RANDOM PROCESSES. THE FINAL TEST.

Prof. R. Liptser & Dr. P. Chigansky

9:00-12:00, July, 2004

Student ID:_____

- * any supplementary material is allowed
- $\ast\,$ duration of the exam is 3 hours
- * write <u>briefly</u> the main idea of your answers in the exam itself. If required, give the reference to your copybook, where you may place other technical details
- * note that the problems are <u>**not**</u> in any monotonic order of complexity
- * the total score of the exam is 105 (incl. bonus question)
- * good luck !

Problem 1.

Let $X = (X_n)_{n \ge 0}$ be the solution of the random recursion

$$X_n = aX_{n-1} + \varepsilon_n, \quad n \ge 1,$$

where $\varepsilon = (\varepsilon_n)_{n \ge 1}$ is a standard i.i.d. Gaussian sequence, independent of X_0 , which is a standard Gaussian random variable as well. The parameter a is unknown.

Assume that a is a random variable with values in $\mathbb{S} = \{r_1, ..., r_d\}$ and $p_i = P(a = r_i)$, independent of X_0 and ε .

(a) Is X a Gaussian process ?

Explain:

(b) Is X_n a conditionally Gaussian¹random variable for each fixed $n \ge 0$, given a?

Yes. \Box No. \Box

Explain:

¹Recall that the random vector θ is *conditionally Gaussian* given ξ if the conditional distribution has Gaussian density with mean and variance, possibly depending on ξ .

(c) Is $X = (X_n)_{n \ge 0}$ a *conditionally* Gaussian random process, given a?

Explain:

(d) Is a a conditionally Gaussian random variable, given X_0^n ?

Explain:

(e) Derive the filtering equations for the optimal estimates $\pi_n(i) = P(a = r_i | X_0^n)$.

 $\pi_n(i) = \dots$

(ref. page _____)

2

From now on assume that a is a standard Gaussian random variable, independent of X_0 and ε .

(f) Is X a Gaussian process ?

Yes. \Box No. \Box

Explain:

(g) Is X_n a conditionally Gaussian random variable for each fixed $n \ge 0$, given a?

Yes.	
No.	

Explain:

(h) Is X_n a *conditionally* Gaussian random process, given a?

Explain:

(i) Is a a conditionally Gaussian random variable, given X_0^n ?

Yes.	
No.	

Explain:

(j) Does X_n converge to zero?

 $\begin{array}{c|c}
P-a.s. & \square \\
\text{in probability} & \square \\
\mathbb{L}^1 & \square \\
\mathbb{L}^2 & \square \\
\text{in law} & \square \\
\end{array}$

(ref. page _____)

(k) Derive the filtering equations for the optimal <u>linear</u> estimate $\hat{a}_n = \hat{E}(a|X_0^n)$ and the corresponding mean square error $\hat{P}_n = (a - \hat{a}_n)^2$.

 $\widehat{a}_n = \dots$

$$\widehat{P}_n = \dots$$

(ref. page _____)

(1) Derive the filtering equations for the optimal estimate $\bar{a}_n = E(a|X_0^n)$ and the corresponding *conditional* mean square error $\bar{P}_n = E((a-\bar{a}_n)^2|X_0^n)$.

> $\bar{a}_n = \dots$ $\bar{P}_n = \dots$

(ref. page _____) Hint: use (i).

(m) Does \bar{P}_n converge to zero, i.e. perfect estimation is possible ?

P-a.s.	
in probability	
\mathbb{L}^1	
\mathbb{L}^2	
in law	

(ref. page _____)

Hint: you may need (j)

Problem 2.

The equation

$$\ddot{x}_t + 2\beta \dot{x}_t + x_t = 0$$

describes the position of damped pendulum. Obviously for any $\beta > 0$, the $\lim_{t\to\infty} x_t = 0$, i.e. the pendulum is stable. Let $y_t = \dot{x}_t$, then

$$\begin{aligned} x_t &= y_t \\ \dot{y}_t &= -x_t - 2\beta y_t. \end{aligned}$$

Suppose that the damping coefficient is perturbed by Gaussian white noise of intensity σ (i.e. the pendulum operates in a random media)

$$\dot{x}_t = y_t$$

$$\dot{y}_t = -x_t - 2(\beta + \text{"white noise"})y_t.$$
 (*)

What is the critical value of σ , such that noise destabilizes the system ?

Of course the answer depends on the model of "white noise" and the meaning of "stability" in the stochastic setting. If Ito formalism is assumed the system (*) becomes

$$dx_t = y_t dt$$

$$dy_t = -x_t dt - 2y_t (\beta dt + \sigma dW_t).$$

and is considered hereafter. Assume for simplicity that the initial conditions x_0 and y_0 are standard Gaussian random variables.

(a) Find the averages of x_t and y_t

$$Ex_t = \dots$$
$$Ey_t = \dots$$

(b) Find the Ito equations for $q_t = x_t^2$, $r_t = y_t^2$ and $u_t = x_t y_t$:

$$dq_t = \dots$$
$$dr_t = \dots$$
$$du_t = \dots$$

(ref. page _____)

(c) Find the equations for $\bar{q}_t = Eq_t$, $\bar{r}_t = Er_t$ and $\bar{u}_t = Eu_t$:

$$\begin{split} \dot{\bar{q}}_t &= \dots \\ \dot{\bar{r}}_t &= \dots \\ \dot{\bar{u}}_t &= \dots \end{split}$$
 (ref. page _____)

(d) (bonus+5) The system is stable (in \mathbb{L}^2 sense) if $\bar{q}_t + \bar{r}_t \to 0$ as $t \to \infty$. Choose the correct answers:

the system is unstable for any $\sigma > 0$	
the system is unstable for $\sigma = \sqrt{\beta}$	
the system is unstable for any $\sigma \ge \sqrt{\beta}$	
there is a $\sigma > 0$ such that the system is stable	
the system is stable for all sufficiently small $\sigma > 0$	
the system is stable for any $0 \le \sigma < \sqrt{\beta}$	

Explain:

(ref. page _____)

Hint: some of the answers are not hard to check, others may require some eigenvalue analysis of a cubic equation.

8