
STOCHASTIC PROCESSES

6. Non-Linear Filtering Of Markov Processes

Problem 6.1 (Counting observations)

A random switch θn ∈ {0, 1}, n ≥ 0 is a discrete-time two-state Markov
chain with transition matrix:

Λ =
[

λ1 1− λ1

1− λ2 λ2

]

i.e. P{θn = j|θn−1 = i} = Λi,j , i, j ∈ {0, 1}. Assume that θ0 = 1.
A counter ξn, counts arrivals (of e.g. particles) from two independent

sources with different intensities α and β. The counter is connected accord-
ing to the state of the switch θn to one source or another, so that:

ξn = ξn−1 + I(θn = 1)εα
n + I(θn = 0)εβ

n, n = 1, 2, ...

subject ξ0 = 0. Here β and α are constants from interval (0, 1) and εγ
n ∈

{0, 1} denotes an i.i.d. sequence with P{εγ
n = 1} = γ (0 < γ < 1).

a) Find the optimal estimate of the switch state, given the counter data
up to current moment, i.e. derive the recursion for πn(ξ) = E(θn|ξn

0 ).
b) Explain the meaning and examine the behaviour of the filter in the

limit cases:
(1) α = 1 and β = 0 (simultaneously).
(2) λ1 = 1 and λ2 = 0 (and vice versa).
(3) λ1 = λ2 = 1

Problem 6.2 (*)(Conditionally Gaussian Filter)

Let signal/observation model (Xn, Yn)n≥0:

Xn = a0(Y n−1
0 ) + a1(Y n−1

0 )Xn−1 + bεn, n = 1, 2, ...

Yn = A0(Y n−1
0 ) + A1(Y n−1

0 )Xn−1 + Bξn

where b and B are constants and Ai(Y n−1
0 ) and ai(Y n−1

0 ), i = 0, 1 are some
functionals of the vector [Y0, Y1, ..., Yn−1]. (εn)n≥1 and (ξn)n≥1 are inde-
pendent i.i.d. standard Gaussian random sequences. The initial condition
(X0, Y0) is also a standard Gaussian vector with unit covariance matrix.

(1) Is the pair of processes (Xn, Yn)n≥0 necessarily Gaussian ? Prove or
verify your answer by example.
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(2) Find the recursion for X̂n = E(Xn|Y n
0 ) and Pn = E

[
(Xn−X̂n)2|Y n

0

]
.

Is the obtained filter linear ? time invariant ? asymptotically time
invariant (i.e. time invariant as n →∞)?
Hint: prove first that Xn is Gaussian, conditioned on Y n

0 .

(3) Verify that in case of ai(Y n−1
0 ) ≡ ai and Ai(Y n−1

0 ) ≡ Ai, i = 0, 1 (ai

and Ai constants) your solution coincides with the Kalman filter.

Problem 6.3 (*)Extended Kalman Filter

Let (θn, ξn)n≥0 be a pair of processes, generated by the system:

θn = h(θn−1) + un

ξn = g(θn−1) + vn, n ≥ 1

The noises vn and un are zero mean independent Gaussian sequences with
Ev2

n = B2 > 0 and Eu2
n = b2. Functions g(x) and h(x) are twice differen-

tiable.
Assume that some reasonable unbiased estimate θ̃n is available, so that

E(θn − θ̃n)2 ¿ 1.
(a) Expand g(·) and h(·) into series of powers of the filtering error around

the estimate θ̃n. By neglecting the higher powers, formally derive
Conditionally Gaussian Kalman filter equations for the obtained lin-
ear model. (This heuristic device is called Extended Kalman Filter)

(b) Explain why the EKF may fail with e.g. h(x) = tanh(x3)

Problem 6.4

Consider a signal/observation pair (θ, ξn)n≥1, where θ is a random variable
distributed uniformly on [0, 1] and (ξn) is a sequence generated by:

ξn = θUn

where (Un)n≥1 is a sequence of i.i.d. random variables with uniform distri-
bution on [0, 1]. θ and U are independent.

(a) Derive a Kalman filter for θ̂n = Ê(θ|ξn
1 ).

(b) Find the corresponding mean square error Pn = E(θ − θ̂n)2. Show
that it converges to zero as n → ∞ and determine the rate of con-
vergence 1

(c) Consider the recursive filtering estimate (θ̃n)n≥0, generated by

θ̃n = max(θ̃n−1, ξn), θ̃0 = 0

Find the corresponding mean square error, Qn = E(θ − θ̃n)2.

1i.e. find a sequence of rn, such that limn→∞ rnPn exists and positive
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(d) Show that Qn converges to zero and find the rate of convergence.
Does this filter give better accuracy, compared to Kalman filter,
uniformly in n ? Asymptotically in n?

(e) Verify whether θ̃n is the optimal in the mean square sense filtering
estimate. If not, find the optimal estimate θ̄n = E(θ|ξn

1 ).


