RANDOM PROCESSES. THE FINAL TEST.

Prof. R. Liptser \& Dr. P. Chigansky
9:00-12:00, July, 2004

Student ID:

* any supplementary material is allowed
* duration of the exam is 3 hours
* write briefly the main idea of your answers in the exam itself. If required, give the reference to your copybook, where you may place other technical details
* note that the problems are not in any monotonic order of complexity
* the total score of the exam is 105 (incl. bonus question)
* good luck!

Problem 1.

Let $X=\left(X_{n}\right)_{n \geq 0}$ be the solution of the random recursion

$$
X_{n}=a X_{n-1}+\varepsilon_{n}, \quad n \geq 1
$$

where $\varepsilon=\left(\varepsilon_{n}\right)_{n \geq 1}$ is a standard i.i.d. Gaussian sequence, independent of X_{0}, which is a standard Gaussian random variable as well. The parameter a is unknown.

Assume that a is a random variable with values in $\mathbb{S}=\left\{r_{1}, \ldots, r_{d}\right\}$ and $p_{i}=P\left(a=r_{i}\right)$, independent of X_{0} and ε.
(a) Is X a Gaussian process ?

Yes.
No.
Explain:
(b) Is X_{n} a conditionally Gaussian ${ }^{1}$ random variable for each fixed $n \geq 0$, given a ?

Yes.
No.
Explain:

[^0](c) Is $X=\left(X_{n}\right)_{n \geq 0}$ a conditionally Gaussian random process, given a ?

Yes.
No.
Explain:
(d) Is a a conditionally Gaussian random variable, given X_{0}^{n} ?

Yes.
No.
Explain:
(e) Derive the filtering equations for the optimal estimates $\pi_{n}(i)=P(a=$ $\left.r_{i} \mid X_{0}^{n}\right)$.

$$
\pi_{n}(i)=\ldots
$$

(ref. page \qquad)

> From now on assume that a is a standard Gaussian random variable, independent of X_{0} and ε.
(f) Is X a Gaussian process ?

Yes.
No.
Explain:
(g) Is X_{n} a conditionally Gaussian random variable for each fixed $n \geq 0$, given a ?

Yes.
No.
Explain:
(h) Is X_{n} a conditionally Gaussian random process, given a ?

Yes.
No.
Explain:
(i) Is a a conditionally Gaussian random variable, given X_{0}^{n} ?

Yes.
No.
Explain:
(j) Does X_{n} converge to zero?
P-a.s.
in probability
\mathbb{L}^{1}
\mathbb{L}^{2}
in law
(ref. page ___)
(\mathbf{k}) Derive the filtering equations for the optimal linear estimate $\widehat{a}_{n}=$ $\widehat{E}\left(a \mid X_{0}^{n}\right)$ and the corresponding mean square error $\widehat{P}_{n}=\left(a-\widehat{a}_{n}\right)^{2}$.

$$
\widehat{a}_{n}=\ldots
$$

$$
\widehat{P}_{n}=\ldots
$$

(ref. page \qquad)
(l) Derive the filtering equations for the optimal estimate $\bar{a}_{n}=E\left(a \mid X_{0}^{n}\right)$ and the corresponding conditional mean square error $\bar{P}_{n}=E\left(\left(a-\bar{a}_{n}\right)^{2} \mid X_{0}^{n}\right)$.

$$
\begin{gathered}
\bar{a}_{n}=\ldots \\
\bar{P}_{n}=\ldots
\end{gathered}
$$

(ref. page \qquad)

Hint: use (i).
(m) Does \bar{P}_{n} converge to zero, i.e. perfect estimation is possible?

$$
\begin{array}{ll}
P \text {-a.s. } & \square \\
\text { in probability } & \square \\
\mathbb{L}^{1} & \square \\
\mathbb{L}^{2} & \square \\
\text { in law } & \square \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{array}
$$

Hint: you may need (j)

Problem 2.

The equation

$$
\ddot{x}_{t}+2 \beta \dot{x}_{t}+x_{t}=0
$$

describes the position of damped pendulum. Obviously for any $\beta>0$, the $\lim _{t \rightarrow \infty} x_{t}=0$, i.e. the pendulum is stable. Let $y_{t}=\dot{x}_{t}$, then

$$
\begin{aligned}
\dot{x}_{t} & =y_{t} \\
\dot{y}_{t} & =-x_{t}-2 \beta y_{t} .
\end{aligned}
$$

Suppose that the damping coefficient is perturbed by Gaussian white noise of intensity σ (i.e. the pendulum operates in a random media)

$$
\begin{align*}
& \dot{x}_{t}=y_{t} \\
& \dot{y}_{t}=-x_{t}-2(\beta+\text { "white noise" }) y_{t} . \tag{*}
\end{align*}
$$

What is the critical value of σ, such that noise destabilizes the system ?
Of course the answer depends on the model of "white noise" and the meaning of "stability" in the stochastic setting. If Ito formalism is assumed the system $\left({ }^{*}\right)$ becomes

$$
\begin{aligned}
d x_{t} & =y_{t} d t \\
d y_{t} & =-x_{t} d t-2 y_{t}\left(\beta d t+\sigma d W_{t}\right)
\end{aligned}
$$

and is considered hereafter. Assume for simplicity that the initial conditions x_{0} and y_{0} are standard Gaussian random variables.
(a) Find the averages of x_{t} and y_{t}

$$
\begin{aligned}
& E x_{t}=\ldots \\
& E y_{t}=\ldots
\end{aligned}
$$

(b) Find the Ito equations for $q_{t}=x_{t}^{2}, r_{t}=y_{t}^{2}$ and $u_{t}=x_{t} y_{t}$:

$$
\begin{aligned}
d q_{t} & =\ldots \\
d r_{t} & =\ldots \\
d u_{t} & =\ldots
\end{aligned}
$$

(ref. page \qquad)
(c) Find the equations for $\bar{q}_{t}=E q_{t}, \bar{r}_{t}=E r_{t}$ and $\bar{u}_{t}=E u_{t}$:

$$
\begin{gathered}
\dot{\bar{q}}_{t}=\ldots \\
\dot{\bar{r}}_{t}=\ldots \\
\dot{\bar{u}}_{t}=\ldots
\end{gathered}
$$

(ref. page \qquad)
(d) (bonus +5) The system is stable (in \mathbb{L}^{2} sense) if $\bar{q}_{t}+\bar{r}_{t} \rightarrow 0$ as $t \rightarrow \infty$. Choose the correct answers:
the system is unstable for any $\sigma>0$
the system is unstable for $\sigma=\sqrt{\beta}$
the system is unstable for any $\sigma \geq \sqrt{\beta}$
there is a $\sigma>0$ such that the system is stable
the system is stable for all sufficiently small $\sigma>0$
the system is stable for any $0 \leq \sigma<\sqrt{\beta}$

Explain:

(ref. page \qquad)

Hint: some of the answers are not hard to check, others may require some eigenvalue analysis of a cubic equation.

[^0]: ${ }^{1}$ Recall that the random vector θ is conditionally Gaussian given ξ if the conditional distribution has Gaussian density with mean and variance, possibly depending on ξ.

