STOCHASTIC PROCESSES

1. Basics of mathematical probability

Problem 1.1

Let $I_{A}(\omega)$ denote the indicator function of a set (event) A, i.e.:

$$
I_{A}(\omega)= \begin{cases}1, & \omega \in A \\ 0, & \omega \notin A\end{cases}
$$

Verify the following properties of indicators
(a) $\mathbb{P}\{A\}=\mathbb{E} I_{A}$
(b) $I_{\emptyset}=0$ and $I_{\Omega}=1$
(c) $I_{A}+I_{\bar{A}}=1$
(d) $I_{A \cap B}=I_{A} \cdot I_{B}$
(e) $I_{A \cup B}=I_{A}+I_{B}-I_{A \cap B}$
(f) $I_{\bigcup_{i=1}^{n} A_{i}}=1-\prod_{i=1}^{n}\left(1-I_{A_{i}}\right)$
(g) For nonintersecting sets A_{i} the union $\cup_{i} A_{i}$ is denoted by $\sum A_{i}$. Show $I_{\sum_{i=1}^{n} A_{i}}=\sum_{i=1}^{n} I_{A_{i}}$
(h) $I_{A \triangle B}=\left(I_{A}-I_{B}\right)^{2}$, where $A \triangle B$ denotes symmetric difference of sets, i.e. $(A \backslash B) \cup(B \backslash A)$

Problem 1.2

On the probability space $([0,1], \mathcal{B}, \lambda)$, consider the random variables $X(\omega)=$ $I(\omega \leq 1 / 2)$ and $Y(\omega)=\omega^{2}$
(1) Find the expectations of X and Y by integration on the given probability space with respect to λ
(2) Find the expectations of X and Y by integration with respect to their distribution functions.

Problem 1.3

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. binary random variables such that $P\left(X_{i}=\right.$ $0)=P\left(X_{i}=1\right)=\frac{1}{2}$. Given two constants, a and $b,(a \neq b)$, and $Y_{0}=b$, define a new sequence:

$$
Y_{n}=\left\{\begin{array}{lll}
a & \text { if } & X_{n}=0 \\
Y_{n-1} & \text { if } & X_{n}=1
\end{array}\right.
$$

Verify the convergence of Y_{n} with probability one (P-a.s.), in probability, in the mean square and in the mean.

Problem 1.4

Let X_{n}, Y_{n} and $V_{n}, n \geq 1$ be sequences of random variables, converging in \mathbb{L}^{2} to X, Y and V respectively. Verify the following properties:
(1) "Linearity" of the \mathbb{L}^{2} limit:

$$
a X_{n}+b Y_{n} \xrightarrow{\mathbb{L}^{2}} a X+b Y
$$

where a and b are deterministic constants.
(2) Commutativity of the expectation and \mathbb{L}^{2} limit:

$$
\mathbb{E} X=\lim \mathbb{E} X_{n}
$$

(3) Continuity of the scalar product:

$$
\begin{gathered}
\mathbb{E} X Y=\lim \mathbb{E} X_{n} Y_{n} \\
\mathbb{E} X^{2}=\lim \mathbb{E} X_{n}^{2}
\end{gathered}
$$

(4) Verify that $\mathbb{E} X_{n} Y_{n}=\mathbb{E} V_{n}$ implies $\mathbb{E} X Y=\mathbb{E} V$.

Problem 1.5

Let U be a r.v., distributed uniformly on $[0,1]$. Define a sequence:

$$
Z_{n}=U^{n} \quad n \geq 1
$$

Does the sequence of sums $S_{n}=\sum_{i=1}^{n} Z_{i}$ converge with probability one ? In probability?

Problem 1.6

Given the deterministic sequence $\left(a_{n}\right)_{n \geq 1}$, such that $\lim _{n \rightarrow \infty} a_{n}=a$, and a sequence of random variables $\left(X_{n}\right)_{n \geq 1}$, such that $\lim _{n \rightarrow \infty} \mathbb{E}\left(X_{n}-a_{n}\right)^{2}=0$, prove that X_{n} converges in \mathbb{L}^{2} and determine the limit.

Problem 1.7

Let $\left\{\xi_{i}\right\}$ be a sequence of i.i.d. normal random variables, namely $\xi_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$. Define a pair of sequences:

$$
\mu_{n}=\frac{1}{n} \sum_{i=1}^{n} \xi_{i} ; \quad S_{n}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\xi_{i}-\mu_{n}\right)^{2}
$$

(1) Show that μ_{n} converges in the mean square sense to a limit.
(2) Show that S_{n} converges in m.s. sense to a limit.

Hint: You may need the following fact: for a Gaussian vector $X=$ [$X_{1} X_{2} X_{3} X_{4}$] with zero mean
$\mathbb{E} X_{1} X_{2} X_{3} X_{4}=\mathbb{E} X_{1} X_{2} \mathbb{E} X_{3} X_{4}+\mathbb{E} X_{1} X_{3} \mathbb{E} X_{2} X_{4}+\mathbb{E} X_{1} X_{4} \mathbb{E} X_{2} X_{3}$.
(3) Show, that for any fixed n, S_{n} and μ_{n} are independent.

Hint: Recall that two Gaussian r.v. (X, Y) are independent if they are orthogonal, i.e. if $E(X-E X)(Y-E Y)=0$.

Problem 1.8

Show that:

$$
\begin{aligned}
& \xi_{n} \xrightarrow{P} \xi \\
& \eta_{n} \xrightarrow{P} \eta
\end{aligned} \Longrightarrow \xi_{n} \eta_{n} \xrightarrow{P} \xi \eta
$$

Problem 1.9 (*)

(Large Deviations primitives) The law of large numbers states that if ξ_{1}, ξ_{2}, \ldots is a sequence of (zero mean) i.i.d. random variables with $E\left|\xi_{1}\right|<\infty$, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \xi_{k}=0
$$

in probability. It turns out that under certain conditions, the convergence rate is exponential.
(1) Derive Chernoff inequality. Assume that ξ is a r.v. such that for $\lambda \in \Lambda \subset$ \mathbb{R}^{+}, the log-characteristic function is well defined, i.e. $\psi(\lambda)=\log \mathbb{E} e^{\lambda \xi_{1}}<$ ∞.

$$
\mathbb{P}(\xi \geq a) \leq e^{-I(a)}
$$

where $I(a)=\sup _{\lambda \in \Lambda}\{\lambda a-\psi(\lambda)\}$.
Hint: use Chebyshev inequality
(2) Show that

$$
\mathbb{P}\left(\frac{1}{n} \sum_{k=1}^{n} \xi_{k} \geq a\right) \leq e^{-n I(a)}
$$

(3) Show that the probability of large deviations for the weak LLN decays at least exponentially, i.e.

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{k=1}^{n} \xi_{k}\right| \geq a\right) \leq C e^{-n I(a)}
$$

and find the explicit expressions for the rate function $I(a)$, when ξ_{1} is
(i) Gaussian $\mathcal{N}(0,1)$
(ii) Bernoulli with values $\{-1,1\}$ and probabilities $1 / 2$. Assume that $0<a<1$.

