STOCHASTIC PROCESSES. SOLUTIONS TO HOME ASSIGNMENTS

6. Non-Linear Filtering of Markov Processes

Problem 6.1

a) Define $Y_{n}=\Delta \xi_{n}=\xi_{n}-\xi_{n-1}, n \geq 1$. Clearly $Y_{n}=\theta_{n} \varepsilon_{n}^{\alpha}+\left(1-\theta_{n}\right) \varepsilon_{n}^{\beta} \in$ $\{0,1\}$ and $\pi_{n}=P\left(\theta_{n}=1 \mid \xi_{0}^{n}\right)=P\left(\theta_{n}=1 \mid Y_{1}^{n}\right) P$-a.s.

Now let $\pi_{n}=G\left(Y_{n} ; Y_{1}^{n-1}\right)$ and fix pair of numbers h_{1} and h_{0}. Then

$$
\begin{aligned}
& \mathbb{E}\left(I\left(\theta_{n}=1\right)\left(h_{0} I\left(Y_{n}=0\right)+h_{1} I\left(Y_{n}=1\right)\right) \mid Y_{1}^{n-1}\right)= \\
& \mathbb{E}\left(I\left(\theta_{n}=1\right)\left(h_{0} I\left(\varepsilon_{n}^{\alpha}=0\right)+h_{1} I\left(\varepsilon_{n}^{\alpha}=1\right)\right) \mid Y_{1}^{n-1}\right)= \\
& \pi_{n \mid n-1}(1-\alpha) h_{0}+\pi_{n \mid n-1} \alpha h_{1}
\end{aligned}
$$

Analogously

$$
\begin{aligned}
& \mathbb{E}\left(G\left(Y_{n} ; Y_{1}^{n-1}\right)\left(h_{0} I\left(Y_{n}=0\right)+h_{1} I\left(Y_{n}=1\right)\right) \mid Y_{1}^{n-1}\right)= \\
& h_{0} G\left(0 ; Y_{1}^{n-1}\right) \mathbb{E}\left(I\left(Y_{n}=0\right) \mid Y_{1}^{n-1}\right)+h_{1} G\left(1 ; Y_{1}^{n-1}\right) \mathbb{E}\left(I\left(Y_{n}=1\right) \mid Y_{1}^{n-1}\right) .
\end{aligned}
$$

Now
$\mathbb{E}\left(I\left(Y_{n}=0\right) \mid Y_{1}^{n-1}\right)=\mathbb{E}\left(I\left(\theta_{n}=1\right) I\left(\varepsilon^{\alpha}=0\right)+I\left(\theta_{n}=0\right) I\left(\varepsilon^{\beta}=0\right) \mid Y_{1}^{n-1}\right)=$ $\pi_{n \mid n-1}(1-\alpha)+\left(1-\pi_{n \mid n-1}\right)(1-\beta)$
and similarly

$$
\mathbb{E}\left(I\left(Y_{n}=1\right) \mid Y_{1}^{n-1}\right)=\pi_{n \mid n-1} \alpha+\left(1-\pi_{n \mid n-1}\right) \beta
$$

By arbitrariness of h_{0} and h_{1}, obtain

$$
\begin{aligned}
& \pi_{n}=G\left(Y_{n} ; Y_{n-1}\right)= \\
& \frac{(1-\alpha) \pi_{n \mid n-1}\left(1-Y_{n}\right)}{\pi_{n \mid n-1}(1-\alpha)+\left(1-\pi_{n \mid n-1}\right)(1-\beta)}+\frac{\alpha \pi_{n \mid n-1} Y_{n}}{\pi_{n \mid n-1} \alpha+\left(1-\pi_{n \mid n-1}\right) \beta}= \\
& \frac{(1-\alpha) \pi_{n \mid n-1}\left(1-\Delta \xi_{n}\right)}{\pi_{n \mid n-1}(1-\alpha)+\left(1-\pi_{n \mid n-1}\right)(1-\beta)}+\frac{\alpha \pi_{n \mid n-1} \Delta \xi_{n}}{\pi_{n \mid n-1} \alpha+\left(1-\pi_{n \mid n-1}\right) \beta}
\end{aligned}
$$

The $\pi_{n \mid n-1}$ is recalculated by familiar transition formula

$$
\pi_{n \mid n-1}=\lambda_{2} \pi_{n-1}+\left(1-\lambda_{1}\right)\left(1-\pi_{n-1}\right)
$$

b)

Date: Summer, 2004.

Figure 1. Typical original and estimated path
(a) If $\alpha=1$ and $\beta=0$, i.e. in one state each time there's an arrival (active state) and in the other no arrivals occur (idle state), the filter gives:

$$
\pi_{n}(\xi)=\Delta \xi_{n}
$$

That is if the counter is not updated, the idle state is estimated and vise versa.
(b) If $\lambda_{1}=0$ and $\lambda_{2}=1$, i.e. the system is always pushed into one state, we obtain:

$$
\pi_{n}(\xi) \equiv 1
$$

regardless of observations.
(c) If $\lambda_{1}=1$ and $\lambda_{2}=1$, that is the system always stays in one of two states, the filter is simplified appropriately (How?)

Problem 6.2

(a) The process $\left(X_{n}, Y_{n}\right)_{n \geq 0}$ is not necessarily Gaussian. E.g. $a_{0}=0$, $A_{0}=0, a_{1}=0$ and $A_{1}\left(Y_{0}^{n-1}\right)=Y_{n-1}$. Then:

$$
Y_{1}=Y_{0} X_{0}+B \xi_{1}
$$

Assume that $\left(Y_{1}, X_{0}\right)$ is Gaussian. Assuming that X_{0} and Y_{0} independent, $\mathbb{E}\left(Y_{1} \mid X_{0}\right)=0$ and

$$
\operatorname{Var}\left(Y_{1} \mid X_{0}\right)=X_{0}^{2} \mathbb{E} Y_{0}^{2}+B^{2}=\operatorname{funct}\left(X_{0}\right)
$$

The latter contradicts the assumption.
(b) Though the process $\left(X_{n}, Y_{n}\right)$ is not generally Gaussian, it is conditionally Gaussian (the dependencies of a_{i}, A_{i} on Y_{0}^{n-1} are omitted for brevity)

$$
\begin{aligned}
\varphi_{n}(\lambda, \mu)= & \mathbb{E}\left(e^{-i \lambda X_{n}-i \mu Y_{n}} \mid Y_{0}^{n-1}\right)= \\
= & \mathbb{E}\left(\operatorname { e x p } \left\{-i \lambda\left(a_{0}+a_{1} X_{n-1}+b \varepsilon_{n}\right)-\right.\right. \\
& \left.\left.-i \mu\left(A_{0}+A_{1} X_{n-1}+B \xi_{n}\right)\right\} \mid Y_{0}^{n-1}\right)= \\
= & \mathbb{E}\left(\mathbb { E } \left[\operatorname { e x p } \left\{-i \lambda\left(a_{0}+a_{1} X_{n-1}\right)-1 / 2 b^{2} \lambda^{2}\right.\right.\right. \\
& \left.\left.\left.-i \mu\left(A_{0}+A_{1} X_{n-1}\right)-1 / 2 B^{2} \mu^{2}\right\} \mid X_{n-1}, Y_{0}^{n-1}\right] \mid Y_{0}^{n-1}\right)
\end{aligned}
$$

The latter suggests that, given Y_{0}^{n-1} and X_{n-1}, the pair (X_{n}, Y_{n}) is Gaussian. We proceed by induction: assume that the conditional density of X_{n-1}, given Y_{0}^{n-1} is Gaussian with

$$
\mathbb{E}\left(X_{n-1} \mid Y_{0}^{n-1}\right) \triangleq m_{n-1}\left(Y_{0}^{n-1}\right)
$$

and

$$
\mathbb{E}\left(\left[X_{n-1}-m_{n-1}\right]^{2} \mid Y_{0}^{n-1}\right) \triangleq P_{n-1}\left(Y_{0}^{n-1}\right)
$$

Then

$$
\begin{aligned}
\varphi_{n}(\lambda, \mu)= & \mathbb{E}\left(\operatorname { e x p } \left\{-i \lambda\left(a_{0}+a_{1} X_{n-1}\right)-1 / 2 b^{2} \lambda^{2}\right.\right. \\
& \left.\left.-i \mu\left(A_{0}+A_{1} X_{n-1}\right)-1 / 2 B^{2} \mu^{2}\right\} \mid Y_{0}^{n-1}\right)= \\
= & \exp \left\{-i \lambda\left(a_{0}+a_{1} m_{n-1}\right)-i \mu\left(A_{0}+A_{1} m_{n-1}\right)\right. \\
& -1 / 2\left(a_{1}^{2} P_{n-1}+b^{2}\right) \lambda^{2}-\lambda \mu A_{1} a_{1} P_{n-1} \\
& \left.-1 / 2\left(A_{1}^{2} P_{n-1}+B^{2}\right) \mu^{2}\right\}
\end{aligned}
$$

which implies that the density of X_{n} given Y_{0}^{n} is Gaussian. Hence the optimal filter is given by:

$$
\begin{align*}
m_{n} & =a_{0}+a_{1} m_{n-1}+\frac{A_{1} a_{1} P_{n-1}}{A_{1}^{2} P_{n-1}+B^{2}}\left(Y_{n}-A_{0}-A_{1} m_{n-1}\right) \tag{6.1}\\
P_{n} & =a_{1}^{2} P_{n-1}+b^{2}-\frac{A_{1}^{2} a_{1}^{2} P_{n-1}^{2}}{A_{1}^{2} P_{n-1}+B^{2}} \tag{6.2}
\end{align*}
$$

Note 1: the essential difference between Kalman filter and so called conditionally Gaussian filter given by (6.1) is that the Riccati equation (6.2) in the latter depends on the observation process $\left(Y_{n}\right)_{n \geq 1}$ and hence cannot be computed off line. In a certain sense, it is
an adaptive filter, since its parameters vary with the recorded data. This filter is extremely useful in control theory.
Note 2: the equations (6.1) and (6.2) can be derived directly from the conditional density recursion.
(c) If all the functionals are constant the filter gets the form of conventional Kalman filter - the Riccati equation becomes decoupled from the observation process.

Problem 6.3

a) Put $\Delta_{n} \equiv \theta_{n}-\widetilde{\theta}_{n}$ and assume it is small enough to justify:

$$
\begin{align*}
h\left(\theta_{n-1}\right) & \approx h\left(\widetilde{\theta}_{n-1}\right)+h^{\prime}\left(\widetilde{\theta}_{n-1}\right)\left(\theta_{n-1}-\widetilde{\theta}_{n-1}\right) \\
g\left(\theta_{n-1}\right) & \approx g\left(\widetilde{\theta}_{n-1}\right)+g^{\prime}\left(\widetilde{\theta}_{n-1}\right)\left(\theta_{n-1}-\widetilde{\theta}_{n-1}\right) \tag{6.3}
\end{align*}
$$

Then the system equations are transformed into a pair of linear (in θ !) recursions:

$$
\begin{align*}
\theta_{n} & =\left[h\left(\widetilde{\theta}_{n-1}\right)-h^{\prime}\left(\widetilde{\theta}_{n-1}\right) \widetilde{\theta}_{n-1}\right]+h^{\prime}\left(\widetilde{\theta}_{n-1}\right) \theta_{n-1}+u_{n} \\
\xi_{n} & =\left[g\left(\widetilde{\theta}_{n-1}\right)-g^{\prime}\left(\widetilde{\theta}_{n-1}\right) \widetilde{\theta}_{n-1}\right]+g^{\prime}\left(\widetilde{\theta}_{n-1}\right) \theta_{n-1}+v_{n} \tag{6.4}
\end{align*}
$$

Applying the equations of Conditionally Gaussian Filter and setting $\widetilde{\theta}_{n}$ to be equal to the obtained estimate, we arrive at:

$$
\begin{align*}
& \widetilde{\theta}_{n}=h\left(\widetilde{\theta}_{n-1}\right)+\frac{g^{\prime}\left(\widetilde{\theta}_{n-1}\right) h^{\prime}\left(\widetilde{\theta}_{n-1}\right) P_{n-1}}{\left(g^{\prime}\left(\widetilde{\theta}_{n-1}\right)\right)^{2} P_{n-1}+B^{2}}\left[\xi_{n}-g\left(\widetilde{\theta}_{n-1}\right)\right] \\
& P_{n}=\left[h^{\prime}\left(\widetilde{\theta}_{n-1}\right)\right]^{2} P_{n-1}+b^{2}-\frac{\left[g^{\prime}\left(\widetilde{\theta}_{n-1}\right) h^{\prime}\left(\widetilde{\theta}_{n-1}\right) P_{n-1}\right]^{2}}{\left(g^{\prime}\left(\widetilde{\theta}_{n-1}\right)\right)^{2} P_{n-1}+B^{2}} \tag{6.5}
\end{align*}
$$

b) Since the EKF is a purely heuristic device, in certain cases it will fail to produce reasonable estimate. E.g. if $h(x)=\tanh \left(x^{3}\right)$, then $h(0)=0$ and $h^{\prime}(0)=0$. Once the state estimate $\widetilde{\theta}_{n}$ is rounded to zero during the calculations the filter will be stuck, i.e. $\widetilde{\theta}_{k}=0$, for all $k \geq n$.

Problem 6.4

a. The suitable model is:

$$
\begin{aligned}
\theta_{n} & =\theta_{n-1}, \quad \theta_{0}=\theta \\
\xi_{n} & =1 / 2 \theta_{n-1}+\varepsilon_{n}
\end{aligned}
$$

where $\varepsilon_{n}:=\theta_{n-1}\left(U_{n}-1 / 2\right)$. Clearly $\mathbb{E} \varepsilon_{n}=0, \mathbb{E} \varepsilon_{n}^{2}=1 / 3 \cdot 1 / 12=1 / 36$, $\mathbb{E} \varepsilon_{n} \varepsilon_{m}=0, n \neq m$ and ε and θ are orthogonal. The corresponding Kalman
filter is

$$
\begin{aligned}
\hat{\theta}_{n} & =\widehat{\theta}_{n-1}+\frac{1 / 2 P_{n-1}}{1 / 4 P_{n-1}+1 / 36}\left(\xi_{n}-1 / 2 \widehat{\theta}_{n-1}\right) \\
P_{n} & =P_{n-1}-\frac{1 / 4 P_{n-1}^{2}}{1 / 4 P_{n-1}+1 / 36}=\frac{1 / 36 P_{n-1}}{1 / 4 P_{n-1}+1 / 36}
\end{aligned}
$$

subject to $\widehat{\theta}_{0}=1 / 2, P_{0}=1 / 12$.
b. Let $Q_{n}=1 / P_{n}$, then

$$
Q_{n}=36 / 4+Q_{n-1}=12+9 n \quad \Longrightarrow \quad P_{n}=\frac{1}{12+9 n}
$$

Clearly $P_{n} \rightarrow 0$ as $n \rightarrow \infty$ with linear rate.
c. Note that

$$
\widetilde{\theta}_{n}=\max \left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)
$$

The conditional density is given by (Why?)
$f_{\widetilde{\theta}_{n} \mid \theta}(x ; \theta)=\frac{d}{d x} \mathbb{P}\left(\widetilde{\theta}_{n} \leq x \mid \theta\right)=\frac{d}{d x}\left(\frac{x}{\theta}\right)^{n} I(x \in[0, \theta])=\frac{n}{\theta^{n}} x^{n-1} I(x \in[0, \theta])$
Calculate the conditional variance:

$$
\mathbb{E}\left(\left(\theta-\widetilde{\theta}_{n}\right)^{2} \mid \theta\right)=\theta^{2}-2 \theta \mathbb{E}\left(\widetilde{\theta}_{n} \mid \theta\right)+\mathbb{E}\left(\widetilde{\theta}_{n}^{2} \mid \theta\right)
$$

Clearly

$$
\mathbb{E}\left(\widetilde{\theta}_{n} \mid \theta\right)=\int_{0}^{\infty} x f_{\widetilde{\theta}_{n} \mid \theta}(x ; \theta) d x=\frac{n}{\theta^{n}} \int_{0}^{\theta} x^{n} d x=\frac{n}{(n+1)} \theta
$$

and

$$
\mathbb{E}\left(\widetilde{\theta}_{n}^{2} \mid \theta\right)=\int_{0}^{\infty} x^{2} f_{\widetilde{\theta}_{n} \mid \theta}(x ; \theta) d x=\frac{n}{\theta^{n}} \int_{0}^{\theta} x^{n+1} d x=\frac{n}{(n+2)} \theta^{2}
$$

So

$$
\mathbb{E}\left(\left(\theta-\widetilde{\theta}_{n}\right)^{2} \mid \theta\right)=\theta^{2}\left(1-2 \frac{n}{(n+1)}+\frac{n}{(n+2)}\right)=\frac{2 \theta^{2}}{(n+1)(n+2)}
$$

so that

$$
Q_{n}=\frac{2 / 3}{(n+1)(n+2)}
$$

d. Clearly $Q_{n} \rightarrow 0$ and the convergence rate is n^{2}. So $\widetilde{\theta}_{n}$ is more accurate than $\widehat{\theta}_{n}$ asymptotically. It is quite obvious that for small $n, \widehat{\theta}_{n}$ is better than $\widetilde{\theta}_{n}$: note e.g. $\widetilde{\theta}_{1}=\xi_{1}$, i.e. it is linear in ξ_{1} and thus is clearly suboptimal. This can be verified also directly via the formulae. So the filtering estimate can be improved if the linear filter is used up to some n^{*} (determined by the eq. $Q_{n^{*}}=P_{n^{*}}$) and afterwards the "maximum" filter is applied.
e. $\tilde{\theta}$ is clearly suboptimal (since it is even suboptimal with respect to the best linear estimate for small n). In fact in this problem the exact conditional
expectation can be found as follows. By the recursive Bayes formula we have:

$$
\mathbb{E}\left(\theta \mid \xi_{1}^{n}\right)=\frac{\int_{0}^{1} s f_{\xi_{1}^{n} \mid \theta}\left(\xi_{1}, \ldots, \xi_{n} ; s\right) f_{\theta}(s) d s}{\int_{0}^{1} f_{\xi_{1}^{n} \mid \theta}\left(\xi_{1}, \ldots, \xi_{n} ; x\right) f_{\theta}(x) d x}
$$

with obvious notations for conditional densities. Let $\xi_{n}^{*}=\max _{i \leq n} \xi_{i}$, then for $n \geq 3$

$$
\begin{aligned}
& \mathbb{E}\left(\theta \mid \xi_{1}^{n}\right)=\frac{\int_{0}^{1} s^{-n+1} \prod_{i=1}^{n} I\left(\xi_{i} \in[0, s]\right) d s}{\int_{0}^{1} s^{-n} \prod_{i=1}^{n} I\left(\xi_{i} \in[0, s]\right) d s}=\int_{\xi_{n}^{*}}^{1} s^{-n+1} d s / \int_{\xi_{n}^{*}}^{1} s^{-n} d s= \\
& \left.\left.=\frac{s^{-n+2}}{-n+2}\right]_{s=\xi_{n}^{*}}^{s=1} / \frac{s^{-n+1}}{-n+1}\right]_{s=\xi_{n}^{*}}^{s=1}=\frac{1-n}{2-n} \cdot \frac{1-\left(\xi_{n}^{*}\right)^{-n+2}}{1-\left(\xi_{n}^{*}\right)^{-n+1}}= \\
& =\frac{(n-1)\left(\xi_{n}^{*}-\left(\xi_{n}^{*}\right)^{n-1}\right)}{(n-2)\left(1-\left(\xi_{n}^{*}\right)^{n-1}\right)}
\end{aligned}
$$

(a) Note that the optimal estimate approaches $\widetilde{\theta}_{n}$ as $n \rightarrow \infty$ exponentially fast (Why?), so that it is expected that the minimal mean square error decays to zero as $1 / n^{2}$.
(b) As it was mentioned earlier, generally the recursive optimal filters are infinite dimensional. Remarkably, in this case a one dimensional recursive (since ξ_{n}^{*} can be calculated recursively!) filter is available. Moreover observe that $\xi_{n}^{*}=\max _{i \leq n} \xi_{i}$ is sufficient statistic, i.e. it incorporates all the "information", contained in ξ_{1}^{n}, needed for calculation of the optimal estimate.

