RANDOM PROCESSES. THE FINAL TEST.

Dr. P. Chigansky
9:00-12:00, 20th, September, 2004

Student ID:

* any supplementary material is allowed
* duration of the exam is 3 hours
* write briefly the main idea of your answers in the exam itself. If required, give the reference to your copybook, where you may place other technical details
* note that the problems are not in any monotonic order of complexity
* the total score of the exam is 120 points.
* good luck!

Problem 1.

Let X be a standard Gaussian random variable (a "message") to be transmitted over noisy channel, so that the following observation sequence is available to the receiver:

$$
Y_{n}=a_{n}+b_{n} X+\xi_{n}, \quad n \geq 1
$$

where $\xi=\left(\xi_{n}\right)_{n \geq 1}$ is a standard Gaussian i.i.d. random sequence, independent of X and $\left(a_{n}, b_{n}\right)_{n \geq 1}$ are real numbers, chosen by the transmitter and known also to the receiver.
(a) Find recursive formulae for the optimal receiver $\widehat{X}_{n}=E\left(X \mid Y_{1}^{n}\right)$ and the corresponding mean square error $P_{n}=E\left(X-\widehat{X}_{n}\right)^{2}$.
(reference page \qquad _)
(b) Let $\gamma_{n}=E\left(a_{n}+b_{n} X\right)^{2}$ be the receiver output power. The optimal transmitter, which minimizes P_{n} and satisfies the power constraint $\gamma_{n} \leq \gamma$ for any $n \geq 1$ is
(1) $a_{n}=0, b_{n}=1$ and $P_{n}=\gamma$
(2) $a_{n}=0, b_{n}=\sqrt{\gamma}$ and $P_{n}=1 /(1+\gamma n)$
(3) $a_{n}=0, b_{n}=\sqrt{\gamma}$ and $P_{n}=\gamma /(\gamma+n)$
(4) $a_{n}=-\gamma, b_{n}=\sqrt{\gamma}$ and $P_{n}=1 /(1+n)$
\qquad)
(c) If ξ_{1} were a non Gaussian random variable with zero mean and unit variance, the optimal transmitter/receiver pair might attain
(1) smaller error than in the Gaussian case
(2) larger error than in the Gaussian case
(reference page \qquad)
(d) Assume that the transmitter gets noiseless feedback from the receiver, so that only the coefficient a_{n} (and not b_{n}) is allowed to depend on $\left\{Y_{1}, \ldots, Y_{n-1}\right\}$, the information passed to the receiver before n :

$$
Y_{n}=a_{n}\left(Y_{1}^{n-1}\right)+b_{n} X+\xi_{n} .
$$

Derive the equations for $\widehat{X}_{n}=E\left(X \mid Y_{1}^{n}\right)$ and $P_{n}=E\left(X-\widehat{X}_{n}\right)^{2}$, the optimal receiver in this case.
(reference page \qquad
(e) Is $Y=\left(Y_{n}\right)_{n \geq 1}$ a Gaussian process in (d)?
(1) Yes.
(2) No

Explain:

(f) The optimal transmitter, which minimizes P_{n} subject to the power constraint $\gamma_{n}=E\left(a_{n}\left(Y_{1}^{n-1}\right)+b_{n} X\right)^{2} \leq \gamma$ is
(1) $a_{n}=0, b_{n}=\sqrt{\gamma}$ and $P_{n}=1 /(1+\gamma n)$
(2) $a_{n}=0, b_{n}=\sqrt{\gamma}$ and $P_{n}=\gamma /(\gamma+n)$
(3) $a_{n}=-b_{n} \widehat{X}_{n-1}, b_{n}=\sqrt{\gamma(1+\gamma)^{n-1}}$ and $P_{n}=1 /(1+\gamma)^{n}$
(4) $a_{n}=-b_{n} \widehat{X}_{n-1}, b_{n}=\sqrt{\gamma^{n-1}(1+\gamma)}$ and $P_{n}=1 /(1+\gamma)^{n}$

Hint: Convince yourself that

$$
E\left(a_{n}\left(Y_{1}^{n-1}\right)+b_{n} X\right)^{2}=E\left(a_{n}\left(Y_{1}^{n-1}\right)+b_{n} \widehat{X}_{n-1}\right)^{2}+b_{n}^{2} P_{n-1}
$$

and use it with the equation for P_{n} (without explicitly solving it).
(reference page \qquad)
(g) Can the filtering error be improved, if b_{n} is also allowed to depend on $\left\{Y_{1}, \ldots, Y_{n-1}\right\}$
(1) Yes, by choosing

$$
a_{n}=\quad \text { and } \quad b_{n}=
$$

which gives

$$
P_{n}=
$$

(2) No.

Explain:

Hint: If ζ_{n} are positive random variables then (why?)

$$
E \prod_{\ell=1}^{n} \frac{1}{\zeta_{\ell}} \geq \exp \left\{-\sum_{\ell=1}^{n} \log E \zeta_{\ell}\right\}
$$

(reference page \qquad)

Problem 2.

Let $X=\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. random variables. For a fixed $n \geq 1$ let Y^{n} be the vector with entries

$$
Y^{n}(i)=X_{i} / \sqrt{X_{1}^{2}+\ldots+X_{n}^{2}}, \quad i=1, \ldots, n
$$

(a) Assume $E X_{1}^{2}=1$ and $E\left|X_{1}\right|^{p}<\infty$ for any $p \geq 1$. Does the random sequence $\sqrt{n} Y^{n}(1)$ converge as $n \rightarrow \infty$?
(1) Yes,P-a.s.in probabilityin \mathbb{L}^{2}in law
the limit is \qquad
(2) No.

Hint: use the law of large numbers
(reference page \qquad)
(b) A random vector Z in \mathbb{R}^{n} is said to have uniform distribution on the unit sphere in \mathbb{R}^{n}, if its Euclidian norm is unity and it's distribution is invariant under rotations, i.e for any orthogonal matrix U, such that $U^{-1}=U^{*}, Z$ and $U Z$ have the same distribution.
Y^{n} has uniform distribution on the unit sphere in \mathbb{R}^{n} for any $n>1$ if
(1) X_{1} is Gaussian with zero mean
(2) X_{1} is Bernulli, i.e. $P\left(X_{1}= \pm 1\right)=1 / 2$
(3) X_{1} takes values in $\{ \pm 1, \pm 2, \ldots\}$ and $P\left(X_{1}=\ell\right)=P\left(X_{1}=-\ell\right)$
(reference page \qquad)
(c) It is known that the uniform distribution on the unit sphere in \mathbb{R}^{n}, $n>1$ is unique, i.e. there is only one distribution which is invariant under rotations. Let Z^{n} be a random vector with this distribution. Then
(1) $\sqrt{n} Z^{n}(1)$ converges weakly to a uniform random variable on $[-1,1]$
(2) $\sqrt{n} Z^{n}(1)$ converges P-a.s. to a uniform random variable on $[-1,1]$
(3) $\sqrt{n} Z^{n}(1)$ converges weakly to a standard Gaussian random variable
(4) $\sqrt{n} Z^{n}(1)$ converges P-a.s. to a standard Gaussian random variable Explain:

Problem 3.

Let $X=\left(X_{n}\right)_{n \geq 0}$ be a binary Markov chain, switching between 0 and 1 with transition probabilities

$$
\lambda_{0}=P\left(X_{n}=0 \mid X_{n-1}=0\right), \quad \lambda_{1}=P\left(X_{n}=1 \mid X_{n-1}=1\right)
$$

and equiprobable initial distribution. The observation process is given by

$$
Y_{n}=X_{n}+\varepsilon_{n}, \quad n \geq 1
$$

where $\varepsilon=\left(\varepsilon_{n}\right)_{n \geq 1}$ is an i.i.d. sequence, independent of X and ε_{1} has probability density $f(x)$.

Introduce the process $Z=\left(Z_{n}\right)_{n \geq 0}$

$$
Z_{n}=\prod_{k=0}^{n} X_{k}
$$

(a) Does Z_{n} converge ?
(1) Yes,P-a.s.in probabilityin \mathbb{L}^{2}in law
the limit is \qquad
(2) No.

Explain:
(b) Does the sequence $\widehat{Z}_{n}=P\left(Z_{n}=1 \mid Y_{1}^{n}\right)$ converge?
(1) Yes,in probabilityin \mathbb{L}^{2}in law
the limit is \qquad
(2) No.

Explain:
(c) Is Z a Markov process ?
(1) Yes, the transition probabilities are

$$
\begin{aligned}
& P\left(Z_{n}=0 \mid Z_{n-1}=0\right)= \\
& P\left(Z_{n}=1 \mid Z_{n-1}=1\right)=
\end{aligned}
$$

(2) No.

Explain:
(d) The conditional probability $\pi_{n}=P\left(X_{n}=1 \mid Y_{1}^{n}\right)$ satisfies the recursion:

$$
\pi_{n}=
$$

(reference page \qquad)
(e) The conditional probability $\widehat{Z}_{n}=P\left(Z_{n}=1 \mid Y_{1}^{n}\right)$ satisfies

1) $\widehat{Z}_{n}=\widehat{Z}_{n-1} \pi_{n}$
2) $\widehat{Z}_{n}=\frac{\widehat{Z}_{n-1}}{\pi_{n-1}} \pi_{n}$
3) $\widehat{Z}_{n}=\frac{\lambda_{1} \widehat{Z}_{n-1}+\left(1-\lambda_{0}\right)\left(1-\widehat{Z}_{n-1}\right)}{\lambda_{1} \pi_{n-1}+\left(1-\lambda_{0}\right)\left(1-\pi_{n-1}\right)} \pi_{n}$
4) $\widehat{Z}_{n}=\frac{\lambda_{1}\left(1-\widehat{Z}_{n-1}\right)+\left(1-\lambda_{0}\right) \widehat{Z}_{n-1}}{\lambda_{1}\left(1-\pi_{n-1}\right)+\left(1-\lambda_{0}\right) \pi_{n-1}} \pi_{n}$
(reference page \qquad)

Problem 4.

Let $B=\left(B_{t}\right)_{t \geq 0}$ be a Wiener process. It turns out that any random variable X with $E X^{2}<\infty$, generated ${ }^{1}$ by a trajectory of B on the interval $[0,1]$, obeys the representation via Itô integral:

$$
X=E X+\int_{0}^{1} Z_{s} d B_{s}
$$

for some random process $Z=\left(Z_{t}\right)_{0 \leq t \leq 1}$. Use the Itô formula to find Z_{t} for each of the following random variables:
(a)

$$
B_{1}=\square+\int_{0}^{1} \square d B_{t}
$$

(reference page \qquad)
(b)

$$
B_{1}^{2}=_\int_{0}^{1} _d B_{t}
$$

(reference page \qquad)

[^0](c)
$$
\int_{0}^{1} B_{s} d s=_\int_{0}^{1} \quad \int_{0} d B_{t}
$$

Hint: Apply the Itô formula to $t B_{t}$
(reference page \qquad)
(d)

$$
B_{1}^{3}=_+\int_{0}^{1} _d B_{t}
$$

(reference page \qquad)
(e)

$$
\exp \left(B_{1}\right)=_\int_{0}^{1} __d B_{t}
$$

Hint: Apply the Itô formula to $\exp \left\{B_{t}-t / 2\right\}$.
(reference page \qquad)
(f)

$$
\sin \left(B_{1}\right)=_+\int_{0}^{1} \quad{ }_{0} d B_{t}
$$

Hint: Apply the Itô formula to $\exp \{t / 2\} \sin \left(B_{t}\right)$.
(reference page \qquad _)

[^0]: ${ }^{1}$ or more precisely X is measurable w.r.t. $\mathcal{F}_{1}^{B}=\sigma\left\{B_{s}, 0 \leq s \leq 1\right\}$

