
STOCHASTIC PROCESSES

2. Stationary random processes

Problem 2.1

Consider a continuous time random process ξt = α sin(βt + γ), where α, β and
γ are random variables. γ is independent of α and β and has uniform distribution
γ ∼ U(0, 2π). Show that the n-dimensional distribution

Ft1,t2,··· ,tn(x1, x2, · · · , xn)
4
= P {λ : ξt1(λ) ≤ x1, ξt2(λ) ≤ x2, · · · , ξtn(λ) ≤ xn}

is invariant under time shift, namely

Ft1,t2,··· ,tn
(x1, x2, · · · , xn) = Ft1+h,t2+h,··· ,tn+h(x1, x2, · · · , xn).

Problem 2.2

Verify the following properties of correlation sequence R(k) of a stationary processes
(a) R(k) is non negative definite, i.e.

∑
k,m akR(k −m)ām ≥ 0, if and only if the

corresponding spectral density function is a non negative function, namely:

S(λ) =
∞∑

k=−∞
R(k)e−iλk ≥ 0 ∀λ ∈ R

(b) if the correlation function can be decomposed as

R(n) = h(n) ∗ h̄(−n) :=
∞∑

k=−∞
h(k)h̄(k − n)

where z̄ stands for the complex conjugate of z, then R(n) is a non-negative
definite sequence.

(c) if R′(k, m) and R′′(k, m) are correlation functions, then

R′(k, m)R′′(k, m), R′(k, m) + R′′(k, m)

are correlation functions as well.

Problem 2.3

Verify whether or not each of the following sequences can be correlation sequence
of some stationary process.

a) R(n) = e−n2

b) R(n) =





1 n = 0
0.7 |n| = 1
0 otherwise
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c) R(n) =
{

N − |n| |n| ≤ N
0 otherwise

Problem 2.4 (*)

Let X be a column vector, formed by N subsequent samples of a stationary in
the wide sense zero mean random sequence {Xn}n∈Z. Let R ≡ EXXT and let λj

j = 1, ..., N be the eigenvalues of R.
(a) Show that minλ Sx(λ) ≤ λj ≤ maxλ Sx(λ), where Sx(λ) is the spectral

density of the process Xn.
(b) (”Eigenfilter”) Consider the observation sequence

Yn = Xn + ξn

where X = (Xn)n∈Z is zero mean stationary random sequence, with corre-
lation function EXkXl = rx(k − l) and ξ = (ξn)n∈Z is a zero mean white
noise sequence, i.e. Eξkξl = σ2δk−l.

Y = (Yn)n∈Z is passed through the linear filter:

X̃n =
N−1∑

k=0

Yn−kak =
N−1∑

k=0

Xn−kak +
N−1∑

k=0

ξn−kak

where ak are the filter coefficients. Find the filter coefficients, so that the
signal-to-noise ratio at the output is maximal, i.e.

a′ = argmax
a∈RN

E
(∑N−1

k=0 Xn−kak

)2

E
(∑N−1

k=0 ξn−kak

)2
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3. Linear estimation

Problem 3.1

This problem deals with the Kolmogorov-Wiener approach to linear estimation.
Consider a stationary random process (Xn, Yn)n≥0.

(a) Smoothing (interpolation) problem
Assume the following spectral densities exist:

Sx(λ) =
∞∑

k=−∞
EXkX0e

−iλk

Sy(λ) =
∞∑

k=−∞
EYkY0e

−iλk

Sxy(λ) =
∞∑

k=−∞
EXkY0e

−iλk

Find a sequence of coefficients (numbers) (ãn)n∈Z, so that

E
(
Xn −

∞∑

k=−∞
Ykãn−k

)2 ≤ E
(
Xn −

∞∑

k=−∞
Ykan−k

)2

for any other real sequence (an)n∈Z. Find an expression for the correspond-
ing mean square smoothing error.

(b) (*) Filtering problem
In addition to assumptions in (a), assume that the complex spectral

density of Y can be factored, i.e. there exists a function B(z) such that

Sy(z) = B(z)B(z−1)

where Sy(z) =
∑∞

n=−∞Ry(n)z−n for a complex number z, |z| < 1 (e.g.
z = eiλ) and, moreover, the power expansion of B(z) has only non-positive
powers of z (i.e. B(z) corresponds to a ”casual” sequence)

Find a sequence of coefficients (ãn)n≥0, such that

E
[
Xn −

∞∑

k=0

Yn−kãk

]2

≤ E
[
Xn −

∞∑

k=0

Yn−kak

]2

for any other sequence (an)n≥0. Find an expression for the corresponding
mean square filtering error.

(c) Filter with finite memory

Find a vector ã = (ã0, ..., ãp)∗, such that:

E
(
Xn −

p∑

k=0

Yn−kãk

)2 ≤ E
(
Xn −

p∑

k=0

Yn−kak

)2

for any vector a ∈ Rp+1. Find the corresponding mean square error.
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Problem 3.2

(a) Show that there exists a stationary (in the wide sense) process X = (Xn)n∈Z,
satisfying the equation

Xn = aXn−1 + εn, n ∈ Z, |a| < 1 (3.1)

where ε = (εn)n∈Z is a ”white noise” sequence (i.e. sequence of orthonormal
random variables with zero means).

(b) Let Y = (Yn)n∈Z be a random sequence generated by

Yn = Xn + ξn, n ∈ Z,

where ξ = (ξn)n∈Z is another ”white noise” sequence, independent of ε.
Show that the pair (X, Y ) is a stationary random process.

(c) Find the optimal smoothing (interpolation) coefficients and the correspond-
ing error (see (a) of the previous problem).

(d) (*) Find the optimal filtering coefficients and the corresponding filtering
error (see (b) of the previous problem).

(e) Find the optimal coefficients for the filter of order 2 and the corresponding
filtering error (see (c) of the previous problem).

(f) Derive the Kalman filter equations for X̂n = Ê(Xn|Y n
1 ), n ≥ 0.

(g) Specify the conditions under which the Kalman filter is stable, i.e. for which
the limit

P∞ := lim
n→∞

E
(
Xn − X̂n

)2

exists and is independent of the initial condition P0. Is the filtering equation
stable for ”unstable” signal model (i.e. |a| > 1)? Find the steady state
filtering error P∞ and the formula for the stabilized filter.

(h) Sort all the filters in decreasing order of the filtering error.
(i) Assume that Xn is an unknown random parameter, i.e. Xn = X0 for all n,

which can be modelled by setting a = 1 and Eε2
k = 0. Is X still a stationary

process ? Show that P∞ = 0 in (e) and i.e. the parameter is estimated
perfectly as n →∞.

(j) Simulate your results in MATLAB. Find empirically the variance of the
filtering error and compare it to the theoretical results. Try to modify
the optimal gain in the Kalman filter and verify that the filtering error
increases.

Problem 3.3

Let (Xn)n≥0 be a discrete time telegraph signal:

Xn =
{

Xn−1 with prob. p
−Xn−1 with prob. 1− p

subject to P{X0 = ±`} = 1/2. Assume it is observed in the white noise Yn =
Xn + εn.

(a) Construct a recursive model for the (Xn)n≥0, suitable for the Kalman filter
setup, i.e. find deterministic sequences An and Bn, so that:

Xn = AnXn−1 + Bnηn,
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where Eηn = 0, Eηnηm = δn,m and EXmηn = 0 for m < n. Note that
(ηn)n≥1 may generally depend, even explicitly, on (Xn)n≥1, being uncorre-
lated with it !

(b) Derive Kalman filter for the obtained model.
(c) Does the obtained recursion realizes the orthogonal projection on the sub-

space spanned by {Y1, ..., Yn} ?

Problem 3.4

Let (Xn, Yn)n≥1 satisfy the recursion:

Xn = aXn−1 + εn

Yn = ηnXn−1 + ξn

subject to standard1 r.v. X0 and where (ξn)n≥1, (εn)n≥1 and (ηn)n≥1 are indepen-
dent white noises with

Eξ2
1 = σ2

ξ , Eε2
1 = σ2

ε , Eη1 = µ 6= 0, E(η1 − µ)2 = σ2
η

Derive the recursion for orthogonal projection of Xn on {Yk, 0 ≤ k ≤ n}, i.e.
Ê(Xn|Y n

0 ).

Problem 3.5

Let (θn, ξn)n≥0 be a pair of signals with the observable component ξn. Assume
that θn has ARMA(p,q) structure, namely:

θn = −
p∑

k=1

akθn−k +
q∑

m=0

bmεn−m, n ≥ p, b0 = 1

subject to random initial conditions θ0, ..., θp−1, where (εn)n≥0 is the white noise
with variance σ2. The observations are given by:

ξn = θn + υn

where υ = (υn)n≥1 is a white noise sequence with Eυ2
n = σ2

υ, independent of θ.
Derive the Kalman filter for θn with observations ξn

0 .

Problem 3.6

”Information Filter”

(a) (Matrix Inversion Lemma) Let A > 0 and B > 0 be two M -by-M matrices
related by:

A = B−1 + CD−1C∗

where D is another positive definite N -by-N matrix and C is an M -by-N
matrix. Show that:

A−1 = B −BC(D + C∗BC)−1C∗B

1standard means zero mean and unit covariance
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(b) Recall the Ricatti equation from the Kalman filter:

Pn+1 = aPna∗ + bb∗ − aPnA∗(APnA∗ + BB∗)−1APna∗

Assuming that a and BB∗ are non-singular, derive recursion for the infor-
mation matrix Jn = P−1

n (in a number of problems Jn is easier to calculate
numerically than Pn)

Problem 3.7

Show that xk generated by (t = 0, ..., k − 1)

xt+1 = xt +
γta

∗
t+1

α + at+1γta∗t+1

(
yt+1 − at+1xt

)
, x0 = x

γt+1 = γt −
γta

∗
t+1at+1γt

α + at+1γta∗t+1

, γ0 = I

is the unique solution of linear equations (αI + A∗A)x = A∗y, where at, t = 1, ..., k
are rows of A, α is a positive constant and yt are components of y. Verify that

γk = (αI + A∗A)−1α.


