RANDOM PROCESSES. THE FINAL TEST

Prof. R. Liptser and Pavel Chigansky
9:00-13:00, 2nd of July, 1999

* any supplementary material is allowed
* the total score of the exam is 110 points.
* duration of the exam is exactly 4 hours - no additional time will be permitted
* good luck!

Problem 1. (30\%) Convergence Of Random Sequences
Consider a pair of random sequences $\left(\eta_{n}\right)_{n \geq 0}$ and $\left(\xi_{n}\right)_{n \geq 0}$ converging in probability to limits η and ξ respectively, i.e. for any $\varepsilon>0$:

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left\{\left|\xi_{n}-\xi\right| \geq \varepsilon\right\}=0, \quad \lim _{n \rightarrow \infty} \mathbf{P}\left\{\left|\eta_{n}-\eta\right| \geq \varepsilon\right\}=0
$$

(a) (12%) Show that the random variables ξ and η are equivalent, i.e. $\mathbf{P}\{\xi \neq \eta\}=0$, if and only if

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left\{\left|\xi_{n}-\eta_{n}\right| \geq \varepsilon\right\}=0
$$

(prove both directions!)
(b) (6\%) Verify that $a \xi_{n}+b \eta_{n} \xrightarrow{\mathbf{P}} a \xi+b \eta$
(c) (6%) Let $f(x)$ be a continuous function. Show that

$$
f\left(\xi_{n}\right) \xrightarrow{\mathbf{P}} f(\xi)
$$

Hint: use ' $\varepsilon-\delta$ ' formulation of continuity
(d) (6%) Is (c) correct for discontinuous functions $f(x)$? Prove your answer or give a counterexample.

Problem 2. (40\%) Gaussian Processes
Consider a pair of random processes $\left(X_{n}, Y_{n}\right)_{n \geq 0}$, generated by a non linear recursion:

$$
\begin{aligned}
X_{n+1} & =a X_{n}+\frac{X_{n} \varepsilon_{n+1}+Y_{n} \xi_{n+1}}{\sqrt{X_{n}^{2}+Y_{n}^{2}}} \\
Y_{n+1} & =A X_{n}+\frac{X_{n} \xi_{n+1}-Y_{n} \varepsilon_{n+1}}{\sqrt{X_{n}^{2}+Y_{n}^{2}}}
\end{aligned}
$$

where $\left(\varepsilon_{n}\right)_{n \geq 1}$ and $\left(\xi_{n}\right)_{n \geq 1}$ are independent i.i.d Gaussian sequences with zero mean and unit variance and a and A are constants. The initial condition [X_{0}, Y_{0}] is a Gaussian vector, with zero mean and nonsingular covariance matrix Q.
(a) (7%) Prove that $\left(X_{n}, Y_{n}\right)_{n>0}$ is a Gaussian process.
(b) 7%) Give an explicit formula for the probability density of the vector $\left[X_{n}, Y_{n}\right]$
(c) (7%) Give an explicit formula for the probability density of the vector

$$
\left[X_{0}, X_{1}, \ldots, X_{n} ; Y_{0}, \ldots, Y_{n}\right]
$$

Hint: you may find useful the Markov property of the processes X_{n} and Y_{n}. No need to reduce the found formula to canonical form.
(d) (7%) Derive recursive equations for $\widehat{X}_{n}=\mathbf{E}\left(X_{n} \mid Y_{0}^{n}\right)$, where $Y_{0}^{n}=$ $\left\{Y_{k}, k=0,1, \ldots, n\right\}$
(e) (7%) Define the predicting estimate $\widehat{X}_{n+k \mid n}=\mathbf{E}\left(X_{n+k} \mid Y_{0}^{n}\right)$, where k is some positive integer. Find $\widehat{X}_{n+k \mid n}$ and show that at each time point n it explicitly depends only on the filtering estimate \widehat{X}_{n} and not on the whole information Y_{0}^{n}.

Hint: use the smoothing property ${ }^{1}$ of the conditional expectation
(f) (Bonus 5\%) Consider the following settings:
(i) X_{0} and Y_{0} are independent. X_{0} is a Gaussian random variable whereas Y_{0} has a non Gaussian probability density.
(ii) X_{0} and Y_{0} are independent. Y_{0} is a Gaussian random variable whereas X_{0} has non Gaussian probability density.
(iii) X_{0} and Y_{0} depend. X_{0} is a Gaussian random variable whereas Y_{0} has non Gaussian probability density.
(iv) X_{0} and Y_{0} depend. Y_{0} is a Gaussian random variable whereas X_{0} has non Gaussian probability density.
Does the estimates, found in (d) and (e) remain optimal in each case? Optimal in the class of all linear estimates?

[^0]Problem 3. (40\%) Comparison between linear and non linear filters
A random parameter θ has a binary distribution:

$$
\mathbf{P}\{\theta=1\}=\pi_{0}, \quad \mathbf{P}\{\theta=0\}=1-\pi_{0}
$$

It is observed in a non Gaussian noise, so that:

$$
Y_{n}=\theta+\xi_{n}, \quad n \geq 1
$$

where $\left(\xi_{n}\right)_{n \geq 0}$ is a sequece of i.i.d. random variables with probability density $f(x)$. It is required to estimate θ from the observations $Y_{1}^{n}=\left\{Y_{k}, 1 \leq k \leq\right.$ $n\}$.
(a) (7%) Denote by $\widehat{\theta}_{n}$ the optimal linear estimate of θ from Y_{0}^{n}. Derive recursions for the estimate $\widehat{\theta}_{n}$ and the filtering error $P_{n}=\mathbf{E}\left(\theta-\widehat{\theta}_{n}\right)^{2}$ (assume $\mathbf{E} \xi_{n}^{2}=\sigma^{2}<\infty$ and $\mathbf{E} \xi_{n}=0$)
(b) (7%) Does $\widehat{\theta}$ converge? If yes, to what limit and in what sense?
(c) (7%) Let $\pi_{n} \triangleq \mathbf{E}\left(\theta \mid Y_{0}^{n}\right)=\mathbf{P}\left\{\theta=1 \mid Y_{0}^{n}\right\}$. Derive the recursion for π_{n}
(d) (7%) Show that the filtering error generated by the nonlinear filter in (c) on the basis of a single observation Y_{1} is given by:

$$
V_{1} \triangleq \mathbf{E}\left(\pi_{1}-\theta\right)^{2}=\pi_{0}\left(1-\pi_{0}\right) \int_{-\infty}^{\infty} \frac{f(x) f(x-1)}{f(x-1) \pi_{0}+f(x)\left(1-\pi_{0}\right)} d x
$$

(e) (7%) Assume uniformly distributed noise: $f(x)= \begin{cases}1 / 2, & x \in[-1,1] \\ 0, & x \notin[-1,1]\end{cases}$ Calculate explicitly V_{1} and compare it to the error obtained in (a). For which values of π_{0} the equality $V_{1}\left(\pi_{0}\right)=P_{1}\left(\pi_{0}\right)$ holds ?
(f) (Bonus 5%) Derive a recursion for $V_{n}=\mathbf{E}\left(\pi_{n}-\theta\right)^{2}$ for the case of the uniform noise as in (e). Do the sequences V_{n} and P_{n} converge? If yes, specify the limit and compare the rates of convergences?

Hint: simplify the estimate π_{n} for this specific setting.

[^0]: ${ }^{1}$ i.e. $\mathbf{E}\left(\alpha \mid \beta_{1}, \ldots, \beta_{n}\right)=\mathbf{E}\left(\mathbf{E}\left(\alpha \mid \beta_{1}, \ldots, \beta_{n}, \beta_{n+1}, \ldots\right) \mid \beta_{1}, \ldots, \beta_{n}\right)$, see lecture note 8, page 4, property 8

