RANDOM PROCESSES. THE FINAL TEST
 Special Assignement

Prof. R. Liptser and Pavel Chigansky

July, 1999

* any supplementary material is allowed
* good luck!

Problem 1.

Consider the process $\left(X_{n}\right)_{n>0}$ generated by a recursion:

$$
X_{n}=\frac{X_{n-1} \xi_{n}}{\sqrt{X_{n-1}^{2}+\xi_{n}^{2}}}
$$

subject to X_{0} - a standard Gaussian random variable. $\left(\xi_{n}\right)_{n \geq 1}$ is a standard Gaussian i.i.d. sequence.
(a) Prove that X_{n} Gaussian random variable for any $n \geq 0$. ${ }^{1}$
(b) Is $\left(X_{n}\right)_{n \geq 0}$ Gaussian process ? Prove your answer.
(c) Find recursions for $m_{n}=\mathbf{E} X_{n}$ and $V_{n}=\mathbf{E}\left(X_{n}-m_{n}\right)^{2}$.
(d) Does X_{n} converge ? If yes to what limit and in what sense? ${ }^{2}$

[^0]Lemma 1.1. Let α and β be a pair of independent Gaussian random variables with zero means and variances σ_{α}^{2} and σ_{β}^{2}. Let:

$$
\gamma=\frac{\alpha \beta}{\sqrt{\alpha^{2}+\beta^{2}}}
$$

then γ is Gaussian.
This lemma can be proved in several ways and you are encouraged to prove it as you wish. Though you may follow the advice:
(a) Show that in this case the distribution of γ is determined by distribution of $1 / \gamma^{2}$.
(b) Find the characteristic function of $1 / \alpha^{2}$ and $1 / \beta^{2}$
(c) Use the fact that $1 / \gamma^{2}=1 / \alpha^{2}+1 / \beta^{2}$ and the independence of α and β to find the distribution of $1 / \gamma^{2}$ and hence also of γ.
${ }^{2}$ no need to show convergence with probability 1

Problem 2.

Consider a pair of random processes $\left(X_{n}, Y_{n}\right)_{n \geq 0}$, generated by:

$$
\begin{aligned}
X_{n} & =a X_{n-1}+b \varepsilon_{n}, \quad n=1,2, \ldots \\
Y_{n} & =A X_{n-1}+B \xi_{n}
\end{aligned}
$$

where a, b, A and B are constants and $\left(\varepsilon_{n}\right)_{n \geq 1}$ and $\left(\xi_{n}\right)_{n \geq 1}$ are independent i.i.d. standard Gaussian random sequences. The initial conditon X_{0} is a Gaussian r.v. with zero mean and $P=\mathbf{E} X_{0}^{2}$.
(a) Find the recursion for the optimal estimate of the initial condition from the observations, i.e. $\pi_{n}=\mathbf{E}\left(X_{0} \mid Y_{0}^{n}\right)$
(b) Show ${ }^{3}$ that the limit $V=\lim _{n \rightarrow \infty} \mathbf{E}\left(X_{0}-\pi_{n}\right)^{2}$ exists and find its value.

Problem 3.

Let signal/observation model $\left(X_{n}, Y_{n}\right)_{n \geq 0}$:

$$
\begin{aligned}
X_{n} & =a_{0}\left(Y_{0}^{n-1}\right)+a_{1}\left(Y_{0}^{n-1}\right) X_{n-1}+b \varepsilon_{n}, \quad n=1,2, \ldots \\
Y_{n} & =A_{0}\left(Y_{0}^{n-1}\right)+A_{1}\left(Y_{0}^{n-1}\right) X_{n-1}+B \xi_{n}
\end{aligned}
$$

where b and B are constants and $A_{i}\left(Y_{0}^{n-1}\right)$ and $a_{i}\left(Y_{0}^{n-1}\right), i=0,1$ are explicit bounded functionals of the vector $\left[Y_{0}, Y_{1}, \ldots, Y_{n-1}\right] .\left(\varepsilon_{n}\right)_{n \geq 1}$ and $\left(\xi_{n}\right)_{n \geq 1}$ are independent i.i.d. standard Gaussian random sequences. The initial condition $\left(X_{0}, Y_{0}\right)$ is also a Gaussian vector.
(a) Is the pair of processes $\left(X_{n}, Y_{n}\right)_{n \geq 0}$ necessarily Gaussian? Prove or verify your answer by example.
(b) Find the recursion for $\widehat{X}_{n}=\mathbf{E}\left(X_{n} \mid Y_{0}^{n}\right)$ and $P_{n}=\mathbf{E}\left[\left(X_{n}-\widehat{X}_{n}\right)^{2} \mid Y_{0}^{n}\right]$. Is the obtained filter linear ? time invariant? asymptotically time invariant (i.e. time invariant as $n \rightarrow \infty$)?
(c) Verify that in case of $a_{i}\left(Y_{0}^{n-1}\right) \equiv a_{i}$ and $A_{i}\left(Y_{0}^{n-1}\right) \equiv A_{i}, i=0,1\left(a_{i}\right.$ and A_{i} constants) your solution coincides with the Kalman filter.
$3_{\text {you may assume }}$ in this question that P is the positive solution of

$$
P=P a^{2}+b^{2}-\frac{A^{2} a^{2} P^{2}}{A^{2} P+B^{2}}
$$

[^0]: ${ }^{1}$ To answer (a) from Problem 1 you will need to prove the following:

