

Review of Physical Computation: A Mechanistic Account

Computers have changed the world dramatically over the last half century or so.

They have revolutionized the way we work, study, take leisure, communicate, and

socialize. But what is the nature of concrete, physical, computation? What does it

mean to say that a physical system computes? Quite surprisingly, there is little

agreement among philosophers and practitioners regarding this question. Even more

strikingly, the well-established mathematical theory of computability, started with

Gödel, Church, Turing, and others, does not provide a good answer to this question.

The theory focuses on what and how can be computed by means of an algorithm

(effectively). It even tells us how to build universal machines – our ordinary digital

computers – that can compute any function that is computable by an algorithm. But

it is highly questionable that the mathematical theory of computability can account

for the wide variety of computing systems we encounter today, such as quantum

computing, analog computing, DNA computing, hypercomputing (computing

functions that are not Turing computable), and so on. The mathematical theory of

computation does not even tell us whether and how nervous systems perform

computations, and in what sense. This, however, is certainly no flaw of the theory

given that it was never intended to be a theory of physical computation (see

Copeland, Dresner, Proudfoot and Shagrir 2017).

In his PhD dissertation, Gualtiero Piccinini (2003) directs the debate over the nature

of physical computation into new routes. He proposes to locate physical

computation within the mechanistic framework in philosophy of science. This

framework emphasizes the centrality of the so-called mechanistic explanations in

the sciences, especially in biology and neuroscience. A mechanistic explanation of a

system appeals to its components, their functions, and their organization (The locus

classicus is usually identified with Bechtel and Richardson 1993/2010; Machamer,

Darden and Craver 2000; Glennan 2002; and Craver 2007). According to Piccinini, a

computational explanation is a special case of mechanistic explanation. A physical

computing system is a mechanism “whose teleological function is performing a

physical computation. A physical computation is the manipulation (by a functional

mechanism) of a medium-independent vehicle according to a rule.” (2015: 10)

Piccinini has developed the account in a series of papers in which he substantially

expands, and significantly modifies, the original proposal. Over the years his account

has attracted attention and convinced others to propose mechanistic accounts of

computation (see, e.g., Kaplan 2011; Milkowski 2013; Fresco 2014). The mechanistic

account today is perhaps the “received view” about physical computation.

Physical computation: A mechanistic account systematically integrates the various

components and adds new, essential, ingredients to complete an overall picture. It

would be no exaggeration to say that Physical computation is one of the best books

written on the conceptual foundations of computation. It is broad in the range of

issues covered; it is very detailed in its analysis and argumentation; it makes many

vital and novel distinctions that have been overlooked in the debate; it carefully

covers both past and recent literature; and, as I emphasize above, it offers an

original and bold account of physical computation.

In what follows I provide a brief survey of Physical computation. I then make few

comments about the integration of physical computation within the mechanistic

framework.

1. A short tour through Physical computation

Physical computation starts with a list of desiderata of an account of physical

computation (Chapter 1). Objectivity is the demand that “whether a system performs

a particular computation is a matter of fact” (p. 11). Explanation is the demand to

account for the explanatory role of computation, namely, “how appeals to

computation explain the behavior of computing systems” (p. 12). Next is the demand

that the account correctly classifies computing and non-computing systems. The

demand is divided into two desiderata. The right things compute says that an

account should classify as computing systems such as calculators, digital and analog

computers, and artificial and natural neural networks. The wrong things don’t

compute says that an account should classify as non-computers paradigmatic

examples such as planetary systems, hurricanes, and digestive systems.

Miscomputation is the demand to account for miscomputing a function. Taxonomy

requires the accounting for sameness and difference in kinds of computation.

Chapters 2 to 4 concern extant accounts. Chapter 2 is about mapping accounts,

which assert that a physical system computes if there is a mapping from a set of

states and relations of the physical system onto the states and relations of an

abstract computation (e.g., an automaton). A challenge to simple mapping accounts

is the Putnam/Searle triviality results which roughly say that we can find such

mapping between every physical system and every abstract computation. This would

imply that rocks, chairs and every other physical system compute (Piccinini calls this

thesis limited pancomputationalism). Moreover, each physical system performs

every computation (unlimited pancomputationalism). Piccinini argues that unlimited

pancomputationalism violates the desideratum of objectivity. Limited

pancomputationalism erases the distinction between systems that compute and

systems that don’t; it thus violates the wrong things don’t compute desideratum

(assuming that rocks and chairs don’t compute). More restrictive mapping accounts

(causal, counterfactual, dispositional) might avoid unlimited pancomputationalism,

but are still committed to limited pancomputationalism. The claims about

pancomputationalism are further developed in chapter 4.

Chapter 3 concerns semantic accounts, which assert that computations and their

states are individuated in terms of their semantic content. Semantic accounts seem

to handle triviality results much better, as they exclude systems that do not

represent, e.g., rocks and hurricanes. They also seem to apply well to minds, brains

and digital computers that all seem to represent. Nevertheless, Piccinini deems the

semantic accounts wrong. For one thing, some physical systems compute though

they do not represent. For another, artificial digital computers seem to involve

observer-dependent, derivative, content (“interpretational semantics”) that is

observer-relative, and this feature violates objectivity. Piccinini thoroughly reviews

and rebuts arguments for the semantic accounts. The arguments often rest on the

premise that the explanandum computed functions are individuated semantically.

Piccinini points out, however, that this premise cannot establish the semantic

accounts, as these functions can also be individuated non-semantically. Piccinini

agrees that some arguments for the semantic accounts lead to computational

externalism (Shagrir 2001; Rescorla 2013). But he says that the external features

pertinent to computational individuation needn’t be semantic.

In chapter 5, Piccinini turns to develop his own, mechanistic, account. On the face of

it, computation does not fall squarely within the mechanistic framework. Some

philosophers (REFS) even contrast computational explanations with mechanistic

explanations. They view computational explanations as species of functional

analyses and argue that the latter are autonomous and distinct from mechanistic

explanations. Functional analyses specify functional properties whereas mechanistic

explanations specify structural properties that realize the functions. In this chapter

(which is based on the widely discussed Piccinini and Craver (2011) paper) Piccinini

argues that functional analyses and mechanistic explanations are tightly related.

Functional analyses are sketches of mechanisms, in the sense that they omit

structural aspects of the mechanism. Filling in these aspects turns a functional

analysis into a full-blown mechanistic explanation (p. 75). What about computational

explanations? They specify medium-independent properties. Nevertheless, Piccinini

argues, they are mechanistic explanations to the extent that they specify relevant

structural features such as the structural components that do the processing and

their organization (p. 98).

In Chapter 6, Piccinini defines the notion of teleological function that is pertinent to

his characterization of computation. The notion applies both to natural and artificial

(computing systems). Chapter 7 wraps up the essential ingredients into the

definition of concrete physical computation (p. 121), and argues that the account

satisfies the list of desiderata mentioned above. It should be noted that the

mechanistic account has undergone some serious modifications throughout the

years. Early on, the account identified computation with some form of digital

mechanism. As such it excluded analog computers (Piccinini 2007: 519-520), some

connectionist systems (2007: 518), and some neural networks (2008). At some point,

however, Piccinini (e.g. Piccinini and Scarantino 2011) extends his account to other

forms of computation. He introduces the very general notion of generic

computation, which includes both analog and digital computation. On this new

extended definition all neural networks compute, though some of them perform

non-digital computations (2015: 221-223).The main modification is that the vehicles

of computation need not refer only to digits, but also to variables or specific values

of a variables (2015: 121). Chapters 8-13 apply the mechanistic notion of generic

computation to different kinds of computing mechanisms. Chapter 8 is about the

primitive components of computing mechanisms, and chapter 9 about complex

components. Chapter 10 concerns digital calculators, and chapter 11 digital

computers. Chapter 12 is about analog computers, and chapter 13 is about parallel

computers and neural networks.

The last three chapters concern more specialized yet topical issues. Chapter 14

(which is based on Piccinini and Scarantino 2011) examines the relations between

information and computation. Piccinini argues that systems can compute without

processing information. He also demonstrates that different computing systems that

undertake information-processing can involve different kinds of information, e.g.,

non-semantic (Shannon) information, and natural and non-natural semantic

information. The highly interesting final two chapters are about the physical Church-

Turing thesis, which limits the computational power of physical systems to Turing

computability. Piccinini draws an important distinction between bold (Chapter 15)

and modest (Chapter 16) theses. The bold physical Church-Turing thesis asserts that

the behavior (function) of any physical process is Turing-computable. The modest

physical Church-Turing thesis states that any function that is computed by a physical

process is Turing-computable. Physical systems that violate the modest thesis are

known as hypercomputers. Piccinini suspects, however, that there aren’t genuine

hypercomputers; the term genuine refer to physical systems that satisfy certain

usability constraints. The book closes with a short epilogue that summarizes the

main results of the account.

2. How well does computation integrate within the mechanistic framework?

Physical computation advances a formidable and attractive account of computation.

It covers a wide terrain that prompts many points of discussion and controversy. I

should say that as a proponent of the semantic stance, I have different views about

physical computation. But I will refrain from responding here to the arguments

launched by Piccinini against semantic accounts. Instead, I will focus on three issues

that pertain to the relationship between physical computation and the mechanistic

framework. My aim is not to argue for or against the proposed account, but to point

to some issues and questions that deserve further discussion.

The first issue concerns the sense in which Piccinini’s account is mechanistic. I raise

this because it seems that mechanistic plays a different role in Piccinini’s account

than the role played by semantic, mapping, and other notions in rival accounts.

Semantic and mapping properties play a classificatory role in accounts of

computation. They are used to exclude certain non-computing processes; they play a

role in meeting the wrong system don’t compute desideratum. According to

semantic accounts, processes that do not involve semantic properties do not

compute. According to mapping accounts, processes that do not implement (i.e.,

bear mapping relations to) abstract computations do not compute. The term

mechanism, however, is not used to exclude systems that do not compute; it plays

no role in meeting the wrong systems don’t compute desideratum. This is simply

because the non-computing systems are also mechanisms. The mechanistic account

of computation thus aims to distinguish between computing and non-computing

mechanisms:

The main challenge for the mechanistic account is to specify properties that
distinguish computing mechanisms from other (non-computing) mechanisms
– and corresponding to those, features that distinguish computational
explanations from other (non-computational) mechanistic explanations.
(2015: 120)

What are the properties that distinguish computing mechanisms from other (non-

computing) mechanisms? Going back to the definition, we can notice three: The

teleological function that excludes planetary systems, the weather and many other

systems (p. 145); medium-independence that exclude cooking, cleaning (p. 122) as

well as digestive processes (p. 146-7); and the governing rule that excludes random-

number generators (p. 147). But we can notice that none of these properties –

teleological function, medium-independence, and rule – bears a special relation to

the mechanistic framework. They can be, and indeed have been, adopted in non-

mechanistic accounts of computation. According to Fodor (1994), computational

(i.e., syntactic) properties are conceived as high-order physical properties, and in this

sense are medium-independent. Hardcastle (1995) discusses computation in some

teleological terms. Copeland (1996) and many others associate computation with a

rule (e.g., algorithm).

Another central feature of the mechanistic account is that it is non-semantic (see

also Milkowski 2013, and Fresco 2014). But, again, being non-semantic is not a

distinctive feature of mechanistic accounts. There are many accounts of

computation that are neither mechanistic nor semantic; examples are mapping, and

syntactic accounts. Moreover, it seems that an account of computation can in

principle be both mechanistic and semantic. For example, we can replace the

teleological function, in Piccinini’s definition of computation, with a semantic

function, or at least we need a reason to see why not. All this does not undermine

the adequacy of Piccinini’s definition. The upshot, rather, is that central features in

the account – the teleological function, medium-independence, rule, and being non-

semantic – are not by themselves tied to the mechanistic framework. There are

mechanistic analyses that lack these features, and non-mechanistic analyses that

have these features.

So in what sense is the proposed account mechanistic? Piccinini writes:

The present account is mechanistic because it deems computing systems a
kind of functional mechanism – mechanism with teleological functions.
Computational explanation – the explanation of a mechanism’s capacities in
terms of the computations it performs is a species of mechanistic explanation
(p. 118).

As I understand it, Piccinini suggests that since computation is a kind of mechanism,

it would be natural to analyze computation and computational explanations from

within the mechanistic explanatory framework. The mechanistic framework

provides the tools to explicate computational explanation, and the features

(medium-independence, teleological function, etc.) that define the computing

mechanism in general. It thus provides the tools to distinguish between

computational explanations and other (non-computational) mechanistic

explanations, and, correspondingly, between computing and non-computing

mechanisms. If this is correct, then the account is mechanistic because computing

systems (much like non-computing systems) are mechanisms, and the mechanistic

framework naturally provides the means to account for mechanisms and their

(mechanistic) explanations.

The next two issues concern the relations between computational and mechanistic

explanations. One concerns the status of computational explanations within the

mechanistic framework. Piccinini and Craver 2011 might have given the impression

that computational explanations are sketches of mechanisms. This is a reasonable

interpretation if we take computational explanations to be species of functional

analyses (which are described as sketches). Also, Piccinini and Craver classify Marr’s

computational and algorithmic levels – the only example of computational

explanations in the paper – as sketches. Depicting computational explanations as

sketches has one salient advantage. According to this picture, computational

explanations nicely integrate within the mechanistic framework, in that

computational properties and implementational properties belong to the same level

of mechanism. When adding to the computational sketches the missing structural,

e.g., implementational, properties we get a full-blown mechanistic explanation of a

given phenomenon. But this picture, of computational explanations as sketches, also

has a major disadvantage. Computational explanations, as sketches, are weak,

partial or elliptical explanations, and this does not seem to do justice to many of

them (Haimovici 2013).

The other option is that computational explanations can be full-blown mechanistic

explanation; they are full-blown to the extent they refer to relevant functional and

structural properties. In Physical Computation, Piccinini clearly favors this option:

“Computational explanations count as full-blown mechanistic explanations, where

structural and functional properties are inextricably mixed” (p. 124). But this option

immediately raises a puzzle: Computational explanations refer to the computational,

medium-independent, properties of the mechanism. However, full-blown

mechanistic explanations must refer to some structural, e.g., implementational,

properties. How can an explanation be both computational and full-blown

mechanistic? Piccinini's answer is that some computational, medium-independent,

properties have structural features; for example, those determining “the type of

vehicle being processed (digital, analog, and what have you)” (p. 98). Piccinini does

not deny that these properties also have some functional aspects. He rather

dismisses the distinction between functional and structural: “There is no such thing

as a purely functional component or a purely functional property” (p. 99).

This answer certainly seems to be in the right direction. One might wonder,

however, whether it does not bring back the claim that computational explanations

are distinct. Yes, computational explanations are full-blown mechanistic ones, but

they are nevertheless distinct from implementational mechanistic explanations. The

first refers to medium-independent (functional and structural) properties, whereas

the latter refers to medium-dependent, implementational, properties. In other

words, we can reformulate the distinctness thesis around the medium-

independent/medium-dependent distinction instead of the dismissed

functional/structural distinction. It is the first distinction that supports the thesis that

computational explanations are distinct (and perhaps autonomous) from the

implementational levels.

One might also wonder how the computational and implementational levels fit

together, within the mechanistic hierarchy. Piccinini himself highlights the

problematics when referring to Marr’s renowned tri-level framework: “His ‘levels’

are not levels of mechanisms because they do not describe component/sub-

component relations. The algorithm is not a component of the computation, and the

implementation is not a component of the algorithm” (p. 98). Indeed, the realization

relation – of medium-independent properties by some implementational properties

– is not a part/whole relationship. The ‘0’s and ‘1’s might be implemented by certain

specific voltages, but the voltages are not parts of the ‘0’s and ‘1’s. The problem can

be resolved when computational explanations are conceived as sketches (the first

option), but it is less clear how full-blown computational explanations relate to the

implementational levels within the picture of multi-level mechanism.

The last issue concerns more direct challenges to the thesis that computational

explanations are mechanistic explanations. Piccinini says that “the main challenge

for the mechanistic account is to specify … features that distinguish computational

explanations from other (non-computational) mechanistic explanations”. However,

there are many who dispute the assumption that all computational explanations fall

within the mechanistic framework (even if computations are mechanisms). There are

three kinds of objections to this assumption, all aiming to show that at least some

computational explanations do not conform to the norms of mechanistic

explanations. The most widespread objection is that abstract, including

computational, explanations can be full-blown (i.e., not sketches), even if making no

reference to structural properties at all (Weiskopf 2011; Levy and Bechtel 2013;

Barrett 2014; Shapiro 2016; see in particular Chirimuuta 2014 and Egan 2017 who

specifically discuss computational explanations). As just mentioned, Piccinini agrees

that abstract explanations can be full-blown to the extent that they specify the

relevant properties (see also Boone and Piccinini 2016); with respect to

computational explanations the relevant medium-independent properties place

structural constraints on any mechanism that implements them. Some insist,

however, that placing structural constraints does not make the properties structural

and the explanation mechanistic. Every abstract explanation is constrained to some

extent by implementational details (Shapiro 2016). Moreover, while

implementational properties can serve as evidence to distinguish between and

support candidate explanatory models, this does not make them an integral part of

the explanation (Weiskopf 2011; Shapiro 2016).

A second criticism has been that some abstract explanations do not involve

componential analysis. They do not decompose the explanandum capacities into

sub-components and their organization. Rathkopf (2015) argues that some network

models provide non-decompositional explanations for non-decomposable systems,

where part-whole decomposition is not possible (see also Weiskopf 2011 who argues

for a similar point about noncomponential models in cognitive science; Huneman

2010 who argues that in some cases the explanation does not appeal to causal

structure, but to the topological or network properties of the system; and Levy 2013

who argues that decomposition (and localization) plays a lesser role in population

genetics, ecology and other macro-biological populational disciplines). The claim

does not directly target computational explanations, but Rathkopf in his discussion

also refers to computing systems. Piccinini (p. 84) reminds us that the components of

computation need not be spatially localized. This seems to be certainly true. The

worry, however, is that if we start relaxing the notion of componential analysis, it

becomes less attractive to couple computational and mechanistic explanations.

The last objection is that at least part of computational theory in cognitive

neuroscience aim to answer certain why questions whose explanations do not track

causal relations in the mechanistic sense: “It departs fully from the [Kaplan’s] model-

to-mechanism mapping framework that has been proposed as the criterion for

explanatory success” (Chirimuuta 2014). Chirimuuta (2014) locates these why

questions in the so-called interpretative models which “use computational and

information-theoretic principles to explore the behavioral and cognitive significance

of various aspects of nervous system function, addressing the question of why

nervous systems operate as they do” (Dayan and Abbott 2001). She argues that

answering these questions involves explanations which typically make reference to

efficient coding principles. Bechtel and Shagrir (2015; Shagrir and Bechtel 2017)

choose to associate these why questions with the why component of computational-

level theories whose goal is to demonstrate the basis of the computed function in

the physical world (Marr 1982). They claim that the answer consists in some

modelling relations between the nervous system and the environment of the

system. Rusanen and Lapi (2016) also associate the why questions with Marr’s

computational-level theories, and argue that computational theories provide

explanations that express formal, non-causal, dependencies. The mechanists might

reply that these why questions belong to the “context level” that is not

computational (Milkowski 2013), or perhaps try to account for them in terms of the

(teleological) function that has utility for the organism.

In sum, Physical Computation provides in my view the most comprehensive, detailed

and forceful account of physical computation to date. But as I see it, the account is in

no way the last word on physical computation. Rather, it paves the way to further,

more focused and more informative, discussion. Some (myself included) will

ultimately defend mapping, semantic and other accounts, responding to Piccinini’s

arguments. Others will discuss the claims related to pancomputationalism,

hypercomputation, the relation between information and computation and more.

And yet others will keep arguing about the fit of computation within the mechanistic

framework.

References:

Barrett, David. 2014. Functional analysis and mechanistic explanation. Synthese 191:
2695–2714.

Bechtel, William, and Richardson, Robert C. (1993/2010). Discovering complexity:
Decomposition and localization as strategies in scientific research (2nd
edition). MIT Press.

Bechtel, William, and Shagrir, Oron. 2015. The non-redundant contributions of
Marr's three levels of analysis for explaining information processing
mechanisms. Topics in Cognitive Science (TopiCS) 7: 312–322.

Boone, Worth, and Piccinini, Gualtiero. 2016. Mechanistic abstraction. Philosophy of
Science (forthcoming).

Chirimuuta, Mazviita. 2014. Minimal models and canonical neural computations: The
distinctness of computational explanation in neuroscience. Synthese 191:
127–153.

Copeland, B. Jack. 1996. What is computation? Synthese 108: 335–359.

Copeland, B. Jack, Dresner, Eli, Proudfoot, Diane, and Shagrir, Oron. 2017. Time to
re-inspect the foundations? Communications of the ACM (forthcoming).

Craver, Carl F. 2007. Explaining the Brain. Oxford University Press.

Dayan, Peter, and Abbott, Laurence F. 2001. Theoretical Neuroscience:
Computational and Mathematical Modeling of Neural Systems. MIT Press.

Egan, Frances. 2017. Function-theoretic explanation and the search for neural
mechanisms. In Integrating Psychology and Neuroscience: Prospects and
Problems, edited by David Kaplan. Oxford: Oxford University Press
(forthcoming).

Fodor, Jerry A. 1994. The Elm and the Expert. MIT Press.

Fresco, Nir. 2014. Physical Computation and Cognitive Science. Springer-Verlag.

http://philpapers.org/s/Jerry%20A.%20Fodor

Glennan, Stuart. 2002. Rethinking mechanistic explanation. Philosophy of Science 69:
S342–353.

Haimovici, Sabrina. 2013. A problem for the mechanistic account of computation.
Journal of Cognitive Science 14: 151–81.

Hardcastle, Valerie Gray. 1995. Computationalism. Synthese 105: 303–317

Huneman, Philippe. 2010. Topological explanations and robustness in biological
sciences. Synthese 177: 213–245.

Kaplan, David Michael. 2011. Explanation and description in computational
neuroscience. Synthese 183: 339–373.

Levy, Arnon. 2013. Three kinds of "new mechanism". Biology & Philosophy 28: 99–
114.

Levy, Arnon, and Bechtel, William. 2013. Abstraction and the organization of
mechanisms. Philosophy of Science 80: 241–61.

Machamer, Peter, Darden, Lindley, and Craver, Carl F. 2000. Thinking about
mechanisms. Philosophy of Science 67: 1–25.

Milkowski, Marcin. 2013. Explaining the Computational Mind. MIT Press.

Piccinini, Gualtiero. 2003. Computations and Computers in the Sciences of Mind and
Brain. Doctoral Dissertation, University of Pittsburgh.

 -- 2007. Computing mechanisms. Philosophy of Science 74: 501–526.

-- 2008. Some neural networks compute, others don’t. Neural Networks 21:
311–321.

-- 2015. Physical computation: A mechanistic account. Oxford University
Press.

Piccinini, Gualtiero and Craver, Carl, F. 2011. Integrating psychology and
neuroscience: Functional analyses as mechanism sketches. Synthese 183:
283–311.

Piccinini, Gualtiero and Scarantino, Andrea. 2011. Information processing,
computation, and cognition. Journal of biological physics 37:1–38.

Rathkopf, Charles. 2015. Network representation and complex systems. Synthese
(forthcoming). Online version: doi:10.1007/s11229-015-0726-0.

Rescorla, Michael. 2013. Against structuralist theories of computational
implementation. British Journal for the Philosophy of Science 64: 681–707.

Rusanen, Anna-Mari, and Lappi, Otto. 2016. On computational explanations.
Synthese (forthcoming). Online version: doi:10.1007/s11229-016-1101-5.

Shagrir, Oron. 2001. Content, computation, and externalism. Mind, 110: 369–400.

Shagrir, Oron, and Bechtel, William. 2017. Marr's computational-level theories and
delineating phenomena. In Integrating Psychology and Neuroscience:
Prospects and Problems, edited by David Kaplan. Oxford University Press
(forthcoming).

Shapiro, Lawrence A. 2016. Mechanism or bust ? Explanation in psychology. British
Journal for the Philosophy of Science (forthcoming). Online version:
doi:10.1093/bjps/axv062.

Weiskopf, Daniel A. 2011. Models and mechanisms in psychological explanation.
Synthese 183: 313–338.

