RANDOM PROCESSES. THE FINAL TEST. P. Chigansky

9:00-12:00, 24th of October, 2003

Student ID:

* any supplementary material is allowed
* duration of the exam is 3 hours
* write briefly the main idea of your answers in the exam itself. If needed, give the reference to your copybook, where you may place other technical details
* note that the problems are more or less in the chronological order of the chapters in the course and not in any monotonic order of complexity
* the total score of the exam is 100
* good luck !

Problem 1.

Consider the simple game, where a player either doubles or loses his stake with probability $1>p>0$ and $(1-p)$ respectively. The player starts the game with the stake of 1 dollar and pursues the following strategy: he doubles his stake each time he loses and stops playing after he wins. Let X_{n} denote the total amount of money, the player wins or loses at the end of n-th game. Then X_{n} satisfies the recursion

$$
X_{n}=X_{n-1}+\frac{1}{2} V_{n} \xi_{n}, \quad n \geq 1
$$

subject to $X_{0}=0$, where $\xi=\left(\xi_{n}\right)_{n \geq 0}$ is an i.i.d. sequence with values $\{1,-1\}$ and $P\left(\xi_{1}=1\right)=p$. The strategy process V_{n} is given by $(n \geq 2)$

$$
V_{n}= \begin{cases}2 V_{n-1} & \text { if } \xi_{n-1}=-1 \\ 0 & \text { if } \xi_{n-1}=1\end{cases}
$$

subject to $V_{1} \equiv 2$.
(a) Does $X=\left(X_{n}\right)_{n \geq 1}$ converge ? If yes, in what sense and for which p ?

1. with probability one
2. in probability
3. in \mathbb{L}^{1}
4. in distribution
5. does not converge in any sense

Explain your answer:
(b) Describe the limit $X_{\infty}=\lim _{n \rightarrow \infty} X_{n}$
(c) Let τ be the first time at which X_{n} attains its limit, i.e.

$$
\tau=\min \left\{n: X_{n}=X_{\infty}\right\}
$$

Find its distribution

$$
P(\tau=m)=
$$

(d) Check the correct answers:
(a) The player wins eventually
(b) The amount of money the player loses till he wins grows exponentially
(c) The player can win any amount of money with positive probability
(d) The player may continue the game infinitely long

Problem 2. Consider the filtering problem, where the signal $X=\left(X_{n}\right)_{n \geq 0}$ is a finite state Markov chain with the alphabet $\mathbb{S}=\left\{a_{1}, \ldots, a_{d}\right\}$, transition probabilities matrix Λ and the initial distribution p. The observations are given by

$$
Y_{n}=X_{n-1}+\xi_{n}, \quad n \geq 1
$$

where $\xi=\left(\xi_{n}\right)_{n \geq 1}$ is an i.i.d. sequence with ξ_{1} having probability density $f(x)$ and $E \xi_{1}=0, E \xi_{1}^{2}=1$.
(a) The vector π_{n} with entries $P\left(X_{n}=a_{i} \mid Y_{1}^{n}\right)$, satisfies the recursion ${ }^{1}$

1. $\pi_{n}=\frac{\Lambda^{*} D\left(Y_{n}\right) \pi_{n-1}}{\left\langle 1, D\left(Y_{n}\right) \pi_{n-1}\right\rangle}$
2. $\quad \pi_{n}=\frac{\Lambda^{*} D\left(Y_{n}\right) \pi_{n-1}}{\left\langle 1, D\left(Y_{n}\right) \Lambda^{*} \pi_{n-1}\right\rangle}$
3. $\pi_{n}=\frac{D\left(Y_{n}\right) \pi_{n-1}}{\left\langle 1, D\left(Y_{n}\right) \Lambda^{*} \pi_{n-1}\right\rangle}$
4. $\pi_{n}=\frac{\Lambda^{*} D\left(Y_{n}\right) \pi_{n-1}}{\left\langle 1, \Lambda^{*} \pi_{n-1}\right\rangle}$
$n \geq 1$, where $D(y)$ is a diagonal matrix with entries $f\left(y-a_{j}\right), j=1, \ldots, d$, $y \in \mathbb{R}$ and $\pi_{0}=p$.
(b) Find the recursion for $\widehat{\pi}_{n}=\widehat{E}\left(I_{n} \mid Y_{1}^{n}\right)$, where I_{n} is the vector of indicators $I\left(X_{n}=a_{i}\right), i=1, \ldots, d$:

$$
{ }^{1}\langle x, y\rangle=\sum_{j=1}^{d} x_{i} y_{i}, x, y \in \mathbb{R}^{d}
$$

(c) Let a denote the vector with entries $a_{j}, j=1, \ldots, d$ and suppose that is a right eigenvector of Λ, so that $\Lambda a=\gamma a$ for some real γ. Assume that the chain X_{n} is ergodic and stationary, i.e. $P\left(X_{n}=a_{i}\right)=\mu_{i}, i=1, \ldots, d$ where vector μ solves $\Lambda^{*} \mu=\mu$.

Which of the recursions does X_{n} satisfy $(n \geq 1)$?

1. $X_{n}=\gamma X_{n-1}+\sqrt{\left(1-\gamma^{2}\right)\left\langle a^{2}\right\rangle} \widetilde{\varepsilon}_{n}$
2. $X_{n}=(1-\gamma) X_{n-1}+\gamma \sqrt{\left\langle a^{2}\right\rangle} \widetilde{\varepsilon}_{n}$
3. $X_{n}=\gamma X_{n-1}+\left\langle a^{2}\right\rangle \sqrt{\left(1-\gamma^{2}\right)} \widetilde{\varepsilon}_{n}$
4. $X_{n}=(1-\gamma) X_{n-1}+\sqrt{\left(1-\gamma^{2}\right)\left\langle a^{2}\right\rangle} \widetilde{\varepsilon}_{n}$
where $\left\langle a^{2}\right\rangle=\sum_{i=1}^{d} a_{i}^{2} \mu_{i}$ and $\widetilde{\varepsilon}=\left(\widetilde{\varepsilon}_{n}\right)_{n \geq 1}$ is a sequence of uncorrelated random variables with zero mean and unit variance.
(d) Under the assumptions of (c), derive scalar recursions for $\widehat{X}_{n}=\widehat{E}\left(X_{n} \mid Y_{1}^{n}\right)$ and $P_{n}=E\left(X_{n}-\widehat{X}_{n}\right)^{2}$:

Problem ${ }^{2}$ 3. (Brownian bridge)
Let $W=\left(W_{t}\right)_{0 \leq t \leq 1}$ be the Wiener process.
(a) Find the following conditional expectations $(t \leq 1)$

$$
\begin{aligned}
& E\left(W_{t} \mid W_{1}\right)= \\
& E\left(\left(W_{t}-E\left(W_{t} \mid W_{1}\right)\right)^{2} \mid W_{1}\right)= \\
& E\left(\left(W_{t}-E\left(W_{t} \mid W_{1}\right)\right)\left(W_{s}-E\left(W_{s} \mid W_{1}\right)\right) \mid W_{1}\right)=
\end{aligned}
$$

(b) Find the conditional density

$$
\frac{\partial}{\partial x} P\left(W_{t} \leq x \mid W_{1}\right)=
$$

(c) Consider the process $W_{t}^{x}=W_{t}-t\left(W_{1}-x\right)$, where x is a real parameter. Find its mean, variance and covariance functions:

$$
\begin{aligned}
& E W_{t}^{x}= \\
& E\left(W_{t}^{x}-E\left(W_{t}^{x}\right)\right)^{2}= \\
& E\left(W_{t}^{x}-E\left(W_{t}^{x}\right)\right)\left(W_{s}^{x}-E\left(W_{s}^{x}\right)\right)=
\end{aligned}
$$

[^0](d) For any continuous function $x_{t}, t \in[0,1]$, let $\psi_{n}(x)$ denote a bounded real functional of the vector $\left(x_{t_{1}}, \ldots, x_{t_{n}}\right)$ for any fixed partition $0<t_{1}<$ $\ldots<t_{n}<1$ of $[0,1]$. Then
$$
E\left(\psi_{n}(W) \mid W_{1}=x\right)=E \psi_{n}\left(W^{x}\right), \quad \forall x \in \mathbb{R}
$$

Is this claim correct ${ }^{3}$?
Yes
No
Explain your answer:
(e) Consider the Ito process

$$
V_{t}^{x}=x t-(1-t) \int_{0}^{t} \frac{d W_{s}}{1-s}, \quad 0 \leq t<1
$$

where $x \in \mathbb{R}$. Which SDE does V^{x} solve

1. $d V_{t}^{x}=\frac{x}{1-t} d t-\frac{x-V_{t}^{x}}{1-t} d W_{t}$
2. $\quad d V_{t}^{x}=\frac{V_{t}^{x}}{1-t} d t-\frac{x}{1-t} d W_{t}$
3. $d V_{t}^{x}=\frac{x-V_{t}^{x}}{1-t} d t-d W_{t}$
4. $d V_{t}^{x}=d t-\frac{x-V_{t}^{x}}{1-t} d W_{t}$
subject to $V_{0}^{x}=0$.

[^1](f) Does V_{t} converge in \mathbb{L}^{2} as $t \rightarrow 1$? If yes, describe the limit.
(g) Find the following expectations
\[

$$
\begin{aligned}
& E V_{t}^{x}= \\
& E\left(V_{t}^{x}-E\left(V_{t}^{x}\right)\right)^{2}= \\
& E\left(V_{t}^{x}-E\left(V_{t}^{x}\right)\right)\left(V_{s}^{x}-E\left(V_{s}^{x}\right)\right)=
\end{aligned}
$$
\]

(h) Is V^{x} a Gaussian process ?

Yes
No
Explain your answer:

8
(i) For any functional $\psi_{n}(x)$, defined in (d),

$$
E\left(\psi_{n}(W) \mid W_{1}=x\right)=E \psi_{n}\left(V^{x}\right), \quad \forall x \in \mathbb{R}
$$

Is this claim correct?
Yes
No
Explain your answer:
(j) Are the processes V_{t}^{x} and W_{t}^{x} indistinguishable, i.e. is $P\left(V_{t}^{x}=W_{t}^{x}\right)=1$ for any $x \in \mathbb{R}$ and for any $t \in[0,1]$?

Yes
No
Explain your answer:

[^0]: ${ }^{2}$ You may encounter the integrals $(0<t<1)$

 $$
 \int_{0}^{t} \frac{1}{(1-s)^{2}} d s=\frac{t}{1-t}
 $$

 and

 $$
 \int_{0}^{t} \frac{s}{(1-s)^{2}} d s=\frac{t}{1-t}+\ln (1-t)-1 .
 $$

[^1]: ${ }^{3}$ More precisely $\int_{\mathbb{R}}\left|E\left(\varphi(W) \mid W_{1}=x\right)-E \varphi\left(W^{x}\right)\right| d x=0$ should be asked here and below

