## RANDOM PROCESSES

(final exam, June 24 1997, 9.00-12.30)
Prof. R.Liptser and Pavel Chigansky
Remark. Any materials and lecture notes are permissible.

## Problem 1.

Unobservable signal is defined as

$$
X_{n}=X_{n-1} \varepsilon_{n}
$$

where $X_{0}=1$ and $\left(\varepsilon_{n}\right)_{n \geq 1}$ is a sequence of independent random variables such that $\operatorname{Pr}\left(\varepsilon_{n}=1\right)=p_{n}$ and $\operatorname{Pr}\left(\varepsilon_{n}=0\right)=1-p_{n}, 0<p_{n}<1, n \geq 1$.

An information on the signal is obtained via observation process $\left(Y_{n}\right)_{n \geq 0}$ :

$$
Y_{n}=X_{n}+\xi_{n}
$$

where $\left(\xi_{n}\right)_{n \geq 0}$ is i.i.d. sequence of random variables independent of $\left(\varepsilon_{n}\right)_{n \geq 1}$. The distribution function of $\xi_{1}$ has a density $f_{\xi}(x)$.

Denote by $Y_{0}^{n}=\left\{Y_{0}, \cdots, Y_{n}\right\}$ and

$$
\pi_{n \mid n}=\operatorname{Pr}\left(X_{n}=1 \mid Y_{0}^{n}\right) \quad \text { and } \quad \pi_{n \mid n-1}=\operatorname{Pr}\left(X_{n}=1 \mid Y_{0}^{n-1}\right)
$$

## 1. Non linear filtering.

(a) Find $\pi_{0 \mid 0}$;
(b) For $n \geq 1$, express $\pi_{n \mid n}$ via $\pi_{n \mid n-1}$.
(c) Derive a recursion for $\pi_{n \mid n}, n \geq 1$.
(d) (bonus +10 ) Let $\tau$ the first index $n$ such that $X_{n}=0$, that is $\tau=\min \{n$ : $\left.X_{n}=0\right\}$. Verify that

$$
E\left(\tau \mid Y_{0}^{n}\right)=\sum_{k=1}^{\infty} \operatorname{Pr}\left(X_{k}=1 \mid Y_{0}^{n}\right)
$$

2. Kalman filter. Assume $E \xi_{1}=0$ and $E \xi_{1}^{2}<\infty$.
(a) Find a model suitable for Kalman filter.
(b) Derive a Kalman filter
3. Degenerate case. Assume there exists an index $m$ such that $p_{m}=0$. Show that for $n \geq m$ filtering estimates for $X_{n}$, both non linear and linear, coincide.

## Problem 2.

Let $\theta$ and $X_{1}, \cdots, X_{n}, \cdots$ be random variables, $E \theta^{2}<\infty$. Put $\widehat{\theta}_{n}=E\left(\theta \mid X_{1}^{n}\right)$, where $X_{1}^{n}=\left\{X_{1}, \cdots, X_{n}\right\} . E\left(\theta \mid X_{1}^{n}\right)$ is the optimal in the mean square sense estimate of $\theta$ given observations $X_{1}^{n}$ and

$$
\Delta_{n}=E\left(\theta-\widehat{\theta}_{n}\right)^{2}
$$

is the mean square error.

1. Show that $\Delta_{n} \geq \Delta_{n+1}, n \geq 1$.
2. Show that $\lim _{n \rightarrow \infty} E \hat{\theta}_{n}^{2}$ exists and is bounded from above by $E \theta^{2}$.

## Problem 3.

Let random processes $\left(X_{t}, Y_{t}\right)_{t \geq 0}$ be defined by linear equations

$$
\begin{aligned}
\dot{X}(t) & =a X(t)+b \dot{W}(t) \\
\dot{Y}(t) & =A X(t)+B \dot{V}(t)
\end{aligned}
$$

subject to the initial conditions $X(0)=0, Y(0)=0$, where $a, A, b, B$ are constants, and where $W(t)$ and $V(t)$ are independent Wiener processes, i.e. $\dot{W}(t)$ and $\dot{V}(t)$ are Gaussian white noises. Let $t_{k}, k=0,1, \ldots$, be sampling times such that $t_{0}=0$ and $t_{k+1}-t_{k} \equiv \Delta$. For small $\Delta$, we have

$$
\begin{align*}
X\left(t_{k+1}\right) & \approx X\left(t_{k}\right)+a X\left(t_{k}\right) \Delta+b\left[W\left(t_{k+1}\right)-W\left(t_{k}\right)\right] \\
Y\left(t_{k+1}\right) & \approx Y\left(t_{k}\right)+A X\left(t_{k}\right) \Delta+B\left[V\left(t_{k+1}\right)-V\left(t_{k}\right)\right] . \tag{1}
\end{align*}
$$

1. Replacing " $\approx$ " in (1) on " $=$ " derive the Kalman filter for the signal $X_{t_{k}}, k \geq 0$ given observations $Y_{t_{k}}, k \geq 0$.
2. With $\Delta \rightarrow 0$ obtain the Kalman filter for the original continuous time model.
