
STOCHASTIC PROCESSES. SOLUTIONS TO HOME
ASSIGNMENTS

6. Non-Linear Filtering of Markov Processes

Problem 6.1

a) Define Yn = ∆ξn = ξn − ξn−1, n ≥ 1. Clearly Yn = θnεα
n + (1 − θn)εβ

n ∈
{0, 1} and πn = P (θn = 1|ξn

0 ) = P (θn = 1|Y n
1 ) P -a.s.

Now let πn = G(Yn; Y n−1
1 ) and fix pair of numbers h1 and h0. Then

E
(
I(θn = 1)(h0I(Yn = 0) + h1I(Yn = 1))|Y n−1

1

)
=

E
(
I(θn = 1)(h0I(εα

n = 0) + h1I(εα
n = 1))|Y n−1

1

)
=

πn|n−1(1− α)h0 + πn|n−1αh1

Analogously

E
(
G(Yn; Y n−1

1 )(h0I(Yn = 0) + h1I(Yn = 1))|Y n−1
1

)
=

h0G(0;Y n−1
1 )E

(
I(Yn = 0)|Y n−1

1

)
+ h1G(1; Y n−1

1 )E
(
I(Yn = 1)|Y n−1

1

)
.

Now

E
(
I(Yn = 0)|Y n−1

1

)
= E

(
I(θn = 1)I(εα = 0) + I(θn = 0)I(εβ = 0)|Y n−1

1

)
=

πn|n−1(1− α) + (1− πn|n−1)(1− β)

and similarly

E
(
I(Yn = 1)|Y n−1

1

)
= πn|n−1α + (1− πn|n−1)β

By arbitrariness of h0 and h1, obtain

πn = G(Yn; Yn−1) =

(1− α)πn|n−1(1− Yn)
πn|n−1(1− α) + (1− πn|n−1)(1− β)

+
απn|n−1Yn

πn|n−1α + (1− πn|n−1)β
=

(1− α)πn|n−1(1−∆ξn)
πn|n−1(1− α) + (1− πn|n−1)(1− β)

+
απn|n−1∆ξn

πn|n−1α + (1− πn|n−1)β

The πn|n−1 is recalculated by familiar transition formula

πn|n−1 = λ2πn−1 + (1− λ1)(1− πn−1)

b)
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Figure 1. Typical original and estimated path

(a) If α = 1 and β = 0, i.e. in one state each time there’s an arrival
(active state) and in the other no arrivals occur (idle state), the filter
gives:

πn(ξ) = ∆ξn.

That is if the counter is not updated, the idle state is estimated and
vise versa.

(b) If λ1 = 0 and λ2 = 1, i.e. the system is always pushed into one state,
we obtain:

πn(ξ) ≡ 1
regardless of observations.

(c) If λ1 = 1 and λ2 = 1, that is the system always stays in one of two
states, the filter is simplified appropriately (How?)

Problem 6.2

(a) The process (Xn, Yn)n≥0 is not necessarily Gaussian. E.g. a0 = 0,
A0 = 0, a1 = 0 and A1(Y n−1

0 ) = Yn−1. Then:

Y1 = Y0X0 + Bξ1
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Assume that (Y1, X0) is Gaussian. Assuming that X0 and Y0 inde-
pendent, E(Y1|X0) = 0 and

Var(Y1|X0) = X2
0EY 2

0 + B2 = funct(X0)

The latter contradicts the assumption.
(b) Though the process (Xn, Yn) is not generally Gaussian, it is condi-

tionally Gaussian (the dependencies of ai, Ai on Y n−1
0 are omitted

for brevity)

ϕn(λ, µ) = E
(
e−iλXn−iµYn |Y n−1

0

)
=

= E
(
exp{−iλ(a0 + a1Xn−1 + bεn)−

−iµ(A0 + A1Xn−1 + Bξn)}|Y n−1
0

)
=

= E
(
E

[
exp{−iλ(a0 + a1Xn−1)− 1/2b2λ2

−iµ(A0 + A1Xn−1)− 1/2B2µ2}|Xn−1, Y
n−1
0

]|Y n−1
0

)

The latter suggests that, given Y n−1
0 and Xn−1, the pair (Xn, Yn)

is Gaussian. We proceed by induction: assume that the conditional
density of Xn−1, given Y n−1

0 is Gaussian with

E(Xn−1|Y n−1
0 )

4
= mn−1(Y n−1

0 )

and
E

([
Xn−1 −mn−1

]2∣∣Y n−1
0

) 4
= Pn−1(Y n−1

0 )

Then

ϕn(λ, µ) = E
(

exp{−iλ(a0 + a1Xn−1)− 1/2b2λ2

−iµ(A0 + A1Xn−1)− 1/2B2µ2}|Y n−1
0

)
=

= exp
{− iλ(a0 + a1mn−1)− iµ(A0 + A1mn−1)

−1/2(a2
1Pn−1 + b2)λ2 − λµA1a1Pn−1

−1/2(A2
1Pn−1 + B2)µ2

}

which implies that the density of Xn given Y n
0 is Gaussian. Hence

the optimal filter is given by:

mn = a0 + a1mn−1 +
A1a1Pn−1

A2
1Pn−1 + B2

(Yn −A0 −A1mn−1) (6.1)

Pn = a2
1Pn−1 + b2 − A2

1a
2
1P

2
n−1

A2
1Pn−1 + B2

(6.2)

Note 1: the essential difference between Kalman filter and so called
conditionally Gaussian filter given by (6.1) is that the Riccati equa-
tion (6.2) in the latter depends on the observation process (Yn)n≥1

and hence cannot be computed off line. In a certain sense, it is
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an adaptive filter, since its parameters vary with the recorded data.
This filter is extremely useful in control theory.
Note 2: the equations (6.1) and (6.2) can be derived directly from
the conditional density recursion.

(c) If all the functionals are constant the filter gets the form of conven-
tional Kalman filter - the Riccati equation becomes decoupled from
the observation process.

Problem 6.3

a) Put ∆n ≡ θn − θ̃n and assume it is small enough to justify:

h(θn−1) ≈ h(θ̃n−1) + h′(θ̃n−1)(θn−1 − θ̃n−1)

g(θn−1) ≈ g(θ̃n−1) + g′(θ̃n−1)(θn−1 − θ̃n−1) (6.3)

Then the system equations are transformed into a pair of linear (in θ !)
recursions:

θn =
[
h(θ̃n−1)− h′(θ̃n−1)θ̃n−1

]
+ h′(θ̃n−1)θn−1 + un

ξn =
[
g(θ̃n−1)− g′(θ̃n−1)θ̃n−1

]
+ g′(θ̃n−1)θn−1 + vn (6.4)

Applying the equations of Conditionally Gaussian Filter and setting θ̃n to
be equal to the obtained estimate, we arrive at:

θ̃n = h(θ̃n−1) +
g′(θ̃n−1)h′(θ̃n−1)Pn−1(
g′(θ̃n−1)

)2
Pn−1 + B2

[
ξn − g(θ̃n−1)

]

Pn =
[
h′(θ̃n−1)

]2
Pn−1 + b2 −

[
g′(θ̃n−1)h′(θ̃n−1)Pn−1

]2

(
g′(θ̃n−1)

)2
Pn−1 + B2

(6.5)

b) Since the EKF is a purely heuristic device, in certain cases it will fail
to produce reasonable estimate. E.g. if h(x) = tanh(x3), then h(0) = 0
and h′(0) = 0. Once the state estimate θ̃n is rounded to zero during the
calculations the filter will be stuck, i.e. θ̃k = 0, for all k ≥ n.

Problem 6.4

a. The suitable model is:

θn = θn−1, θ0 = θ

ξn = 1/2θn−1 + εn

where εn := θn−1(Un − 1/2). Clearly Eεn = 0, Eε2
n = 1/3 · 1/12 = 1/36,

Eεnεm = 0, n 6= m and ε and θ are orthogonal. The corresponding Kalman
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filter is

θ̂n = θ̂n−1 +
1/2Pn−1

1/4Pn−1 + 1/36
(ξn − 1/2θ̂n−1)

Pn = Pn−1 −
1/4P 2

n−1

1/4Pn−1 + 1/36
=

1/36Pn−1

1/4Pn−1 + 1/36

subject to θ̂0 = 1/2, P0 = 1/12.

b. Let Qn = 1/Pn, then

Qn = 36/4 + Qn−1 = 12 + 9n =⇒ Pn =
1

12 + 9n

Clearly Pn → 0 as n →∞ with linear rate.

c. Note that
θ̃n = max(ξ1, ξ2, ..., ξn)

The conditional density is given by (Why?)

feθn|θ(x; θ) =
d

dx
P(θ̃n ≤ x|θ) =

d

dx

(x

θ

)n
I(x ∈ [0, θ]) =

n

θn
xn−1I(x ∈ [0, θ])

Calculate the conditional variance:

E
(
(θ − θ̃n)2

∣∣θ) = θ2 − 2θE(θ̃n|θ) + E
(
θ̃2
n|θ

)

Clearly

E(θ̃n|θ) =
∫ ∞

0
xfeθn|θ(x; θ)dx =

n

θn

∫ θ

0
xndx =

n

(n + 1)
θ

and

E(θ̃2
n|θ) =

∫ ∞

0
x2feθn|θ(x; θ)dx =

n

θn

∫ θ

0
xn+1dx =

n

(n + 2)
θ2

So

E
(
(θ − θ̃n)2

∣∣θ) = θ2

(
1− 2

n

(n + 1)
+

n

(n + 2)

)
=

2θ2

(n + 1)(n + 2)

so that

Qn =
2/3

(n + 1)(n + 2)

d. Clearly Qn → 0 and the convergence rate is n2. So θ̃n is more accurate
than θ̂n asymptotically. It is quite obvious that for small n, θ̂n is better than
θ̃n: note e.g. θ̃1 = ξ1, i.e. it is linear in ξ1 and thus is clearly suboptimal.
This can be verified also directly via the formulae. So the filtering estimate
can be improved if the linear filter is used up to some n∗ (determined by the
eq. Qn∗ = Pn∗) and afterwards the ”maximum” filter is applied.

e. θ̃ is clearly suboptimal (since it is even suboptimal with respect to the best
linear estimate for small n). In fact in this problem the exact conditional
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expectation can be found as follows. By the recursive Bayes formula we
have:

E(θ|ξn
1 ) =

∫ 1
0 sfξn

1 |θ(ξ1, ..., ξn; s)fθ(s)ds
∫ 1
0 fξn

1 |θ(ξ1, ..., ξn;x)fθ(x)dx

with obvious notations for conditional densities. Let ξ∗n = maxi≤n ξi, then
for n ≥ 3

E(θ|ξn
1 ) =

∫ 1
0 s−n+1

∏n
i=1 I(ξi ∈ [0, s])ds∫ 1

0 s−n
∏n

i=1 I(ξi ∈ [0, s])ds
=

∫ 1

ξ∗n
s−n+1ds

/ ∫ 1

ξ∗n
s−nds =

=
s−n+2

−n + 2

]s=1

s=ξ∗n

/ s−n+1

−n + 1

]s=1

s=ξ∗n

=
1− n

2− n
· 1− (ξ∗n)−n+2

1− (ξ∗n)−n+1
=

=
(n− 1)

(
ξ∗n − (ξ∗n)n−1

)

(n− 2)
(
1− (ξ∗n)n−1

)

(a) Note that the optimal estimate approaches θ̃n as n → ∞ exponen-
tially fast (Why?), so that it is expected that the minimal mean
square error decays to zero as 1/n2.

(b) As it was mentioned earlier, generally the recursive optimal filters
are infinite dimensional. Remarkably, in this case a one dimensional
recursive (since ξ∗n can be calculated recursively!) filter is available.
Moreover observe that ξ∗n = maxi≤n ξi is sufficient statistic, i.e. it
incorporates all the ”information”, contained in ξn

1 , needed for cal-
culation of the optimal estimate.


