STOCHASTIC PROCESSES. SOLUTIONS TO HOME ASSIGNMENTS

2. Stationary Random Processes

Problem 2.1

It is well known, that characteristic function of a random vector defines its distribution. Introduce the vector

$$
\xi_{n}=\left[\begin{array}{c}
\xi\left(t_{1}\right) \\
\xi\left(t_{2}\right) \\
\cdots \\
\xi\left(t_{n}\right)
\end{array}\right]
$$

In this case

$$
\Phi(\lambda) \triangleq \mathbb{E} e^{i \lambda^{T} \xi_{n}}=\mathbb{E} \mathbb{E}\left(e^{i \lambda^{T} \xi_{n}} \mid \alpha, \beta\right)
$$

since γ is independent of α, β we get

$$
\Phi(\lambda)=\mathbb{E} \frac{1}{2 \pi} \int_{0}^{2 \pi} \exp \left(\sum_{k=1}^{n} i \lambda_{k} \alpha \sin \left(\beta t_{k}+\gamma\right)\right) d \gamma
$$

Denote by $\Phi_{h}(\lambda)$ the characteristic function of the time shifted vector, namely

$$
\begin{aligned}
\Phi_{h}(\lambda)= & \mathbb{E} \mathbb{E}\left[\exp \left\{i \sum_{k=1}^{n} \lambda_{k} \xi\left(t_{k}+h\right)\right\} \mid \alpha, \beta\right]= \\
= & \mathbb{E} \frac{1}{2 \pi} \int_{0}^{2 \pi} \exp \left\{i \sum_{k=1}^{n} \lambda_{k} \alpha \sin \left(\beta t_{k}+\beta h+\gamma\right)\right\} d \gamma= \\
= & \mathbb{E} \frac{1}{2 \pi} \int_{\beta h}^{2 \pi+\beta h} \exp \left\{i \sum_{k=1}^{n} \lambda_{k} \alpha \sin \left(\beta t_{k}+\gamma^{\prime}\right)\right\} d \gamma^{\prime}= \\
= & \mathbb{E} \frac{1}{2 \pi} \int_{\beta h}^{2 \pi} \exp \left\{i \sum_{k=1}^{n} \lambda_{k} \alpha \sin \left(\beta t_{k}+\gamma^{\prime}\right)\right\} d \gamma^{\prime}+ \\
& +\mathbb{E} \frac{1}{2 \pi} \int_{2 \pi}^{2 \pi+\beta h} \exp \left\{i \sum_{k=1}^{n} \lambda_{k} \alpha \sin \left(\beta t_{k}+\gamma^{\prime}\right)\right\} d \gamma^{\prime}= \\
= & \mathbb{E} \frac{1}{2 \pi} \int_{0}^{2 \pi} \exp \left\{i \sum_{k=1}^{n} \lambda_{k} \alpha \sin \left(\beta t_{k}+\gamma^{\prime \prime}\right)\right\} d \gamma^{\prime \prime} \equiv \Phi(\lambda)
\end{aligned}
$$

[^0]
Problem 2.2

(a) $R(k)$ is non negative definite if

$$
\begin{equation*}
\sum_{k, m} a_{k} R(k-m) \bar{a}_{m} \geq 0 \tag{2.1}
\end{equation*}
$$

for any sequence $\left\{a_{k}\right\}$. Let $S(\lambda)$ be spectral density corresponding to $R(k)$, then

$$
R(k-m)=\frac{1}{2 \pi} \int_{[-\pi, \pi]} S(\lambda) e^{j(k-m) \lambda} d \lambda
$$

and

$$
\begin{align*}
\sum_{k, m} a_{k} R(k-m) \bar{a}_{m} & =\sum_{k, m} a_{k} \frac{1}{2 \pi} \int_{[-\pi, \pi]} S(\lambda) e^{j(k-m) \lambda} d \lambda \bar{a}_{m}= \\
& =\frac{1}{2 \pi} \int_{[-\pi, \pi]} S(\lambda) \sum_{k, m} a_{k} e^{j k \lambda} \bar{a}_{m} e^{-j m \lambda} d \lambda= \\
& =\frac{1}{2 \pi} \int_{[-\pi, \pi]} S(\lambda)|A(\lambda)|^{2} d \lambda \tag{2.2}
\end{align*}
$$

where $A(\lambda)$ is the Fourier transform of \bar{a}_{k}. Due to (2.1), (2.2) and arbitrariness of $a_{k}, S(\lambda) \geq 0$ follows. Starting from $S(\lambda) \geq 0$, by (2.2), we deduce (2.1), which proves the other direction.
(b) Assume that $R(n)$ can be decomposed

$$
R(n)=\sum_{k=-\infty}^{\infty} h(k) \bar{h}(k-n)
$$

Then

$$
\begin{aligned}
S(\lambda) & =\sum_{m} R(m) e^{-j \lambda m}=\sum_{m} \sum_{k} h(k) \bar{h}(k-m) e^{-j \lambda m}= \\
& =\sum_{k} h(k) \sum_{\ell} \bar{h}(\ell) e^{-j \lambda(k-\ell)}=|H(\lambda)|^{2} \geq 0
\end{aligned}
$$

for any λ. So, by virtue of (a), $R(n)$ is a non negative definite sequence.
(c) Let X_{n}^{\prime} and $X_{n}^{\prime \prime}$ be a pair of independent processes with zero mean and correlation functions $R^{\prime}(k, m)$ and $R^{\prime \prime}(k, m)$. Introduce $Y_{n}=X_{n}^{\prime} X_{n}^{\prime \prime}$ and $Z_{n}=X_{n}^{\prime}+X_{n}^{\prime \prime}$. Then

$$
\mathbb{E} Y_{k} Y_{m}=\mathbb{E} X_{k}^{\prime} X_{k}^{\prime \prime} X_{m}^{\prime} X_{m}^{\prime \prime}=\mathbb{E} X_{k}^{\prime} X_{m}^{\prime} \mathbb{E} X_{k}^{\prime \prime} X_{m}^{\prime \prime}=R^{\prime}(k, m) R^{\prime \prime}(k, m)
$$

and

$$
\mathbb{E} Z_{k} Z_{m}=\mathbb{E}\left(X_{k}^{\prime}+X_{k}^{\prime \prime}\right)\left(X_{m}^{\prime}+X_{m}^{\prime \prime}\right)=R^{\prime}(k, m)+R^{\prime \prime}(k, m)
$$

Problem 2.3

Any symmetric sequence $R(n)$, which satisfies ${ }^{1}$
(i) $R(0) \geq R(m), m \neq 0$
(ii) $R(n)$ is positive definite

[^1]can be an autocorrelation function of some process.
(a) For $R(n)=e^{-n^{2}}$ (i) is obvious. Verify (ii) using the results of the previous problem
\[

$$
\begin{aligned}
S(\lambda) & =\sum_{n} R(n) e^{-j n \lambda}=\sum_{n} e^{-n^{2}-j n \lambda}=1+2 \sum_{n=1}^{\infty} e^{-n^{2}} \cos (n \lambda) \geq \\
& \geq 1-2 \sum_{n=1}^{\infty} e^{-n^{2}} \geq 1-2 e^{-1}-2 e^{-4}-2 \sum_{n=3}^{\infty} e^{-n}= \\
& =1-2 e^{-1}-2 e^{-4}-2 e^{-3} /\left(1-e^{-1}\right)>0, \quad \forall \lambda
\end{aligned}
$$
\]

so that (ii) holds as well.
(b) No: $S(\lambda)=1+1.4 \cos (\lambda)$ is negative for λ on some interval (e.g. around $\lambda=\pi)$
(c) Note that $R(n)=h(n) \star h(-n)$ where $h(n)=I(0 \leq n<N)$, so by virtue of (b) from the previous problem, $R(n)$ is non negative definite.

Problem 2.4

(a) Note that

$$
\begin{equation*}
\lambda_{k}=\frac{v_{k}^{*} R_{x} v_{k}}{v_{k}^{*} v_{k}} \tag{2.3}
\end{equation*}
$$

where v_{k} is the eigenvector corresponding to λ_{k}. Denote by $v_{k, \ell}$ the ℓ-th component of the k-the eigenvector. Then

$$
v_{k}^{*} R_{x} v_{k}=\sum_{\ell=1}^{N} \sum_{m=1}^{N} v_{k, \ell} R_{x}(\ell, m) v_{k, m}=\sum_{\ell=1}^{N} \sum_{m=1}^{N} v_{k, \ell} r_{x}(\ell-m) v_{k, m}
$$

where $r_{x}(\ell-m)=\mathbb{E} X(\ell) X(m)$ is the autocorrelation sequence of the process. Using the representation

$$
r_{x}(\ell-m)=\frac{1}{2 \pi} \int_{[-\pi, \pi]} S_{x}(\lambda) e^{j \lambda(\ell-m)} d \lambda
$$

obtain

$$
\begin{aligned}
v_{k}^{*} R_{x} v_{k} & =\frac{1}{2 \pi} \int_{[-\pi, \pi]} S_{x}(\lambda)\left\{\sum_{\ell} v_{k, \ell} e^{j \lambda \ell} \sum_{m} v_{k, m} e^{-j \lambda m}\right\} d \lambda= \\
& =\frac{1}{2 \pi} \int_{[-\pi, \pi]} S_{x}(\lambda)\left|V_{k}(\lambda)\right|^{2} d \lambda
\end{aligned}
$$

Similarly

$$
v_{k}^{*} v_{k}=\frac{1}{2 \pi} \int_{[-\pi, \pi]}\left|V_{k}(\lambda)\right|^{2} d \lambda
$$

so that by (2.3)

$$
\lambda_{k}=\frac{\int_{[-\pi, \pi]} S_{x}(\lambda)\left|V_{k}(\lambda)\right|^{2} d \lambda}{\int_{[-\pi, \pi]}\left|V_{k}(\lambda)\right|^{2} d \lambda}
$$

which in turn implies

$$
\min _{\lambda} S_{x}(\lambda) \leq \lambda_{k} \leq \max _{\lambda} S_{x}(\lambda)
$$

for all k.
(b) Introduce

$$
\gamma_{n}=\frac{\mathbb{E}\left(\sum_{k=0}^{N-1} X_{n-k} a_{k}\right)^{2}}{\mathbb{E}\left(\sum_{k=0}^{N-1} \xi_{n-k} a_{k}\right)^{2}}
$$

Define vectors $X^{n}=\left[X_{n}, \ldots, X_{n-N+1}\right]^{*}, \xi^{n}=\left[\xi_{n}, \ldots, \xi_{n-N+1}\right]^{*}$ and $a=$ $\left[a_{0}, \ldots, a_{N-1}\right]^{*}$ so that

$$
\gamma_{n} \equiv \gamma=\frac{\mathbb{E}\left(X^{n *} a\right)^{2}}{\mathbb{E}\left(\xi^{n *} a\right)^{2}}=\frac{a^{*} R_{x} a}{\sigma^{2} a^{*} a}=\sigma^{-2} \frac{a^{*} U \Lambda U^{*} a}{a^{*} U U^{*} a}
$$

where U is an orthogonal matrix with v_{k} as columns and Λ is a diagonal matrix with $\Lambda_{j j}=\lambda_{j}$. Set $\widetilde{a}=U^{*} a$, then

$$
\gamma=\sigma^{-2} \frac{\widetilde{a}^{*} \Lambda \widetilde{a}}{\widetilde{a}^{*} \widetilde{a}}=\sigma^{-2} \frac{\sum_{j=0}^{N-1} \widetilde{a}_{j}^{2} \lambda_{j}}{\sum_{j=0}^{N-1} \widetilde{a}_{j}^{2}} \leq \lambda_{\max } / \sigma^{2}
$$

where the equality holds when $a=v_{\text {max }}$, the eigenvector corresponding to $\lambda_{\max }=\max _{j} \lambda_{j}$.

3. Linear estimation of stationary sequences

Problem 3.1

(a)

$$
\widehat{X}_{n}=\sum_{k=-\infty}^{\infty} Y_{k} \tilde{a}_{n-k}=\sum_{k=-\infty}^{\infty} Y_{n-k} \tilde{a}_{k}
$$

By orthogonality principle

$$
\mathbb{E}\left(X_{n}-\widehat{X}_{n}\right) Y_{n-\ell}=0, \quad \ell=\ldots,-1,0,1, \ldots
$$

which implies:

$$
R_{x y}(\ell)-\sum_{k} R_{y}(\ell-k) \tilde{a}_{k}=0, \quad \ell=\ldots,-1,0,1, \ldots
$$

This version of Wiener-Hopf equation can be solved in the domain of Fourier transform:

$$
\begin{aligned}
S_{x y}(\lambda) & :=\sum_{\ell} R_{x y}(\ell) e^{-j \lambda \ell}=\sum_{k} \sum_{\ell} R_{y}(\ell-k) \tilde{a}_{k} e^{-j \lambda \ell}= \\
& =\sum_{k} \tilde{a}_{k} e^{-j \lambda k} \sum_{\ell} R_{y}(\ell) e^{-j \lambda \ell}=\tilde{A}(\lambda) S_{y}(\lambda)
\end{aligned}
$$

Assuming that $S_{y}(\lambda)>0$, we obtain the expression for the filter in terms of spectral densities

$$
\tilde{A}(\lambda)=\frac{S_{x y}(\lambda)}{S_{y}(\lambda)}
$$

The mean square error is:

$$
\begin{aligned}
& \mathbb{E}\left(X_{n}-\widehat{X}_{n}\right)^{2}=\mathbb{E} X_{n}^{2}-\mathbb{E} X_{n} \widehat{X}_{n}= \\
& =R_{x}(0)-\sum_{k} \mathbb{E} X_{n} Y_{n-k} \tilde{a}_{k}=R_{x}(0)-\sum_{k} R_{x y}(k) \tilde{a}_{k}= \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} S_{x}(\lambda) d \lambda-\frac{1}{2 \pi} \int_{-\pi}^{\pi} S_{x y}(\lambda) \sum_{k} \tilde{a}_{k} e^{j \lambda k} d \lambda= \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(S_{x}(\lambda)-S_{x y}(\lambda) \overline{\tilde{A}}(\lambda)\right) d \lambda= \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(S_{x}(\lambda)-\frac{\left|S_{x y}(\lambda)\right|^{2}}{S_{y}(\lambda)}\right) d \lambda
\end{aligned}
$$

(b) By orthogonality property:

$$
\mathbb{E}\left(X_{n}-\sum_{k=0}^{\infty} Y_{n-k} \tilde{a}_{k}\right) Y_{\ell}=0, \quad \ell \leq n
$$

and

$$
R_{x y}(n-\ell)-\sum_{k=0}^{\infty} R_{y}(n-\ell-k) \tilde{a}_{k}=0, \quad \ell \leq n
$$

or

$$
\begin{equation*}
R_{x y}(m)-\sum_{k=0}^{\infty} R_{y}(m-k) \tilde{a}_{k}=0, \quad m \geq 0 \tag{3.1}
\end{equation*}
$$

Z-transform of the left hand side of (3.1) reads:

$$
S_{x y}(z)-S_{y}(z) \tilde{A}(z)
$$

but only non-positive powers of z of the latter expression obey (3.1), namely:

$$
\left|S_{x y}(z)-S_{y}(z) \tilde{A}(z)\right|_{+}=0
$$

where $\lfloor\psi(z)\rfloor_{+}$denotes non-positive powers of the series expansion of $\psi(z)$. Since $S_{y}(z)$ can be factored:

$$
\left\lfloor S_{x y}(z)-\left.\tilde{A}(z) B(z) B(1 / z)\right|_{+}=0\right.
$$

where, say, $B(z)$ is the transform of casual sequence (i.e. its Z transform has only non-positive powers).

$$
\left|B(1 / z)\left(\frac{S_{x y}(z)}{B(1 / z)}-B(z) \tilde{A}(z)\right)\right|_{+}=0
$$

Since $B(1 / z)$ is the transform of anti-casual sequence, the only way this equation can be satisfied is when $S_{x y}(z) / B(1 / z)-\tilde{A}(z) B(z)$ is the transform of anti-casual sequence as well, by other words:

$$
\left\lfloor S_{x y}(z) / B(1 / z)-B(z) \tilde{A}(z)\right\rfloor_{+}=0
$$

But $\tilde{A}(z) B(z)$ corresponds to a casual sequence, that is

$$
\lfloor\tilde{A}(z) B(z)\rfloor_{+}=\tilde{A}(z) B(z)
$$

so the response of the optimal casual filter can be calculated from:

$$
\begin{equation*}
\tilde{A}(z)=\frac{1}{B(z)}\left\lfloor\frac{S_{x y}(z)}{B\left(z^{-1}\right)}\right\rfloor_{+} \tag{3.2}
\end{equation*}
$$

The mean square error can be calculated as in the previous case.
(c) Again orthogonality implies

$$
\begin{equation*}
R_{x y}(m)-\sum_{k=0}^{p} R_{y}(m-k) \tilde{a}_{k}=0, \quad 0 \leq m \leq p \tag{3.3}
\end{equation*}
$$

Define the vectors:

$$
\rho_{x y}=\left[\begin{array}{c}
R_{x y}(0) \\
R_{x y}(1) \\
\vdots \\
R_{x y}(p)
\end{array}\right] \quad \tilde{a}=\left[\begin{array}{c}
\tilde{a}_{0} \\
\tilde{a}_{1} \\
\vdots \\
\tilde{a}_{p}
\end{array}\right]
$$

and the correlation matrix R^{y}, so that:

$$
R^{y}(i, j)=R_{y}(i-j), \quad 0 \leq i, j \leq p
$$

Now (3.3) has the vector formulation:

$$
R^{y} \tilde{a}=\rho_{x y}
$$

and assuming $R^{y}>0$, one can obtain the optimal filter:

$$
\tilde{a}=\left[R^{y}\right]^{-1} \rho_{x y}
$$

The mean square error can be also calculated using these vector notations. Let Y^{n} denote the vector of $(p+1)$ last samples of Y_{n}, i.e.

$$
\begin{gathered}
Y^{n}=\left[\begin{array}{c}
Y_{n} \\
Y_{n-1} \\
\vdots \\
Y_{n-p}
\end{array}\right] \\
\mathbb{E}\left(X_{n}-a^{*} Y^{n}\right)^{2}=R_{x}(0)-\rho_{x y}^{*} \tilde{a}-\tilde{a}^{*} \rho_{x y}+\tilde{a}^{*} R^{y} \tilde{a}= \\
=
\end{gathered}
$$

Problem 3.2

(a) Consider the sequence $\left(X_{n}\right)_{n \in \mathbb{Z}}$, given by:

$$
X_{n}=\sum_{k=-\infty}^{n} a^{n-k} \varepsilon_{k}
$$

These series are convergent (for any fixed n, in \mathbb{L}^{2}) since

$$
\xi_{m}^{(n)}=\sum_{k=-m}^{n} a^{n-k} \varepsilon_{k}
$$

is a Cauchy sequence and \mathbb{L}^{2} is a complete space. Indeed (for, say, $m \geq \ell$)

$$
\begin{aligned}
E\left(\xi_{m}^{(n)}-\xi_{\ell}^{(n)}\right)^{2}=E\left(\sum_{k=-m}^{-\ell} a^{n-k} \varepsilon_{k}\right)^{2}= & \sum_{k=-m}^{-\ell} a^{2(n-k)} \leq \sum_{k=-\infty}^{-\ell} a^{2(n-k)}= \\
& a^{2 n} \sum_{k=\ell}^{\infty} a^{2 k}=a^{2(n+\ell)} /\left(1-a^{2}\right) \xrightarrow{\ell \rightarrow \infty} 0
\end{aligned}
$$

Clearly X satisfies $X_{n}=a X_{n-1}+\varepsilon_{n}, n \in \mathbb{Z}$ and it is stationary. Indeed $E X_{n}=0$ for all n and
$R_{x}(0)=E X_{n}^{2}=E\left(\sum_{k=-\infty}^{n} a^{n-k} \varepsilon_{k}\right)^{2}=\sum_{k=-\infty}^{n} a^{2(n-k)}=\sum_{k=0}^{\infty} a^{2 k}=\frac{1}{1-a^{2}}, \quad \forall n$.
Then

$$
E X_{n} X_{n+1}=E X_{n}\left(a X_{n}+\varepsilon_{n+1}\right)=a R_{x}(0)
$$

and by induction $E X_{n} X_{n+m}=a^{|m|} R_{x}(0)$, that is the covariance function depends only on the time shift.
(b) The pair (X, Y) is stationary as well. Clearly $E Y_{n}=E X_{n}=0$, and $R_{y}(k):=E Y_{n} Y_{n+k}=R_{x}(k)+\sigma^{2} \delta(k)$ and $R_{x y}(k):=E X_{n} Y_{n+k}=R_{x}(k)$.
(c) Find the spectral density of X

$$
S_{x}(\lambda)=\sum_{\ell=-\infty}^{\infty} \frac{a^{|\ell|}}{1-a^{2}} e^{-j \lambda \ell}=\ldots=\frac{1}{1-2 a \cos \lambda+a^{2}}
$$

and

$$
S_{y}(\lambda)=S_{x}(\lambda)+1, \quad S_{x y}(\lambda)=S_{x}(\lambda)
$$

and using the formulas from the previous problem we obtain:

$$
A(\lambda)=\frac{S_{x}}{S_{x}+1}=\frac{1}{1+1-2 a \cos \lambda+a^{2}}=\frac{1}{2-2 a \cos \lambda+a^{2}}
$$

The minimal mean square error is readily calculated:

$$
\begin{aligned}
& \mathbb{E}\left(X_{n}-\widehat{X}_{n}\right)^{2}=R_{x}(0)-\sum_{k} R_{x y}(k) a_{k}=\frac{1}{2 \pi} \int\left[S_{x}(\lambda)-\frac{\left|S_{x y}(\lambda)\right|^{2}}{S_{y}(\lambda)}\right] d \lambda \\
& =\frac{1}{2 \pi} \int \frac{S_{x}(\lambda)}{S_{x}(\lambda)+1} d \lambda=\frac{1}{2 \pi} \int \frac{1}{2-2 a \cos \lambda+a^{2}} d \lambda=\frac{1}{\sqrt{4+a^{4}}}
\end{aligned}
$$

(d) Using the formula from the previous problem:

$$
\begin{equation*}
\tilde{A}(z)=\frac{1}{B(z)}\left\lfloor\frac{S_{x y}(z)}{B\left(z^{-1}\right)}\right\rfloor_{+} \tag{3.4}
\end{equation*}
$$

where $B(z)$ is the casual term in the factorization of

$$
S_{y}(z)=B(z) B\left(z^{-1}\right)
$$

In this case

$$
S_{y}(z)=S_{x}(z)+1=\frac{1}{(1-a z)\left(1-a z^{-1}\right)}+1=\frac{a}{\gamma} \frac{\left(1-\gamma z^{-1}\right)(1-\gamma z)}{\left(1-a z^{-1}\right)(1-a z)}
$$

where

$$
\gamma:=\frac{2+a^{2}-\sqrt{4+a^{4}}}{2 a}
$$

Note that $|\gamma|<1$ for $|a|<1$. So $B(z)$ is identified as:

$$
B(z):=\sqrt{\frac{a}{\gamma}} \frac{1-\gamma z^{-1}}{1-a z^{-1}}
$$

Substitute this into (3.4):

$$
\begin{aligned}
\tilde{A}(z)= & \sqrt{\frac{\gamma}{a}} \frac{1-a z^{-1}}{1-\gamma z^{-1}}\left[\frac{\sqrt{\gamma / a}(1-a z) /(1-\gamma z)}{(1-a z)\left(1-a z^{-1}\right)}\right]_{+}= \\
& \left.=\sqrt{\frac{\gamma}{a}} \frac{1-a z^{-1}}{1-\gamma z^{-1}} \left\lvert\, \frac{\sqrt{\gamma / a}}{1-a \gamma}\left(\frac{1}{1-a z^{-1}}-\frac{1}{1-\gamma^{-1} z^{-1}}\right)\right.\right]_{+}= \\
& =\frac{\gamma}{a} \frac{1}{1-a \gamma} \frac{1-a z^{-1}}{1-\gamma z^{-1}} \frac{1}{1-a z^{-1}}=\frac{\gamma}{a(1-a \gamma)} \frac{1}{1-\gamma z^{-1}}= \\
& =\frac{2+a^{2}-\sqrt{4+a^{4}}}{a^{2}\left(\sqrt{4+a^{4}}-a^{2}\right)} \frac{1}{1-\gamma z^{-1}}=\frac{a^{2}-2+\sqrt{4+a^{4}}}{2 a^{2}} \frac{1}{1-\gamma z^{-1}}
\end{aligned}
$$

The filtering error can be calculated directly, using the formulas similar to the previous case. It also equals the steady state error of the Kalman filter (why?).
(e) Recall that

$$
R_{y}(m)=R_{x}(m)+1 \cdot \delta(m), \quad R_{x y}(m)=R_{x}(m)
$$

hence (\tilde{a} now denotes a 2 -by- 1 vector)

$$
\begin{aligned}
\tilde{a} & =\left(\begin{array}{cc}
R_{x}(0)+1 & R_{x}(1) \\
R_{x}(1) & R_{x}(0)+1
\end{array}\right)^{-1}\binom{R_{x}(0)}{R_{x}(1)}= \\
& =\left(\begin{array}{cc}
\frac{1}{1-a^{2}}+1 & \frac{a}{1-a^{2}} \\
\frac{a}{1-a^{2}} & \frac{1}{1-a^{2}}+1
\end{array}\right)^{-1}\binom{\frac{1}{1-a^{2}}}{\frac{a}{1-a^{2}}}=\ldots=\binom{2}{a} \frac{1}{4-a^{2}}
\end{aligned}
$$

The corresponding error is:

$$
\begin{aligned}
& \mathbb{E}\left(X_{n}-\widehat{X}_{n}\right)^{2}=R_{x}(0)-\rho_{x y}^{*} \tilde{a}=\frac{1}{1-a^{2}}-\left(\frac{1}{1-a^{2}}, \frac{a}{1-a^{2}}\right) \tilde{a} \\
& =\ldots=\frac{2}{4-a^{2}}
\end{aligned}
$$

(f) The Kalman filter equations are

$$
\begin{align*}
\widehat{X}_{n} & =a \widehat{X}_{n-1}+P_{n}\left(Y_{n}-a \widehat{X}_{n-1}\right) \\
P_{n} & =\frac{a^{2} P_{n-1}+1}{a^{2} P_{n-1}+2}, \quad n \geq 1 \tag{3.5}
\end{align*}
$$

subject to $\widehat{X}_{0}=0$ and $P_{0}=1 /\left(1-a^{2}\right)$.
(g) First note that $P_{n} \in[0,1]$, since by optimality $P_{n} \leq E\left(Y_{n}-X_{n}\right)^{2}=E \xi_{n}^{2}=$ 1. Let P_{∞} be the unique nonnegative solution of

$$
\begin{equation*}
P_{\infty}=\frac{a^{2} P_{\infty}+1}{a^{2} P_{\infty}+2} \tag{3.6}
\end{equation*}
$$

which is (the other solution is always negative)

$$
P_{\infty}=\frac{a^{2}-2+\sqrt{4+a^{4}}}{2 a^{2}}
$$

The sequence $D_{n}:=\left|P_{n}-P_{\infty}\right|$ satisfies

$$
\begin{aligned}
D_{n}= & \left|-\frac{1}{a^{2} P_{n-1}+2}+\frac{1}{a^{2} P_{\infty}+2}\right|=\frac{a^{2} D_{n-1}}{\left(a^{2} P_{n-1}+2\right)\left(a^{2} P_{\infty}+2\right)} \leq \\
& \frac{a^{2} D_{n-1}}{2\left(a^{2}\left(a^{2}-2+\sqrt{4+a^{4}}\right) /\left(2 a^{2}\right)+2\right)}=\frac{a^{2} D_{n-1}}{a^{2}+2+\sqrt{4+a^{4}}} \leq \frac{1}{2} D_{n-1}
\end{aligned}
$$

and thus $\lim _{n \rightarrow \infty} D_{n}=0$.
The "steady state" filter is then

$$
\begin{aligned}
\widehat{X}_{n}= & a \widehat{X}_{n-1}+\frac{a^{2}-2+\sqrt{4+a^{4}}}{2 a^{2}}\left(Y_{n}-a \widehat{X}_{n-1}\right)= \\
& =a\left(1-\frac{a^{2}-2+\sqrt{4+a^{4}}}{2 a^{2}}\right) \widehat{X}_{n-1}+\frac{a^{2}-2+\sqrt{4+a^{4}}}{2 a^{2}} Y_{n}= \\
& =\underbrace{\frac{a^{2}+2-\sqrt{4+a^{4}}}{2 a}}_{\equiv \gamma} \widehat{X}_{n-1}+\frac{a^{2}-2+\sqrt{4+a^{4}}}{2 a^{2}} Y_{n}
\end{aligned}
$$

Note that this recursion is exactly the one which was obtained via KolmogorovWiener approach in the appropriate setup.
(h) The best estimate is obtained via optimal smoothing in (c); next is the filter, based on all the observations till n in (d). The Kalman filter in (f) is inferior to the latter filter for any fixed n, but is asymptotically equivalent to it as $n \rightarrow \infty$. The worst is of course the filter in (e) that takes into account only two observations. Note that for $a=0$ (i.e. the signal X_{n} is an i.i.d. sequence (white noise), all the estimates attain the same error $P=1 / 2$.
(i) The error recursion for the Kalman filter becomes:

$$
P_{n}=a^{2} P_{n-1}-\frac{\left(a^{2} P_{n-1}\right)^{2}}{a^{2} P_{n-1}+1}=\frac{a^{2} P_{n-1}}{a^{2} P_{n-1}+1}
$$

This can be explicitly solved (define e.g. $Q_{n}=1 / P_{n}$ and obtain a linear recursion for Q_{n}) and verified that $\lim _{n \rightarrow \infty} P_{n}=0$.

Problem 3.3

Recall that

$$
X_{n}= \begin{cases}X_{n-1}, & \text { with prob. } p \\ -X_{n-1}, & \text { with prob. } 1-p\end{cases}
$$

with $\mathbb{P}\left\{X_{0}=\ell\right\}=\mathbb{P}\left\{X_{0}=-\ell\right\}=1 / 2$. Let $\left(\xi_{n}\right)_{n \geq 1}$ be an i.i.d. binary sequence of r.v. with

$$
\mathbb{P}\left\{\xi_{n}=1\right\}=1-\mathbb{P}\left\{\xi_{n}=0\right\}=p
$$

Clearly $\left(X_{n}\right)_{n \geq 1}$ can be generated by:

$$
X_{n}=\left(2 \xi_{n}-1\right) X_{n-1}, \quad \text { subject to } X_{0}
$$

Rewrite this equation as:

$$
X_{n}=\left(2 \mathbb{E} \xi_{n}-1\right) X_{n-1}+2 X_{n-1}\left(\xi_{n}-\mathbb{E} \xi_{n}\right)=(2 p-1) X_{n-1}+2 X_{n-1}\left(\xi_{n}-p\right)
$$

Define $\eta_{n}=2 X_{n-1}\left(\xi_{n}-p\right)$, then:

$$
\mathbb{E} \eta_{n}=2 \mathbb{E} X_{n-1} \mathbb{E}\left(\xi_{n}-p\right)=0
$$

and (say $n>m$)

$$
\begin{aligned}
\mathbb{E} \eta_{n} \eta_{m} & =4 \mathbb{E} X_{n-1} X_{m-1}\left(\xi_{m}-p\right) \mathbb{E}\left(\xi_{n}-p\right)=0 \\
\mathbb{E} \eta_{n}^{2} & =4 \mathbb{E} X_{n-1}^{2} \mathbb{E}\left(\xi_{n}-p\right)^{2}=4 \ell^{2}(1-p) p
\end{aligned}
$$

Moreover for $k<n, X_{k}$ and η_{n} are uncorrelated.
Introduce an auxiliary pair of processes (X, Y), generated by

$$
\begin{align*}
\widetilde{X}_{n} & =(2 p-1) \widetilde{X}_{n-1}+\widetilde{\eta}_{n}, \quad \text { subject to } X_{0} \\
\widetilde{Y}_{n} & =\widetilde{X}_{n}+\varepsilon_{n} \tag{3.7}
\end{align*}
$$

where $\widetilde{\eta}$ is a white noise sequence with the same mean and variance as η.
The orthogonal projection $\widehat{X}_{n}=\widehat{E}\left(\widetilde{X}_{n} \mid \widetilde{Y}_{1}^{n}\right)$ is generated by the Kalman filter

$$
\begin{align*}
\widehat{X}_{n} & =(2 p-1) \widehat{X}_{n-1}+P_{n}\left(\widetilde{Y}_{n}-(2 p-1) \widehat{X}_{n-1}\right), \quad n \geq 1 \tag{3.8}\\
P_{n} & =\frac{(2 p-1)^{2} P_{n-1}+4 \ell^{2} p(1-p)}{(2 p-1)^{2} P_{n-1}+4 \ell^{2} p(1-p)+1}
\end{align*}
$$

subject to $\widehat{X}_{0}=0$ and $P_{0}=\ell^{2}$. If these equation are applied to the original observations process Y, the obtained linear functional $\widehat{X}_{n}\left(Y_{1}^{n}\right)$ can be considered
as an estimate for X_{n}. Does the obtained filter realizes the orthogonal projection $\widehat{E}\left(X_{n} \mid Y_{1}^{n}\right)$ for the original model?

Let $L\left(Y_{1}^{n}\right)$ denote any linear functional of $\left\{Y_{1}, \ldots, Y_{n}\right\}$, then

$$
\begin{align*}
& E\left(X_{n}-L\left(Y_{1}^{n}\right)\right)^{2}=E\left(\widetilde{X}_{n}-L\left(\widetilde{Y}_{1}^{n}\right)\right)^{2} \geq \\
& E\left(\widetilde{X}_{n}-\widehat{X}_{n}\left(\widetilde{Y}_{1}^{n}\right)\right)^{2}=E\left(X_{n}-\widehat{X}_{n}\left(Y_{1}^{n}\right)\right)^{2} \tag{3.9}
\end{align*}
$$

where the equalities hold, since (X, Y) and $\tilde{X}, \tilde{Y})$ have the same correlation structure by construction. The inequality (3.9) implies that $\widehat{X}_{n}\left(Y_{1}^{n}\right)$ is optimal and hence realizes the orthogonal projection.

Problem 3.4

Denote $\mu=E \eta_{n}$. Rewrite the eq. for Y_{n} as:

$$
Y_{n}=\mu X_{n-1}+\xi_{n}+\left(\eta_{n}-\mu\right) X_{n-1}
$$

Set $\widetilde{\xi}_{n}:=\xi_{n}+\left(\eta_{n}-\mu\right) X_{n-1}$. Then:

$$
\mathbb{E} \widetilde{\xi}_{n}=0, \quad \mathbb{E} \widetilde{\xi}_{n} \widetilde{\xi}_{k}=\delta_{n-k}\left(\sigma_{\xi}^{2}+\sigma_{\eta}^{2} V_{n-1}\right)
$$

where $V_{n}=\mathbb{E} X_{n}^{2}$ satisfies $(n \geq 1)$

$$
V_{n}=a^{2} V_{n-1}+\sigma_{\varepsilon}^{2}, \quad \text { subject to } V_{0}=1
$$

Moreover $\widetilde{\xi}_{n}$ is uncorrelated with $X_{m}, m<n$. Consider the model:

$$
\begin{align*}
X_{n} & =a X_{n-1}+\varepsilon_{n} \tag{3.10}\\
Y_{n} & =\mu X_{n-1}+\widetilde{\xi}_{n}, \quad \text { s.t. } X_{0}
\end{align*}
$$

The optimal linear estimate is given by the Kalman filter

$$
\begin{aligned}
\widehat{X}_{n} & =a \widehat{X}_{n-1}+\frac{a \mu P_{n-1}}{\mu^{2} P_{n-1}+\sigma_{\xi}^{2}+\sigma_{\eta}^{2} V_{n-1}}\left(Y_{n}-\mu \widehat{X}_{n-1}\right) \\
P_{n} & =a^{2} P_{n-1}+\sigma_{\varepsilon}^{2}-\frac{\left[a \mu P_{n-1}\right]^{2}}{\mu^{2} P_{n-1}+\sigma_{\xi}^{2}+\sigma_{\eta}^{2} V_{n-1}}
\end{aligned}
$$

subject to $\widehat{X}_{0}=0, P_{0}=1$.

Problem 3.5

Simple Solution:
Define an augmented state vector $\vartheta_{n} \in \mathbb{R}^{(p+q) \times 1}$

$$
\vartheta_{n}=\left[\begin{array}{l}
\theta_{n} \\
\theta_{n-1} \\
\vdots \\
\theta_{n-p+1} \\
\varepsilon_{n} \\
\vdots \\
\varepsilon_{n-q+1}
\end{array}\right]
$$

Introduce $A \in \mathbb{R}^{(p+q) \times(p+q)}$ and $B, C \in \mathbb{R}^{(p+q) \times 1}$:

$$
A=\left[\begin{array}{ccccccc}
-a_{1} & -a_{2} & \cdots & -a_{p} & b_{1} & \cdots & b_{q} \\
1 & 0 & 0 & \cdots & & & 0 \\
0 & 1 & 0 & \cdots & & & 0 \\
\vdots & & & & & & \vdots \\
0 & 0 & 0 & \cdots & & & 0 \\
0 & 0 & & \cdots & 1 & & 0 \\
\vdots & & & & & & \vdots \\
0 & 0 & & \cdots & & 1 & 0
\end{array}\right]
$$

and

$$
B=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right], \quad C=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Consider the vector difference equations ($n \geq p$):

$$
\begin{aligned}
\vartheta_{n} & =A \vartheta_{n-1}+B \varepsilon_{n} \\
\xi_{n} & =C^{*} \vartheta_{n}+v_{n}
\end{aligned}
$$

where ϑ_{p-1} is a vector of initial conditions $\left(\theta_{0}^{p-1}\right.$ and $\left.\varepsilon_{0}^{q-1}\right)$. Clearly the first component of the vector ϑ_{n} coincides with θ_{n} for any $n \geq p$, i.e. $\vartheta_{n}(1)=\theta_{n}$. Note that $\mathbb{E} \vartheta_{k} \varepsilon_{n}=0, k<n$ and hence the obtained model suits the Kalman filter setting: let $\widehat{\vartheta}_{n}=\widehat{\mathbb{E}}\left(\vartheta_{n} \mid \xi_{0}^{n}\right)$ and $\widehat{\theta}_{n}=\widehat{\mathbb{E}}\left(\theta_{n} \mid \xi_{0}^{n}\right)$, then $(n \geq p)$:

$$
\begin{aligned}
\widehat{\vartheta}_{n}= & A \widehat{\vartheta}_{n-1}+\frac{\left(A P_{n-1} A^{*}+B B^{*} \sigma^{2}\right) C\left(\xi_{n}-C^{*} A \widehat{\vartheta}_{n-1}\right)}{C^{*} A P_{n-1} A^{*} C+C^{*} B B^{*} C \sigma^{2}+\sigma_{v}^{2}} \\
P_{n}= & A P_{n-1} A^{*}+\sigma^{2} B B^{*}- \\
& -\frac{\left(A P_{n-1} A^{*}+B B^{*} \sigma^{2}\right) C C^{*}\left(A P_{n-1} A^{*}+B B^{*} \sigma^{2}\right)}{C^{*} A P_{n-1} A^{*} C+C^{*} B B^{*} C \sigma^{2}+\sigma_{v}^{2}} \\
\widehat{\theta}_{n}= & C^{*} \widehat{\vartheta}_{n}
\end{aligned}
$$

subject to $\widehat{\vartheta}_{p-1}=0$ and $^{2} P_{p-1}=I \sigma^{2}$.
Note that the estimates of $\left\{\theta_{n-1}, \ldots, \theta_{n-p+1}\right\}$ and also of the driving noise $\left\{\varepsilon_{n}\right.$, $\left.\ldots, \varepsilon_{n-q+1}\right\}$ are obtained as a byproduct.
Advanced Solution ${ }^{3}$: In the previous solution version to generate $\widehat{\theta}_{n}$ one has to propagate $(p+q)$-dimensional vector recursion. More delicate arguments lead to a

[^2]filter of lower dimensions. Consider a sequence
\[

$$
\begin{equation*}
\theta_{n}=-\sum_{k=1}^{p} a_{k} \theta_{n-k}+\sum_{k=0}^{p-1} b_{k} \varepsilon_{n-k} \tag{3.11}
\end{equation*}
$$

\]

where $\left(\varepsilon_{n}\right)_{n \geq 0}$ is standard white noise sequence. Note that the original model of the problem (i.e. $q \leq p$) is obtained by setting appropriate b_{k} 's to zero.

Below we derive a state space model of order p, which generates the same sequence.

Lemma 3.1. Let η_{n} be a vector process generated by the recursion:

$$
\begin{equation*}
\eta_{n}=A \eta_{n-1}+B \varepsilon_{n}, \quad n \geq 0 \tag{3.12}
\end{equation*}
$$

where $\left(\varepsilon_{n}\right)_{n \geq 0}$ is an i.i.d. scalar standard Gaussian sequence and

$$
\begin{gathered}
A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & & & \ldots & \vdots \\
0 & 0 & & \ldots & 1 \\
-a_{n} & -a_{n-1} & \ldots & -a_{1}
\end{array}\right), \quad B=\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{n}
\end{array}\right) \\
\beta_{1}=b_{0} \\
\beta_{j}=b_{j-1}-\sum_{\ell=1}^{j-1} a_{j-\ell} \beta_{\ell}, \quad j=2, \ldots, n
\end{gathered}
$$

Then $\theta_{n} \equiv \eta_{n}(1)$.
Proof. Verify the equivalence between (3.11) and (3.12) as maps, i.e. show that both generate the same output $y(t), t=0,1, \ldots$ for the same input $x(t), t=0,1, \ldots$. Use the Z-transform system representation:

Starting from (3.12):

$$
\begin{aligned}
& y_{i}(t)=y_{i+1}(t-1)+\beta_{i} x(t), \quad i=1, \ldots, n-1 \\
& y_{n}(t)=-\sum_{k=0}^{n-1} a_{n-k} y_{k+1}(t-1)+\beta_{n} x(t)
\end{aligned}
$$

or

$$
\begin{aligned}
& Y_{i}(z)=z^{-1} Y_{i+1}(z)+\beta_{i} X(z), \quad i=1, \ldots, n-1 \\
& Y_{n}(z)=-z^{-1} \sum_{k=0}^{n-1} a_{n-k} Y_{k+1}(z)+\beta_{n} X(z)
\end{aligned}
$$

Then 4 for $i=1, \ldots, n-1$

$$
\begin{equation*}
Y_{i+1}(z)=z\left[Y_{i}(z)-\beta_{i} X(z)\right]=\ldots=z^{i} Y_{1}(z)-\sum_{j=1}^{i} z^{i-j+1} \beta_{j} X(z) \tag{3.13}
\end{equation*}
$$

[^3]On the other hand:

$$
\begin{aligned}
Y_{n}(z)= & -z^{-1} \sum_{k=0}^{n-1} a_{n-k} Y_{k+1}(z)+\beta_{n} X(z)= \\
= & -z^{-1} \sum_{k=0}^{n-1} a_{n-k} z^{k} Y_{1}(z)+z^{-1} \sum_{k=0}^{n-1} a_{n-k} \sum_{j=1}^{k} z^{k-j+1} \beta_{j} X(z)+ \\
& +\beta_{n} X(z)
\end{aligned}
$$

Equating the (3.13) with $i=n-1$ and (3.14) we arrive at:

$$
\begin{aligned}
& z^{n} Y_{1}(z)+\sum_{k=0}^{n-1} a_{n-k} z^{k} Y_{1}(z)=\sum_{j=1}^{n-1} z^{n-j+1} \beta_{j} X(z)+ \\
& +\sum_{k=0}^{n-1} a_{n-k} \sum_{j=1}^{k} z^{k-j+1} \beta_{j} X(z)+z \beta_{n} X(z)
\end{aligned}
$$

or $\left(a_{0}:=1\right)$

$$
\begin{aligned}
& \sum_{k=0}^{n} a_{n-k} z^{k} Y_{1}(z)=\sum_{j=1}^{n-1} z^{n-j+1} \beta_{j} X(z)+ \\
& +\sum_{k=0}^{n-1} a_{n-k} \sum_{j=1}^{k} z^{k-j+1} \beta_{j} X(z)+z \beta_{n} X(z)
\end{aligned}
$$

and

$$
\begin{align*}
& Y_{1}(z) \sum_{k=0}^{n} a_{k} z^{-k}=\sum_{j=1}^{n-1} z^{-j+1} \beta_{j} X(z)+ \\
& +\sum_{k=1}^{n-1} a_{n-k} \sum_{j=n-k+1}^{n} z^{-j+1} \beta_{j-n+k} X(z)+z^{-(n-1)} \beta_{n} X(z) \tag{3.15}
\end{align*}
$$

Equating the right hand side of (3.15) to $X(z) P_{n-1}(z)$ and comparing powers of z we obtain the desired result:

$$
\begin{array}{rll}
z^{0} & : & \beta_{1}=b_{0} \\
z^{-1} & : & \beta_{2}+a_{1} \beta_{1}=b_{1} \\
\vdots & : & \vdots \\
z^{-(n-1)} & : & \sum_{k=1}^{n-1} a_{n-k} \beta_{k}+\beta_{n}=b_{n-1}
\end{array}
$$

Let us demonstrate the latter approach:

Example

Let ξ_{n} be a stationary random process with zero mean and the spectrum density:

$$
f(\lambda)=\left|\frac{1+e^{-j \lambda}}{1+1 / 2 e^{-j \lambda}+1 / 2 e^{-2 j \lambda}}\right|^{2}
$$

Find the optimal linear extrapolation estimate of ξ_{t} on the basis of $\left\{\xi_{0}, \ldots, \xi_{s}\right\}$, $m(t, s)=\widehat{\mathbb{E}}\left(\xi_{t} \mid \xi_{0}^{s}\right)$.

Find the state space representation for ξ_{n}. Here $b_{0}=1, b_{1}=1$ and $a_{0}=1, a_{1}=$ $1 / 2, a_{2}=1 / 2$ and thus $\beta_{1}=b_{0}=1$ and $\beta_{2}=b_{1}-1 / 2 \cdot 1=1 / 2$. Let $\left(\eta_{1}(t), \eta_{2}(t)\right)$ be generated by

$$
\begin{aligned}
& \eta_{1}(t)=\eta_{2}(t-1)+\varepsilon(t) \\
& \eta_{2}(t)=-1 / 2 \eta_{1}(t-1)-1 / 2 \eta_{2}(t-1)+1 / 2 \varepsilon(t)
\end{aligned}
$$

where $\varepsilon(t)$ is a standard i.i.d. Gaussian sequence.
Set $\xi_{t}=\eta_{1}(t)$ and $\theta_{t}=\eta_{2}(t)$. Then ξ_{t} has the spectral density $f(\lambda)$ and:

$$
\begin{align*}
\xi_{t} & =\theta_{t-1}+\varepsilon(t) \tag{3.16}\\
\theta_{t} & =-1 / 2 \theta_{t-1}-1 / 2 \xi_{t-1}+1 / 2 \varepsilon(t)
\end{align*}
$$

And thus $(t>s)$

$$
\begin{aligned}
m(t, s) & =\mu(t-1, s) \\
\mu(t, s) & =-1 / 2 \mu(t-1, s)-1 / 2 m(t-1, s)
\end{aligned}
$$

subject to $m(s, s)=\xi_{s}$ and $\mu(s, s)=\mu(s)=\widehat{\mathbb{E}}\left(\theta_{s} \mid \xi_{0}^{s}\right)$.
The filtering estimate $\mu(s)$ satisfies $(k \leq s)$:

$$
\begin{align*}
& \mu_{k}=-1 / 2 \mu_{k-1}-1 / 2 \xi_{k-1}+\frac{1 / 2-1 / 2 P_{k-1}}{P_{k-1}+1}\left(\xi_{k}-\mu_{k-1}\right) \\
& P_{k}=1 / 4 P_{k-1}+1 / 4-\frac{\left(1 / 2-1 / 2 P_{k-1}\right)^{2}}{P_{k-1}+1}=\frac{P_{k-1}}{P_{k-1}+1} \tag{3.17}
\end{align*}
$$

The initial conditions for this filter can be recovered due to stationarity assumptions. Let $d_{11}=\mathbb{E} \theta_{t}^{2}, d_{12}=\mathbb{E} \xi_{t} \theta_{t}$ and $d_{22}=\mathbb{E} \xi_{t}^{2}$. From (3.16):

$$
\begin{aligned}
d_{22} & =d_{11}+1 \\
d_{11} & =1 / 4 d_{11}+1 / 4 d_{22}+1 / 4+1 / 2 d_{12} \\
d_{12} & =-1 / 2 d_{11}-1 / 2 d_{12}+1 / 2
\end{aligned}
$$

so that:

$$
d_{11}=1, \quad d_{12}=0, \quad d_{22}=2
$$

and the initial condition for the filter (3.17):

$$
\mu_{0}=0, \quad P(0)=1
$$

Problem 3.6

The Riccati equation of the Kalman filter is transformed by Matrix Inversion Lemma into:

$$
\begin{aligned}
P_{n+1} & =a P_{n} a^{*}+b b^{*}-a P_{n} A^{*}\left(A P_{n} A^{*}+B B^{*}\right)^{-1} A P_{n} a^{*}= \\
& =b b^{*}+a\left\{P_{n}-P_{n} A^{*}\left(A P_{n} A^{*}+B B^{*}\right)^{-1} A P_{n}\right\} a^{*}= \\
& =b b^{*}+a \Gamma_{n}^{-1} a^{*}
\end{aligned}
$$

where

$$
\Gamma_{n}=P_{n}^{-1}+A^{*}\left(B B^{*}\right)^{-1} A=J_{n}+A^{*}\left(B B^{*}\right)^{-1} A
$$

$$
\begin{aligned}
J_{n+1} & :=P_{n+1}^{-1}=\left\{b b^{*}+\left(a^{-*} \Gamma_{n} a^{-1}\right)^{-1}\right\}^{-1}= \\
& =F_{n}-F_{n} b\left(I+b^{*} F_{n} b\right)^{-1} b^{*} F_{n}
\end{aligned}
$$

where $F_{n}:=a^{-*} \Gamma_{n} a^{-1}$. Summarizing all the equations, J_{n} can be propogated by:

$$
\begin{gathered}
J_{n+1}=F_{n}-F_{n} b\left(I+b^{*} F_{n} b\right)^{-1} b^{*} F_{n} \\
F_{n}==a^{-*}\left(J_{n}+A^{*}\left(B B^{*}\right)^{-1} A\right) a^{-1}
\end{gathered}
$$

The validity of the Matrix Inversion Lemma is verified directly:

$$
\begin{aligned}
A A^{-1}= & \left(B^{-1}+C D^{-1} C^{*}\right)\left(B-B C\left(D+C^{*} B C\right)^{-1} C^{*} B\right)= \\
= & I+C D^{-1} C^{*} B-C\left(D+C^{*} B C\right)^{-1} C^{*} B- \\
& -C D^{-1} C^{*} B C\left(D+C^{*} B C\right)^{-1} C^{*} B= \\
= & I+C D^{-1} C^{*} B-C\left\{I+D^{-1} C^{*} B C\right\}\left(D+C^{*} B C\right)^{-1} C^{*} B= \\
= & I+C D^{-1} C^{*} B-C D^{-1} C^{*} B \equiv I
\end{aligned}
$$

Problem 3.7

Clearly x_{t} are the orthogonal projections of a standard random vector x on $\left\{y_{1}, \ldots, y_{t}\right\}$, where

$$
y_{t+1}=a_{t+1} x+\sqrt{\alpha} \varepsilon_{t+1}
$$

with ε_{t} being standard white noise, independent of x. So x_{k} is the orthogonal projection of x on $y=A x+\sqrt{\alpha} \varepsilon$, where ε is a standard random vector.

Then

$$
Q=\mathbb{E}\left(x y^{*}\right)\left(\mathbb{E}\left(y y^{*}\right)\right)^{-1}=A^{*}\left(\alpha I+A A^{*}\right)^{-1}=\left(\alpha I+A^{*} A\right)^{-1} A^{*}
$$

since

$$
A^{*}\left(\alpha I+A A^{*}\right)=\left(\alpha I+A^{*} A\right) A^{*}
$$

The second statement follows form the fact that $\gamma_{k}=\mathbb{E}\left(x-x_{k}\right)\left(x-x_{k}\right)^{*}$

$$
\begin{aligned}
& \gamma_{k}=\mathbb{E}\left(x x^{*}\right)-\mathbb{E}\left(x y^{*}\right) \mathbb{E}^{-1}\left(y y^{*}\right) \mathbb{E}\left(y x^{*}\right)=I-A^{*}\left(\alpha I+A A^{*}\right)^{-1} A= \\
& =\left(I+A^{*} A / \alpha\right)^{-1}=\left(I \alpha+A^{*} A\right)^{-1} \alpha
\end{aligned}
$$

[^0]: Date: Summer, 2004.

[^1]: ${ }^{1}$ Note that these conditions are not necessarily independent

[^2]: ${ }^{2} \theta_{0}^{p-1}$ and ε_{0}^{q-1} are assumed to form a vector of i.i.d. components with zero mean and variance σ^{2}

[^3]: ${ }^{3}$ This solution is for advanced reading.
 ${ }^{4}$ the convention $\sum_{1}^{0}=0$ is followed

