots, Z_{t_{k}}^{\prime}\right]=\left[W_{t_{1}+s}-W_{s}, \ldots, W_{t_{k}+s}-W_{s}\right]
$$

is clearly Gaussian. Also $\mathbb{E} Z_{t}^{\prime}=0$ and

$$
\begin{aligned}
\mathbb{E} Z_{t}^{\prime} Z_{u}^{\prime} & =\mathbb{E}\left(W_{t+s}-W_{s}\right)\left(W_{u+s}-W_{s}\right)=\min (t+s, u+s)-\min (s, u+s) \\
& -\min (t+s, s)+\min (s, s)=\min (t, u)+s-s-s+s=\min (t, u)
\end{aligned}
$$

(3) $Z_{t}^{\prime \prime}=t W_{1 / t}$. Let us verify that l.i.m. ${ }_{t \rightarrow 0} Z_{t}^{\prime \prime}=0$

$$
\mathbb{E}\left(Z_{t}^{\prime \prime}\right)^{2}=t^{2} / t=t \rightarrow 0, \quad t \rightarrow 0
$$

So that if $Z_{0}^{\prime \prime}=0$ is defined, the process $Z_{t}^{\prime \prime}$ has continuous trajectories almost surely. Further:

$$
\mathbb{E} Z_{t}^{\prime \prime} Z_{s}^{\prime \prime}=\mathbb{E} t W_{1 / t} s W_{1 / s}=t s \min (1 / t, 1 / s)=t s / \max (t, s)=\min (t, s)
$$

Problem 7.2

Verify the reflection principle:
Proposition 7.1. Let W_{t} be a Wiener process and $\tau_{a}=\inf \left\{t: W_{t} \geq a\right\}$. Then:

$$
\begin{equation*}
\mathbb{P}\left\{W_{t} \leq x \mid \tau_{a} \leq t\right\}=\mathbb{P}\left\{W_{t} \geq 2 a-x \mid \tau_{a} \leq t\right\} \tag{7.1}
\end{equation*}
$$

[^0]

Figure 1. Geometrical interpretation of the reflection principle

Proof. Let $W_{0}^{\tau_{a}}$ be the events generated by $\left\{W_{u}, u \leq \tau_{a}\right\}$.

$$
\begin{align*}
\mathbb{P}\left\{W_{t} \leq x \mid W_{0}^{\tau_{a}}\right\}= & \mathbb{P}\left\{W_{t}-W_{\tau_{a}} \leq x-a \mid W_{0}^{\tau_{a}}\right\}= \tag{7.2}\\
& \stackrel{\dagger}{=} \mathbb{P}\left\{W_{t}-W_{\tau_{a}} \geq a-x \mid W_{0}^{\tau_{a}}\right\}=\mathbb{P}\left\{W_{t} \geq 2 a-x \mid W_{0}^{\tau_{a}}\right\}
\end{align*}
$$

where the equality \dagger is due to the fact that $W_{t}-a$ is distributed symmetrically around 0 , conditioned on $W_{0}^{\tau_{a}}$ (e.g. $E\left(W_{t}-a \mid W_{0}^{\tau_{a}}\right)=0$).

Taking conditional expectation with respect to $\left\{\tau_{a} \leq t\right\}$ from both sides of (6.2), the desired result is obtained.

By virtue of the reflection principle we have

$$
\mathbb{P}\left\{W_{t}>a \mid \tau_{a}<t\right\}=\mathbb{P}\left\{W_{t}<a \mid \tau_{a}<t\right\}=1 / 2
$$

since $\mathbb{P}\left\{W_{t}>a \mid \tau_{a}<t\right\}+\mathbb{P}\left\{W_{t}<a \mid \tau_{a}<t\right\} \equiv 1, \mathbb{P}$-a.s.
Then:
$1 / 2 \equiv \mathbb{P}\left\{W_{t}>a \mid \tau_{a}<t\right\}=\frac{\mathbb{P}\left\{\tau_{a}<t \mid W_{t}>a\right\} \mathbb{P}\left\{W_{t}>a\right\}}{\mathbb{P}\left\{\tau_{a}<t\right\}}=\frac{\mathbb{P}\left\{W_{t}>a\right\}}{\mathbb{P}\left\{\tau_{a}<t\right\}}$
which implies

$$
\mathbb{P}\left\{\tau_{a}<t\right\}=2 \mathbb{P}\left\{W_{t}>a\right\} .
$$

So
$\mathbb{P}\left\{\tau_{a} \leq t\right\}=2 \mathbb{P}\left\{W_{t}>a\right\}=\frac{2}{\sqrt{2 \pi t}} \int_{a}^{\infty} e^{-x^{2} /(2 t)} d x=\sqrt{\frac{2}{\pi}} \int_{a / \sqrt{t}}^{\infty} e^{-z^{2} / 2} d z$
and finally:

$$
p_{\tau}(t ; a)=\frac{d}{d t} \mathbb{P}\left\{\tau_{a} \leq t\right\}=\ldots=\frac{a}{\sqrt{2 \pi t^{3}}} e^{-a^{2} /(2 t)}
$$

Since for large $t, p_{\tau}(t ; a) \propto O\left(t^{-3 / 2}\right)$, the first hitting time τ_{a} has infinite mean:

$$
\mathbb{E} \tau_{a}=\int_{0}^{\infty} t p_{\tau}(t ; a) d t=\infty
$$

Problem 7.3

Assume $X_{0}=0$ for brevity, so that $m_{t} \equiv 0$. Note that for $t \geq s$

$$
X_{t}=X_{s}+\int_{s}^{t} a_{u} X_{u} d u+\int_{s}^{t} b_{u} d W_{u}
$$

Multiply both sides by X_{s} and take expectation

$$
K(t, s)=\mathbb{E} X_{t} X_{s}=V_{s}+\int_{s}^{t} a_{u} K(u, s) d u
$$

which leads to

$$
K(t, s)=V_{s} \exp \left\{\int_{s}^{t} a_{u} d u\right\}
$$

where $V_{s}=\mathbb{E} X_{s}^{2}$.
To find V_{t}, apply the Ito formula to X_{t}^{2} :

$$
\begin{aligned}
& d\left(X_{t}\right)^{2}=+2 X_{t} d X_{t}+b_{t}^{2} d t= \\
& 2 X_{t}^{2} a_{t} d t+2 X_{t} b_{t} d W_{t}+b_{t}^{2} d t
\end{aligned}
$$

and take expectation:

$$
\dot{V}_{t}=2 a_{t} V_{t}+b_{t}^{2} .
$$

For X to be stationary one may require that $a_{t} \equiv a<0$ and $b_{t} \equiv b$ and that $X_{0}=0$ and $\mathbb{E} X_{0}^{2}=-b^{2} /(2 a)$. Indeed in this case $V_{t} \equiv V=-b^{2} /(2 a)$ and

$$
K(t, s)=V e^{a|t-s|}
$$

Since X is Gaussian, stationarity in the wide sense implies stationarity. The spectral density is then

$$
S(\lambda)=\int_{\mathbb{R}} K(v) e^{-i \lambda v} d v \propto \frac{1}{\lambda^{2}+a^{2}}
$$

Problem 7.4

Consider the following estimate

$$
\widehat{\theta}_{t}(Y)=\frac{\int_{0}^{t} a_{s} d Y_{s}}{\int_{0}^{t} a_{s}^{2} d s}
$$

and let $\Delta_{t}=\widehat{\theta}_{t}-\theta$. Then

$$
\Delta_{t}=\frac{\theta \int_{0}^{t} a_{s}^{2} d s+\int_{0}^{t} a_{s} d W_{s}}{\int_{0}^{t} a_{s}^{2} d s}-\theta=\frac{\int_{0}^{t} a_{s} d W_{s}}{\int_{0}^{t} a_{s}^{2} d s}
$$

which suggests that

$$
\mathbb{E} \Delta_{t}^{2}=\frac{\mathbb{E}\left(\int_{0}^{t} a_{s} d W_{s}\right)^{2}}{\left(\int_{0}^{t} a_{s}^{2} d s\right)^{2}}=\frac{1}{\int_{0}^{t} a_{s}^{2} d s} \xrightarrow{t \rightarrow \infty} 0
$$

under assumptions of the problem. So $\widehat{\theta}_{t}$ converges to θ at the rate independent of θ. By the way, this is nothing but the Maximum likelihood estimate of θ.

Problem 7.5

(1) Apply Ito formula to $\xi_{t}=\cos \left(W_{t}\right)$ and to $\zeta_{t}=\sin \left(W_{t}\right)$:

$$
\begin{aligned}
d \xi_{t} & =-\sin \left(W_{t}\right) d W_{t}-1 / 2 \cos \left(W_{t}\right) d t=-\zeta_{t} d W_{t}-1 / 2 \xi_{t} d t \\
d \zeta_{t} & =\cos \left(W_{t}\right) d W_{t}-1 / 2 \sin \left(W_{t}\right) d t=\xi_{t} d W_{t}-1 / 2 \zeta_{t} d t
\end{aligned}
$$

which implies

$$
\begin{aligned}
\dot{C}_{t} & =-1 / 2 C_{t} \\
\dot{S}_{t} & =-1 / 2 S_{t}
\end{aligned}
$$

So

$$
C_{t}=e^{-t / 2}, \quad S_{t} \equiv 0
$$

Let $P_{n}(t)=W_{t}^{n}$, then

$$
d P_{n}(t)=n W_{t}^{n-1} d W_{t}+1 / 2 n(n-1) W_{t}^{n-2} d t
$$

Taking expectation we find

$$
\dot{M}_{n}(t)=1 / 2 n(n-1) M_{n-2}(t)
$$

Now $M_{1}(t)=\mathbb{E} W_{t} \equiv 0$ - this implies that $M_{k}(t) \equiv 0$ for $k=1,3,5, \ldots$ and $t \geq 0$. On the other hand, $M_{2}(t)=t$, so that $M_{4}(t)=1 / 2 \cdot 4 \cdot 3 \int_{0}^{t} s d s=$ $1 / 2 \cdot 4 \cdot 3 t^{2} / 2=3 t^{2}$. Other moments are calculated similarly.

Note that in both cases application of Ito formula is easier than integration vs. Gaussian density.

Problem 7.6

(1) Heuristically, for $\delta>0$ small enough,

$$
X_{t+\delta}=X_{t}+r X_{t} \delta+\sigma X_{t}\left(W_{t+\delta}-W_{t}\right)
$$

i.e. at time $t+\delta$ the change in asset price is built up by deterministic growth rate r (the positive term $r X_{t} \delta$) and stochastic risky part $\sigma X_{t} \xi$, where ξ is Gaussian random variable with variance δ. Of course, strictly speaking this
is nonsense, since e.g. ξ_{t} can be negative enough to make X_{t} negative, which cannot be.
(2) Guess the answer

$$
Z_{t}=X_{0} \exp \left\{\sigma W_{t}+\left(r-1 / 2 \sigma^{2}\right) t\right\}
$$

and verify it with Ito formula

$$
d Z_{t}=Z_{t}\left(\sigma d W_{t}+\left(r-1 / 2 \sigma^{2}\right) d t\right)+1 / 2 Z_{t} \sigma^{2} d t=r Z_{t} d t+\sigma Z_{t} d W_{t}
$$

and $Z_{0}=X_{0}$. Clearly $Z_{t}>0$ with probability one.
Note: This model stands behind the famous Black-Scholes formulae for option pricing.

Problem 7.7

(1) Note that

$$
Z_{4}=\sqrt{W_{4}^{2}+V_{4}^{2}}=\sqrt{\left(W_{4}-W_{3}+W_{3}\right)^{2}+\left(V_{4}-V_{3}+V_{3}\right)^{2}}
$$

where $\left(W_{4}-W_{3}, W_{3}, V_{4}-V_{3}, V_{3}\right)$ is a Gaussian vector with independent entries. So

$$
\begin{equation*}
\mathbb{E}\left(Z_{4} \mid W_{3}, V_{3}\right)=\widetilde{\mathbb{E}} \sqrt{\left(\widetilde{\xi}+W_{3}\right)^{2}+\left(\widetilde{\theta}+V_{3}\right)^{2}} \tag{7.3}
\end{equation*}
$$

where expectation $\widetilde{\mathbb{E}}$ is with respect to the vector $^{1}(\widetilde{\xi}, \widetilde{\theta})$, a pair of auxiliary Gaussian random variables, independent and with zero means and unit variances. Now use Jensen inequality to obtain the upper bound

$$
\begin{aligned}
& \mathbb{E}\left(Z_{4} \mid W_{3}, V_{3}\right) \leq \sqrt{\widetilde{\mathbb{E}}\left(\widetilde{\xi}+W_{3}\right)^{2}+\widetilde{\mathbb{E}}\left(\widetilde{\theta}+V_{3}\right)^{2}}= \\
& \sqrt{\widetilde{\mathbb{E}} \widetilde{\xi}^{2}++\widetilde{\mathbb{E}} \widetilde{\theta}^{2}+W_{3}^{2}+V_{3}^{2}}=\sqrt{2+W_{3}^{2}+V_{3}^{2}}
\end{aligned}
$$

The lower bound can be obtained by means of Ito formula. Let $R(x, y)=$ $\sqrt{x^{2}+y^{2}}$ Clearly

$$
\frac{\partial}{\partial x} R(x, y)=R_{x}(x, y)=\frac{x}{R}
$$

and

$$
R_{y}=\frac{y}{R}, \quad R_{x x}=\frac{1}{R}-\frac{x^{2}}{R^{3}}, \quad R_{y y}=\frac{1}{R}-\frac{y^{2}}{R^{3}}
$$

[^1]and Ito formula gives
\[

$$
\begin{aligned}
d Z_{t} & =\frac{W_{t}}{Z_{t}} d W_{t}+\frac{V_{t}}{Z_{t}} d V_{t}+\frac{1}{2}\left(\frac{1}{Z_{t}}-\frac{W_{t}^{2}}{Z_{t}^{3}}\right) d t+\frac{1}{2}\left(\frac{1}{Z_{t}}-\frac{V_{t}^{2}}{Z_{t}^{3}}\right) d t= \\
& =\frac{1}{Z_{t}} d t-\frac{1}{2} \frac{V_{t}^{2}+W_{t}^{2}}{Z_{t}^{3}} d t+\frac{W_{t}}{Z_{t}} d W_{t}+\frac{V_{t}}{Z_{t}} d V_{t}= \\
& =\frac{1}{2} \frac{1}{Z_{t}} d t+\frac{W_{t}}{Z_{t}} d W_{t}+\frac{V_{t}}{Z_{t}} d V_{t}
\end{aligned}
$$
\]

and hence

$$
Z_{4}=Z_{3}+\int_{3}^{4} \frac{1}{2 Z_{s}} d s+\int_{3}^{4}\left(\frac{W_{s}}{Z_{s}} d W_{s}+\frac{V_{s}}{Z_{s}} d V_{s}\right)
$$

Taking conditional expectation from both sides gives the lower bound

$$
\mathbb{E}\left(Z_{4} \mid V_{3}, W_{3}\right)=Z_{3}+\mathbb{E}\left(\left.\int_{3}^{4} \frac{1}{2 Z_{s}} d s \right\rvert\, V_{3}, W_{3}\right) \geq Z_{3}
$$

Problem 7.8

a. Let $P(x, t ; y, s)$ denote the transition distribution of $\left(X_{t}\right)_{t \geq 0}$, i.e.

$$
P(x, t ; y, s)=\left.\mathbb{P}\left(X_{t} \leq x \mid X_{s}\right)\right|_{X_{s}:=y}
$$

Any Markov process obeys Chapman-Kolmogorov equation:

$$
\begin{equation*}
P(x, t ; y, \tau)=\int_{z \in \mathbb{R}} P(x, t ; z, s) d P(z, s ; y, \tau) \tag{7.4}
\end{equation*}
$$

Since $\left(X_{t}\right)_{t \geq 0}$ is a Gaussian process (assuming $\left.R(t, t)>0\right)$:

$$
\begin{equation*}
\left.\mathbb{E}\left(X_{t} \mid X_{\tau}\right)\right|_{X_{\tau}:=y}=\frac{R(t, \tau)}{R(\tau, \tau)} y \tag{7.5}
\end{equation*}
$$

On the other hand

$$
\begin{aligned}
& \left.\mathbb{E}\left(X_{t} \mid X_{\tau}\right)\right|_{X_{\tau}}:=y=\int_{x \in \mathbb{R}} x d P(x, t ; y, \tau)= \\
& =\int_{x \in \mathbb{R}} x \int_{z \in \mathbb{R}} d P(x, t ; z, s) d P(z, s ; y, \tau)=\int_{z \in \mathbb{R}} \frac{R(t, s)}{R(s, s)} z d P(z, s ; y, \tau)= \\
& =\frac{R(t, s)}{R(s, s)} \frac{R(s, \tau)}{R(\tau, \tau)} y
\end{aligned}
$$

Comparing (6.5) and (6.6), we conclude that for any $t \geq s \geq \tau$

$$
\begin{equation*}
R(t, \tau)=\frac{R(t, s) R(s, \tau)}{R(s, s)} \tag{7.7}
\end{equation*}
$$

b. Let $R(t, \tau)$ be a solution of eq. (6.7). Since $R(t, \tau)$ satisfies (6.7) for any $s \in[\tau, t]$, fix some $s^{\prime} \in[\tau, t]$ and define e.g. $f(t):=R\left(t, s^{\prime}\right)$ and $g(\tau):=R\left(s^{\prime}, \tau\right) / R\left(s^{\prime}, s^{\prime}\right)$. Now set $R^{\circ}(u, v):=f(\max (u, v)) g(\min (u, v))$.

It is straightforward to check that for any $t \geq \tau, R^{\circ}(u, v)$ satisfies (6.7) and also $R(t, \tau) \equiv R^{\circ}(t, \tau)$.
c. The objective is to construct a Gaussian Markov process $\left(Z_{t}\right)_{t \geq 0}$, with covariance function $R(t, \tau)=f(\max (t, \tau)) g(\min (t, \tau))$, where $f(t)$ and $g(t)$ are some specified functions. Define $\nu(t)=g(t) / f(t)$. We claim that $\nu(t)$ is a positive $(R(t, t)=f(t) g(t)>0$, so $g(t) / f(t)>0$ as well) nondecreasing function. Indeed by virtue of Cauchy-Schwarz inequality

$$
R(t, \tau) \leq \sqrt{R(t, t) R(\tau, \tau)}
$$

i.e. e.g. $t \geq \tau$

$$
f(t) g(\tau) \leq \sqrt{f(t) g(t) f(\tau) g(\tau)} \Longrightarrow 1 \leq \sqrt{\nu(t)} \sqrt{1 / \nu(\tau)} \Longrightarrow \nu(\tau) \leq \nu(t)
$$

Let W_{t} be the Wiener process. Define $Z_{t}=f(t) W_{\nu(t)}$. Since $f(t)$ and $g(t)$ are some deterministic functions, Z_{t} is Gaussian and for $t \geq \tau$

$$
R_{z}(t, \tau)=\mathbb{E} Z_{t} Z_{\tau}=f(t) f(\tau) \min (\nu(t), \nu(\tau))=f(t) f(\tau) \nu(\tau)=f(t) g(\tau)
$$

by the same arguments, flipping t and τ, one arrives at the desired form of the correlation function:

$$
R_{z}(t, \tau)=f(\max (t, \tau)) g(\min (t, \tau))
$$

Since $\nu(t)$ is non decreasing, Z_{t} is Markov, for any bounded function $\varphi(x)$: $\mathbb{R} \rightarrow \mathbb{R}$ and for any $\tau \leq t$

$$
\begin{aligned}
& \mathbb{E}\left(\varphi\left(Z_{t}\right) \mid Z_{s}, s \leq \tau\right)=\mathbb{E}\left(\varphi\left(f(t) W_{\nu(t)}\right) \mid f(s) W_{\nu(s)}, s \leq \tau\right)= \\
& =\mathbb{E}\left(\varphi\left(f(t) W_{\nu(t)}\right) \mid f(s) W_{\nu(\tau)}\right)=\mathbb{E}\left(\varphi\left(Z_{t}\right) \mid Z_{\tau}\right)
\end{aligned}
$$

d. Note that

$$
e^{-|t-s|}=e^{-\max (t, s)} e^{\min (t, s)}
$$

Following the results of the previous questions,

$$
X_{t}=e^{-t} W_{e^{2 t}}
$$

where $\left(W_{t}\right)_{t \geq 0}$ is the Wiener process.
e. Any Gaussian Markov process satisfies (6.7). Since X_{t} is stationary, $R(t, s)=R(t-s)$. Set $\rho(t-s)=R(t-s) / R(0)$, then

$$
R(t-\tau)=\frac{R(t-s) R(s-\tau)}{R(0)} \Longrightarrow \rho(t-\tau)=\rho(t-s) \rho(s-\tau)
$$

or by appropriate change of variables

$$
\rho(u+v)=\rho(u) \rho(v)
$$

The solution of this equation in the class of continuous functions is well know to be

$$
\rho(t)=e^{-\lambda|t|}
$$

where $\lambda>0$ is some constant, which is proved as follows. Fix integers m and n, then

$$
\begin{equation*}
\rho(m / n)=\rho(1 / n+\ldots+1 / n)=\rho^{m}(1 / n) \tag{7.8}
\end{equation*}
$$

In particular

$$
\begin{equation*}
\rho(1)=\rho^{n}(1 / n) \tag{7.9}
\end{equation*}
$$

Combine (6.8) and (6.9) to obtain:

$$
\begin{equation*}
\rho(m / n)=\rho(1)^{m / n} \tag{7.10}
\end{equation*}
$$

Since m and n have been chosen arbitrary and since $\rho(t)$ is continuous (6.10) holds for any $t>0$, i.e.

$$
\rho(t)=\rho(1)^{t} \Longrightarrow \rho(t)=e^{\lambda t}
$$

where $\lambda=\log (\rho(1))$. Note that $\rho(1)=R(1) / R(0)<1$, so that $\lambda<0$. By symmetry we obtain the desired result.

Problem 7.9

a) Apply the Ito formula to $r_{t}^{2}=X_{t}^{2}+Y_{t}^{2}$

$$
\begin{aligned}
d r_{t}^{2}= & 2 X_{t} d X_{t}+2 Y_{t} d Y_{t}+X_{t}^{2} d t+Y_{t}^{2} d t= \\
& -X_{t}^{2} d t-2 X_{t} Y_{t} d B_{t}-Y_{t}^{2} d t+2 X_{t} Y_{t} d t+X_{t}^{2} d t+Y_{t}^{2} d t \equiv 0
\end{aligned}
$$ that is $r_{t}^{2}=r_{0}^{2}=x^{2}+y^{2}$.

b) Analogously applying the Ito formula to $\theta_{t}=\arctan \left(X_{t} / Y_{t}\right)$ one gets

$$
d \theta_{t}=d B_{t}
$$

subject to $\theta_{0}=\arctan (x / y)$. That is the process $\left(X_{t}, Y_{t}\right)$ may be regarded as a Brownian motion on a circle, i.e. $e^{i B_{t}}$.

Problem 7.10

Immediate implication of the Ito formula.

[^0]: Date: Spring, 2004.

[^1]: ${ }^{1}$ here V_{3} and W_{3} are hold fixed and the equality in (6.3) is of course P-a.s. Make sure you understand this point

