
     

 

 

                

Electrons and Phonons in Periodic Lattice/ Oded Agam 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       

 בירושלים האוניברסיטה העברית 

The Hebrew University of  Jerusalem 

 



2 

 

 

 

 

  

These lecture notes are inspired by a course given by Prof. Igor Aleiner from Columbia 

University in New York. They are intended only for the use of the students of the course: 

“Condensed Matter A: Electrons and Phonons in Periodic Lattice” of the Hebrew University. 

It is forbidden to distribute these notes in any form and use them for any commercial purpose.    

 

© 2021 Oded Agam.  All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table of Contents  



3  

 

1 Introduction 

1.1 The conductivity of Metals – Drude Model       ………….……………………………………..……………………………..……………7 

1.2 Bloch’s theorem ……………………………………………………………………………………………..……………………..……………………10 

1.3 Effective mass, electrons, and holes……………………………………………………………..………………….………………………….16 

1.4 Fermi surfaces, metals, and insulators……………..………………………………………………………………………………………….18 

1.5 Exercises………………………………………………………………………………………………………………………………………………………23 

 
2 Lattices and spatial symmetries 

2.1 Translation vectors…………………………………………………………………………………..….………………………………………………24 

2.2 The translation group………………………………………………….………………………………………………………….…………………..25 

2.3 Bravais Lattice …………………………………………………………………………….………………………………………………………………26 

2.4 Point groups………………………………………………………………………………….………………………………………………………….…28 

2.5 Space groups…………………………………………………………………………………………………………………………………….…………32 

2.6 Decorated lattices………………………………………………………………………………………………………….……………………………33 

2.7 The Wigner-Seitz cell……..…………………………………………………………………………………………………………….……………..35 

2.8 Three-dimensional Bravais lattices…………………………………………………………………………………….………………….…….35 

2.9 Directions and planes in a crystal (Miller indices)…………………………….………………………………………………………….42 

2.10 The reciprocal lattice……………………………………………………………..……………………………………….…………………………43 

2.11 Exercises…………………………………………………………………………………..……………………………….……………………………...46 

 
3 Time-reversal symmetry 

3.1 Implications of time-reversal symmetry on the electron spectrum…………………………………………………………….47 

3.2 The time-reversal operation for spin ½ systems…………………………………………………………………………………………49 

3.3 Spin-orbit interaction and Kramer’s degeneracy……………………………………………………………………….……………….51  

3.4 Rashba term………………………………………………………………………………………………………………………………….……………53 

3.5 Exercises ……………………………………………………………………………………………………………………………….…………………..56 

 

4 Group Theory: Basic concepts 

4.1 Definitions…………………………………………………………………………………………………………………………….…………….………57 

4.2 Symmetry operations of point groups……………………………………………………………………………………………….………..60 

4.3 Schoenflis notation of point groups………………………………………………………………………………………….………………...60 

4.4 Conjugate elements and conjugacy classes……………………………………………………………………………………..…………..63 

4.5 Representations of groups………………………………………………………………………….……………………………………………….65 

4.6 Characters of irreducible representations……………………………………………………………………………………………………71 

4.7 Character tables…………………………………………………………………………………………………..………………………………………73 

4.8 Basis functions………………………………………………………………………………………………………………………….…………………75 

4.9 Mulliken symbols of irreducible representations…………………………………………………………………….……..…………….81 

4.10 Molecular vibrations……………………………………………..…………….……………………………………………….………..……………82 

4.11  Irreducible representations in quantum mechanics……………………………..……………………………………………………..87 

4.12 Exercises………………………………………………………………………………………………..…………………………………………………….90 



4 

 

 
5  Graphene and Dichalcogenides 

5.1 The graphene lattice………………………………………………………………………………………………………………………………..…93 

5.2 The “little group” and the spectrum near the K -point……………………………………………………………………………..94 

5.3 Schur’s lemma and multiplication of irreducible representations..…………….…………………………………….……….101 

5.4 Dichalcogenides………………………………………………………………………….…………….…..………………………………………….105 

5.5 Exercises.……………………………………………………………………………….……………………………………………….………………..109 

 
6 Extended groups and double groups 

6.1 Extended groups……………………………………………………………………………………………………………………….………………111 

6.2 Double groups………………………………………………………………………………………………………………………….……………….115 

6.3 Spin-orbit interaction in graphene – the Kane Mele term…………………………………………………………………………118 

6.4 Topological insulators…………………………………………………………………………………………………………………………..…..120 

6.5 Exercises………………………………………………………………………………………………………………..………….………………………122 

 
7 Methods for calculating band structure 

7.1 The nearly free electron approximation………………………………………………………………………….…………………………123 

7.2 The tight-binding approximation………………………..………………………………………………………………..……………………129 

7.3 The k p approximation, Kane’s model, heavy holes and light holes…………………………………………………..…..139 

7.4 Exercises………………………………………………………………………………..…………………………………………………….……………145 

 
8 Topological metals 

8.1 Energy bands in mercury telluride – a qualitative discussion…………….…….……………………………………………….148 

8.2 Weyl points………………………………………………………………………………………………………………………………………………151 

8.3 Curvature, parallel transport, and topological numbers……………………………………………………………………………151 

8.4 Berry’s curvature……………………………………………………………………………………………………………………………………..157 

8.5 Chern numbers and chiral charge…………………………………………………………………………………………………………….162 

8.6 Dirac points………………………………………………………………………………………………………………………………………………163 

8.7 Fermi arcs…………………………………………………………………………………………………………………………………………………163 

8.8 Exercises……………………………………………………………………………………………..……………………………………………………166 

 
9 Crystals in a constant electric field 

9.1 Physical response in dielectric crystals………………………………………………………………………………….………………….168 

9.2 The effective mass approximation………………………………………………………………………………………………………….…170 

9.3 Stark ladder and Wannier-Stark oscillations…………………………………………………………………………….………………..174 

9.4 Beyond the effective mass approximation -the k p  approximation………….…………………………….…….………176 

9.5 Dielectric breakdown (Landau-Zener tunneling) ……………………………………………………………………….………………179 

9.6 Exercises…………………………………………………………………………………………………………………………….……………………..188 

 



5  

 

10 Crystals in a constant magnetic field 

10.1 Gauge invariance and charge conservation………………………………..…………………………………………….……….190 

10.2 The effective mass approximation……………………………………………………………………………………………………..193 

10.3 Perturbative corrections to the effective mass approximation…………………………………………………..………196 

10.4 Charged particles in a crystal subjected to magnetic field………………………………………………………………….199 

10.5 Bohr-Sommerfeld quantization and Landau levels……………………………………………………………………………..204 

10.6 Magnetic breakdown…………………………………………………………………………………………………………………………207 

10.7 Strong magnetic field – Preliminary discussion (Moiré patterns)…………………….………………………………….214 

10.8 Magnetic translations……………………………………………………………………………………………………………………..…217 

10.9 Hofstadter’s butterfly…………………………………………………………………………………………………………………………221 

10.10 Exercises……………………………………………………….………………………….………………………………………………………..222 

 
11 Elastic deformations, sound waves, and phonons 

11.1 The strain tensor…………………………………………………………………………………………………………………..……………………224 

11.2 The energy of elastic deformations……………………………………………………………………………………………………………227 

11.3 Sound waves in crystals……………………………………………………………………………………………………………………………..231 

11.4 Phonons………………………………………………………..…………………………………………………………………………………………..238 

11.5 Optical vibrations in crystals (optical phonons)………………………….……………………………..……………………………….240 

11.6 Symmetry approach to optical modes in crystals……………………………………………………………………………………….243 

11.7 Exercises………………………………………………….………………………………………………………………………………………………..247 

 
12 Crystals in an electromagnetic field 

12.1 Infrared activity………………………………………………….……………………………………………………………………………………..250 

12.2 Raman scattering……………………………………………………………………………………………………………………………………....253 

12.3 Electromagnetic waves in polarizable crystals and polaritons ………………………………………………..….….………….256 

12.4 Exercises……………………………………………………………………………………………….……………………………………………..……260 

 
13 Piezoelectric and polar crystals 

13.1 Piezoelectric crystals ………………………………………….……………………………………………………………………………………..262 

13.2 Pyroelectric crystals……………………………………………………………………………………………..……………………………………264 

13.3 Ferroelectric crystals………………………………………………………………………………………………………………………………….266 

13.4 Exercises…………………………………………………………………………………………………………………………………………………….272 

 
14 Electrons in deformed crystals 

14.1 The effect of lattice deformation on the electron’s energy spectrum…………...…………………………………………..273 

14.2 Deformation of the Fermi surface of metals due to lattice deformations…………………………………………………..276 

14.3 Dislocations…………………………………………………………………………………………………………………………………………..…..280 

14.4 Peierls instability…………………………………………………………………………………………………………………..……………………285 

14.5 Exercises………………………………………………………………………………………………………………………………………….………..290 



6 

 

 
15 Electron-phonon interaction 

15.1 Deformation interaction……………………………………………………………………………………………………………...…….……..292 

15.2 Transition rate between electronic states………………………………………………………………………………………………….297 

15.3 The kinetic equations for electrons and phonons distribution functions……………………………………………..…….299 

15.4 Thermodynamic equilibrium……………………………………………………………………………………………………………….…….301 

15.5 The thermodynamic equilibrium from entropy considerations………………………………………………..…………….….306 

15.6 Piezoelectric interaction…………………………………………………………………………………………………………………………….308 

15.7 Fröhlich polaron…………………………………………………………………………………………..……………………………..…………….309 

15.8 Exercises…………………………………………………………………………………………………………………………………………….……..313 

 
16 Umklapp processes 

16.1 Qualitative discussion……………………………………………………………………………………………………………………….……….318 

16.2 The umklapp Hamiltonian: Group theory approach……………………………………………………………………………………320 

16.3 The umklapp Hamiltonian from the modulated hopping approach……………………………..…………………….………321 

16.4 Exercises…………………………………………………………………………………………………………………………………………………….326 

 
17 Semiconductors and disordered crystals 

17.1 Impurities and defects in crystals………………………………………………….………………………………………………….……….327 

17.2 The Jahn-Teller effect of an impurity in a crystal………………………………………………………………………………………..335 

17.3 Elastic scattering and the optical theorem…………………………………………………………………………………………………341 

17.4 The kinetic equations for elastic scattering………………………………………………………………………………………………..349 

17.5 Exercises…………………………………………………………………………………….……………………………………………………………..352 

 
18 Transport coefficients & thermoelectric effects 

18.1 Diffusion………………………………………………………………………………………………………………………….………………………..354 

18.2 The electric conductivity and Einstein’s relation………………………………………………………………………………………..357 

18.3 The second law of thermodynamics in electronic systems………………………………………………………………………...360 

18.4 Thermoelectric effects……………………………………………………………………………………………………………………………….367 

18.5 Relations between thermoelectric/kinetic coefficients……………………………………………………………………….……..369 

18.6 Exercises……………………………………………………………………………………………………………………………………………….……372 

 



7 

 

 

1 Introduction 

 
 The matter around us appears in three main phases, gas, liquid, and solid.  When the 

temperature is sufficiently low, atoms in solids may rearrange themselves in a crystal 

characterized by periodic spatial structure. This course aims at understanding how this 

periodic structure manifests itself in the behavior of the electrons and the phonons in the 

system.  We shall see how this periodicity dictates the structure of the energy spectrum of 

the electrons in the crystal, its optical properties, and the amount of electrical current 

induced by an electric field or temperature gradient. The scope of this course is limited to 

cases where the interactions among electrons do not play an important role.    

 The precise periodic structure of a crystal depends on the type of atoms from which it is 

composed and the type of chemical bonding among them. In general, there are 230 

different possible periodic structures in three dimensions that are characterized by 

different sets of symmetry operations. However, here we shall consider only simple 

periodic structures (with an emphasis on two-dimensional crystals that constitutes the 

state-of-the-art systems in current research), but the ideas that will be developed along the 

course provide the basis for understanding more complicated structures.  

 In this introductory chapter, I will present the Drude model for conductivity which,  as we 

shall see, motivates the study of systems with periodic structures. Following, I will discuss 

several basic ideas of the field: Bloch’s theorem (in one dimension), Fermi surfaces, 

effective mass, and charge carriers, i.e. electrons and holes.   

 

1.1 The conductivity of metals – the Drude model 

 

The Drude model for conductivity assumes that electrons may be treated as free particles 

scattered from impurities. This scattering results in relaxation of the electron momentum, 

p , thus  Newton’s second law takes the form: 

                                                                  
d

e
dt 

= − −
p p

E ,                                                        (1.1) 

where E is the electric field, e− is the electron charge, and  is the typical relaxation time 

of the momentum.  The angular brackets, , denote thermodynamic averaging over the 

ensemble of electrons. Notice that the relaxation of momentum is generally due to a 

change of the momentum direction rather than a reduction of its absolute value.   

The steady-state solution of the above equation yields: 

                                                                           e= −p E ,                                                        (1.2) 
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and if one assumes that, in the absence of collisions and external fields, electrons behave 

as free particles with the Hamiltonian, 2 2H p m= , where m is the electron mass, then the 

average  velocity of the electron - also known as the drift velocity - is:   

                                                                      
e

m m


= = −

p
v E .                                                 (1.3) 

The absolute value of the ratio of the drift velocity to the electric field, e m = , is called 

electron mobility.  From the solution (1.3), it follows that the electric current density is given 

by 

                                                                      
2ne

en
m


= − =j v E ,                                                (1.4) 

where n is the electron density. Thus, we obtain the Drude conductivity as the ratio of the 

current density to the electric field, 

                                                                               
2ne

m


 = .                                                           (1.5) 

Since the electron density, its charge, and mass can be measured independently, knowing 

the conductivity of the sample allows one to deduce the value of the momentum relaxation 

time,  . This empirical value can be compared to the theoretical prediction for  , which 

we turn to estimate now.   

Let us assume that an electron can scatter from any ion in the lattice and that in each 

scattering event, the electron completely loses memory about its initial direction. In other 

words, the scattering time is also the momentum relaxation time.   

 

 

 

 

 

 

 

 

 

 

 Now, consider a cylinder of length v and basis area A  as demonstrated in Fig. 1-1. Let  

ionn  be the density of ions in the cylinder and scat the scattering cross-section of each ion.  

An electron that enters the cylinder will be scattered with a probability of order one if the 

 

Fig. 1-1 Classical scattering of electrons in a periodic lattice 
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sum of scattering cross-sections of all atoms is of the order of the area, A , of the cylinder 

basis, i.e., when 
ion scatv n A A , thus 

                                                                        
ion scat

1

vn



.                                                         (1.6) 

Let a  be the spatial period of the lattice, known as the lattice constant, then 3

ion 1 .n a

Assuming also that the typical electron wavelength, F , equals a , then  2

scat a , and 

therefore 1 F Fv a vp  , where 
F  is the Fermi energy. To obtain this 

estimation, the relation between the momentum and the wavelength of the electron, 

F Fp a , has been used.  However, the scattering rate measured in experiments 

that were conducted during the 20th century, was ( )4 51 10 10 F − − , i.e. smaller by 4 

to 5 orders of magnitude compared to that predicted by Drude theory.  

This discrepancy between the theoretical prediction and the empirical results has been 

resolved by Sommerfeld and Bloch (1928). They showed that an electron moving in a 

perfect periodic lattice does not scatter from ions at all!  Qualitatively, this result can be 

understood by the Huygens-Fresnel principle: Imagine an electron entering the lattice with 

a wave function in the form of a plane wave.  Each ion scatters this plane wave and behaves 

as a point source of circular waves. By the Huygens-Fresnel principle, we know that the 

constructive interference from all these circular waves reconstructs the plane wave (albeit 

with a different wave velocity – similar to the change of the speed of light moving in 

dielectric materials), meaning that the electron does not scatter. 

The Huygens-Fresnel principle applies in free space where the point sources on a wavefront 

can be arbitrarily close to each other. When the distances between nearest neighbors' 

point sources are finite and fixed, constructive interference occurs only for particular values 

of wavelengths. These values dictate the electron momentum and form bands of allowed 

energies. The scattering rate of an electron moving in a perfect lattice, with energy situated 

in one of these bands, is infinite  =  . 

                               

                               Figure 1-2 An illustration of lattice defects          

At finite temperature, vibrations destroy the perfect periodicity of the lattice and lead to 

the scattering of the electron.  Similarly, the existence of various defects in the lattice such 
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as interstitials, substitutional atoms, vacancies, dislocations, and disclinations, see 

illustration in Fig. 1-2, also destroy the periodic structure and generate scattering. This 

scattering produces a finite conductivity even at zero temperature. 

 

1.2 Bloch’s theorem 

How does the periodicity of a potential manifest itself in the wave functions and energy 

spectrum of a particle moving in a lattice?   This issue is one of the central questions that 

will be discussed in this course, and as we shall see, it has many interesting aspects.  Here, 

as part of the introduction, we discuss the simple case of a particle moving in a one-

dimensional periodic potential and prove Bloch’s theorem stating that all  wave functions 

of the particle can be written in the form: 

                                                                   ( ) ( ) ( )exp kx ikx x = ,                                                (1.7) 

where k  is a real number called Bloch's wavenumber, while ( )k x is a periodic function 

with the periodicity of the potential.  

To prove Bloch’s theorem, consider the following Hamiltonian: 

                                                               ( ) ( )
2

22
H x u x

m x


= − +


.                                             (1.8) 

Here x is the particle position, m is its mass, and ( )u x  is a periodic potential with the 

periodicity of the lattice constant, a , i.e. 

                                                                         ( ) ( )u x a u x+ =                                                       (1.9) 

for any value of x . The (time-independent) Schrödinger equation of this system is  

                                                                     ( ) ( ) ( )H x x x = ,                                                (1.10) 

and symmetry to translation by the lattice constant implies that  

                                                              ( ) ( ) ( )H x a x a x a + + = + .                                    (1.11) 

 

But ( ) ( )H x a H x+ = , therefore ( )x a +  is also a solution of the Schrödinger equation 

(1.10) with the same energy. Moreover, translation operation does not reverse the 

direction of the momentum, and since the energy spectrum in a one-dimensional system 

is nondegenerate (we'll prove it later),  ( )x a +  should be the same as ( )x  up to a phase 

factor, namely ( ) ( )x a A x + = with 1A = . In particular, one can set the constant A  to 

be ( )exp ika , where k is a real free parameter, thus 
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                                                           ( ) ( ) ( )expx a ika x + = .                                               (1.12) 

We turn to show that a function that satisfies this condition for any x  should have the 

structure of a Bloch wave function (1.7).  Multiplying  Eq. (1.12) by ( )exp ik x a− +    we 

obtain 

                                           ( ) ( ) ( ) ( )exp expik x a x a ikx x − + + = −   .                              (1.13) 

 

This equation completes our proof because it implies that ( ) ( ) ( )expk x ikx x = −  is a 

periodic function of x with period a . 

 
 
Example:  The Kronig-Penney model (1931)  

 

The Kronig-Penney model describes a particle that moves in a one-dimensional periodic 

potential made from square well potentials of width b , depth 0u− , and distance a  

between neighboring wells. It is shown in the following figure: 
 

                  

                                   Figure 1-3 The potential of the Kronig-Penney model 

 

This potential is piecewise constant.  In each interval where the potential is constant, the 

wave function is a superposition of exponential functions (either real or imaginary) 

describing particle that moves in opposite directions. Thus, the wave function in the unit 

cell, b x a b−   − ,  takes the form: 

                                   ( )
( ) ( )

( ) ( )

exp exp 0

exp exp 0

A i x A i x x a b
x

B i x B i x b x

 


 

+ −   −
= 

+ − −  
,                        (1.14) 

where A , A , B , B ,  , and   are constants that should be calculated. Substituting ( )x

in  Schrödinger equation (1.10) shows that the energy   satisfies the following relations: 
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2 2

2m


 =    and   

2 2

0
2

u
m


 + = .                                           (1.15) 

 
Thus, the value of   determines that of   and vice versa.  Notice that if 0  , the 

constant   is purely imaginary.  
 
The continuity of the wave function  (1.14)  and  its derivative at 0x =  yields the following 
conditions: 
 

                                                            
( ) ( )

,

.

A A B B

i A A i B B 

 + = +

 − = −
                                                (1.16) 

 
 

To obtain two additional conditions, we use Bloch's theorem, implying that  
 

                       

( ) ( ) ( )

( ) ( )

( ) ( )

exp

exp exp 0
        

exp exp 0

k x ikx x

A i k x A i k x x a b

B i k x B i k x b x

 

 

 

= −

 − + − +   −       
= 

− + − + −         

                (1.17) 

 
is a periodic function of x  with period a .  The periodicity of this function and its derivative, 
 

                                                   ( ) ( )k kb a b − = −  and ( ) ( )k kb a b  − = − ,                          (1.18)  

 
leads to the following equations: 

 

                             
( ) ( )

( )( ) ( )( )

exp exp

    exp exp ,

B i k b B i k b

A i k a b A i k a b

 

 

− − + +      

= − − + − + −      

                      (1.19) 

and 
 

                
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

exp exp

    exp exp .

i k B i k b i k B i k b

i k A i k a b i k A i k a b

   

   

− − − − + +      

= − − − − + − + −      

     (1.20) 

 
The four equations that we obtained for the constants  A , A , B , and B , can be written 

as a matrix equation:

 

 

  ( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )

1 1 1 1

0i k a b i k a b i k b i k b

i k a b i k a b i k b i k b

A

A

e e e e B

Bk e k e k e k e

   

   

   

   

− − − + − − − +

− − − + − − − +

− −  
  − −    =  − −
  
  − − + − − +   

. (1.21) 
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A nontrivial solution of this equation exists only if the determinant of the above matrix 

vanishes.  This condition yields (see Ex. 1) an equation that determines the possible values 

of Bloch’s wavenumber, k , and their relations to the constant  : 

 

                     ( ) ( ) ( ) ( ) ( )
2 2

cos cos cos sin sin
2

ka b a b b a b
 

   


+
= − − −       .            (1.22) 

 
To simplify this equation, we focus our attention on the limit of very deep and narrow wells, 

0u →  and 0b → , keeping the product 0u b  constant.  From the second relation of  Eq. 

(1.15) it follows that in this limit,  → , but 2b  is a constant, hence 0b → . Thus Eq. 

(1.22) reduces to 

 

                                                   ( ) ( )
( )sin

cos cos
a

ka a
a


 


= −                                           (1.23) 

with 

                                                                        
2

2

ba
 =                                                                (1.24) 

 
as a free dimensionless parameter that characterizes the potential strength.  In particular, 

if 0 = , then k = and ( )2 2 2k m =  as expected for a free particle. 

     If 0   one should consider two cases: One is when  is real, and the second is when 

it is purely imaginary. The first case is associated with positive energy ( )2 2 2m =  and 

describes solutions in which the particle moves above the potential barriers that separate 

the wells. A graphical solution of equation (1.23) for real  is depicted in Fig. 1-4. 

 

 

                                         

 

                                   Figure 1-4  A graphical solution of Eq. (1.23) for real    
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Here the right-hand side of Eq. (1.23)  is drawn by solid black line as a function of a , 

while the left-hand side of the equation, which is a constant, ( )cos ka ,  is drawn by the red 

line. As this constant resides within the interval between 1−  and 1 (depending on k ), 

there are values of a  for which there is no solution to the secular equation (1.23).  The 

gray regions in the figure designate these values.  Recalling that the energy is given by 

( )2 2 2m = , this behavior of the solution implies that the energy spectrum of the 

system, ( )k , consists of a set of separated “energy bands”.  

Consider now the second case where  is purely imaginary.  Substituting i = (where 

 is real) in Eq. (1.23) we obtain 
 

                                                  ( ) ( )
( )sinh

cos cosh
a

ka a
a


 




= −


.                                    (1.25) 

The graphical solution of this equation is shown in Fig. 1-5.  

 

                 

 

                                                               Figure 1-5  The graphical solution of Eq. (1.25)  

Now there is only a single domain of  a  for which there is a solution of the equation. 

The particle energy associated with this solution is negative, ( )2 2 2m = − ,  therefore, 

it forms the lowest energy band of the system.  To obtain an approximate analytic 

expression for this band, consider the limit 1 . In this case one expects a to be close 

to  , therefore both functions, ( )cosh a  and ( )sinh a , can be approximated by 

( )exp 2a . With this approximation, linearization of Eq. (25)  in the vicinity of a  =  

gives  

                                     ( ) ( )
( ) ( )

( )
sinh exp

cos cosh
2

a
ka a a

a

 
   

 


 = − −


,                (1.26) 

and the lowest energy band (which we denote by the subscript 0) is given by the 

approximate  formula:  
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                                    ( ) ( ) ( )
2 2 2 2

0 2
1 4exp cos

2 2
k ka

m ma

 
 


= − − + −   .                        (1.27) 

These negative energy states are associated with the tunneling of the particle from one 

well to the other.  On the other hand, the solutions of Eq. (1.23) for real values of  yield 

a set of positive energy bands, ( )n k ,  associated with states where the particle travels 

above the energy barriers between the wells.  A diagram of the energy levels obtained 

from a numerical solution of Eq. (1.23) is shown in Fig. 1-6 below.  
 

                     

                                                   Figure 1-6  The energy levels of the Kronig-Penney model 

The main conclusions drawn from the above discussion are: 

(a) The energy spectrum of a particle moving in a (one-dimensional) periodic potential 

comprises a set of allowed energy bands described by some functions, ( )n k . Thus, a 

state of the particle is characterized by two numbers: the band index, n , and Bloch’s 

wave number, k .  

(b) The energy spectrum, as a function of Bloch's wavenumber, k , is periodic with a period 

2 a . This is because the energy levels are functions of ( )cos ka  (see Eq. (1.22)). 

Therefore, to avoid double counting of the energy levels, the domain of allowed values 

of k  should be restricted to one period.  It is customary to choose this restricted 

domain to be a k a −   . This domain is called the first Brillouin zone and is 

displayed by the white stripe in Fig. 1-6.   
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1.3  Effective mass, electrons, and holes. 

Unlike free particles, the energy spectrum of a particle moving in a periodic lattice is no 

longer a parabolic function of the wavenumber. To appreciate the importance of this 

property, consider an electron moving in a one-dimensional periodic potential and 

subjected to a weak electric field E  (a comprehensive discussion of this issue will be given 

in Chapter 9).  Furthermore, let us adopt a semiclassical approach according to which 

Hamilton's equations can describe the dynamics of the electron using the Hamiltonian: 

                                                                        ( )H p eEx= + ,                                                      (1.28) 

where ( )p  is the energy spectrum of the electron in the lattice which is some function of 

the momentum, p , and e−  is the electron charge.  Hamilton’s equations, in this case, take 

the form: 

                                                                     

( )pdx
v

dt p

dp H
eE

dt x


= =




= − = −



                                                   (1.29) 

For a free electron, ( ) ( )2 2p p m = , the first equation implies that the electron velocity 

is v p m= . Taking the derivative of the latter equation and using the second equation of 

(1.29)  we obtain Newton’s second law for the acceleration of the electron:  

                                                                              
dv e

E
dt m

−
= .                                                       (1.30) 

Now consider the case of an electron near the bottom of the lowest energy band (see, for 

example, Fig. 1-6). In this region, the spectrum can be approximated by parabolic 

spectrum, which may be presented in the form 

                                                                          ( )
2

eff2

p
p

m
 = ,                                                       (1.31) 

where we assume that the momentum satisfies the relation p k= , with k  as Bloch's 

wavenumber  (the justification of this assumption is deferred to Chapter 9). Repeating the 

calculation that leads to formula (1.30) yields the same expression but with m replaced by 

effm . Thus, the electron behaves as a free particle, albeit with a mass determined by the 

lattice properties that may be very different from that of a free electron. This mass is 

known as the effective mass of the electron. 

 
We turn to discuss a situation where the electron is still in the lowest energy band but 

close to the edge of the Brillouin zone, 0k k a= .  Now ( )p  is near a maximum and 

can be approximated by inverted parabola: 
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                                                                   ( )
( )

2

0

0

eff2

p k
p

m
 

−
= −


.                                                   (1.32) 

Substituting this formula in Hamilton’s equations (1.29) we obtain: 
 

                                                                     

( ) 0

eff

,
2

,

p p k
v

p m

dp H
eE

dt x

 −
= = −




= − = −



                                                   (1.33) 

and once again, taking the time derivative of the first equation and substituting it in the 

second one, we obtain a formula for the acceleration like Eq. (1.30) but with a different 

sign and different mass: 

                                                                              
eff

dv e
E

dt m

+
=


.                                                       (1.34) 

A possible interpretation of the above result is that the electron has a negative mass.  

However,  in reality, we do not measure the mass directly but only as a response to force; 

hence an alternative interpretation of the above result is that an electron near the upper 

edge of the band behaves like a particle with a positive charge. Such a particle is called a 

"hole". 

To clarify the reason for this nomenclature, we consider two cases. In the first, we  look at 

a single electron (near the bottom of the band) that moves on a lattice where all sites are 

unoccupied, as demonstrated below: 

 

                    

                                 Figure 1-7 An electron in a lattice near the bottom of the lowest band    

Here the electric field, E , induces transitions of the electron from one lattice site to 

another unoccupied site.  

Consider, now, the second case where all lattice sites are occupied except for one as 

illustrated in Fig. 1-8 on the next page.  Ignoring the spin degree of freedom (assuming, 

e.g., that all spins of the electrons point in the same direction), all electrons are frozen at 

their position due to Pauli's exclusion principle, except for the electrons near the vacant 

lattice point.  The application of an electric field induces the transition of the electron on 

the right side of the vacant lattice point to move to the left. However, this process is 
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equivalent to a right jump of the vacant lattice point  – i.e. the hole – as illustrated in Fig. 

1-8. 

                  

                                      Figure 1-8  Electrons in a lattice near at the top of the lowest band    

While the above picture motivates the notion of a “hole” as a particle, it may be 

misleading. The behavior manifested in Eq. (1.34) refers to a single particle near the edge 

of the Brillouin zone without reference to the occupation of states by other electrons. The 

electron’s acceleration changes sign because of constructive interference of the reflected 

waves from the atoms, which becomes stronger as the electron’s energy increases.  This 

is, essentially, Bragg’s reflection phenomenon: Near the edge of the Brillouin zone, the 

electron’s wavelength is close to being twice the lattice constant; hence the waves 

reflected from neighboring lattice cells interfere constructively.      

 

1.4  Fermi surfaces, metals, and insulators 

At sufficiently low temperatures, electronic systems become degenerate. The electrons 

(which are Fermions) essentially occupy all states up to energy, F , known as the Fermi 

energy, excluding a narrow band near the Fermi level - whose width is determined by the 

temperature. In this band, the occupation is partial. The Fermi-Dirac distribution of the 

electrons accounts for this property:  

                                                      ( )
1

.

1 exp F

B

f

k T


 

=
 −

+  
 

                                                       (1.35) 

Here T  is the temperature, and Bk  is Boltzmann’s constant.  Only those electrons with 

energies located within the narrow stripe near the Fermi level react to weak external 

perturbations because electrons with energies deep below the Fermi level are frozen due 

to Pauli's exclusion principle. Therefore, properties of the system, such as the heat 

capacitance or the electric conductivity, are determined only by electrons near the Fermi 

level. Hence, the characterization of the physical properties of crystals requires 

information about the position and structure of the Fermi level in k space. 
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The Fermi surface is a surface in the wavenumber space, k , that is obtained from the 

solution of the equation: 

                                                                             ( ) k =
F .                                                        (1.36) 

In one-dimensional systems,  the Fermi surface is a set of points. In two dimensions, Fermi 

surfaces are curves, while in three dimensions, they are surfaces in k space. 

In general, a crystal becomes a metal or an insulator depending on the location of the 

Fermi level. When the latter is within a band, the electrons fill all the states below the 

Fermi level, while those above the Fermi level remain empty. An electric field applied to 

the system induces transitions of electrons from the occupied states to vacant energy 

states with an energy difference that can be as small as we wish (assuming the system is 

large enough). These transitions of the electrons can produce electric current; hence, the 

system is metallic. Such metals, known as band metals, are obtained in two primary 

manners as illustrated in the following figure (for one-dimensional systems):  

                       

                                              Figure 1-9 An electron-like (left)  and a hole-like  (right) Fermi surfaces 

 

The real space illustrations of one-dimensional systems with electron-like and hole-like 

Fermi surfaces are shown in Figs. 1-7 and 1-8, respectively.  

In contrast, when the Fermi level is located between two bands, the electrons fill all the 

states of the lower band, and the only possibility to change the occupation is by moving an 

electron to a higher band. However, usually, this process requires a large amount of energy 

that a weak electric field cannot provide. In this case, the system is an insulator because 

the electrons do not have close energy levels into which they can move in order to produce 

an electric current.  This type of insulator is called a band insulator. It is illustrated in Fig.  

1-10.  (There are also different kinds of insulators called  Anderson insulators.  The 

mechanism that suppresses the electric current in these insulators is interference. We shall 

not discuss Anderson insulators  in this course.) 
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                                                                             Figure 1-10  A band insulator 

 

The question that remains is what determines whether the Fermi level is within a band or 

between two bands. To answer this question, we should first show how to count the 

number of states in a band.  For a one dimensional system, assuming its length is L  (with, 

say, periodic boundary conditions), each state occupies a range 2k L =  in k  space; 

therefore, the number of states in the band is: 

                                                            
band uc2 2 2

2

a

a

Ldk L
N N

a



 
−

= = = ,                                      (1.37) 

where the factor 2 is due to the spin degree of freedom, a  is the lattice constant, and 
ucN  

is the number of unit cells in a system of length L . 

 These states are occupied by electrons that come from the atoms in each unit cell. Now, 

there are two possibilities: The first is when the number of electrons coming from the 

atoms, in a single unit cell, is an even number, and the second possibility is that this 

number is odd. In the first case, the electrons fill all the states in the bands and we obtain 

an insulator. In the second case, the last band will be only half-filled because it contains 

ucN  electrons, whereas the band contains uc2N states. In this case, the lattice is a metal.  

The above argument is independent of the dimensionality of the system. However, there 

are, of course, exceptions. But before presenting examples of these exceptions, let us 

discuss the typical structures of Fermi surfaces in systems of higher dimensions. For 

simplicity, we consider two-dimensional systems for which the Fermi surfaces are curves 

in the first Brillouin zone of k  space. 

An electron-like Femi surface is illustrated in Fig. 1-11 on the next page. Here the shadowed 

region represents a region of occupied states in the first Brillouin zone in k  space. 

The minimal energy 

for excitation 
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A hole-like Femi surface is illustrated in Fig. 1-12. Choosing to describe the systems using 

holes instead of electrons, the Fermi surface of the holes is depicted in Fig. 1-13. Notice 

that, in this case, the Fermi surface of the holes is approximately circular because there 

are periodic boundary conditions on the Brillouin zone. (Alternatively, one may shift the 

Brillouin zone to a position such that the hole Fermi surface is at the center. This is justified 

because there is an arbitrariness in choosing the location of the first Brillouin zone.). 

 

 

Another classification of Fermi surfaces refers to closed and open surfaces. All Fermi 

surfaces described above are closed Fermi surfaces because, by proper choice of the 

Brillouin zone, closed curves describe them.  An example of an open Fermi surface is shown 

in the left panel of Fig. 1-14. Here the Fermi surface does not form a closed curve for any 

 

Figure 1-11 An electron-like Fermi surface in a two-dimensional system 

 

   Figure 1-12 A hole-like Fermi surface  

 

    Figure 1-13  The Fermi surface of holes for the 

system shown in Fig. 11-12  
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choice of the Brillouin zone. In such cases, however, the distinction between the type of 

charge carriers is meaningless, as demonstrated in the right panel of Fig. 1-14.  

 

                      

Figure 1-14 An example of an open Fermi surface in a two-dimensional system. Lefts panel for electrons 

and right panel for holes. 

More complicated Fermi surfaces may simultaneously contain both pockets of electrons 

and pockets of holes, as illustrated in the figure below. 

 

Figure 1-14 An illustration of the Fermi surface in semi-metals 

 

The left panel of this figure shows a diagonal cross-section of the spectrum in the first 

Brillouin zone depicted on the right panel.  Systems of this type are called semi-metals. 

They contain an even number of electrons in each unit cell and, as such, should be 

insulators. However, the spatial structure of the energy bands in k space, where the 
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minimum of one band is below the maximum of the lower band, creates pockets of charge 

carriers, making the system conducive.  

Another possibility of having a conductive system, although each unit cell contributes an 

even number of electrons, is when having band-touching points. In this case, the valance 

band is wholly filled by electrons, but the energy gap to the conductive band is zero.  This 

type of degeneracy points results from symmetries of the lattice, as we shall discuss later 

in this course.  

 

1.5  Exercises  

1.   Prove Eqs. (1.22) and (1.23).  

2.  Consider the Kronig-Penny model with potential made from a periodic set of  -barriers: 

                                                      ( ) ( )0

n

u x u x na= − ,                                                       (1.38) 

     where a  is the lattice constant, and 0 0u  .  To solve this model, assume that between 

each neighboring pair of  -barriers the wave function is a linear combination of 

( )cos x  and ( )sin x , and construct the secular equation for the coefficients of these 

functions. Draw a graphical solution of the equation that you obtained.  

3.  Show that the energy gaps between neighboring bands in the Kronig-Penney model 

approach a constant value in the limit  → . 

4.  Show that the ground state energy of the Kronig-Penney model, obtained in Eq. (1.27) 

in the limit  → , is that of a particle in a delta potential: 

                                                             ( )
2 2 2

22
H x

m x ma





= − −


.                                            (1.39) 
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2  Lattices and spatial symmetries 
 

Spatial periodic structures are associated with symmetry operations such as translations 

in certain directions, reflections, and rotations in specific angles. The set of symmetry 

operations that characterizes a crystal is of paramount importance. As we shall see in the 

coming chapters, it dictates the band structure of the energy levels of the electrons as well 

as the crystal vibrational properties.  In this chapter, we present the basic concepts and 

terminology of this issue.   

 

2.1 Translation vectors 

 

Let ( )u r  be the periodic potential that acts on an electron moving in a lattice (without 

impurities or other defects).  In a one-dimensional system, the periodicity of the potential 

implies that  

                                                        ( ) ( )u x a u x+ =     for any x ,                                                  (2.1) 

 
where a  is the lattice constant as illustrated in Fig. 2-1. Clearly, the potential is also 

periodic in any multiple of the lattice constant, ( )j
xa ja= , where j  is an integer.  

 
  

 

Figure 2-1 A one-dimensional lattice with lattice constant a  

In two spatial dimensions, a periodic potential satisfies the condition: 
 

                   ( ) ( )u u+ =r a r     with  the translation vector  1 1 2 2j j= +a a a ,                         (2.2) 

 

where 1j and 2j  are integers, while 1a  and 2a  are two linearly independent vectors that 

represent the lattice’s shortest translation vectors,  as illustrated in Fig. 2-2. The vectors 1a  

and 2a  are called the primitive basis of the translation vectors or the primitive lattice 

vectors.  
 

 

Figure 2-2 A two-dimensional lattice with primitive lattice vectors 1a  and 2a  
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The natural generalization of the translation vectors to three-dimensional lattices is 

                                                                   
1 1 2 2 3 3j j j= + +a a a a ,                                                     (2.3) 

where 
ij  ( 1,2,3)i = are integers, while 

1a , 
2a , and 

3a are three independent (three 

dimensional) vectors. Finally, we comment that each dot in the above figures represents a 

whole unit cell of the potential, which may have a complicated internal structure.   

 

2.2 The translation group 
 

The spatial periodicity of the potential ( )u r  is a manifestation of symmetry of the system: 

Translation of the (infinite) system by any linear combination of the primitive basis victors, 

with integer coefficients, leaves the system unchanged.The mathematical framework for 

treating symmetries is group theory, and here we introduce it by using the simple example 

of the translation group in crystals.  

   Let  us define Ta
 to be the operator that translates any function, ( )f r , by the vector a,  

i.e.: 

                                                                  ( ) ( )T f f= +a r r a .                                                     (2.4) 

Operating on this formula with an additional translation operator, Ta'
, yields 

 

                                                 ( ) ( ) ( )T T f T f f 
= + = + +a a ar r a r a a .                                  (2.5) 

 
Thus, the translation operators  satisfy the following property: 
 

                                              (a)                     T T T =a a a+a
.                                                           (2.6) 

 
I.e., the “multiplication” of any two translation operators is also a translation operator. 
This property is called “closure”.   In addition, choosing  = −a a  implies that 
 

                                              (b)                     T T E− =a a
,                                                              (2.7) 

 
where E  is the identity operator whose action on any function leaves it intact, 

( ) ( )Ef f=r r . The identity operator also satisfies the property  

 

                                              (c)                     T E ET T= =a a a .                                                              (2.8) 

 
Finally, it is easy to see that the translation operators also satisfy associative property: 
 

                                              (d)            ( ) ( )T T T T T T   =a a a a a a .                                                              (2.9) 
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A set of operations (or operators) that meet properties (a-d), namely, closure, the 

existence of the identity operation, the presence of an inverse operator for any operator, 

and associativity of multiplication of operators, is called group. In the example discussed 

above, the set of translation operators constitute the group of translations.   

 

A group is called abelian if the order of operations can be changed, namely 

 

                                                                        T T T T =a a a a
,                                                           (2.10) 

for any pair of operators in the group.  The translation group is abelian.  

 

2.3  Bravais Lattices 

 

Bravais Lattice is a lattice of points obtained by acting on a single point by the whole set of 

translation operators. This lattice is the simplest one that describes the system because 

each point represents a unit cell whose internal (possibly complicated) structure is ignored.  

In this lattice, the “view” seen from any lattice point is precisely the same.  

In one dimension,  the Bravais lattice is the set of an infinite number of points on a straight 

line, such that the distance between any neighboring points is fixed, as illustrated in  Fig. 

2-1.      

In two dimensions, a general Bravais lattice looks as in Fig.2-2. However, it is instructive to 

classify these lattices according to their symmetry level (with respect to symmetry 

operations such as rotations and reflections). The primitive basis vectors 1a  and 2a  

determine this symmetry level.  The least symmetric two-dimensional lattice is the oblique 

lattice, for which 1 2a a  and the angle between these two vectors is different from 090  

as shown in Fig. 2-3. The only symmetry operation of this lattice (apart from translations) 

is a rotation by 0180 around any lattice point. 

 

                                                                    

Figure 2-3 Oblique lattice 

 
0

1 2 ,     90 a a   
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A rectangular Bravais lattice can be realized in two manners, as demonstrated in Fig. 2-4.  

The lattice shown on the left panel is the primitive rectangular lattice, while that on the 

right panel is the centered rectangular lattice.   Both versions of the rectangular lattice are 

symmetric for rotation in 0180 , and reflections through horizontal and vertical axes. 

 

                 Primitive rectangular lattice                          Centered rectangular lattice   

                                                        

                             1 2a a ,   090 =                                    1 2=a a ,   0 060 ,90    

Figure 2-4 Rectangular Bravais lattices 

 
The next Bravais lattice is the square lattice with even higher symmetry (i.e. with a  larger 

set of symmetry operations other than translations). It is obtained when the primitive basis 

vectors have the same length, and the angle between them is 090 as shown in Fig. 2-5. This 

lattice possesses symmetry to rotations in 090 , 0180  and 0270 as well as reflections 

through 4 axes: horizontal, vertical, and two diagonals.  

 
 

                      

Figure 2-5 Square lattice 

Finally, the Bravais lattice with the highest symmetry in two dimensions is the hexagonal 

(or triangular) lattice, obtained when the primitive basis vectors are of the same length, 

1 2=a a , while the angle between them is 060 , as shown in Fig. 2-6. The symmetry 

operations of this lattice include five rotations in multiples of 060 , and six reflections 

through  6 axes that can be obtained by 00 , 060  and 0120  rotations of the horizontal and 

the vertical axes (see also Fig. 2-11 below).  

0

1 2 ,     90= =a a   
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Figure 2-6 Hexagonal lattice 

 

2.4 Point groups  

 

As we have seen, lattices are characterized by a set of symmetry operations, such as 

rotations and reflections, in addition to the translation operations. These symmetry 

elements form a group which is called “point group”. This name reflects the property that 

(at least) one point in space is unaffected by all symmetry operations of the group. Point 

groups play a central role in the characterization of lattices in two and three dimensions. 

Here, as a preliminary exposition of the subject, we discuss point groups in the context of 

two-dimensional lattices.  A more rigorous discussion is given in chapter 4.  

Consider the shape: 

 

                                                  

Figure 2-7 A shape symmetric for
0180 rotation 

 

Rotation by 0180  around an axis that perpendicular pierces the page at the central point 

leaves this shape unchanged. Therefore this rotation is a symmetry of the system.  We 

denote such a rotation by 2c . More generally, nc  represents a rotation by 0360 n , where 

n  is an integer. 

     The symmetry operation, 2c , together with the identity operation, E , form a group. 

Operating twice with 2c  yields a 0360 rotation, which is the identity operator, 2

2c E= .  

Hence, these two operations satisfy the four conditions that define a group: closure, the 

presence of the identity operation, the existence of an inverse operator for any operator 

(which here is the operator itself), and associativity. 

0

1 2 ,     60= =a a   
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Take a look now at the following shape: 

                                                   

 Figure 2-8 A shape symmetric to reflection 

It does not have any rotation symmetry (in angle different from 0360 ), but it is symmetric 

to reflection through the dashed line. The symbol for reflection operation is  . It is 

customary to add a subscript in order to define the axis of reflection - e.g., y  is a reflection 

through the y -axis).  As in the previous example,   and E  form a group because operating 

twice with   yields the identity operator, 2 E = . 

 Next, consider the shape: 

 

                                                   

Figure 2-9 A shape symmetric to two reflections and rotation in 
0180  

 

It is symmetric with respect to the following operations: 2c - rotation in 0180 ; x - 

reflection through the horizontal axis; and y - reflection through the vertical axis.  If we 

locate the origin of the coordinate system at the center of the shape,  then x  transforms 

the point ( ),x y  to ( ),x y− ; y  takes ( ),x y  to ( ),x y− ; and 2c  transforms ( ),x y  to 

( ),x y− − .  From these relations it follows that 2 2x x yc c  = = , and that the set of 

operation, E , 2c , x  and y  forms a  group. This group is denoted by 2vC , and it is an 

abelian group.  The multiplication table of its elements is presented on the next page. 
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2vCtable of  multiplicationThe  

 

 

                                                 

Comment: The group 2vC  is abelian; therefore, the order of operations is not important. 

However, in what follows, we shall also consider non-abelian groups, where the order of 

operations is important. The convention we use in these cases is that the element ab  in a 

specific cell of the table is obtained from the product (from the left) of the element a ,  that 

appears on the leftmost cell of the same row, by the element b  that appears on the top 

cell of the same column.  

Consider now the symmetry group of a square. The square is symmetric to reflections 

through 4 axes: x , y , xy , and xy , as illustrated in Fig.  2-10. It is also symmetric to 

rotations by 090 , 0180  and 0270 denoted by 4c , 2c , and 3

4c , respectively. 

                                         

 Figure 2-10 the reflection axes of a square 

When placing the origin of the coordinate system at the center of the square, it is easy to 

verify that the symmetry operations acting on some arbitrary point ( ),x y  satisfy: 

                            3

4 2 4;      ;      ;   
x y x x x y

c c c
y x y y y x

− −           
= = =           

− −           
                      (2.11) 

              ;     ;         ;     x y xy xy

x x x x x y x y

y y y y y x y x
   

− −               
= = = =               

− −               
        (2.12) 
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Using these equations, one can construct the multiplication table of the group (see table 

below) and verify that it is not abelian. This symmetry group is 4vC . 

 

4vCtable of  multiplicationThe  

 

 

 

 

 

 

 

 

 

 

 

 

We conclude this section by presenting the symmetry group of a regular hexagon, 6vC . 

This point group contains 12 symmetry operations: The identity operation E ,  five 

rotations 6c , 3c , 2c , 2

3c , and 5

6c ; and six reflections, 1 , 2 , 3 , 
1

 , 
2

 , and 
3

 , as 

demonstrated in Fig. 2-11. 

 

 
 

Figure 2-11 The reflection axes of a regular hexagon 
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2.5 Space groups  
 
Combining the operations of the translation group with all other symmetry operations of 

the lattice, such as rotations and reflections (as well other symmetry operations that will 

be described later), gives the complete symmetry group of the lattice, called space group. 

For instance, the space group of one-dimensional Bravais lattice is the collection of all 

operations obtained from the multiplication of the elements in the point group 2C  

(identity and rotation by 0180 ) by the elements of the translation group T : 

                                                                  2 2 ,a aC T T c T =  .                                                           (2.13) 

To see that this space group is not abelian, notice that in one dimension, 2c x x= −  where 

x denotes a lattice point.  Therefore 

                                             , ( ) ( )2 2 2 2a a ac T c x c T x c a x x a T x−= − = − = − = .                           (2.14) 

From here it follows that  
2 2a ac T c T−=   or 

2 2a ac T T c−=  which is different from 
2aT c , in 

general. Thus, these symmetry operations are not commutative.  

Similar considerations apply to Bravais lattices in two dimensions. In the table below, we 

summarize the space group of each lattice. 

 

                                  Space groups of Bravais lattices in two dimensions 

2C T                 oblique lattice  

2vC T (centered) rectangular lattice      

4vC T square lattice              

6vC T hexagonal lattice           

 

Space groups obtained from the multiplication of translation group by a point group are 

called symmorphic groups. There are, however, lattices whose space groups are not 

symmorphic. In the next section, we present an example of such a lattice. 

 

 



33 

 

2.6  Decorated lattices  

Each point in a Bravais lattice represents a unit cell of the lattice. The latter may have a 

structure that affects the symmetry of the lattice.  Consider, for instance, a one-

dimensional lattice made of two types of atoms that form two sublattices, A  and B  as 

demonstrated in the following figure: 

 
 

 

                      Figure 2-12 A lattice made of two types of atoms that form two sublattices. 

 

In this figure, the row of black points below the colored lattice points represents the 

corresponding Bravais lattice.  As explained above, the space group of  Bravais lattice in 

one dimension is 2C T . However,  it is evident that the lattice shown in the figure does 

not have the symmetry of 
2C  ; therefore, its symmetry is reduced. 

A similar way of reducing the symmetry of a lattice is by decoration. Here each lattice cell 

has a structure that may reduce the symmetry, as shown in the following figure: 

 

        

                                    Figure 2-13 Decorated Bravais lattice in one dimension 
 

As in the previous example, the above lattice decoration breaks the 2C  symmetry of the 

corresponding Bravais lattice. 

 A more interesting example is the one-dimensional lattice shown in the following figure: 

 

Figure 2-14 Decorated Bravais lattice  with two sublattices 
 

Here each unit cell contains two triangles pointing in opposite directions. The distance 

between two adjacent triangles is half the lattice constant.  The 2C  symmetry of the lattice 

is preserved, but there is an additional symmetry operation called glide reflection. It is 

obtained by reflection through the horizontal axis flowed by translation along the same 



34  

 

axis by half the lattice constant. (In three dimensions, the analogous operation is reflection 

through some plane followed by translation along the same plane.) This glide reflection 

operation is denoted by   |
2x

a , and it is easy to see that  
2

|
2x a

a T = . The symmetry 

group of this lattice is obtained from all translations, glide translations, and rotations by 
0180 . This group is non-symmorphic because it is not a product of a point group by 

translation group.   

In two dimensions, it is possible to construct 17 different lattices (which are not necessarily 

Bravais lattices) such that each one of them has a different space group.  An example of 

such a lattice (that we will discuss extensively in this course) is graphene.  It is a two-

dimensional lattice of carbon atoms in a honeycomb structure, as shown in Fig 2-15. Here,  

each atom is bonded to three other atoms such that the angle between any two bonds is 
0120 . One can view graphene as built from two hexagonal sublattices, A  and B , such that 

the nearest neighbors of an atom in sublattice A  are only atoms in sublattice B , and vice 

versa.  

 

Figure 2-15 Graphene 

Thus, a unit cell of graphene contains two atoms (one from each sublattice), and the 

corresponding Bravais lattice is hexagonal, as illustrated by the green hexagons in Fig. 

2-16.  Notice, however, that there is an arbitrariness in the way we choose the unit cell.  

One may also choose it to contain 1/3 of an atom from 6 different atoms, as shown by the 

red hexagon in Fig. 2-16. The point group of graphene is 6vC . 

Another lattice having a similar structure is the two-dimensional lattice of boron nitride, 

BN. From a symmetry viewpoint, this lattice has the same honeycomb structure but with 

sublattices made from two different atoms (namely, the red and the blue disks in Fig. 2-15 

represent two types of atoms). The point group symmetry of this lattice is 3vC . It contains 

rotations by 0120 , and reflections through three axes defined by the lines connecting an 

atom with its nearest neighbors.   It will be discussed extensively in Chapter 5.  
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Figure 2-16 Unit cells in graphene 
 

2.7  The Wigner-Seitz cell  
  

The choice of a primitive unit cell in Bravais lattice is not unique. Choosing it arbitrarily may 

conceal the symmetry of the lattice.  To avoid this problem, one constructs the unit cell 

according to the accepted procedure proposed by Wigner and Seitz.  The Wigner-Seitz cell 

is unique and contains a single lattice point. The cell is constructed in the following 

manner:  First, we choose a lattice point and connect it by segments to all its neighboring 

lattice points. Next, the segments are bisected by perpendicular lines. The smallest convex 

region enclosed by these lines is the Wigner-Seitz cell.  This construction is demonstrated 

in Fig. 2-17.  

 

                             

Figure 2-17 The construction Wigner-Seitz cells for various two-dimensional lattices. 
 

 
 

2.8  Three-dimensional Bravais lattices 
 
There are 14 different Bravais lattices in three dimensions. Each one of them is uniquely 

defined by the three primitive basis vectors, 1a , 2a  and  3a . The relation between their 

lengths and the angles between them determine the type of lattice and its symmetry. To 
construct the Bravais lattices in three dimensions, we shall use the two-dimensional 
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lattices described above as a basis on which we add lattice points in the third dimension.  

Usually (although not always), we choose the primitive basis vectors 
1a and 

2a  to be in the 

xy plane,  and then add a third vector, 
3a ,  that has a component in the z direction. 

 
1. The lowest symmetry lattice is the triclinic lattice. It is 

constructed by taking an oblique lattice in the xy  plane 

(with 1 2a a  and the angle between them 090  ) and 

adding a non-perpendicular basis vector, 
3a , whose length 

is different from the two other vectors 1 2 3 a a a , as 

illustrated in Fig. 2-18. The only symmetry operation the 

triclinic lattice possesses (apart from translations) is 

inversion, ic . When setting the origin of a coordinate 

system at one of the lattice points, the action of the 

inversion operator, on a general vector, is: 

 

                                                i

x x

c y y

z z

   
   

= −   
   
   

 .                                                              (2.15) 

 

Thus, the point group associated with this lattice contains only two elements, the 

identity operator, E , and the inversion operator that satisfies the relation 2

ic E= .  This 

point group is denoted by iC .   

 

2. Next is the primitive monoclinic lattice. Here we also start 

from the two-dimensional oblique lattice, but now the third 

vector, 3a , is set to be perpendicular to the xy plane, as 

shown in Fig. 2-19. This lattice has the following symmetry 

elements: 2c  rotation around the z  axis, inversion ic , and 

reflection through the xy plane. The latter operation is 

denoted by h , and its action on a general vector is  

 

                                                             h

x x

y y

z z



   
   

=   
   −   

.                                                              (2.16) 

One can quickly check that 2 h ic c=  and that the four symmetry operations, E , 2c , ic  

and h  form a group.  This group is denoted by 2hC  (an explanation about the symbols 

that designate the point groups can be found in Chapter 4).  

 

Figure 2-18 Triclinic lattice 

 

Figure 2-19 Primitive 

monoclinic lattice 
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3. Another Bravais lattice characterized by the 

symmetry group 
2hC  is the base-centered 

monoclinic lattice shown in Fig. 2-20. Starting 

from a centered rectangular lattice in the xy  

plane (with primitive basis vectors satisfying 

1 2=a a  and angle between them 090  ), this 

lattice is obtained by adding a third primitive 

vector 
3a  in the plane defined by the z axis and 

the vector 
1 2+a a , such that the angle it creates 

with the xy  plane is  090  ,  see figure. 

Assuming 
1 2+a a is parallel to the x  axis,  the reflection symmetry is through the xz  

plane, while the 
2c rotation is around the y  axis. This lattice is also invariant to 

inversion.  

4. Consider now a lattice whose base is the primitive 

rectangle lattice (in the xy  plane), and a third primitive 

vector, 
3a , is in the z  direction.  When the lengths of all 

primitive basis vectors are different, 1 2 3 a a a , the 

resulting lattice is the primitive orthorhombic lattice 

shown in Fig. 2-21. Apart from translations, it is invariant 

under the following symmetry operations: three 

rotations by 0180  around the axes x , y  and z ; three 

reflections through the planes that are perpendicular to 

these axes; inversion; and the identity operation.  For 

instance, the rotation around the x  axis, ( )
2

x
c , and the 

reflection through the plane which is perpendicular to the same axis, x ,  acting on a 

general vector in space, give: 

 

                                        ( )
2

x

x x

c y y

z z

   
   

= −   
   −   

        and    x

x x

y y

z z



−   
   

=   
   
   

  .                          (2.17) 

 

The point group that describes the symmetry of the primitive orthorhombic lattice is 

denoted by 2hD . 

 

 

 

 

 

Figure 2-20  Base centered monoclinic 

lattice 

 

Figure 2-21  Primitive 

orthorhombic lattice 
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5. Similarly, starting from a basis of centered rectangular 

lattice in a plane, and choosing 
3a  to be perpendicular 

to that plane, we obtain the base centered 

orthorhombic lattice shown in Fig. 2-22. The point 

group associated with this lattice is the same as that of 

the primitive orthorhombic lattice,  
2hD . 

 

6. An additional lattice that belongs to the orthorhombic 

system (i.e., characterized by the same point group as 

the two previous lattices) is the body-centered 

orthorhombic lattice depicted in Fig. 2-23.  Here, at the 

center of each cuboid, there is an additional lattice 

point.  The lattice points on each diagonal plane that 

passes through opposite edges is a centered rectangular 

lattice. Notice that in Fig. 2-23 none of the primitive 

basis vectors lie in the xy plane.  

 
7. Finally, the last lattice that belongs to the orthorhombic 

system is the face-centered orthorhombic lattice 

presented in Fig. 2-24.  Here at the center of each 

cuboid’s face, there is an additional lattice point. 

Choosing our coordinate system to coincide with the 

edges of the cuboid,  and the lengths of these edges to 

be a , b , and c ,  the primitive basis vectors are given by: 

          ( )1

1
, ,0

2
a b=a ,   ( )2

1
,0,

2
a c=a ,  

                and   ( )3

1
0, ,

2
b c=a                                        (2.18) 

so that 

                                    

1 2 3

1 2 3

1 2 3

ˆ

ˆ

ˆ

a

b

b

= + −

= − +

= − + +

x a a a

y a a a

z a a a

 ,                           (2.19) 

where x̂ , ŷ , and ẑ  are unit vectors in the directions of the axes of the coordinate 

system. One can verify that this choice of primitive basis vectors indeed gives the 

lattice. 

 

Figure 2-22 Base centered 
orthorhombic lattice 

 

 

Figure 2-23 Body-centered 
orthorhombic lattice 

 

 

Figure 2-24 Face-centered 
orthorhombic lattice 
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8. The next lattice system is the tetragonal system. Here the 

starting point is a two-dimensional square lattice in the xy  

plane, with square sides of length a . The simplest lattice 

of this system is obtained by choosing the vector 
3a to be 

in the z  direction, and 3 aa . The resulting lattice, called 

the primitive tetragonal lattice, is presented in Fig. 2-25.  

Its point group contains 16 symmetry operations: the 

identity E ; inversion ic ; rotations in multiples of 090  

around the z axis 
4c , 

2c , and 3

4c ;  three reflections through 

planes that are perpendicular to the axes 
x , y , and 

z ;  

two reflections through diagonal planes that contain the z

axis and pass through opposite vertices of the square xy , 

and xy ; four rotations in 0180 around axes that are 

perpendicular to the z axis and either the parallel to the 

diagonals of the square or parallel to its sides ( )
2

x
c , ( )

2

y
c , 

( )
2

xy
c and ( )

2

xy
c ; and two additional symmetry operations, 

4S and 3

4S  called improper rotations.   

           An improper rotation, nS , is a rotation by 0360 n  degrees 

followed by reflection through the plane, which is 

perpendicular to the rotation axis.  In our case 4 4zS c= , 

and its action on a vector in space is: 

 

                                                           4

x y

S y x

z z

−   
   

=   
   −   

.                                     (2.20) 

 

             An illustration of a shape that possesses an improper rotation symmetry, 4S , but does 

not have 4c  symmetry or inversion symmetry is shown in Fig. 2-26.  The operation  3

4S

is a rotation by 0270  degrees followed by reflection. Notice that 2 iS c= and 2

4 2S c= . 

The point group of the tetragonal lattice is denoted by 4hD . 

 

 

 

  

Figure 2-25 Primitive 

tetragonal lattice 

 

 

Figure 2-26 A shape with an 

improper rotation symmetry, 
4S  
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9. The body-centered tetragonal lattice is the primitive tetragonal 

lattice with an extra lattice point at the center of each cuboid,  

see Fig. 2-27.  This lattice can also be viewed as a face-centered 

tetragonal lattice. It is seen by choosing the vertical sides of the 

cuboid as the planes containing the z axis and running parallel 

to the diagonals of the square lattice (in the xy plane).  

10. The repeating element of the rhombohedral lattice is obtained 

by deforming a cube along its diagonal, keeping all the length 

of its sides intact, see Fig. 2-28.  In this figure, we have colored 

the lattice points with different colors to highlight the lattice 

symmetry to rotations by 0120  degrees around the principal 

symmetry axis. The latter passes through the two gray points 

shown in the figure. This symmetry is easier to perceive from the 

“top view”  of the lattice depicted in Fig. 2-29.  

The point group associated with the rhombohedral lattice 

contains 12 symmetry operations: The identity E ; inversion ic ; 

two rotations by 0120  degrees, 3c  and 2

3c ; three reflections 

through planes defined by three lattice points of different colors 

and contain the principal axis, 1 , 2 , and 3 ; three rotations 

by 0180 degrees around axes perpendicular to the principal axis, 
( )1

2c ,  ( )2

2c  and ( )3

2c ;  and finally two improper rotations by 060

degrees around the principal axis, 6S  and 5

6S  (notice that 3

6S is 

the inversion while 2

6S and 4

6S  are simple rotations by 0120 ). 

This point group is denoted by 3iC .  

A possible choice of the primitive basis vector for this lattice is: 

                1,3 2, , ,    0, ,
2 3 32 3 3

a a c a c   
=  − =   
   

a a  ,                 (2.21) 

where a and c  are arbitrary.  One can check that these basis 

vectors have equal lengths,  

                                   
2 2

1 2 3
3 9

a c
= = = +a a a  ,                   (2.22) 

and that the angle between any pair of them is 

                                       
( )

2 2
1

2 2

2 3
cos

2 3

c a

c a
 −

 −
 =
 +
 

 .                    (2.23) 

 

Figure 2-27 Body centered 

tetragonal lattice 

 

1 2 3= =a a a  

Figure 2-28 

 Rhombohedral lattice 

 

 

 

Figure 2-29 

“Top view” of the  

rhombohedral lattice 
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11.  Next is the hexagonal lattice shown in Fig. 2-30.  It is obtained 

by setting a two-dimensional hexagonal lattice as a basis in the 

xy  plane and choosing the third basis vector, 3a , to be in the 

z direction.  The point group associated with this lattice is 

6 .vC  It contains 24 elements: the identity; inversion; five 

rotations around the principal symmetry ( z ) axis in multiples 

of 060 ; reflection through the xy plane; six reflections through 

planes perpendicular to the xy  plane; six rotations by 0180  

around axes perpendicular to the principal axis; and four 

improper rotations, 6S , 3S , 5

6S , and 3 3S c . 

12.  The last lattice system is the cubic system. The simplest one 

is the primitive cubic lattice shown in Fig. 2-31. The point 

group of this lattice, denoted by hO ,  is the group symmetry 

of a cube. It contains 48 symmetry operations: the identity; 

inversion; reflections through three planes; eight rotations by 
0120 (two around each diagonal of the cube); eight improper 

rotations by 060 (around the same axes mentioned above); 

six rotations by 090 ; six improper rotations by 090 ; nine 

rotations by 0180 (three around the axes that pierce the 

centers of opposite faces and six that bisect opposite sides of 

the cube); and six reflections through planes that contain two 

opposite sides of the cube.  

13. The body-centered cubic lattice, shown in Fig. 2-32, belongs 

to the same lattice system. The primitive basis vectors of this 

lattice  can be selected to be: 

    ( )1 1,1,1
2

a
= −a , ( )2 1, 1,1

2

a
= −a , ( )3 1,1, 1

2

a
= −a  ,          (2.24) 

and the volume of the primitive unit cell is 
3 2a .  

14.  Finally, the face-centered cubic lattice shown in Fig.  3-23 is 

obtained (for example) from the following basis vectors: 

       ( )1 0,1,1
2

a
=a , ( )2 1,0,1

2

a
=a , ( )3 1,1,0

2

a
=a  .          (2.25) 

The volume of its unit cell is 
3 4a  (recall that a unit cell 

contains a single lattice point).  

 

   Figure 2-30 

 Hexagonal lattice 

 

 

Figure 2-32 Body-centered 

cubic (bcc) lattice 

 

 

Figure 2-33 Face-centered 

cubic (fcc) lattice 

 

 

   Figure 2-31 

 Primitive cubic  lattice 
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Altogether we have listed 14 different Bravais lattices (in three dimensions) classified by 

seven lattice systems: triclinic, monoclinic, orthorhombic, tetragonal, rhombohedral, and 

cubic. Adding sublattices and decorations, one obtains lattices described by 230 different 

space groups. Seventy-three of them are symmorphic groups. The rest are non-

symmorphic groups characterized by symmetry operations such as glide reflection 

 | 2i a  (explained above), and screw displacement (also called screw operation or 

rotary displacement),   | 2nc a . The latter is a rotation by 0360 n  degrees followed by a 

translation along the rotation axis by half the lattice constant. 

 

2.9  Directions and planes in a crystal (Miller indices)  
 

The primitive basis vectors of a lattice,   ( 1,2,3)i i =a ,  can 

be used to define lattice directions (i.e., the directions of 

vectors connecting pairs of lattice points) by 1 2 3,h k l+ +a a a  

where h  k  and l  are coprime numbers, namely integers 

whose common factor is only one. The Miller index 

denoting such a direction is  , ,h k l . It is customary to 

replace negative values of these integers with an overbar, 

e.g., instead of writing  1,2, 3−  we use 1,2, 3   .  

Similarly, planes in the lattice are defined by three points, 

1 ha , 2 ka and 3 la , see Fig. 2-34, and using Miller indices 

denoted by ( ), ,h k l . This symbol refers to the whole family 

of planes that are parallel to each other.  Notice that the 

direction  , ,h k l  is generally not perpendicular to the 

plane ( ), ,h k l  unless we are dealing with a cubic lattice. 

 
The above definition of the lattice planes ensures that the lattice points of a three-

dimensional Bravais lattice that reside on such a plane form a two-dimensional Bravais 

lattice.  For example, for a primitive cubic lattice,  the lattice points on the  (1,0,0) plane 

form a square lattice; those of the ( )1,1,0 plane are ordered in a simple rectangular lattice; 

while the points on the ( )1,1,1  plane create a hexagonal lattice.  

 
 
 
 
 
 
 

 

Figure 2-34 Definition of lattice 

planes using Miller indices 
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2.10  The reciprocal lattice and Brillouin zones 
  
The reciprocal lattice of a Bravais lattice whose lattice points are 1 1 2 2 3 3j j j= + +a a a a  (with 

ia  as the primitive basis vectors and ij  integers) is the set of points b  that satisfy the 

condition: 

                                                                   2 m =b a ,                                                                  (2.26) 

where m  is an integer.  The reciprocal lattice is a Bravais lattice by itself, and as such, its 

lattice points are given by a linear combination of primitive basis vectors, 

                                                             1 1 2 2 3 3n n n= + +b b b b ,                                                      (2.27) 

where in  are integers.  In two dimensions, the primitive basis vectors of the reciprocal 

lattice are given by 

                                                 2
1

1 2

ˆ
2


=



z a
b

a a
    and     1

2

1 2

ˆ
2


=



z a
b

a a
.                                         (2.28) 

Here we assume the lattice to reside in the xy  plane, and ẑ  is a unit vector perpendicular 

to that plane.  The denominator in these formulas, 
1 2a a , is the area of a unit cell of the 

lattice (notice that the vector product of two-dimensional vectors is a scalar). 

In three dimensions  

                                     2 3
1

uc

2
V




=
a a

b  ,    3 1
2

uc

2
V




=
a a

b ,   and 1 2
3

uc

2
V




=
a a

b ,                     (2.29) 

where  

                                                                     ( )uc 1 2 3V =  a a a                                                    (2.30)       

is the volume of a unit cell (one can always choose the order of these primitive vectors 

such that this volume is positive).  The proof of these formulas is given as an exercise.      

 

Comment:  The symmetries of a lattice and its reciprocal are the same. Namely, both 

belong to the same lattice system. However, the reciprocal lattice is not necessarily the 

same as the original one. For example, the reciprocal lattice of fcc is bcc and vice versa (the 

proof of this property is given as an exercise).  

To gain a better understanding of the meaning of the reciprocal lattice, consider the 

problem of an electron moving in a periodic potential, 

                                                                    ( ) ( )u u+ =r a r .                                                     (2.31) 
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From Fourier theory, we know that any periodic function can be represented as a Fourier 

series,  

                                                           ( ) ( )expu u i=  b

b

r b r ,                                                 (2.32) 

where ub  are the Fourier expansion coefficients.  The periodicity of the potential implies 

that 

                                          

( ) ( ) ( )

( ) ( )

exp exp

            exp .

u u i u i i

u u i

+ =  + =    

= = 

 



b b

b b

b

b

r a b r a b r + b a

r b r
       (2.33) 

Therefore b a  must be an integer multiple of 2 . Thus the vectors b  satisfy Eq. (2.26) 

and therefore belong to the reciprocal lattice. Hence, the reciprocal lattice represents the 

momentum space of the problem. Thus, using Wigner-Seitz procedure for the reciprocal 

lattice yields the Brillouin zone of the system.  

 
 

Example – The Brillouin zone of a two-dimensional hexagonal lattice.  

In this example, we identify the Brillouin zone of a 

system whose Bravais lattice is a two-dimensional 

hexagonal lattice. It will be obtained by constructing 

the Wigner-Seitz cell of the reciprocal lattice.  First, 

we choose the primitive basis vectors of the 

hexagonal lattice to be  

        ( )1 1,0a=a    and   ( )2 1, 3
2

a
=a ,                 (2.34) 

as illustrated in Fig. 2-35. With this choice, we obtain 

that the area of the lattice unit cell is 
2

1 2 3 2a =a a , and from formulas (2.28) for the primitive basis vectors of the reciprocal 

lattice we obtain: 

                                      

( )

( )

2
1

21 2

1
2

21 2

3,1
ˆ 2 122 2 1,

3 3

2

0,1ˆ 2 2
2 2 0,

3 3

2

a

a
a

a

a
a


 


 

−
  

= = = − 
  

  
= = =  

  

z a
b

a a

z a
b

a a

                             (2.35) 

 

  Figure 2-35 The primitive basis vectors of 

hexagonal lattice 

 



45 

 

These primitive lattice vectors define the reciprocal lattice points, 1 1 2 2n n= +b b b ,  as shown 

in Fig. 2-36. It is evident that the reciprocal lattice is also hexagonal, yet it is rotated by 090  

degrees with respect to the original lattice. The Wigner-Seitz cell of the reciprocal lattice 

is constructed as described in section2.7 and is shown in Fig.  2-37. 

 

                                  

It is customary to give names to the special symmetry points of the Brillouin zone. The zero 

momentum point, ( )0,0=k , is the  -point; the vertices of the hexagonal of the Brillouin 

zone are the K  points;  and the central points on each side of the hexagon are the M -

points.  Taking into account the periodic structure of the reciprocal lattice, one sees that 

the three K  points in  Fig. 2-37 are, in fact,  the same point, and so are the three K   points.  

Also, since opposite sides of the hexagonal are identical, there are only three inequivalent 

M -points. These are denoted by 1M , 2M , and 3M  in the figure.   

To conclude this chapter,  we present the Brillouin zones of bcc and fcc lattices obtained 

by the same procedure described in the example:  

                              

 

 

Figure 2-36 The primitive basis vectors 

of reciprocal lattice 

 

Figure 2-37 The  Brillouin zone of hexagonal 

lattice 

Figure 2-38 The Brillouin zones of fcc (left panel) and bcc (right panel) lattices. 
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2.11  Exercises 
 

1. Prove that the only possible rotation symmetry operations, nc ,  in a Bravais lattice is 

with 1,2,3,4n = and 6.  

Hint: Consider two rotations in angles  
0360 n =  around two adjacent lattice points, 

A  and B  as illustrated in Fig. 2-39.  Find a 

simple condition ensuring that the two rotated 

points, A  and B , are located on the same 

Bravais lattice. Notice that the segments  A B 

and AB are parallel. 

2.  Identify the symmetry operations of the group 3vC  (the symmetry group of an 

equilateral triangle) and construct the multiplication table of the group.  

 

3. Identify all 24 symmetry operations of the point 

group, dT ,  of a regular tetrahedron. A regular 

tetrahedron, also known as a triangular pyramid, is a 

polyhedron composed of four equilateral triangular 

faces.  It has four equivalent vertex corners, as shown 

in Fig. 2-40.  

 

4. Identify the two-dimensional Bravais lattices on the ( )1,1,1 and ( )1,1, 1  planes of a 

bcc lattice.  

 
5. Check that the primitive translation vectors of a lattice and its reciprocal satisfy the 

condition 2i j ij =a b , and show that the reciprocal lattice of bcc is fcc and vice 

versa.  

 
6. Identify the reciprocal lattices of the flowing lattices: primitive orthorhombic,  base-

centered orthorhombic, face-centered orthorhombic, and body-centered 

orthorhombic.  

 
7. Verify that formulas (2.28-2.30) satisfy Eq. (2.26). 

 

 

                       Figure 2-39  

 

Figure 2-40 A regular tetrahedron 
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3  Time-reversal symmetry 
 

In the previous chapter, we have presented various lattices and identified their spatial 

symmetries. The next step is to harness tools from group theory to understand the 

implications of these symmetries on various physical aspects of the system, such as the 

electron energy spectrum and the phonon vibrations. However, before turning to this task, 

let us consider an important and simpler symmetry  –  the time-reversal symmetry: 

                                                                              t t→− .                                                             (3.1) 

This symmetry applies to the fundamental laws of nature and describes the microscopic 

behavior of matter (in the absence of an external magnetic field). Namely, there is nothing 

in the fundamental physical laws that distinguishes the direction of time.  In other words, 

if we could make a film of the microscopic movements of all particles in a closed system,  

we would not be able to say whether the film is running forward or backward. Of course, 

in the macroscopic world, this symmetry is broken (for example, we can see that when a 

glass of water falls, it breaks into small pieces, but we never see the reverse process).  

However, this subject is for a different course. Here we focus on understanding the 

implication of the time-reversal symmetry (3.1) on the spectrum of electrons in a lattice. 

We start by discussing systems where the spin degree of freedom can be ignored. Next, we 

define the time-reversal operator for spin ½ particles, and explain the implication of time-

reversal symmetry for such systems.   

 

3.1 Implications of time-reversal symmetry on the electronic spectrum 

 

In the systems that we shall consider, time-reversal symmetry implies invariance to 

reversing the momentum direction, →−k k .   To find out the significance  of this symmetry 

on the electronic spectrum,  

                                                                         ( ) ( ) = −k k ,                                                       (3.2) 

it is instructive to analyze a specific example: Consider a system of an electron moving in 

a two-dimensional hexagonal lattice. The Brillouin zone of this system is depicted in Fig. 2-

37.  Our goal is to understand what can we learn from time-reversal symmetry (3.2) about 

the local behavior of the spectrum in the vicinity of the special points of the Brillouin zone, 

 , K , and M .   

To begin with, let us take a look at the Taylor expansion of ( ) k  near the    point ( )0 .=k

Time reversal symmetry (3.2)  implies that the linear term of this expansion must vanish, 

therefore  

Time is the most unknown of all unknown things 
Aristotle 384 BC- 322 BC 
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                                                            ( ) ( )
2

4

2
k k O k

m
 

 

 = +k  ,                                      (3.3) 

where m  is the effective mass tensor.  Thus, time-reversal symmetry dictates that the 

spectrum near this point is quadratic. In a cubic lattice (or a square lattice in two 

dimensions), similar considerations lead to the same result, but one can also show that 

spatial symmetry is sufficiently high to ensure that  
eff1 m m = , hence 

                                                              ( ) ( )
2 2

4

eff2

k
O k

m
 = +k  ,                                                  (3.4) 

where 
effm is the effective mass of the electrons near 0=k . 

Consider now the energy spectrum near one of the M points of the Brillouin zone, and let 

k be the deviation of the wavenumber vector from that point. I.e., M =k k + k ,  where 

Mk  is the value of the wavenumber at the M point. With this definition, time-reversal 

symmetry yields 

                                           ( ) ( ) ( )M M M     = − − = −k + k k k k k ,                                  (3.5) 

where second equality follows from the fact that opposite M  points on the Brillouin zone 

are, in fact,  the same point due to the periodicity Brillouin zone in k space. The above 

equation implies that the energy spectrum near the M  points is quadratic. 

Finally, consider the behavior near the K  point of the Brillouin zone.  As before, we present 

the wavenumber in terms of its deviation from that point, 
K =k k + k . In this case, we 

have  

                                           ( ) ( ) ( )K K K     = − − = −k + k k k k k .                                        (3.6) 

Here we took into account that time-reversal symmetry exchanges between the K  and 

the K   points of the Brillouin zone, i.e. K K − =k k  ( see Fig. 2-37).  However, these points 

are inequivalent; hence one cannot assume that the linear term of the Taylor expansion of 

( ) k  in k  vanishes. The only information obtained from time-reversal symmetry, in this 

case, is a relation between the slopes of the spectrum (in the same band) at the K  and 

the K points: 

                                                             
( ) ( )

K K

 



 
= −

 

k k

k k
.                                                       (3.7) 
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3.2 The time-reversal operator for spin ½ systems 

Ignoring the electron’s spin is justified when there is no coupling between the electron 

trajectory in space and its spin direction. In that case, the spin only implies a double 

degeneracy of the electron energy at each value of k . However, in the presence of spin 

orbit-interaction, the situation becomes more interesting. Our goal here is to study the 

main manifestations of time-reversal symmetry in such cases.  To this end, we must first 

formulate the operation of time reversal on spin ½ particles.    

 Let   denote the time-reversal operator. The basic properties one expects from this 

operator are: 

                                          =r r ,    = −p p    and    = −L L ,                                   (3.8) 

where = L r p  is the angular momentum. An alternative way to present these equations 

is in the form of operator equations: 

                                          1 ˆ ˆ−  =r r ,  1 ˆ ˆ−  = −p p ,    and    1 ˆ ˆ−  = −L L .                                    (3.9) 

These relations are proved, e.g., by calculating the matrix elements of the operators on 

both sides of the equations in a complete set of eigenstates.  Since the spin operator, Ŝ , 

behaves similar to angular momentum,  time-reversal implies   

                                                                       1 ˆ ˆ−  = −S S .                                                             (3.10) 

Consider now the action of time-reversal operation on wave functions. To begin with, let 

us focus our attention on a spinless particle. The action of time-reversal symmetry on the 

wave function gives its complex conjugate (as follows from the Schrödinger equation).  

Thus, for an arbitrary pair of wave functions, 1  and 2 , we have 

                                                     
*

1 2 1 2 2 1       = = .                                    (3.11) 

This relation implies that time-reversal operation does not preserve the inner product as 

a unitary operator. Instead, it gives the complex conjugation of the inner product.  Such  

operator is called anti-unitary, and a mathematical theorem that we present here without 

a proof states that any anti-unitary operator may be represented as a product of a unitary 

operator , U , by an operator, K , that we shall call the  “complex conjugation operator”,  

                                                                          UK = .                                                              (3.12) 

This decomposition of the time-reversal operator also applies to spinful particles, i.e., 

when the wavefunctions are spinors.   
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The easiest way to define the action of the K operator on a wave function,  , is by using 

a complete set of states, n . Expanding the wave function in this basis, 
nn

n = , 

the action of K is defined by 

                                                                    *

n

n

K n = .                                                  (3.13) 

Thus K  acts only on the expansion coefficients, while the basis states, n ,  are left intact.  

This definition is, clearly, basis-dependent. If we choose a different basis, we may get 

another K . However, this is not a problem because one can always choose the unitary 

transformation U to account for the transformation from one basis to another. Thus there 

are many ways to define the operators U  and K , depending on the choice of the basis.  

It remains to figure out how to defineU  for some particular set of basis functions, n .  

Since the action of the time-reversal operator gives  

                                                              *

n

n

UK U n   = = ,                                      (3.14) 

we should understand how  U  acts on n .  

In the spinless case, and for real-space basis functions, the time-reversal operation gives 

the complex conjugate wave function, therefore we should choose 1U = .  

For spin ½ particles, the wave function is a spinor containing two components.  From Eq. 

(3.10) we expect that U  =   gives a state that is parallel to  . Similarly,  

U  =   should be parallel to  .  Taking the spinor components in the z  direction, 

an operation that reverses the spin direction is a  -rotation around the y axis.  Since the 

spin, as the angular momentum, is the generator of rotations in the spin space,  

                                 
ˆ 0 1

exp exp
1 02

y

y y

S
U i i i


  

  −  
= − = − = − =          

  ,                        (3.15) 

where y  is the Pauli matrix (see Eq. (3.22) below).  Thus 

                                                                      yi K = − .                                                              (3.16) 

From here we see that 

                                          

0 1 1 0

1 0 0 1

0 1 0 1

1 0 1 0

U

U

−    
  =  = = =     

    

− −    
  =  = = = −     

    

                                 (3.17) 
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and therefore 2 S S = − .  The conclusion from this discussion is that for spin 1/2 

particles  

                                                                     2   = − .                                                            (3.18) 

This property implies that   and   are orthogonal, because from the above relation 

and Eq. (3.11) it follows that 
*

2 2        =   =   = −  , and this 

can be satisfied only if  

                                                                     0  = .                                                                 (3.19) 

This result is valid for any particle with a non-integer spin.   

Equipped with knowledge about the action of the time-reversal operator on spin ½ 

particles,  we turn to study the implication of this symmetry in systems with spin-orbit 

interactions. 

 

3.3 Spin-orbit interaction and Kramer’s degeneracy  
 

On a qualitative level, spin-orbit interaction can be viewed as the interaction of the 

electron’s magnetic moment with the magnetic field, B , seen from the electron’s moving 

reference frame, due to the presence electric field, E , in the laboratory frame. Assuming 

no magnetic field in the system, the magnetic field in the reference frame attached to an 

electron moving with velocity v  is 

                                                   ( )2 2

1 1
u

c ec
= −  = B v E v r ,                                                 (3.20) 

where to obtain the second equality, we expressed the electric field as a gradient of the 

electric potential ( )u er .  The electron’s magnetic dipole moment (due to spin) is  

                                                                      
1

2
Bg= −  ,                                                        (3.21) 

where g  is the g-factor, which is approximately 2 (more precisely  2.002319…), 

2B e m =  is the Bohr magneton ( m being the free electron mass), and 2  is the 

dimensionless spin operator expressed in terms of Pauli matrices, ( ), ,x y z  = with 

                             
0 1

1 0
x

 
=  
 

 ,  
0

0
y

i

i


− 
=  
 

,  and   
1 0

0 1
z

 
=  

− 
.                                  (3.22) 

The spin-orbit Hamiltonian comes from the interaction of the magnetic dipole moment 

(3.21)  with the magnetic field (3.20): 
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                                          ( )so 2 24
H u

m c
= −  →    p r   .                                                  (3.23)        

To obtain this formula, we replaced the velocity with the momentum divided by the mass 

and added a factor 1 2 . This 1 2  factor is due to another relativistic effect called Thomas 

precession which we do not discuss here.       

Taking into account spin-orbit interaction, the Schrödinger equation of an electron moving 

in a periodic lattice is: 

                   ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2

2 22 4

j j

ju u i
m m c

  
 
−  + +   =   
 

k kr r r k r  ,           (3.24) 

where ( ) ( )j
 k r  is a spinor containing two components associated with the spin direction: 

                                                             ( ) ( )
( ) ( )
( ) ( )

j

j

j










 
 =
 
 

k

k

k

r
r

r
.                                                            (3.25) 

Here, the index j  refers to the energy band and k is Bloch’s wave number.  

Notice that Bloch’s theorem also holds in the presence of spin-orbit interaction because 

the Hamiltonian (3.23) has the same spatial periodicity as the potential energy ( )u r . 

Moreover, as discussed  earlier,  time-reversal symmetry dictates the relation: 

                                                                ( ) ( )j j = −k k .                                                             (3.26) 

We show, now, that the time-reversal symmetry in fermionic systems,  

                                                                    1H H−  = ,                                                              (3.27) 

implies that energy levels are degenerate.  Multiplying the above equation, from the right, 

by ( ) ( )j
 k r , and from the left by   yields 

                                        ( ) ( ) ( ) ( ) ( ) ( ) ( )j j j

jH H    =  = k k kr r k r .                                    (3.28) 

Thus, if ( ) ( )j
 k r  is an eigenstate of the Hamiltonian with energy ( )j k , then 

( ) ( ) ( ) ( )*j j

yi   = −k kr r  is also an eigenstate with the same energy.  Moreover, we have 

proved that ( ) ( )j
 k r  is orthogonal to ( ) ( )j

 k r  (see Eq. (3.19)); hence energy levels are, 

at least, doubly degenerate. This degeneracy is called Kramer’s degeneracy. The two 

degenerate eigenstates have opposite momenta and opposite spins.  

When transitions between bands can be neglected, the Hamiltonian that takes into 

account the spin-orbit interaction of an electron moving in a periodic lattice (and restricted  
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to the lowest band)  can be approximated by 

                                                      ( ) ( ) ( )0H I = + k k w k ,                                                 (3.29) 

where ( )0 k  is the spectrum in the absence of spin-orbit interaction, I  is the identity 

matrix in the spinor space, and ( ) ( ) ( )0 0

soH =
k k

w k , ( )0
 k

 being the Bloch wave 

function when spin-orbit interaction is absent.  Time reversal symmetry, 1H H−  = , 

implies: 

                                            ( ) ( )0 0 = −k k ,  and  ( ) ( )= − −w k w k .                                  (3.30) 

The second relation follows from ( ) ( ) ( ) ( )1 1w w w w− − =    =   − = −  −k k k k    . 

Thus, in particular, ( )0 0=w . Diagonalization of the Hamiltonian (3.29) gives 

( ) ( ) ( )0 = k k w k ; hence the energy at 0k =  is (at least) doubly degenerate.  

 

3.4 The Rashba term  

 

In many situations, the periodic potential of the lattice is too weak to contribute effectively 

to the spin-orbit interaction. However, the situation may be different near the system's 

boundary because the potential energy changes rapidly in space. Near the system’s edge, 

the potential energy gradient is large, and the contribution to the spin-orbit interaction 

can be significant - see Eq. (2.23). In this section, we calculate the spectrum of electrons 

moving near the surface of a crystal, taking into account this effect.  

For simplicity, we consider the surface of a cubic lattice, say the ( )0,0,1  plane, and denote 

by n̂  a unit vector perpendicular to the surface and pointing outwards.  The approximate 

Hamiltonian that describes an electron moving on the surface is: 

                                                             ( )
2 2

eff

ˆ
2

RH
m

= +  
k

n k ,                                               (3.31) 

where effm  is the effective mass of the electron. The second term of the Hamiltonian (3.31) 

is due to spin-orbit interaction. It is called Rashba term.   Here, R  is the Rashba parameter 

that characterizes the strength of the spin-orbit interaction. The structure of Rashba term 

can be deduced from the following argument:  The system contains only three vectors - 

the normal to the surface n̂ ,  the electron’s momentum k , and the electron’s spin 2.  

The only scalar that can be constructed from these vectors, which is the lowest order in k   

and have the property (3.30),  is ( ) ( ) ( )ˆ ˆ ˆ  =   =  n k k n n k   . Therefore, at low 

enough energy,  one can describe the system by the Hamiltonian (3.31).  
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Now, let us choose the surface on which the electron moves to be the xy  plane. The 

normal to the surface is ˆ ˆ=n z , so that the Rashba term is: 

                                                ( )ˆ 0 0 1

x y z

x y y x

x y z

k k

k k k

  

   = = −z k .                                     (3.32) 

Assuming that the electrons move only parallel to the plane, the Hamiltonian (3.31)  

reduces to: 

                                           

( ) ( )

( ) ( )

2
2 2

eff

2
2 2

eff

2

2

x y R y x

R y x x y

k k k ik
m

H

k ik k k
m





 
+ − + 

 =
 
− − +  

 

 .                                     (3.33) 

Diagonalization of this Hamiltonian gives the energy spectrum of the system: 

                                          ( )

2

2 eff
22 2 2

eff

2

eff eff2 2 2

R

R
R

m
k

mk
k k

m m




 

 
 

 
=  = − ,                    (3.34) 

with 2 2

x yk k k= + . The energy surfaces described by this formula are depicted in Fig. 3-1. 

 

                 

Figure 3-1 The energy spectrum described by Eq. (3.34) 

 On the left panel of the figure, the orange and blue surfaces represent the spectrum’s two 

branches, ( )k−  and ( )k+ , respectively. These branches touch at a single point, 0k = . 

The primary influence of the weak spin-orbit interaction is near this point, where the 

dispersion becomes linear.  The right panel of Fig. 3-1  shows a cross-section of the 

spectrum in the direction of the xk -axis. Along this line (and any other axis that passes 
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through the origin), the spectrum looks like two parabolas shifted away from each other. 

This illustration highlights the time-reversal symmetry property of the system because, 

here, it is clear that the two branches of the spectrum satisfy the relation ( ) ( )1 2 = −k k . 

We turn now to discuss the spin configuration of the wave functions in the problem.  The 

eigenfunctions of the Hamiltonian (3.33) (see Exercise 2) are 

                                  
( ) ( )

11

sign exp2 R i


 


 
 =
 
 

    with   arctan x

y

k

k


 
=   

 

.                       (3.35) 

These functions are particular cases of the general spinor wave function, 

                             

( )

cos
2ˆ

sin exp
2

i






  
  
  =

  
  

  

d                           (3.36) 

that describes a spin pointing in the direction  

                  ( )ˆ sin cos ,sin sin ,cos    d = .                      (3.37) 

Here   and   are the polar angles defined in Fig. 3-2.  From 

the comparison of Eqs. (3.35) and (3.36), it follows that the 

spin is perpendicular to k  and lies in the xy  plane. Thus, 

the electron momentum, the electron spin, and the normal 

to the surface are perpendicular to each other.   

 In Fig. 3-3  we present the Fermi surfaces of the system near 

the band touching point with arrows showing the spin’s 

direction for any momentum. The arrows change direction when R  changes sign. Here 

they are plotted for 0R  , and assuming that 
xk , yk , and z  form a right-handed triple. 

 

 
 
 

 

 

 

 

 

 

 

Figure 3-2 The polar angles of the 

d̂ spinor 

 

Figure 3-3 The spin direction on the Fermi surface of the spectrum shown in Fig. 3-1 
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3.5 Exercises  
 

1. Diagonalize the Hamiltonian (3.33) and prove Eqs. (3.34) and (3.35).  

2. Prove that the spinor function in Eq. (3.36) represents a spin that points in the direction 

of the vector (3.37). Namely, show that 

                                                                      ˆ ˆ ˆ =d d d .                                                        (3.38) 

3. Calculate the energy spectrum of Luttinger Hamiltonian: 

                                                ( )
2

2

so
ˆ ˆˆH A B= +  +  k k L s L ,                                           (3.39) 

where A , B , and so are constants, L̂  is the orbital angular momentum with 1l = , 

and ŝ  is the spin operator. The last term in this Hamiltonian represents the spin-orbit 

interaction. To shorten the formulas, assume 1= . 

Advice:  Choose the z axis in the direction of the wave number vector, and rewrite the 

Hamiltonian  using ˆ ˆ ˆ= +J L s  and 
zL . Notice that 

zL commutes with 
zJ  but not with 

2
Ĵ .  Now consider the flowing cases 3 2zJ =   (where the Hamiltonian is diagonal),  

and 1 2zJ =   where for each sign, the Hamiltonian is a 2 2 matrix.  Show that the 

spectrum you got is doubly degenerate.  
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4  Group theory: Basic concepts 
 
From time immemorial, scientists used symmetry considerations to analyze physical 

systems. However, with time, symmetry evolved from being only a tool to the stage that 

constitutes the theory's cornerstone. In many situations, one can deduce the structure of 

the energy spectrum, or the system's response to some external perturbations, solely from 

symmetry considerations even without knowing the precise form of the Hamiltonian.   We 

shall encounter a few such examples in the coming chapters.  

The mathematical framework for the study of symmetry is group theory, and in this 

chapter,  we shall present the main ideas and tools needed to analyze crystals.  We focus 

our attention on point groups that are sufficient for our purposes. We skip the 

mathematical proofs of the theorems as they can be easily found in the literature. This 

chapter is meant to be self-contained and therefore has some overlap with chapter 2. 

 

4.1 Definitions  

 

A set of elements { , , , ,.....}G a b c d=  is called a group if there exists an operation -  we call 

“multiplication”- between any pair of elements that satisfies the following requirements: 

(a) Closure: The multiplication of any pair of elements is an element of the group. 

(b) The existence of the identity operation: One of the set elements, denoted by ,E  is the 

identity element that satisfies the condition aE Ea a= =  for any a . 

(c) The presence of inverse elements: To each element, a , there is an inverse element, 
1a− , (in the group) that satisfies the condition 1 1aa a a E− −= = . 

(d) Associativity: ( ) ( )a bc ab c= . 

Examples 

• The simplest group is a group the contains a single element  E . 

• The only group that contains two elements is  2 ,C E a=  where a  is the inverse of 

itself, 2a E= .  

• There is also only one group that contains three elements  3 , ,C E a b= . The 

multiplication table of this group is presented on the next page. This group can also be 

represented in the form  2

3 , ,C E a a=  where 3a E= .  
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• All three examples presented above are particular examples of the cyclic group 

 2 1, , ;n n

nC E a a a a E−= = , generated by repeated multiplication of a single element.  

• Only two groups contain four elements: The cyclic 

group 
4C , and the dihedral group 

2D  (which is the 

simplest non-cyclic group). The latter is the 

symmetry group of a rectangle, see Fig. 4-1. Its 

symmetry elements are: rotation in 0180 , 
2c ;  

reflection through the vertical axis,  ; reflection 

through the horizontal axis   ; and the identity 

operator, E . The multiplication table of this group is 

shown above.  

Definition: A group is called abelian if the multiplication of any pair of elements in the 

group is commutative ab ba= . 

All groups that have been presented so far are abelian. This 

property is manifested by a symmetric matrix structure of 

the multiplication table. 

Definition: The group order is the number of elements in 

the group. 

• The simplest non-abelian group (i.e., the non-abelian 

group of lowest order) contains six elements. It is the 

group associated with the symmetry of an equilateral 

triangle, see Fig. 4-2.  Its elements are: the identity E ; 

two rotations by 0120 , 3c  and 2

3c ; and three reflections 

2c           

2c         

  
2c    

  2c     

    
2c 

2c 

    E    

  E E 

E    

 E   

E
2D

EE

E

E

E

ba
3C

ba

baa

abb

 

Figure 4-2 The equilateral triangle  

whose symmetry group is 3vC  

 

 

Figure 4-1 The  dihedral group 
2D  as 

the symmetry group of a rectangle  
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 ,   and    through the axes shown in the figure. This group is denoted by 3vC  , and 

its multiplication table is given below1.    

 

 

 

 

 

 

 

 

This table is not symmetric; hence some of the products are not commutative.  An 

example of a non-commutative product is illustrated in Fig. 4-3. 

                  

                
Figure 4-3 An illustration of a non-commutative product of reflections in the group 3vC  

 

 

The group 3vC has the same multiplication table as the dihedral group 3D . The latter is 

obtained when replacing the reflection axes in Fig 4-2 by rotations axes in 0180 . Two point 

groups are said to be isomorphic if their multiplication tables are identical (up to reordering 

of rows or columns).  

The rearrangement theorem: Each row and each column in the group multiplication table 

lists each of the group elements once and only once. 

                                                           
1 The product order convention for group multiplication tables is that the element, ab , which appears in a 

given cell, is the prododuct (from the left) of the element a  that appears on the leftmost cell of the same 

row, by the element b  that appears on the top cell of the same column. 

              

       

       

       

       

       

       

2

3c3c  E
3vC

2

3c3c  EE

  2

3c3cE

 
3cE2

3c  

 E2

3c3c  

E2

3c  
3c3c

3cE  2

3c2

3c
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4.2 Symmetry operations of point groups 

 

Point groups are groups whose symmetry operations (acting on a set of points) do not affect  

(at least) one point. The set of symmetry operations and their symbols  are listed below: 

 

E  - the identity operation that leaves the system unchanged. 

nc - rotation in 0360 n  around symmetry axis. 

i - inversion, the operation →−r r . 

h - reflection through a plane perpendicular to the principal symmetry axis (of rotation). 

v - reflection through a plane that contains the principal symmetry axis. 

d - reflection through a diagonal plane that contains the principal symmetry axis. This 

plane also contains the bisector between two secondary rotation axes, 2c , which is 

perpendicular to the principal axis (see Fig. 4-8 below). 

nS  - improper rotation. Rotation in 0360 n  around the principal 

symmetry axis followed by reflection through a plane 

perpendicular to this axis (see Fig. 2-26 and the explanation on 

the same page). 

 

4.3  Schoenflies notation of point groups 

 

Point groups are denoted by letters and subscripts. Below we list the 

main notations of point groups. 

 

nC  -  (The cyclic group)  describes systems with a single symmetry 

axis around which the system is symmetric to rotations in  
0360 n  as shown in Fig. 4-4. This group contains n  elements.  

nvC  -  This group contains the following elements: n -fold rotation 

around a single axis (as in the cyclic group), and n  reflections 

through planes that contain this axis. The angle between nearby 

planes is 0180 n  as demonstrated in Fig. 4-5 for 2vC . This group 

includes 2n  elements. 
  

    

Figure 4-4 The rotation axis 

associated with cyclic groups 

     

Figure 4-5 The symmetry 

2vCoperations of  
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nhC  - This group’s elements are obtained from n -fold rotations and reflection through a 

plane perpendicular to the rotation axis - see Fig. 4-6. The group has 2n  elements.  

nD - (The dihedral group) The symmetry associated with this group is that of n -fold 

rotation around the principle symmetry axis and additional n  twofold rotations 

around secondary axes perpendicular to the principal axis. The angle between 

nearby secondary axes is 0180 n . This group contains 2n  elements. An illustration 

showing the symmetry operations of 2D  is depicted in Fig. 4-7.  

 

 

 

 

 

 

 

ndD  - This group contains all symmetry operations of nD  plus reflections through n planes 

that contain the principal symmetry axis and one of the bisectors between nearby 

secondary axes.  An illustration of these symmetry operations for 2dD  is shown in  

Fig. 4-8  (on the next page). The group contains 4n  elements.  

nhD  - This group contains all symmetry operations of nD  plus reflection through a plane 

perpendicular to the principal symmetry axis. This reflection symmetry implies there 

must be additional n  reflection planes.  These planes contain the principal 

symmetry axis and one of the secondary axes, as illustrated in Fig. 4-9  (on the next 

page) for 2hD .  The group has 4n  elements. 

dT  -  The tetrahedral group is the symmetry group of a regular tetrahedron, see Fig. 2-40. 

It contains 24 symmetry operations: the identity operator; eight rotations in 0120 ; 

three rotations in 0180 ; six improper rotations 4S ; and six reflections.  

hO  -  The octahedral group is the symmetry group of a cube (as well as an octahedron). It 

contains 48 elements that include the identity; eight rotations in 0120 ; six rotations 

in 090 ; nine rotations in 0180 ; inversion; six improper rotations 4S ; eight improper 

rotations 6S ; and nine reflections. 

 

Figure 4-6 The symmetry operations of nhC  

 

2D The symmetry operations of 7-Figure 4  
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Example 

Let us identify the point groups that describe the symmetry of the flowing molecules: 

  
 

                            
 

Figure 4-10 The symmetry operations of a few molecules 

 

Consider, first, the molecule 2 2Cl PtBr that appears on the left panel of the figure. It has 

two-fold rotation symmetry around an axis perpendicular to the molecule’s plane and two 

additional twofold rotations around axes that pass through identical atoms. It also has 

three reflection symmetries through the planes shown in the figure. The group associated 

with these symmetry operations is, therefore, 2hD (see Fig. 4-9). 

Let’s Look, now, at the molecule 3CCl H  shown in the middle panel of the figure.  Here 

there is an axis of three-fold rotations and three reflection planes that contain the principal 

symmetry axis and one of the chlorine atoms.  The point group is, therefore, 3vC . 

 

Figure 4-8 The symmetry operations of 2dD  

 

2hD The symmetry operations of 9-Figure 4 
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Finally, consider the molecule 2 4B Cl  shown on the right panel of the figure.  Here, one can 

quickly identify the two-fold rotation symmetry around the principal axis passing through 

the Boron atoms. Two reflection planes contain the principal axis and pairs of chlorine 

atoms. Finally,  it is a bit more challenging to see the two additional two-fold rotations. 

These rotations are around axes perpendicular to the principal symmetry axis and parallel 

to the bisectors of the reflection planes. Thus, the point group associated with 2 4B Cl  is

2dD . 

 

4.4  Conjugate elements and conjugacy classes 

 

Definition: An element b G  is said to be conjugate to a G , if there is an element p  in 

the group such that: 

                                                                        1b pap−=                                                                 (4.1) 

Conjugacy relation between two elements, a , and b , is customarily denoted by a b .  It 

is easy to prove the following properties: 

• Each element is conjugate to itself, a a . 

• If a b , then b a . 

• If  a b  and b c , then a c . 

Definition: All the elements of a group that are conjugate to each other form a conjugacy 

class of the group. 

 

It is easy to prove that: 

• Each element of the group belongs to one and only one conjugacy class. 

• The identity operation has its own conjugacy class (that contains a single element). 

 

From a physical viewpoint, conjugate elements are associated with similar symmetry 

operations. For instance, in a system with four-fold rotation symmetry around the z  axis, 

reflections through the yz plane and the xz  plane are of the same nature. It is because 

reflection through the yz  plane can be obtained by rotating the system by 090− around 

the z  axis,  reflecting through the xz  plane,  and finally rotating back by 090  around the 

same axis. This set of operations is precisely that of Eq. (4.1),  where p  is the rotation 

operation, while a and b are the two reflections.  
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Example: The conjugacy classes of 2vC  

This point group (see group multiplication table on 

page 30) is abelian; therefore, each element creates its 

own conjugacy class, because 1x yxy−=  where y  can 

be any element of the group.  Looking at Fig. 4-5,  it is 

clear that all symmetry operations are of different 

nature (there is no 090 rotation that allows conjugation 

of the two reflection symmetries). A diagram of the 

conjugacy classes of this group is shown in Fig. 4-11. 

 

Example: The conjugacy classes of 3vC  

This is a nonabelian group. Here one may expect the 

conjugacy classes to contain more than one element. In 

particular, the three reflection operations are of the 

same nature because the rotation operation conjugates 

them; see the middle panel of Fig. 4-10. For instance,  

from the multiplication table presented on page 59, one 

sees that 2

3 3c c  = . Similarly, the rotation operations 

are conjugated by reflections, 2

3 3c c = . The conjugacy 

classes of this group are shown in Fig. 4-12.  

 

Example: The conjugacy classes of 4D  

The dihedral group 4D  contains eight symmetry 

operations: The identity, four-fold rotations, and four 

two-fold rotations around axes perpendicular to the 

principal axis, as illustrated in Fig.  4-13.  From this figure, 

one quickly sees that 2c  and 2c  are conjugated by 090  

rotation, and so are 2c  and 2c . However, these two 

conjugacy classes are different because there is no 045  

rotation to conjugate them. 4c  and 3

4c  are also 

conjugated because 3

4 2 4 2c c c c = . On the other hand, 2

4c  

conjugates only to itself, because 2 1 2

4 4c p c p−= , where 

2, 2 2,p c c c = or 2c . Thus, there are four conjugacy classes, 

as shown in Fig. 4-14 on the next page. 

 

Figure 4-13 The symmetry 

operations of 4D  

 

 

 
Figure 4-11 The conjugacy classes 

of 2vC  

 

 

Figure 4-12 The conjugacy classes 

3vCof   
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4.5  Representations of groups 

 

A group representation is a group of mathematical objects that describe the symmetry 

operations of the group.  Here we shall confine our discussion only to those cases where 

these mathematical objects are square invertible matrices, and multiplication of group 

operations corresponds to matrix multiplication. Thus, the group element a , will be 

represented by a matrix ( )a , such that for any two elements of the group: 

                                                            ( ) ( ) ( )a b ab  =  .                                                             (4.2) 

The size of the matrix is called the dimension of the representation. 

 

Example: 2C  

A one-dimensional representation of this group can be, for example, 

( ) ( ) 1E a =  = , because it trivially satisfies the group multiplication 

table that appears on the right. Another one-dimensional 

representation is ( ) 1E =  and ( ) 1a = − .  As one can easily see, it 

satisfies the multiplication table.  

A two-dimensional representation of the group can be constructed from these one-

dimensional representations. For example: 

                                                ( )
1 0

0 1
E

 
 =  

 
,    and    ( )

1 0

0 1
a

 
 =  

− 
                                      (4.3) 

One can also complicate this representation by rotating the matrices.  The identity matrix 

is left unchanged by rotation:  

                          ( )
cos sin 1 0 cos sin 1 0

sin cos 0 1 sin cos 0 1
E

   

   

−     
 = =     

−     
,                           (4.4) 

  E    

 E E 

E   

a
2C

a

aa

 

    Figure 4-14 The conjugacy classes of 4D  

 



66  

 

but the matrix associated with the a  element takes a different form:  

( )
2 2

2 2

cos sin 1 0 cos sin cos sin 2sin cos

sin cos 0 1 sin cos 2sin cos sin cos
a

       

       

−  − −   
 = =     

− − − −     
.   (4.5) 

It is clear, by construction, that the above matrices satisfy the group multiplication table.  

This example shows that there is an infinite number of representations for any group with 

more than one element  (in the above example, the rotation angle,  , can be arbitrary). 

 

Definition: Two  group representations,   and  ,  are said to be equivalent 

representations if they are related by similarity transformation: 

                                                                       1S S − =   ,                                                                       (4.6) 

where S  is some matrix (but the same one for all group elements). 
 

Definition: A group representation is faithful if each group element is represented by a 

different matrix. 

 

Example: 4C  

Let us construct representations of the cyclic group  2 3

4 , , ,C E a a a= with 4a E= . A trivial 

representation is the identity representation where all elements are represented by 1, 

( ) ( ) ( ) ( )2 3 1e a a a =  =  =  = .  Another possibility for one-dimensional representation  

is: 

                                 ( )
2

exp
4

na i n
 

 =  
 

,   were we define  0a E= .                                  (4.7)  

More generally, we can choose representation in the form ( ) ( )exp 2 4na i mn =  with 

0,1,2,3m =  (larger values of m  give the same representations). The identity 

representation is associated with 0m = . This representation, as well as the 2m =  

representation, are not faithful. The other two are faithful representations.  

 

Example: 2vC  

The symmetry operations of this group are illustrated in Fig. 4-5.  One way of constructing 

representation is to identify the symmetry operation with the matrices that transform a 

general vector in space: 

                                                                                   

x

y

z

 
 

=  
 
 

r  .                                                                     (4.8) 
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Choosing   to be a reflection through the xz  plane;    to be a reflection through the yz  

plane;  and 
2c  a rotation around the z axis,  we obtain the following matrices:  

 

 The identity operator:                                     ( )

1 0 0

0 1 0

0 0 1

E

 
 

 =  
 
 

 ,                                                  (4.9) 

AR reflection through xz plane:                     ( )

1 0 0

0 1 0

0 0 1



 
 

 = − 
 
 

 ,                                              (4.10) 

A reflection through yz plane:                     ( )

1 0 0

0 1 0

0 0 1



− 
  =  
 
 

 ,                                            (4.11) 

A Rotation in 0180 around the z axis:                ( )2

1 0 0

0 1 0

0 0 1

c

− 
 

 = − 
 
 

 .                                          (4.12) 

 

More generally, one can construct group 

representations using matrices that act on a set of 

coordinates, such as the coordinates of the atoms 

in a molecule with the corresponding symmetry.  In 

the case of 2vC  point group,  such a molecule is, for 

example, the water molecule shown in Fig.  4-15.  

Here, reflection through the plane perpendicular to 

the molecule’s plane (the reflection operation,   )  

transforms the coordinates of the atoms in the 

following manner:  

           1 1x x→− , 2 3x x→− , 3 2x x→− , 

                        2 3y y , 2 3z z ,  

while 1y  and 1z  are left unchanged.   This transformation can be expressed as a matrix 

9 9  multiplying the  vector built from the  coordinates of the atoms:  

  

 

 

Figure 4-15 The coordinates of the atoms of 

water molecule as a basis for representation 

of the 2vC  group 

 

(4.13) 
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1 1

1 1

1 1

2 3

2 3

2 3

3 2

3 2

3 2

1 0 0

0 1 0 0 0

0 0 1

1 0 0

0 0 0 1 0

0 0 1

1 0 0

0 0 1 0 0

0 0 1

x x

y y

z z

x x

y y

z z

x x

y y

z z

−−     
    
    
    
    

− −    
     =
    
    
    − −
    
    
    

    

   .                       (4.14) 

 

The above matrix represents the reflection operation   . Similar matrices can be 

constructed for the other symmetry elements of the group.  The set of these matrices is a 

representation of the group. 

 

It is evident that one can build representations with dimensions as high as desired. 

However, in general, it will be possible to decompose them into smaller representations 

using similarity transform, 1S S − =  , that brings each matrix into a block diagonal form. 

Representations for which such a process can be executed are called reducible 

representations since each block in the matrix constitutes a representation by itself.  

 

Definition: Group representations of the lowest possible dimension, i.e. representations 

that cannot be further reduced into block diagonal form, are called irreducible 

representations. 

 

The great orthogonality theorem of irreducible representations 

 

Let ( ) ( )mn g


  be the matrix element of an irreducible representation,  , corresponding to 

the group element g .  We shall denote the dimension of this representation by  , and 

the order of the group (i.e. the number of elements in the group) by G .  The great 

orthogonality theorem of  irreducible representations states that  

                                                 ( ) ( ) ( ) ( )*

mn m n mm nn

g G

G
g g

 





     



  =  ,                                      (4.15) 

where the sum is over all the elements in the group G .  The interpretation of this equation 

is that the matrix elements of irreducible representations behave like orthogonal vectors 

in a G  dimensional space.  
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Corollary: From the orthogonality theorem of irreducible representations it follows that 

the number of irreducible representations of a group cannot exceed  G . It is simply 

because in N dimensional space there are, at most, N orthogonal vectors.   

 

Example: 2C  

On page 65, we have presented two one-dimensional irreducible representations of the 

group 2C .  Since the group order is 2, these representations are the only possible 

irreducible representations of the group:  

 

                                  ( ) ( ) ( ) ( )1 1
1E a =  =    and     ( ) ( )2

1E = ,   ( ) ( )2
1a = − .                 (4.16) 

Let us illustrate the orthogonality theorem using this example. For the same 

representations ( =  in Eq. (4.15)) we obtain: 

                                          ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* *
2E E a a

   
  +  =     for 1,2 = ,                    (4.17) 

while for different representations,   , we see that 

                                           ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 * 2 1 * 2
1 1 1 1 0E E a a  +  =  +  − = .                  (4.18) 

Example: 3vC  

 

The irreducible representations of  3vC  (the symmetry group of an equilateral triangle) are 

listed in the following table: 
 

 

From here, we see that the group has three irreducible representations, two one-

dimensional representations, and one representation that is two-dimensional. To illustrate 

the orthogonality theorem, we rewrite this table such that elements in each row 

correspond to one of the matrix elements of the representations:  

       

1 1 1 1 1 1  

1 1 -1 -1 -1 1  

1 3

2 2

3 1

2 2

−

− −

 
 
 
 

 
1 3

2 2

3 1

2 2

− −

−

 
 
 
 

 
1 3

2 2

3 1

2 2
−

 
 
 
 

 
1 3

2 2

3 1

2 2

−

− −

 
 
 
 

 
1 0

0 1

− 
 
 

 
1 0

0 1

 
 
 

  
 

2

3c3c  E
3vC

( )1


( )2


( )3

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Each row in this table is a six-dimensional vector. According to the great orthogonality 

theorem of the irreducible representations,  these vectors are orthogonal.  For example, 

the five lower rows are orthogonal to the first one because the sum of their elements 

vanishes.  Another example of the orthogonality property is of the second and third rows: 

                           ( ) ( ) ( ) ( ) ( ) ( )3 * 2

11

1 1 1 1
1 1 1 1 1 1 1 1 0

2 2 2 2
  =  + −  − +  − +  − −  −  = .                  (4.19) 

Similarly, one can check that all vectors are orthogonal to each other. The norms of the 

one-dimensional representations also satisfy the condition set by the theorem: 

                                                 
( ) ( ) ( ) ( )1 * 1 2 * 2

6 G  =   = = ,                                          (4.19) 

and so are the norms of the vectors of the two-dimensional representation: 

                              ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 * 3 3 * 3 3 * 3 3 * 3

11 11 12 12 21 21 22 22

3

6
3

2

G
  =   =   =   = = = .                      (4.20) 

The examples that we brought here illustrate the following theorem: 

 

Theorem: The sum of  squares of the dimensions of the irreducible representations equals 

the group order:  

                                                                             2 G


= .                                                      (4.21) 

In many situations, this equation is sufficient for determining the dimensions of the 

irreducible representations of a group. We illustrate this with two examples. 

 

 

      3vC 

1 1 1 1 1 1  

1 1 -1 -1 -1 1  

1
2

− 1
2

− 1
2 1

2 -1 1  

3
2 3

2− 3
2 3

2− 0 0  

3
2− 3

2 3
2 3

2− 0 0  

1
2

− 1
2

− 1
2

− 1
2

− 1 1  

2

3c3c  E

( )1


( )2


( )3

11

( )3

12

( )3

21

( )3

22
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Example: The dimensions of the irreducible representations of 2D  

The dihedral group, 2D , contains four elements. Since any group has the identity 

representation (where all elements are represented by one) , Eq. (4.21) reduces to 

                                                                   21 4


+ = ,                                                                (4.22) 

where   denotes a sum over the irreducible representations that do not include the 

identity representation.  The only way to satisfy the above equation is by choosing all 

representations to be one-dimensional, so that 2 2 2 21 1 1 1 4+ + + = . 

 

Example: The dimensions of the irreducible representations of 3D  

The dihedral group 3D  contains six elements. In this case, Eq. (4.21) reads  

                                                               21 6


+ = .                                                                      (4.23) 

This equation has two solutions. One is when all irreducible representations are one-

dimensional. However, the only group of order six that has six one-dimensional 

representations is the cyclic group 6C .  This group is not isomorphic to 3D ; hence one 

should look for another solution of (4.23). There is only one additional solution which is 
2 2 21 1 2 6+ + = . Thus 3D  has two one-dimensional representations and one irreducible 

representation, which is two-dimensional. 

 

4.6  Characters of irreducible representations 

 
As we have seen, there is an arbitrariness in the choice of irreducible representation having 

a dimension larger than one. Any two representations related by a similarity 

transformation, 1S S − =  , are equivalent.  It is desirable to develop tools that are free of 

this problem. The most natural candidate is the  trace of the matrix associated with  the 

representation because  traces are  invariant under similarity transform: 

                                                  ( ) ( ) ( ) ( )1 1Tr Tr Tr TrS S S S− − =  =  =  .                               (4.24) 

Accordingly,  the character of an irreducible representation,  ,  of the group element g   

is defined to be: 

                                                      ( ) ( ) ( ) ( ) ( ) ( )
1

=Tr mm

m

g g g


  


=

  = 
   .                                   (4.25) 

From this definition it follows that all the elements in the same conjugacy class have the 

same character. It is because if a b , then 1b pap−= and the representations of a  and b  
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are related by the similarity transformation, ( ) ( ) ( ) ( )1b p a p− =    ; hence

( ) ( )Tr Trb a =  .  

Let us show that the characters of the irreducible representations behave like orthogonal 

vectors: 

                                                    ( ) ( ) ( ) ( )*

g G

g g G
 

  


= .                                                  (4.26) 

This property follows directly from the orthogonality theorem of irreducible 

representations because  from Eq. (4.15) we have 

                                                 ( ) ( ) ( ) ( )*

mm m m mm

g G

G
g g

 





   



  = ,                                           (4.27) 

and summing over m  gives  

                                                      ( ) ( ) ( ) ( )*

mm

g G

G
g g

 





 


 = .                                               (4.28) 

Finally, summing over m  leads to Eq. (4.26).  

Eq. (4.26) can be rewritten as a sum over conjugacy classes because characters of elements 

in the same conjugacy class are equal. Thus 

                                              ( ) ( ) ( ) ( )*

 classes

k k k

k

N g g G
 

  


= ,                                       (4.29) 

where kN  is the number of elements in the k -th conjugacy class, and kg  is a 

representative element of that class. This equation implies that the characters of 

irreducible representations from an orthogonal set of vectors in the space of conjugacy 

classes. Therefore, the number of irreducible representations must be smaller or equal to 

the number of conjugacy classes. One can prove that it precisely equals the number of 

conjugacy classes, but we skip this proof.   

The conclusion from this discussion is that the irreducible representations of a group 

satisfy the following properties: 

(a) The number of irreducible representations equals the number of conjugacy classes. 

(b)  2 G


= . 

In many cases, these properties allow us to uniquely determine the dimensions of the 

irreducible representations of the group. 
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Example: The dimensions of the irreducible representations of 
4D  

We have seen that the dihedral group 
4D  contains eight elements and five conjugacy 

classes, see Fig. 4-14. This information, together with the properties mentioned above, 

implies that 

                                                            2 2 2 2 2

1 2 3 41 8+ + + + = ,                                                          (4.30) 

where we took into account that any group has the one-dimensional identity 

representation. From this equation it is evident that 
4D   cannot have a three-dimensional 

irreducible representation.  One can neither choose all its representations to be one-

dimensional.  The only possible way of satisfying Eq.  (4.30) is by: 

                                                    2 2 2 2 21 1 1 1 2 8+ + + + =                                                          (4.31) 

 Hence, 
4D  has a single two-dimensional irreducible representation and four one-

dimensional representations.  

 

 

4.7  Character tables 

 

One of the main tools for implementing group theory in physics is the character tables. A 

character table is a list of all characters associated with the irreducible representations of 

a group. An example of such a table, for the 3vC  group, is shown here: 

 
 

 

 

 

 

In this table, the columns and the rows classify the group’s conjugacy classes and 

irreducible representations, respectively.  The top row lists the conjugacy classes (with the 

number of elements in each class), while the leftmost column lists the Mulliken symbols 

(to be explained later) of the irreducible representations. The number in each cell is the 

character associated with an element in the conjugacy class of the corresponding 

irreducible representation. The table is a square matrix because the number of conjugacy 

classes equals the number of irreducible representations. 

The character tables of all point groups can be found in the literature (or the internet). Yet, 

in many cases, they can be quickly constructed using the following rules (that follow from 

the above discussion): 

     

    

    

    

32c3E
3vC

111
1A

11−1
2A

1−02E
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(1) The size of the table is the number of the conjugacy classes of the group. 

(2) The dimensions of the irreducible representations are constrained by 2 G


= . 

(3) The rows of the table are orthogonal to each other. 

(4)  The sum of squares of (the absolute value of) all characters in a row equals  G . 

(5) All character tables contain the identity representation.  

(6) An additional property that we present here without proof is that the columns of the 

table are also orthogonal to each other; namely, they satisfy the equation: 

                                                   ( ) ( ) ( ) ( )*

k n kn

k

G
g g

N

 



  =  ,                                                 (4.32) 

          where 
kN  is the number of elements in the k -th conjugacy class. 

(7) From Eq. (4.32), and the fact that the identity element of the group forms a conjugacy 

class of its own, it follows that the sum of squares of the characters of the identity 

operator equals the group order ( ) ( )
2

E G




 = . 

Example: Construction of the character table of 4D  

As we already know, 4D  has five conjugacy classes and five irreducible representations: 

one two-dimensional representation and the rest are one-dimensional.  The first row of 

the table corresponds to the identity representation where all entries are one.  The first 

column of the table, corresponding to the identity operation, is also easy to fill because 

the identity operation is represented by identity matrices, whose traces equal the 

representation’s dimension. Thus the first row and the first column of the table are known. 

 

 

 

 

 

 

 

 

 

 

      

      

      

      

      

      

22c22c2

4c42cE
4D

11111
1A

1−1−111
2A

1−111−1
1B

11−11−1
2B

002−02E
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Let us now identify the entries of the cells in the red rectangle of the above table.  These 

are obtained from the orthogonality of the rows (recall that one should take into account 

the number of elements in each conjugacy class). Here, the entries are either 1+  or 1− , 

because it is the only possibility to satisfy the orthogonality condition given that 2

4c  and E  

form conjugacy classes of their own, while all other conjugacy classes contain two 

elements. Finally, to determine the characters of the two-dimensional representation (i.e., 

the last row of the above table), we use the property that all columns are orthogonal to 

the first one, see Eq. (4.32).   

 

4.8  Basis functions 

 

Character tables are usually supplemented by additional columns that list functions 

associated with each one of the irreducible representations. The functions are called basis 

functions, and in this section, we explain their meaning and show how to construct them.  

The basis functions associated with an irreducible representation   of dimension  are 

defined as the sets of functions, ( ) ( ) ( ) ( )( )1 2, ,f f f


   
=f , that satisfy the condition: 

                  ( ) ( ) ( ) ( )
g g

  
= f f ,  or in components  ( ) ( ) ( ) ( )

1

j ji i

i

gf g f


  

=

=  .                     (4.33) 

Namely, the behavior of these functions under the symmetry operations of the group 

reflects the nature of the irreducible representations. It is instructive to start with a simple 

example. Consider the group 2vC   whose all irreducible representations are one-

dimensional, and therefore characters are the representation matrices. The character 

table of this group, together with the basis functions, is given below.  

 

 

 

 

 

Here, the rotation is around the z  axis, while the reflections, v  and v  ,  are through the 

molecule’s plane ( xz -plane) and the perpendicular plane ( yz - plane), respectively.   

The second column from the right shows linear functions of the position vector. Observe 

first the coordinate z . It is not affected by any symmetry operation, and therefore reflects 

  
v   v  2c  E  2vC  

       

       

       

       

2 2 2, ,x y zz11111A

xy
zR1−1−112A

xz, yx R1−11−11B

yz, xy R11−1−12B
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the nature of the identity representation, 
1A .  On the other hand, the coordinate x  

changes sign under the action of 
2c  and 

v  ,  while unaffected by 
v . It is associated with 

the 
1B  irreducible representation because the characters of both 

2c  and 
v    are 1−  while 

that of 
v  is 1+ .  Similarly, one can check that the y  coordinate is a basis function of the 

2B  irreducible representation.  

 A rotation around the  z  axis, denoted by zR , is unaffected by rotation around the same 

axis but reverses direction when reflected through any plane containing the z  axis. Hence 

zR  transforms as the 
2A  representation.  Rotation around the y axis, 

yR , changes sign 

when rotated around the z  axis and by reflection through the yz  plane. However, the 

rotation direction is not reversed by reflection through the xz  plane, as demonstrated in 

Fig. 4-16. Thus 
yR  is a basis function of the 1B  representation.  Similar considerations show 

that 
xR  is a basis function of 

2B .  

                        

                        

Figure 4-16 The action of reflection through a plane  on the rotation basis function 

 

The quadratic basis functions of 2vC are listed in the rightmost column of the character 

table shown in the previous page.  The basis function xy  belongs to the 2A  representation 

because the 2c  rotation transforms x x→−  and y y→− , and leaves their product 

unchanged. On the other hand, reflections change the sign of only one of these 

coordinates, hence reversing the sign of the product xy .  

As a second example, consider the group 3vC  whose character table that includes the basis 

function is given on the next page. Here, the rightmost column lists the cubic basis 

functions. Notice, also, that each basis function of the two-dimensional representation 

contains two components.  This is because two-dimensional representations are 2 2  

matrices that act on vectors (or spinors).   
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How to construct basis functions of irreducible representations?   

 The idea is to project some general functions down to the subspace of functions that 

belong to the irreducible representation. To execute this program, one should first identify 

the projection operator associated with a given irreducible representation.  

Starting from definition (4.33) of the basis function, we multiply this equation from the left 

by 
( ) ( )*

kl g


 . Then  summing over the  group elements leads to: 

                               

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

* *

1

1

                        .

kl j kl ji i

g i g

kj li i kj l

i

g gf g g f

G G
f f





    

 

 

 

    

=

=

 =  

= =

 


                          (4.34) 

To obtain the second line in this equation, we employed the great orthogonality theorem 

of irreducible representations (4.15).   By defining  the operator  

                                                                    
( ) ( ) ( )*

kl kl

g

P g g
 
=  ,                                                     (4.35) 

one may rewrite Eq. (4.34) in the form   

                                                                
( ) ( ) ( )

kl j kj l

G
P f f

  





 =   .                                           (4.36) 

Finally, setting k l=  and summing over l  gives: 

                                                                
( ) ( ) ( )

j j

G
P f f

  





=  ,                                              (4.37) 

where  

                                                                 
( ) ( ) ( )*

g

P g g
 

= .                                                (4.38) 

Equation (4.37) shows that when acting with ( )
P

  on any function that does not belong to 

the basis functions of the   irreducible representation,  the result is zero. Therefore, ( )
P

  

   3 
32c E 3vC 

( ) ( )
33 2 2;  Re ;  z x iy z x y+ + 

2 2 2;  x y z+      

 ( )
3

Im x iy+ 
 

zR     

 
( ) ( )

( )

2 2 2 2

3 2 3 2

, ; 2 ,

,

xz yz xyz zx zy

x xy y yx

−

+ +
 

( )
( )

2 2 , 2

,

x y xy

xz yz

−
  

( )

( )

,

,x y

x y

R R
  

    

z111
1A

1−11
2A

01−2E



78  

 

is the projection operator on the functional space of the   irreducible representation.  

Thus if we start from some general function that has a component that belongs to the basis 

functions of the   irreducible representation, then we can select this component by 

application of ( )
P

  on the function. We turn to demonstrate this by example. 

 

Example: Basis functions of 
4vC  

The point group 
4vC  is the symmetry group of a 

square.  It contains the following operations: The 

identity; rotations by 090 ; rotation by 0180 ;  two 

reflections through axes that bisect the square at the 

middle of opposite sides; and two additional 

reflections through two diagonal axes that pass via 

opposite corners of the square, see Fig. 4-17.   The 

character table of this group is given below. Notice 

that 4vC is isomorphic to 
4D ; therefore, it has the 

same character table (listed on page 74).  

  
 

 

 

 

 

 

 

 

 

 

 

Let us construct the projection operators on the various irreducible representation of the 

group. Since all the characters of the identity representation are 1, from Eq. (4.38) it 

follows that  the projection operator on this irreducible representation is a simple sum 

over all the group elements: 

                                            ( )1A 3

4 4 2 v v d dP E c c c     = + + + + + + +  .                              (4.39) 

The other projection operators are linear combinations of the group operations with 

weights determined by the characters of the representations, thus 

                                            ( )2A 3

4 4 2 v v d dP E c c c     = + + + − − − − ,                                  (4.40) 

                                            ( )1B 3

4 4 2 v v d dP E c c c     = − − + + + − − ,                                  (4.41) 

  2 d 2 v 
2c 

42c E  
4vC 

2 2 2,x y z+ z 1 1 1 1 1 
1A 

- 
zR 1− 1− 1 1 1 

2A 

2 2x y− -
 

1− 1 1 1− 1 
1B 

xy - 
1 1− 1 1− 1 

2B 

( ),xz yz ( ) ( ), , ,x yx y R R 
0 0 2− 0 2 E 

 

Figure 4-17 The symmetry operations of 4vC  
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                                            ( )2B 3

4 4 2 v v d dP E c c c     = − − + − − + + ,                                  (4.42) 

                                            ( )E

22 2P E c= − .                                                                                (4.43) 

To construct the linear basis functions, we apply the above operators on each component 

of the position vector, ( ), ,x y z , where x  and y coordinates are shown in Fig. 4-17, while 

the z coordinate is perpendicular to the plane of the square (and therefore invariant under 

all group operations).  Let us first list the action of the group elements on the position 

vector: 

           

x x

E y y

z z

   
   

=   
   
   

,        
4

x y

c y x

z z

−   
   

=   
   
   

,     3

4

x y

c y x

z z

   
   

= −   
   
   

,     
2

x x

c y y

z z

−   
   

= −   
   
   

 

          v

x x

y y

z z



−   
   

=   
   
   

,     
v

x x

y y

z z



   
    = −   
   
   

,     
d

x y

y x

z z



   
   

=   
   
   

,     
d

x y

y x

z z



−   
    = −   
   
   

 

Using the above formulas, it is easy to see that projection of the position vector on the 

identity representation gives  

                                                                ( )1A

0

8 0

x

P y

z z

   
   

=   
   
   

 ,                                                                 (4.45) 

therefore  z  is the basis function of the 1A  irreducible representation.  Similarly, applying 

the  projection operator of the two-dimensional representation, E , gives  

                                                                ( )E
4

0

x x

P y y

z

   
   

=   
   
   

.                                                                (4.46) 

Hence the pair ( ),x y  is a basis function of the E  irreducible representation.  One can 

check that all other projection operators nullify the vector ( ), ,x y z  because we already 

have all the linear basis functions, and there cannot be additional ones.   

To construct quadratic basis functions, let us define a matrix whose components include 

all possible combinations of products of pairs of coordinates. It is obtained from the 

external product  of the position vector by itself:  

                                          

( ) 2

2

2

x x y z x xy xz

Q y xy y yz

z xz yz z

  
  

= =   
   
   

                                            (4.47) 

(4.44) 
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Using Eq.  (4.44)  we deduce the action of the group elements on this matrix: 

    

2

2

2

x xy xz

EQ xy y yz

xz yz z

 
 

=  
 
 

,   

2

2

4

2

y yx yz

c Q yx x xz

yz xz z

 − −
 

= − 
 − 

,   

2

3 2

4

2

y yx yz

c Q yx x xz

yz xz z

 −
 

= − − 
 − 

,  

 

2

2

2

2

x xy xz

c Q xy y yz

xz yz z

 −
 

= − 
 − − 

,   

2

2

2

v

x xy xz

Q xy y yz

xz yz z



 − −
 

= − 
 − 

,   

2

2

2

v

x xy xz

Q xy y yz

xz yz z



 −
 

 = − − 
 − 

,  (4.48) 

                         

2

2

2

d

y xy yz

Q xy x xz

yz xz z



 
 

=  
 
 

,     

2

2

2

d

y xy yz

Q xy x xz

yz xz z



 −
 

 = − 
 − − 

.  

With the help of these formulas, we can calculate the projection of Q  on irreducible 

representations. In particular, projection on the identity representation gives: 

                                                    ( )1

2 2

A 2 2

2

0 0

4 0 0

0 0 2

x y

P Q x y

z

 +
 

= + 
 
 

 ,                                     (4.49) 

therefore 2 2x y+  and 2z are quadratic basis functions of 1A .  Similarly,  

                                                  ( )1

2 2

B 2 2

0 0

4 0 0

0 0 0

x y

P Q x y

 −
 

= − 
 
 

 ,                                          (4.50) 

hence 2 2x y−  is the quadratic basis function of the 
1B representation.  Projection on 

2B  

gives 

                                                          ( )2B

0 0

8 0 0

0 0 0

xy

P Q xy

 
 

=  
 
 

,                                                      (4.51) 

thus xy  is the corresponding basis function. Finally,  

                                                          ( )E

0 0

4 0 0

0

xz

P Q yz

xz yz

 
 

=  
 
 

,                                                (4.52) 
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Hence ( ) ( ), ,zx zy z x y=  is the quadratic basis function of the two-dimensional irreducible 

representation E .  One can also check that ( )2A
0P Q = ; therefore, the 

2A irreducible 

representation does not have quadratic basis functions.  

 

4.9  Mulliken symbols of irreducible representations 
 

The symbols on the leftmost column of a character table denote the irreducible 

representations of the group. These symbols are called Mulliken symbols, and now we turn 

to explain them.   

 

1. The dimensionality of the representation is denoted by a capital letter  in the 

following manner: 
 

 

 

 

 

 

 

 

2. Choosing between the  A and the B  letters (of the one-dimensional 

representations)  depends on the sign of the character of the n-fold rotation, nc , 

around the principal axis: 
 

 

 

 

 

3. Lower indices of the Mulliken symbols represent classification according to a 

possible sign change of the basis functions of the irreducible representation,  ,  

under the following symmetry operations: If there is a 2c  axis perpendicular to the 

principal axis or a reflection through a plane that contains the principal axis, then 

the lower index is determined by the following rule: 

Mulliken symbol Dimension of the irreducible 

representation 

A or B 1 

E 2 

F or T 3 

G 4 

H 5 

Mulliken symbol  

   

  

( )nc

A1+

B1−
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4. An additional classification is provided when the symmetry group contains an 

inversion symmetry. Depending on the character of the inversion operation, the 

Mulliken symbol is  supplemented by a  lower index: 
 

 

 

 

5. Prime or double prime are added to the Mulliken symbol depending on the 

character of the reflection operator through a plane perpendicular to the principal 

rotation axis, h : 

 

 

 

 

 

 

4.10  Molecular vibrations 

 

Irreducible representations and basis functions are valuable tools for the analysis of 

physical systems.  To begin understanding their importance, we demonstrate how to use 

them to identify and calculate the normal vibrational modes of simple molecules.   As we 

shall see, these normal modes are, in fact, basis functions of the irreducible 

representations of the symmetry group of the molecule.   

Moreover, recall that the normal modes of a molecule account for all possible shape 

deformations from its symmetric (ground state) configuration. Thus, the irreducible 

representations classify all possible channels by which a molecule (and more generally a 

system)  moves from its symmetric state. 

Index   

 No sign change 

 A sign change 

Index ( )i  

    

  

Primes ( )h   

    

  

1

2

g1+

u1−

1+

1−
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Identification of the normal vibrational modes of a molecule can be obtained in the 

following steps: First, find the irreducible representations associated with the vibrational 

modes of the molecule. Next, construct the projection operators associated with these 

representations. Finally, choose coordinates that describe a general deformation of the 

molecule and apply the projection operators on these coordinates. 

Let us demonstrate this procedure with the example of a water molecule 
2H O  (see Fig. 4-

15), whose symmetry is expressed by the point group 
2vC . This group has four symmetry 

elements and four irreducible representations (all one-dimensional). The character table 

of the group can be found on page 75.   

The water molecule has three atoms and nine degrees of freedom (3 for each atom).  

However, six of them describe translations of the center of mass and rotations. Only three 

degrees of freedom account for the vibrations of the molecule. Our first task is to find the 

irreducible representations associated with them.  

Consider the reducible representation obtained from the matrices that operate on a 9-

component vector made from the coordinates of all three atoms as in Eq. (4.14). This 

representation is called the translation vectors representation and is denoted by trans.vec . 

It includes the irreducible representations of the nine degrees of freedom of the molecule:  

translations, rotations, and vibrational modes.  

We wish to decompose trans.vec  into its irreducible representations: 

                                                             ( )
trans.vec n






 =   .                                                      (4.53) 

The symbol 

  (called “direct sum”) on the right-hand side of this equation should be 

understood as the collection of the irreducible representations that appear in the block 

diagonal form of the translation vector representation. n  is the number of times that the 

irreducible representation   appears in this collection.  

From (4.53) it follows that any symmetry operation,  g ,  satisfies the relation:  

                                                ( ) ( ) ( )trans.vec g n g





 = ,                                                      (4.54)   

where ( )trans.vec g  is the character of the translation vector representation,  while ( ) ( )g


  

is the character of the   irreducible representation.  

Multiplying Eq. (4.54)  by ( ) ( )*
g


  and summing over the group elements, we obtain: 

              ( ) ( ) ( ) ( ) ( ) ( ) ( )* *

g g

g g n g g n G n G
  

   
 

    = = =     ,                (4.55) 
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where G  is the group order.  To obtain this result, we employed the orthogonality of the 

characters of irreducible representations expressed by Eq. (4.26).  Solving the above 

equation for n  we get the number of times that   irreducible representation appears in 

trans.vec  :  

                                                     ( ) ( ) ( )*

trans.vec

1

g

n g g
G



  =  .                                          (4.56) 

Thus to identify the decomposition (4.53) of the translation vector representation, we 

should first calculate the characters, ( )trans.vec g .  For this purpose, we do not need the full 

matrix structure associated with the symmetry element g . It is sufficient to identify only 

its diagonal elements because they determine the trace. Hence, the character of g  is 

determined only by those atoms that stay in their positions after applying this symmetry 

operation. Each component of the vector of such an atom contributes 1  depending on 

whether it reversed its direction or not.  The character is then the sum of these numbers.  

In particular, for the water molecule shown in Fig. 4-15,  the rotation 
2c  leaves only the 

oxygen atom in its place with 1 1z z→ , 1 1x x→− , and 2 2y y→− , hence 

( )2 1 1 1 1c = − − = − . Reflection through the molecular plane ( xz  plane) leaves all atoms 

at their positions. One component of their translation vectors reverses direction while the 

other two remain intact. Therefore ( ) ( )3 1 1 1 3v  = + − = . Reflection through the yz  

plane leaves only one atom at its position and reverses a single component of its 

translation vector, thus, ( ) 1v   = . Finally, the character of the identity operation equals 

the number of degrees of freedom, ( ) 9E = .  These characters are summarized in the 

following table:  

 

 

 

 

Now, using Eq. (4.56) with this result and the characters of the irreducible representations 

of  2vC , that appears on page 75,  we obtain that the number of times that the identity 

representation appears in trans.vec  is 

                       ( ) ( ) ( ) ( )( )1

1

A *

A trans.vec

1 1
1 9 1 1 1 3 1 1 3

4 4g

n g g = =  +  − +  +  = .                 (4.57) 

Similarly, for the other irreducible representations, we have: 

( )v yz  ( )v xz 2c E 
2vC 

1 3 1−  9  
trans.vec  
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                 ( ) ( ) ( ) ( ) ( ) ( )( )2

2

A *

A trans.vec

1 1
1 9 1 1 1 3 1 1 1

4 4g

n g g = =  +  − + −  + −  = ,       (4.58) 

                  ( ) ( ) ( ) ( ) ( ) ( )( )1

1

B *

B trans.vec

1 1
1 9 1 1 1 3 1 1 3

4 4g

n g g = =  + −  − +  + −  = ,        (4.59) 

and  

                ( ) ( ) ( ) ( ) ( ) ( )( )2

2

B *

B trans.vec

1 1
1 9 1 1 1 3 1 1 2

4 4g

n g g = =  + −  − + −  +  = .          (4.60) 

Thus the translation vectors representation includes three 1A  representations, one 
2A

representation, three 
1B  representations,  and twice the 

2B  representation: 

                                                      
trans.vec 1 2 1 23A A 3B 2B =    .                                                  (4.61) 

Altogether we have nine (one-dimensional) irreducible representations that account for 

all nine degrees of freedom of the molecule. From the character table of 2vC , (on page 75) 

we see that translations of the molecules,  described by the linear basis functions, x , y , 

and z , are associated with the, 1B , 2B , and 1A  irreducible representations, respectively.  

Similarly, rotations of the molecule, corresponding to the basis functions, xR , 
yR  and zR

,  are associated with the 2B , 1B , and 2A representations, respectively. Subtracting these  

irreducible representations from trans.vec  we are left with a representation that includes 

only the vibrational modes of the  molecule: 

                                                                      vib 1 12A B =  .                                                     (4.62) 

Thus, two normal mods of the molecule are basis functions of the identity representation, 

1A , while the third is a basis function of the 1B  representation. 

To reveal the spatial structure of the molecule’s normal modes, it is convenient to use the 

internal coordinates representation. The internal coordinates of a molecule are the bonds 

lengths and the angles between bonds. These coordinates account only for the 

deformations of the molecule because they are 

unaffected by translations and rotations.  Thus 

their number equals the number of the normal 

modes of the molecule. Clearly, there is some 

arbitrariness in their choice. For the water 

molecule, it is convenient to choose them to be 

the bond lengths between the oxygen and the 

hydrogen atoms, and the angle between these 

bonds,  as shown in Fig.  4-18.   

The action of the symmetry operations on these coordinates is: 

 

Figure 4-18 The internal coordinates of a 

water molecule 
2H O  
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R R

L L

r r

E r r

 

   
   

=   
   
   

, 
2

R L

L R

r r

c r r

 

   
   

=   
   
   

, 
R R

v L L

r r

r r

 

   
   

=   
   
   

, and 
R L

v L R

r r

r r

 

   
    =   
   
   

,             (4.63) 

hence the characters of this representation are: ( ) 3E = , ( )2 1c = , ( ) 3v  = , and 

( ) 1v   = .  From here, it is easy to check that the internal coordinate representation 

decomposes into the three irreducible representations, as expressed in  Eq. (4.62). 

Our goal now is to construct the linear basis functions for each of the irreducible 

representations of the molecule 
2H O using its internal coordinates. Since the normal 

vibrational modes represent small deviations from the equilibrium state, they are given by 

these linear basis functions.  

To this end, we apply the projection operators, defined in Eq.  (4.38), on each one of the 

internal coordinates.  Consider first the application of the projection, associated with the 

identity representation,  on the coordinate 
Rr . Using Eqs. (4.63), and the fact that all 

characters of the identity representation equal one,  we have 

                 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

  ( )

1 1 1 1 1A A A A A

2 2

2         2

R v v v v R

v v R R L R L R L

P r E E c c r

E c r r r r r r r

       

 

  = + + +
 

= + + + = + + + = +
              (4.64) 

and 

                                               ( ) ( )1A
2L R LP r r r= + ,  while   ( )1A

4P  = .                                          (4.65) 

Similarly, projections on the 1B  representation (obtained with the help of the character 

table on page 75) give: 

                

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

  ( )

1 1 1 1 1B B B B B

2 2

2         2 ,

R v v v v R

v v R R L R L R L

P r E E c c r

E c r r r r r r r

       

 

  = + + +
 

= − + − = − + − = −
                   (4.66) 

and  

                                                         
( ) ( )1B

2L L RP r r r= −  ,    ( )1B
0P  = .                                           (4.67)        

Thus R Lr r+  and   are two basis functions of the 1A  irreducible representation, while  

R Lr r−  is the basis function of the 1B  representation.  

 These linear basis functions are the normal coordinates associated with the vibrational 

modes of the molecule shown in Fig. 4-19 on the next page.  The normal coordinates 

change sinusoidally in time with the frequency of the corresponding vibrational mode.  

Thus the periodic change in time of the basis function, R Lr r+ , associated with the 1A  

irreducible representation, describes the stretch and compression mode shown in the left 

panel of Fig. 4-19. The second normal mode of the same irreducible representation is 
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described by a sinusoidal change, in time,  of the angle  . This is the bending mode shown 

in the middle panel of the figure. Finally, the vibrational mode associated with the 1B  

representation is obtained when R Lr r− changes periodically in time. This mode describes 

vibrations in which one bond stretches while the other compresses and vice versa. It is 

illustrated in the right panel of the figure.  

        

                                           Figure 4-19 The normal modes of a water molecule  

 

Notice that the normal modes shown in the above figure are drawn for the case where the 

molecule's center of mass stays put. This condition implies that, in general,  all atoms move 

from their equilibrium position. The internal coordinates, however, behave as described 

above.  

 

4.10  Irreducible representations in quantum mechanics  

 

In this section, we show that the energy levels of a quantum system can be classified 

according to the irreducible representations of the symmetry group2. In particular, the 

energy-levels degeneracy is determined by the dimension of the irreducible 

representation, and the corresponding wave functions are basis functions of the 

representation.  

Let  iG g=  be the group of symmetry operations that leave the Hamiltonian, H ,  

invariant, i.e.   , 0iH g =  or 1

i iH g Hg−=  for any ig G .  Consider the time-independent 

Schrödinger equation,   

                                                                   H = .                                                                (4.68) 

Applying one of the symmetry operations on this equation gives 

                                                              j jg H g  = ,                                                              (4.69) 

and since the Hamiltonian commutes with jg , j jHg g  = . Thus jg  is a solution of the 

Schrödinger equation with the same energy  .  If we know that the energy level is not 

                                                           
2Similar considerarions apply to the  eigenfrequencies of the molecular vibrational modes, discussed above.  



88  

 

degenerate, then jg   can be different from  , at most,  by a phase factor, 

( )expj jg i  = . Applying an additional symmetry operation gives 

( ) ( ) ( )exp exp expi j j i j ig g i g i i     = = . However, i jg g  is also a symmetry element 

of G , therefore ( )expi j ijg g i  = . Thus ( ) ( ) ( )exp exp expij i ji i i  = ; hence the phase 

factors constitute a one-dimensional irreducible representation of the group. 

Consider now a different situation where the application of some symmetry operator on 

  generates a linear combination of  orthogonal wave functions of the Hamiltonian. In 

this case, the energy level   must be degenerate, at least,  times.  We call this 

degeneracy a normal degeneracy if there are no other wave functions with the same 

energy. A situation where there are other wave functions with the same energy that 

cannot be obtained by applying one of the symmetry elements on   is called an accidental 

degeneracy. The reason for accidental degeneracies is not symmetry. Usually, they are 

associated with fine-tuning the Hamiltonian’s parameters; therefore, accidental 

degeneracies are not generic.   

In what follows, we focus our attention on the case of a normal degeneracy. We  denote 

by n , where 1,2, ,n = , the orthogonal set of wavefunctions associated with the 

degenerate energy subspace: 

                                                                        n nH =  .                                                            (4.70) 

Application of a symmetry element on one of these wave functions, generally, yields a 

linear combination of all wave functions of the subspace. It is convenient to define a vector 

of the wave functions ( )1 2, ,
T

  =  so that 

                                                                   ( )j jg g=   ,                                                        (4.69) 

where ( )jg  is a   matrix.  From here we obtain 

                               ( ) ( ) ( ) ( ) ( ) ( )i j i j i j i jg g g g g g g g =  =   =  
 

    .               (4.70) 

Thus, the set of matrices ( ) jg  constitutes a representation of the symmetry group 

with dimension : 

                                                       ( ) ( ) ( )i j i jg g g g =   .                                                     (4.71) 

Take note that one can always choose the set of wave functions,  n , to be an 

orthonormal set, and for this choice, ( )jg , are unitary matrices.  



89 

 

 We turn now to show that this representation is irreducible. For this purpose, we first 

consider a change of basis in the subspace of degenerate wave functions,  n . A unitary 

transformation, U ,  describes the transition from one basis to another: 

                                                                        U =  .                                                             (4.72) 

Multiplying this equation by 1U −  , from the left, and applying the symmetry operation, 
jg ,

we obtain 

                                      ( ) ( )1 1

j j j jg U g g g U− − = =  =     .                                          (4.73) 

However,  U and 
jg  act on two different spaces: U acts on the wave functions space while 

jg  acts on the coordinate space, therefore  

                                                          1 1

j jg U U g− − =  ,                                                            (4.74)                                 

and from the last two equations, we conclude that 

                                                      ( ) 1

j jg U g U − =   .                                                             (4.75) 

Thus, a change of basis is nothing but a similarity transformation: 

                                                          ( ) ( ) 1

j jg U g U − →   .                                                   (4.76) 

Now suppose that the representation,  , is reducible. Then there must be a basis in which 

all matrices ( )jg  are block diagonal.  But this property implies that there are at least two 

different groups of wave functions that are not mixed by any symmetry operation.  

However, this contradicts our assumption of normal degeneracy because it is the case of 

accidental degeneracy.  Thus, the representation is irreducible, and the eigenfunctions are 

basis functions of this representation. 

To conclude: 

• To each eigenenergy of H  corresponds one irreducible representation of the 

symmetry group of the Hamiltonian. The eigenstates associated with this energy 

are basis functions of the representation. 

• The degeneracy of the eigenenergies is the dimension of the irreducible 

representation.  

• Group theory provides “good quantum numbers”: it associates an irreducible 

representation to each eigenenergy of the Hamiltonian. 
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4.11 Exercises     

 

1. Identify the conjugacy classes of the point group 
6vC  and the dimensions of its 

irreducible representations.   Build the character table of the group. 

Hint:  Notice that 
6vC is a direct product of  ( )3 3, 2 ,3vC E c   by  ( )2 2,C E c . By direct 

product, we mean the multiplication of each element in one group by the elements of 

the other group.  

2. Prove the convolution theorem of irreducible representations: 

                               ( ) ( ) ( ) ( ) ( ) ( )1

ij kl jk il

g

G
xg g x

  





 −  =  ,                                          (4.77) 

where x and g are elements of the same group and  is the dimension of the 

irreducible representation  . 

3. In continuation to exercise 2 of Chapter 2, 

identify the conjugacy classes of  
dT ,  and the 

dimensions of its irreducible representations.  

4. Identify the irreducible representations of the 

vibrational modes of Methane, 
4CH . This 

molecule has the shape of a tetrahedron, as 

illustrated in Fig. 4-20. Its symmetry group is dT  , 

and its character table is given below. 

 
 

 
 

 

 

 

 

 

 
 
 
 

  6 d 46S 23c 38c E dT 

2 2 2x y z+ + - 1 1 1 1 1 1A 

- - 1− 1− 1 1 1 2A 

( )2 2 2 2 22 , 3 3z x y x y− − − - 0 0 2 1− 2 E 

- ( ), ,x y zR R R 1− 1 1− 0 3 
1F 

( ), ,yz xz xy ( ), ,x y z 1 1− 1− 0 3 
2F 

 

Figure 4-20 The shape of Methane 

molecule 
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5. Find the vibrational modes of a molecule having the shape 

of an equilateral triangle, as shown in Fig. 4-21. 

6. Point groups are subgroups of the orthogonal group in 

three dimensions, ( )3O . The latter contains rotations (at 

any angle) and reflections through any plane containing the 

origin. The irreducible representations of the rotation 

group (3)SO  (a subgroup of ( )3O ) are the angular 

momentum states. For angular momentum J , the dimension of the representation is 

2 1J + .  If we choose   to be the rotation angle around  the z  axis, the representation 

of this rotation operation is described by the diagonal matrix: 

                              ( ) ( ) ( ) ( ), exp , exp
J

z MMJ M iL J M i M   
 = = ,                       (4.78) 

where  J M J−    is the projection of the angular momentum on the z axis, and 
zL  

is the z  component of the angular momentum operator. Taking the trace of this matrix, 

we obtain the character of the rotation operation: 

                 ( ) ( )

1
sin

2

sin
2

J

J 

 


  
+  

  
=

 
 
 

                         (4.79) 

Clearly this character is independent of the direction 

of the rotation axis.  

Consider the octahedral  group, O , consisting of (only) 

rotations of an octahedron - an object built from 8 

equilateral triangles, as shown in Fig. 4-22.  The 

character table of this group is given below3.  

 

 

 

 

                                                           
3 This group is isomorphic to  the tetrahedral group, dT , as shown by the character table.  

2

2 43c c=
  46c

   26c
  38c

   E  O  

23c
  46S

  
6 d  38c

  
E  dT  

     
1A

  

     
2A

  

     E  

     
1F

  

     
2F  

11111

11−1−11

2001−2

1−11−03

1−1−103

 

Figure 4-21 A molecule with the 

shape of equilateral triangle 

 

 

Figure 4-22 Octahedron  
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Taking into account that the symmetry operations of the octahedral group are only 

rotations,  use considerations  of character orthogonality to identify the composition of 

the J -th representation of the rotation group in terms of the irreducible 

representations of the octahedral group. In particular, prove the following table: 
  

 

 

 

              

 

7. Use the results of the previous exercise to build the basis functions of second order for 

the  E  and the 2F irreducible representations of the group O . 

Advice: The basis functions of the rotation group ( )3SO are the spherical harmonic 

functions ( ),m

lY   . For 2J =  they are given by  

                                                    

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2

2

2 2

2

1

2

1

2

0 2

2

1 15
, sin exp 2 ,

4 2

1 15
, sin exp 2 ,   

4 2

1 15
, sin cos exp , 

2 2

1 15
, sin cos exp ,    

2 2

1 5
, 3cos 1 .

4

Y i

Y i

Y i

Y i

Y

   


   


    


    


  


−

−

=

= −

= −

= −

= −

 

From the table above, we deduce that these five wave functions should compose the 

basis functions of the 2F  representation (a 3-component vector) and of the E  

representation (a 2-component vector). From the above wave functions, construct five 

real functions normalized to unity (notice that the spherical harmonic functions in Eq. 

(4-80) are also normalized to unity), multiply them by 2r , and rewrite the result in 

terms of the coordinates sin cosx r  = , sin siny r  = , and cosz r = . Now 

identify the basis functions that belong to each one of the irreducible representations. 

8. Prove the statement of the footnote on page 87. 

representations OComposition of  J 

1A 0 

1F 1 

2E F 2 

2 1 2A F F  3 

(4.80) 
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5  Graphene and Dichalcogenides 

In this chapter, we show how to employ symmetry considerations exclusively to deduce 

the structure of the energy bands of graphene and dichalcogenides (i.e., without knowing 

what the Hamiltonians that describe these systems are.)  

 

5.1 The graphene lattice 

Graphene is a monolayer of carbon atoms arranged in a honeycomb lattice. Each atom is 

connected to three neighboring atoms by  - bonds and contributes one electron to the 

conduction band.  In the graphene lattice, one can identify two hexagonal sublattices, A

and B as demonstrated in Fig. 5-1 

 

 

 

 

 

 

 

 

 

The Bravais lattice of graphene is a two-dimensional hexagonal lattice, and each unit cell 

contains two atoms – one of each sublattice. If we denote by a  the distance between 

nearest neighbors sites on the same sublattice (say the red sublattice), then one can 

choose the two primitive basis vectors of the Bravais lattice to be: 

                                                   ( )1 1,0a=a   and    ( )2 1, 3
2

a
=a ,                                             (5.1) 

as shown in Fig. 5-1. The primitive basis vectors of the reciprocal lattice (see Eq. 2.28) are, 

therefore:  

                                            1

2 1
1,

3a

  
= − 

 
b ,    and    ( )1

4
0,1

3a


=b .                                      (5.2) 

The reciprocal lattice and the first Brillouin zone with its special points are displayed  in Fig. 

5-2.  

 

Figure 5-1 The two sublattices of graphene 

 

Figure 5-2 The reciprocal lattice and 

the first Brillouin zone of graphene 
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5.2 The “little group” and the graphene spectrum near the K - point 

 

The graphene point group is 
6vC .  By choosing the origin of the coordinates to be at the 

center of one of the lattice’s hexagons, it is easy to see that the system has a six-fold 

rotation symmetry and a reflection symmetry through six planes similar to those shown in 

Fig. 2-11 for the hexagonal lattice1. The character table of the 
6vC  group is presented 

below. This table shows that the graphene’s symmetry group contains two-dimensional 

irreducible representations. The 
6vC  symmetry of the reciprocal lattice, suggests that the 

graphene’s spectrum is characterized by degeneracy points in k -space. 
 

6vCtable of  racterchaThe  

 

 

 

 

 

 

 

 

The degeneracy points that we seek to describe here are points where two bands meet. 

Naturally, one expects them to be the high symmetry points in the Brillouin zone, such as 

the special points,  , K  and M (see Fig. 5-2).  To analyze the spectrum in the vicinity of 

these points, we need to introduce the notion of a “little group”.  The little group is a 

subgroup of the crystal symmetry group that acts on Bloch vectors.  It is the group of 

symmetry operations that returns a Bloch wave vector to itself (up to a reciprocal lattice 

vector).  Clearly, this group depends on the choice of the wave vector, ; therefore, special 

symmetry points of the Brillouin zone play an important role.  Consider, for example, the 

                                                           
1 The full symmetry group of graphene point  is, in fact, 

6hD  where in addition to the elements of 
6vC there 

are six 2c -rotations around axes that are perpendicular to the principle axis, and an additional reflection 

through the horizontal plane where the atoms reside. However, being interested only in the two-dimensional 

properties of the system, it is sufficient to  consider only those symmetry operations that do not involve the 

third dimension of the problem. These symmetry operations constitute the subgroup 
6vC  of 

6hD . 

k

  3 d 3 v 2c 32c 62c  E 
6vC 

2 2x y+ - 1 1 1 1 1 1 
1A 

- 
zR 1− 1− 1 1 1 1 

2A 

- - 1− 1 1− 1 1− 1 
1B 

- - 1 1− 1− 1 1− 1 
2B 

- ( ) ( ), , ,x yx y R R 0 0 2− 1− 1 2 
1E 

( )2 2 , 2x y xy−  - 0 0 2 1− 1− 2 
2E 
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  point. This point is of the highest symmetry in the Brillouin zone because any symmetry 

operation of 
6vC  returns it to itself. The K -point, on the other hand, has a lower symmetry.  

It is invariant only to rotations in 0120  (recall that K and K   are inequivalent), and to 

reflections through three lines: One is the horizontal axis and two other lines obtained 

from its rotations by 0120 . Thus, the little group of the K -point is 
3vC . The character 

table of this group is listed below (for the moment, ignore the basis functions – they are 

presented here for future use).  

 

 

 

 

 

 

 

How does this property of the K -point manifest itself ?  

In the previous chapter, we have learned that the wave functions of the system must 

belong to one of the irreducible representations of the symmetry group of the system. 

Now we consider only those wave functions that belong to the K -point, and have lower 

symmetry described by the 
3vC  group.  Nevertheless, the character table shows that 

3vC   

contains a two-dimensional representation. Hence the K -point might be a degenerate 

energy point at which two bands touch. In other words, the energy spectrum of wave 

functions associated with this irreducible representation feature band crossing at the K -

point, as illustrated schematically in Fig.  5-3. 

                                           

Figure 5-3 An illustration of the behavior of the energy levels along the line connecting  and K points of 

the Brillouin zone (Time reversal symmetry implies that near  the spectrum is quadratic – see Chap 3.) 

 

   3 v 
32c  E 

3vC 

  2 2 2,x y z+ z     

       

AB AB

x y

AB AB

x y

i

i

 

 

 +
  − 

 
( )

( )

2

2

x iy

x iy

 −
 
 + 

 
x iy

x iy

+ 
 

− 
  

    

 

I111
1A

AB

z
1−11

2A

01−2E
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Our goal is to construct the local Hamiltonian near the K -point from pure symmetry 

considerations. But before we turn to this task, let us identify the irreducible 

representations of the 
3vC  group. Knowing that the wave functions of the problem are the 

basis functions of the irreducible representations and that these also include a two-

dimensional representation,  we look for representations that act on a two-component 

wave function, i.e., a pseudospinor. In graphene, the natural choice for this pseudospinor 

as 

                                                                         A

B






 
=  
 

,                                                             (5.3)  

where 
A  and 

B  are the wave functions on sublattices A  and B , respectively.   

First, Let’s identify the representations of the 

symmetry operations (of the little group) associated 

with this function. Consider, first,  reflection through 

the (horizontal) x -axis.  From  Fig 5-4,  we see that this 

reflection swaps the two sublattices; therefore, the 

matrix representation of this operation is: 

         ( )
0 1

1 0

A A AAB

x x

B B B

  
 

  

      
 = =      

      
,         (5.4) 

where AB

x denotes a Pauli matrix that acts on the 

sublattice space.   

The character of this operation, ( ) 0  = ,  may be associated with two options: One is 

that the matrix AB

x  belongs to the two-dimensional representation, E ,  of 3vC . The second 

option is that AB

x  belongs to a reducible representation containing a pair of one-

dimensional representations, 
1 2A A , whose characters 1  sum up is zero (see character 

table above)  

To distinguish between the two possibilities, consider the representation of the 3c  

rotation. This rotation does not mix the two sublattices. Therefore, let us look, first, at its 

effect on one of the two sublattices - say, sublattice A . The group which describes 

rotations on this sublattice is the cyclic group 3C . All representations of this group are one-

dimensional. Choosing the identity representation implies that ( )3 A Ac   = . But 3c  does 

not mix the sublattices; hence its representation must be a diagonal matrix. The only 

sensible choice for the action of this matrix on the second component of the wave function 

is ( )3 B Bc   =  which implies that ( )3 2c = . Therefore, this choice corresponds to the 

reducible representation 1 2A A .  

 

in graphene
xReflection 4 -Figure 5 
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Consider now a faithful representation of the 3C  group 

that describes the rotation on the A - sublattice. Let us 

denote the points on this sublattice by 1, ( )exp 2 3i 

, and ( ) ( )exp 4 3 exp 2 3i i = −  as shown in Fig. 5-5.  

A clockwise rotation of this sublattice amounts for 

multiplication of the lattice points by ( )exp 2 3i − , 

thus ( ) ( )3 exp 2 3A Ac i   = − .   

Let us now deduce the form of the 2 2 diagonal 

matrix that acts on the vector wave function (5.3). The 

only option that complies with the character table on 

page 95 is ( ) ( )3 exp 2 3B Bc i   = .  With this 

choice, the matrix that describes the action of 3c  rotation on the spinor is:  

               ( )3

2
exp 0

3 2
exp

32
0 exp

3

A A AAB

z

B B B

i

c i

i



  


  

  
−  

          = = −      
         
  

  

,            (5.5) 

and the corresponding character is ( ) ( )3 2cos 2 3 1c = = − . Alternatively, one may 

deduce this result by demanding that each unit cell be assigned with the same phase as 

demonstrated in  Fig. 5-6.  This condition implies that a clockwise rotation of the sublattice 

B  is represented by ( )exp 2 3i   multiplication, i.e.  ( ) ( )3 exp 2 3B Bc i   = . 

 

Figure 5-6 Representation of 3c  rotation on  sublattice B  

One can verify that the matrix representing the 2

3c  rotation is ( )*

3c  and that reflections 

through the two other axes can be obtained by rotating ( )x  appropriately, i.e., 

( ) ( ) ( )2

3 3xc c     and  ( ) ( ) ( )2

3 3xc c   . Together with the identity operation, these 

matrices constitute the two-dimensional irreducible representation of 3vC  point group. 

 

 3c Representation of 5-5 Figure

Arotation on sublattice  
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We turn now to construct the local Hamiltonian near the K -point. For this purpose, it is 

convenient to definek to be a wavenumber vector measured from the K -point of the 

Brillouin zone. Then the most general form of a 2 2  Hamiltonian  is  

                                                       ( ) ( ) ( )0
ˆ ABR I   = + k k R k ,                                                (5.6) 

where I  is the identity matrix, ( ), ,AB AB AB AB

x y z  =  are Pauli matrices acting on the 

sublattice space. The functions ( )0R k  and ( ) ( ) ( ) ( )( ), ,x y zR R R   =R k k k k  are, for 

the time being, arbitrary functions of k . Without loss of generality, we set the energy at 

the K -point to be zero, ( )ˆ 0 0 = ; hence these functions vanish at 0 =k , i.e., 

( )0, , , 0 0x y zR = .  

The time-independent Schrödinger equation is  

                                                                 ( )ˆ A A

B B

 
  

 

   
=   

   
k .                                                    (5.7) 

Application of the symmetry operation g  on both sides of this equation yields 

       ( ) ( ) ( )ˆ A A

B B

g g g
 

  
 

   
 =    

   
k ,    i.e.   ( ) ( ) ( )1 ˆ A A

B B

g g g
 

  
 

−    
  =   

   
k .       (5.8) 

Notice that g acts on k , but in the sublattice space is represented by ( )g . The wave 

functions are also functions of  k , but to avoid cumbersome formulas, we suppressed 

this dependence. 

It follows that invariance of the local Hamiltonian under all symmetry operations of the 

little group dictates the relations:  

                                    ( ) ( ) ( ) ( )1ˆ ˆg g g   −=  k k     for any   3vg C .                                       (5.9) 

This equation imposes constraints on the form of the Hamiltonian (5.6).  Consider, for 

instance, the matrix AB

z .  It is invariant under rotation:  

                             ( ) ( )1

3 3

2 2
exp exp

3 3

AB AB AB AB AB

z z z z zc c i i
 

    −    
  = − =   

   
,                  (5.10) 

but changes sign under reflection, 

                                                            ( ) ( )1 AB AB

z z   −  = − .                                                 (5.11) 

Therefore, it cannot be part of the two-dimensional representation associated with band 

touching (i.e. degeneracy) at the K -point. Compering the sign changes under these 
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operations, with those of the character table on page 95, shows that AB

z  is a basis function 

of the 2A representation.  

Consider now the other Pauli matrices.  Guided by our expectation that they belong to the 

two-dimensional irreducible representation of 
3vC , it makes sense to define the following 

linear combinations of these matrices,   ( ) 2AB AB AB

x yi   =  .  For these matrices, we have: 

                                                      ( ) ( )1 AB AB AB AB AB

x x      −

   = = ,                                 (5.12) 

while 

             ( ) ( )1

3 3

2 2 2
exp exp exp

3 3 3

AB AB AB AB AB

z zc c i i i
  

    −

  

     
  = − =     

     
.          (5.13) 

(The last formula can be quickly proved using the matrix form of ( )3c  shown in Eq. (5.5).) 

A similar calculation gives   

            ( ) ( )1 2 2

3 3

2 2 2
exp exp exp

3 3 3

AB AB AB AB AB

z zc c i i i
  

    −

  

     
  = − =      

     
.         (5.14) 

From here it follows that the vector of matrices, ( ),AB AB + − , is a basis function of the two-

dimensional representation of 3vC .  This basis function is listed in the rightmost column of 

the character table on page 95.  The other columns show the linear and quadratic basis 

functions of the group.   

The basis functions of the two-dimensional representations are not invariant under the 

group operation.  For instance,  a clockwise rotation of the linear basis functions, 

x yk i k   gives a phase factor2,  ( ) ( )exp 2 3x yk i k i   , similar to the rotation of AB  ,

see Eq. (5.13).  Nevertheless, one may construct combinations of these basis functions that 

are invariant under all group operations, as required by Eq. (5.9).  Consider, for example,  

the product ( )( )AB AB

x y x yk i k i   − + . The two factors in this product collect opposite 

phases; therefore the product is invariant under 3c  rotation.  However, it is not invariant 

under reflection through the x  axis. To see why, notice that this reflection transforms 

x yk i k −  to its complex conjugate, while AB AB

x yi +  is transforms to AB AB

x yi − , see Eq.  

(5.12). Thus  ( )( ) ( )( )AB AB AB AB

x y x y x y x yk i k i k i k i       − + → + − . However, one can see 

that the combination ( )( ) ( )( )AB AB AB AB

x y x y x y x yk i k i k i k i       − + + + −  is invariant under 

both symmetry operations and, in fact, under all group elements of 3vC . Similar 

                                                           
2 This can be proved  directly checked by rotating the vector ( ),x yk k   in 

0120 clockwise and calculating 

the phase factor that multiplies the complex vector x yk ik as a result of this rotation. 
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considerations show that ( ) ( ) ( ) ( )
2 2

AB AB AB AB

x y x y x y x yk i k i k i k i       + + + − −  is also 

invariant under all symmetry operations of 3vC .  Thus, up to quadratic order in k , the 

local form of the Hamiltonian near the K -point is 

                                          

( ) ( )( )

( ) ( )

( )

2

2
2 2

eff

ˆ . .
2

. .
2

2

AB AB

x y x y

AB ABw
x y x y

x y

v
k i k i h c

h
k i k i h c

k k I
m

     

   

 

 = − + +
 

 − + + +
  

+ +

k

                                     (5.15) 

where . .h c  stands for Hermitian conjugate.  Here, v , wh , and effm  are system-dependent 

constants that cannot be deduced from symmetry considerations.  The third term in the 

above equation comes from the identity representation (see table on page 95).  

 Simplifying and rearranging the terms in formula (5.15) result in the concise form: 

                   ( ) ( )
2 2

2 2

eff

ˆ 2
2

AB AB AB

w x y x x y y

k
v h k k k k I

m


         =  − − − +

 
k k .                (5.16) 

The first term is the leading contribution that describes a Dirac-point spectrum (in two 

dimensions). Its diagonalization gives v k  , where k = k . This linear spectrum is 

particle-hole symmetric.  The last term of the Hamiltonian breaks this symmetry; however, 

empirically, it is found to be negligible. The second term in Eq. (5.16) breaks the rotational 

symmetry of the Dirac spectrum. It deforms the Dirac cone toward a triangular shape - a 

property called triangular wrapping.  A contour plot obtained from diagonalization of 

Hamiltonian (5.16) (without the third term) is shown in Fig. 5-7. The left panel presents the 

local behavior of the energy surface as a function of the distance vector ( ),x yk k   from 

the K - point. The right panel shows a  global picture of the energy surface obtained from 

the 6-fold rotation symmetry of the system. 

      

Figure 5-7 A contour plot of the energy surface of graphene obtained from symmetry considerations  
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We conclude this section with several comments: 

(a) When the Fermi level is low enough, the Fermi surface near the Dirac-point becomes 

circular and possesses an approximate symmetry  → −k k . This feature is called 

“artificial time-reversal symmetry” or “pseudo-time-reversal symmetry”. 

(b)  The constants v , wh , and effm  in formula (5.16) cannot be determined from symmetry 

considerations. Moreover, it is possible that some of the energy levels at the K -point 

are associated with one-dimensional representations of the 3vC  group 1A  and 2A (the 

basis functions of the latter are cubic in the components k ). In this case, the energy 

levels are not degenerate. 

(c) In chapter 3, we saw that time-reversal symmetry excludes the possibility of having a 

Dirac spectrum at the  point.  On the other hand,  the little group of this point, 6vC , 

contains two-dimensional representations; therefore, energy level may be degenerate, 

albeit in a quadratic manner. This behavior is demonstrated in Fig. 5-8, which presents 

the energy levels of graphene obtained by numerical diagonalization of a microscopic 

model of graphene. The plot shows the energy levels along straight lines connecting 

the special points in the Brillouin zone.  

 

Figure 5-8 The energy levels of graphene 

(taken from the paper E. Kogan and V.U. Nazarov, PRB 85, 115418 (2012)) 
 

5.3  Schur’s lemma and multiplication of irreducible representations 

The local Hamiltonian (5.16) has been constructed by an educated guess (based on 

properties of the basis functions) rather than an orderly procedure. In this section, we 

present the mathematical tools which facilitate this construction. These are based on 

Schur’s lemma that we give here without proof. 
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The (first) lemma of Schur 

Let ( )G  be an irreducible representation of the group G  acting on a vector space 

V , and Ĉ some linear operator defined on the same vector space. If ( ) ˆ, 0g C  =
 

for any g G , then Ĉ  is proportional to the identity matrix. 

 

The meaning of this lemma is that if Ĉ  is the Hamiltonian acting on the Hilbert space, V , 

the requirement that the Hamiltonian is invariant under all symmetry operations (namely 

commutes with all of them) implies that it belongs to the identity representation 1A  

(sometimes called “singlet”).  

 

Consider now the  general expansion of the local Hamiltonian, 

                                            
1 1 2

1

, ,

, ,
n n

n

j j j j j

j j

H h k k k   
 

 =                                       (5.17) 

where  
1, , nj jh    are constants. The constituents of this expansion might belong to different 

irreducible representations of the symmetry group. For instance, the vector k  may 

constitute a basis function of the two-dimensional representation E  (as in graphene), 

while the wave functions,   and  might be basis functions of any irreducible 

representation of the symmetry group.  

Thus, the above Hamiltonian can be viewed as a sum of products with factors that belong 

to various irreducible representations of the symmetry group. The constants 
1, , nj jh 

should be chosen such that the resulting Hamiltonian is a singlet.  However, in general, the 

product of basis functions belonging to different irreducible representations is not 

necessarily a basis function of the identity representation, 1A .  Our goal is to identify the 

condition for which this is indeed the case.     

 

Definition: Direct products of irreducible representations 
 

Let ( )
ij


  and ( )

kl


 be the matrix elements of two irreducible representations of the group 

G  with dimensions  and  , respectively. The direct product of these representations is 

the (generally) reducible representation of dimension    defined by the matrix: 
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                                  ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

11 12 1

21

1



  

     

 
 

   

      
 
  

  =  
 
 
    

 ,                                   (5.18) 

where each term in this matrix is by itself a matrix   . In general, this representation 

is reducible; hence we want to obtain its decomposition into irreducible representations.  

This can be achieved using the character’s orthogonality property, as we saw when we 

discussed the normal modes of molecules in section 4.9.   

From Eq. (5.18) it follows that the character is a product of two irreducible representations 

is the product of their characters: 

                     ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ii kk

i k

g g g g g g
     

     =   =
    .              (5.19) 

With the help of this result, one can calculate the number of times that each irreducible 

representation,  , appears in the product ( ) ( ) 
   by the formula: 

                                               ( ) ( ) ( ) ( ) ( ) ( )*1

g G

n g g g
G

  

   


=  .                                        (5.20) 

 

Example: The direct product E E  of the group 3vC  

From the character table of 3vC on page  95  and Eq. (5.19) we obtain that: 

                                      ( ) ( )E E
4E


= , ( ) ( )E E

3 1c


=  and ( ) ( )E E
0 


= .                          (5.21) 

Then using (5.20),  we see that  

                     ( ) ( ) ( ) ( ) ( )1

1

A * E E

A

1 1
1 4 1 2 1 1 3 0 1

6g G

n g g
G

 




= =  +   +   = ,                           (5.22) 

                     ( ) ( ) ( ) ( ) ( )( )2

2

A * E E

A

1 1
1 4 1 2 1 1 3 0 1

6g G

n g g
G

 




= =  +   + −   =  ,                  (5.23) 

and 

                      ( ) ( ) ( ) ( ) ( )( )E * E E

E

1 1
2 4 1 2 1 0 3 0 1

6g G

n g g
G

 




= =  + −   +   =  .                 (5.24) 

Thus 

                                                                1 2E E A A E =   .                                                  (5.25) 
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Notice that the direct product E E contains the identity representation 1A . It means 

that one can find combinations of products of basis functions of the E representation that 
form a singlet.  
 
Example for the realization of Eq. (5.25) 

Consider the product    , in which the wave functions are pseudo-spinors with two 

components (say, the components associated with the graphene’s sublattices).  One can 

choose a basis in the pseudo-spinor space to be, ( )1,0A = , and ( )0,1B = . Assuming 

the wave functions belong to the E  representation, the product     is a basis 

function of the direct product on the left-hand side of Eq. (5.25). This product, with 

,A B =  and ,A B = , defines four independent matrices. These can be combined to 

form a different set of independent matrices: The identity matrix I ,  the Pauli marix AB

z , 

and AB AB AB

x yi   =  .  As we have seen (see character table on page 95), the identity matrix 

is a basis function of 1A ; AB

z  is a basis function of 2A , while the pair ( ),AB AB + −  form a 

basis function of the E  representation. These are the basis functions for the irreducible 

representations that appear on the right-hand side of Eq. (5.25).    

 
Example: The local Hamiltonian of graphene near the K -point 

Let us return to the problem of finding the local Hamiltonian of graphene near the K -point 

and suppose we look for a linear term in k  (where k  is measured from the K -point.  Thus 

we focus our attention on a term of the form k    in the expansion of the Hamiltonian 

(5.17). Now, being a vector, the irreducible representation of k is E . If   is the irreducible 

representation of the wave function  , then the term k    comes from the direct 

product  E    .  The only way of obtaining a singlet out of this product is by choosing 

E = : As we have seen in the previous example, the product E E  contains the 

irreducible representation, E ,  therefore E     includes the identity representation, 

1A  . This argument shows that the local Hamiltonian of graphene may have a term linear 

in the wavenumber vector  

 
Example: The local Hamiltonian of graphene near the M -point 

In this example, we construct the local Hamiltonian of graphene near the M - point from 

symmetry considerations  (time-reversal symmetry showed that it must be quadratic but 

did not tell anything about degeneracy).  First, let us identify the little group associated 

with the M - point . Since opposite M - points of the Brillouin zone are identical (see Fig. 

2-37), the little group is 2vC .  The character table of the group (on page 75) shows that all 
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irreducible representations of the group are one-dimensional; hence energy levels are not 

degenerate.   The basis functions associated with these representations are listed below.  

 

Basis 
functions 

Irreducible 
representation 

2 2,x y  1A  

xy  
2A  

x  
1B  

y  
2B  

 

We did not include basis functions that depend on the z  coordinate because they are 

irrelevant to our purpose. 

Since the product of any one-dimensional irreducible representation by itself yields the 

identity representation, one cannot construct a singlet from a product of the form 

1,2B    . Therefore, the local Hamiltonian does not contain linear in k  terms. 

Consequently, the Hamiltonian must be a sum of even powers of the wavenumber 

components: 

                                          2 2 4 4 2 2

1 2 3 4 5x y x y x yH h k h k h k h k h k k= + + + + +  ,                                          (5.26) 

where ih  are constants. 

 

                  

Figure 5-9  The structure of dichalcogenides: Side view (left panel) and top view (right panel) 

 

5.4 Dichalcogenides 

 

Dichalcogenides are a family of two-dimensional semiconductors with a chemical 

composition 2MX .  Here M represents a transition metal, while X  is a chalcogen (i.e., an 

element from the same column of the Oxygen in the periodic table - such as Sulfur S ,  

Selenium Se , and Tellurium Te ). The transition metal atoms are arranged in a two-

dimensional hexagonal lattice. On each side of this layer, there is a hexagonal lattice of 
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chalcogen atoms (with the same lattice constant); see left panel of Fig. 5-9. Here we 

consider the case where the two lattices of chalcogen atoms transform to each other by 

simple reflection symmetry. (Another option, which we shall not discuss here, is that an 

improper rotation, 
6S , relates them.) Thus from a top view, the system looks like a 

honeycomb lattice composed of two sublattices of different atoms; see right panel of Fig. 

5-9. 

The Bravais lattice of dichalcogenides is hexagonal as in 

graphene, and so is the Brillouin zone.  However,  the 

point group of the system is 3vC  rather than 6vC .  

Namely, it contains only two rotations in 0120  and 

three reflections through the planes denoted by the 

dashed lines in Fig. 5-10.  

Consider the local spectrum near the K - point of the 

Brillouin zone. Unlike graphene, the little group, in this 

case, is the cyclic group 3C . It is not 3vC  because the 

atoms on the two sublattices are different; hence the 

system lacks the symmetry for reflections through the 

horizontal axis and the two other axes obtained by 0120 rotations. However, we know 

that all irreducible representations of cyclic groups are one-dimensional; therefore,  

energy levels at the K -point are not degenerate.  

The character table of 3C  is listed below: 

 

We turn to construct the local Hamiltonian of dichalcogenides near the K - point. First, 

notice that the lack of symmetry between the two sublattices implies no combination of 

the matrices AB   can form a basis function, because these matrices mix the two 

sublattices.  On the other hand, AB

z  commutes with rotations (see Eq. 5.10); hence it is a 

basis function of the identity representation.   

    2

3c  3c  E   

,    ( )
3

x iy−,  ( )
3

x iy+       

    
  

  

     
  

  

3C

I
AB

z2 2x y+
111

1A

( )
2

x iy−
x iy+

2

3
i

e


−
2

3
i

e
1

2A

( )
2

x iy+
x iy−

2

3
i

e
2

3
i

e


−1
3A

 

Figure 5-10 Planes of Reflection 

symmetry in dichalcogenides 
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Given that all irreducible representations of the little group are one dimensional, the only 

way of constructing the local spectrum near the K  point is by combinations of the basis 

functions of the identity representation,  thus 

                                       ( ) ( )
2 2

3

eff

ˆ Re
2

i AB

w x y z

k
h e k i k

m


    

  =  + + +    
k ,                      (5.27) 

where k  is measured from the K -point, while   , effm , wh  , and, apparently,  also  , are 

arbitrary constants that cannot be determined from symmetry considerations.  In the 

above formula, we neglected terms that break the symmetry between electrons and holes 

(i.e., terms proportional to the identity matrix I ).    

For an arbitrary value of   the Fermi surface near each one of the K -points,  rotates as 

demonstrated in Fig. 5-11.  In principle, this structure is allowed by time-reversal symmetry 

( ) ( ), ,K x y K x yH k k k H k k k   + = − − − , as shown by the arrow in Gig. 5-11 below.  

 

 
 

Figure 5-11 Fermi surface near K  and K   points for an arbitrary value of   

 

However, one should take into account that in addition to time-reversal symmetry, the 

system is also symmetric for reflection through the y -axis; see Fig. 5-10.  Thus the 

Hamiltonian  satisfies the property 

                       ( ) ( ) ( ), , ,K x y K x y K x yH k k k H k k k H k k k     + = − − = − .                    (5.28) 

This constraint is not taken into account by our local analysis near the K -point.  Moreover, 

as demonstrated in the left panel of Fig. 5-12,  this constraint forces   to be an integer 

multiple of  . Substituting  =  in Eq. (5.27), we obtain that the local behavior of the 

energy spectrum near K -point is:  

                             ( ) ( )
2 2

3 2

eff

, 3
2

x y w x x y

k
k k h k k k

m


     

 
=   + − − 

 
 .                                 (5.29) 
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Illustrations of the Fermi surface and the energy bands obtained from Eq. (5.29) are 

depicted in Fig. 5-12 below. 

 

 

 

 

 

 

Figure 5-12  The Fermi surface (left panel)  and the qualitative behavior of dichalcogenides 

band structure (right panel). 
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5.5  Exercises  

 

1. The Brillouin zone of a two-dimensional 

square lattice,  and its special points,  , X ,  

and W , are depicted in Fig. 5-13.  

(a) Use time-reversal symmetry to characterize 

the spectrum of electrons moving in this 

lattice near the special points of the Brillouin 

zone. 

(b) Use spatial symmetry considerations to 

construct the local near the special points.  

Identify the possible degeneracy of the 

energy levels at each one of these points.    
 

2. Show that the local spectrum of graphene near the  - point cannot be a Dirac 

spectrum. 

Advice: 

(a)  First, notice that the little group of the  - point is 6vC  whose character table 

appears on page 94. 

(b)  Next, show that  ( ),AB AB AB AB

x x x xi i   + −  is a basis function of the 2E  irreducible 

representation. Use the following direct products of the irreducible 

representations of 6vC : 

                                     
1 1 2 2 1 2 2

1 2 1 2 1

E E E E A A E

E E B B E

 =  =  

 =  
                                               (5.30) 

(c)  From the above results, deduce that one cannot obtain a singlet for a term that 

is linear in k . 

3. Fig. 5-14 below shows a side view and a top view of a double layer of graphene. The 

sublattices in each layer are colored differently to ease the identification of the 

system symmetry. Find the group symmetry of the system and the little group 

associated with the K -point. Construct the local Hamiltonian near that point. Take 

into account the experimental evidence showing that the contribution of Dirac point 

to the spectrum is negligible.  

 

Figure 5-13 The Brillouin zone of a two-

dimensional square lattice 
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Figure 5-14 A side view and a top view of a double-layer graphene 

 

4. For double-layer graphene, explain why applying an electric field perpendicular to 

layers opens a gap between the bands.  

5. Explain the following rules for the subscripts in Mulliken symbols  of  products of 

irreducible representations: 

                                                                  

g g g

u u g

u g u

 =

 =

 =

                                                       (5.31) 

                and for the subscript of A or  B irreducible representations:         

                                                                    

1 1 1

2 2 1

1 2 2

 =

 =

 =

                                                        (5.32) 
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6 Extended groups and double groups 
 

The analysis of the spectrum of dichalcogenides near the K -point (presented in the last 

section of the previous chapter) demonstrated the limitation of local analysis based on the 

properties of the little group. As we have seen, this analysis left the phase   in Eq. (5.27)  

undetermined, and we had to employ some global symmetry considerations, that also 

involved the behavior near the K  -point to set its value.  This drawback raises the question 

of whether one can develop a  group theory formalism that treats both  K and K points 

on equal footing. Noticing that K   point is the time-reversal counterpart of the K  point 

(and vice versa),  this generalization amounts to incorporating time-reversal symmetry into 

the group theoretical approach.   

This chapter develops the main tools that incorporate time-reversal symmetry into group 

theory: extended groups in systems where the spin degree of freedom can be ignored and 

double groups for systems with spin-orbit interactions. Next, we use these tools to analyze 

the effect of spin-orbit interaction on graphene and to present a family of materials called 

topological insulators.   

 

6.1 Extended groups  

This section presents the group theoretical framework that treats the K and the K points 

on equal footing. For simplicity, we begin with the example of dichalcogenides.  Let us 

choose the primitive basis vectors of the Bravais lattice to  be 

                                                     ( )1 1,0a=a    and ( )2 1, 3
2

a
=a  ,                                          (6.1) 

where a  is the lattice constant.  The corresponding primitive basis vectors of the reciprocal 

lattice are 

                                            ( )1

2
3,1

3a


= −b    and     ( )2

4
0,1

3a


=b                                      (6.2) 

and one can quickly check that the wavenumber vector at the K  point (the one along the 

xk  axis)  is 

                                                                    ( )
4

1,0
3

K
a


=k .                                                            (6.3) 

The wave function of the system at this point can be decomposed according to Bloch’s 

theorem: 

                                                                  ( ) ( ) ( )K d =r r r ,                                                    (6.4) 

where  
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                                                                 ( ) ( )exp Kd i= r k r ,                                                        (6.5) 

while ( ) r  is a periodic function with a periodicity of the unit cell.  This componenet of 

the wave function does not play an essential role in the following discussion and will be 

suppressed from now on. 

Time reversal symmetry gives  

                                                        ( ) ( ) ( ) ( )* * *

K K d   = =r r r r                                             (6.6) 

with  

                                                    ( ) ( ) ( )* exp expK Kd i i = −  = r k r k r ,                                       (6.7) 

where we have used the relation 
K K = −k k . 

Let us define a vector wave function whose components are the wave function at the K -

point  and its time-reversed counterpart, i.e., the wave function at  the  K  -point: 

                                                                  ( )
( )

( )*

d

d

 
 =  

 

r
r

r
.                                                         (6.8) 

The action of the time-reversal operator,  , on this function is to swap K and K points, 

i.e. 

                                                                      KK

x


 =  ,                                                           (6.9) 

where KK

x
  is the Pauli matrix that acts in the “valleys space” of K and K   points.  It 

follows that 2 I = ; hence   is a pseudospinor and not a spinor (for which 2 I = − , see 

Eq. (3.18)).  

We turn now to identify the action of symmetry operations on the wave function  . 

Starting with reflection through the vertical axis, y , (see Fig. 5-10), we notice that this 

reflection x x−  implies that K K K   −  = k r k r k r , thus 

                                                      
( )

( )
( )

( )

*

*

y KK

y x

y

d d

dd


 




   
  = = =       

r r

rr
.                                  (6.10) 

Next, using arguments similar to those presented in the previous chapter for graphene, 

the rotation operation is  described  by: 

                                                     
( )

( )
3

3 *

3

2
exp

3

KK

z

d c
c i

d c





   

 = = −    
  

r

r
.                            (6.11) 
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Now, let us consider the action of translation by one of the primitive basis vectors.   First, 

notice that  

                                                   ( ) ( ) ( )
1 1

4
exp

3
T d d T i d

 
= =  

 
a ar r r                                  (6.12) 

because 

                                         

( ) ( ) ( )

( ) ( ) ( )

1 1 1

1

exp exp

4
           exp exp exp ,

3

K K

K K

d T i T i

i i i d


=  =  +  

 
=   =  

 

a a
r k r k r a

k a k r r
                     (6.13) 

where the last equality follows from Eqs. (6.1) and (6.3).  Repeating the same procedure 

for ( )*d r  and using, ( ) ( )exp 4 3 exp 2 3i i = − , we obtain 

                                                               
1

2
exp

3

KK

zT i



 
 = −  

 
a .                                       (6.14) 

A similar calculation for translation by the second primitive basis vector, 2a ,  yields  

                                                                
2

2
exp

3

KK

zT i



 
 =  

 
a .                                           (6.15) 

From the last two equations, we see that 
1 2

T T E=
a a .  It implies that the translation 

operators acting on Bloch wave functions, with wavenumbers Kk  and K k , form a group 

isomorphic to the cyclic group 3C . In other words, if we set 
1

t T=
a , then 

2

2t T= a and 3 .t E=  

The group obtained from the product of the elements of 3vC by these translations,  

                                                                   2

3 3 , ,v vC C E t t =  ,                                                (6.16) 

is called the extended group of 3vC . It contains 18 elements (obtained from the 

multiplication of the six elements of 3vC  by the three translation operators), and six 

conjugacy classes. The group has two one-dimensional irreducible representations and 

four two-dimensional irreducible representations, such that 2 22 1 4 2 18 +  = .  To see why 

it is indeed so, notice that any extended group has the representations of the original 

group because one can always choose the identity representation for the translation 

operations. Therefore, knowing we have six conjugacy classes and three irreducible 

representations of the original group, we should have three additional irreducible 

representations whose sum of the square of their dimensions is 12.  The only possible way 

of achieving that is 23 2 12 = .  The character table of the extended group is listed on the 

next page.  
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K  

 

 

 

 

 

 

 

To identify which one of these irreducible representations is associated with the 

pseudospinor  , let us calculate the characters of the extended group operations: 

( ) ( ) ( )2 0t t     = = = , ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2

3 3 3 3 1c c t t c t c t     = = = = = = − , and 

( ) ( ) ( )2 2

3 3 2E c t c t  = = = . These characters are those of the two-dimensional 

irreducible representation denoted by 
3E  in the character table. It implies that the energy 

levels at the points of K and K   are degenerate, as illustrated in Fig. 6-1.   

 

 

 

 

 

 

 

 

 

We now briefly repeat this procedure for graphene. Here, the wave function should 

include four components: two to describe the sublattices and two for the valleys.  It is 

convenient to present the wave function in the form: 

                                                         
*

*

A

B

A

B

d

d

d

d

 
 
  =
 
 
 

                                                                            (6.17) 

          

       

      2A 

      E 

      1E 

      2E 

      3E 

23 ,3 ,3t t  2 2

3 3,c t c t2 2

3 3,c t c t32c2,t tE
3vC

111111
1A

1−11111

01−1−1−22

01−1−21−2

01−21−1−2

021−1−1−2

 

Figure 6-1 An  illustration of the energy level degeneracy at the K  and K  points   

K   
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where the subscript A  and B  refer to the sublattices of the graphene.  For this choice, 

the time-reversal operation is described by: 

                            

*

*

*

*

*

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

AA

B KK ABB

x

AA

BB

dd

dd
I

dd

dd




    
    
     =  = = =  
    
     

   

.                          (6.18) 

where ABI  is the 2 2  identity matrix acting within the sublattice space. Repeating the 

procedure described above, we obtain the extended group: 

                                                              2

6 6 , ,v vC C E t t =  .                                                       (6.19) 

It contains 36 elements and nine conjugacy classes:      2 2 2

2 2 2 3 3, , , , , , , ,E t t c c t c t c c  

 2 2

3 3, ,c t c t      2 2 2 2

3 3 6 6 6, , 2 ,2 ,2 , 3 ,3 ,3v v tc t c t c c t c t t t   , and  23 ,3 ,3d d dt t   . Thus, the 

extended group includes the following irreducible representations: four one-dimensional, 

four two-dimensional, and one four-dimensional so that 2 2 24 1 4 2 1 4 36 +  +  = . The four-

dimensional irreducible representation is the one that describes the fourfold degeneracy 

of the energy levels at the K and K points. 

 

6.2 Double groups  

 

In the previous section, we showed that additional features of the system, such as time-

reversal symmetry, can be taken into account by extending the symmetry group of the 

system. In this section, we adopt a similar approach in order to describe systems with spin 

½ particles. The generalized groups, in this case, are called double groups. 

The wave function that describes a particle of spin ½  is a spinor,  

                                                           ( )
( )

( )








 
 =  

 

r
r

r
,                                                             (6.20) 

where the subscript s =  denotes the projection of the spin state on some arbitrary 

direction (say the z axis). Up to now, we have considered the action of symmetry elements 

only on the spatial coordinate r ; however, for a spin ½ particle, one should also take into 

account that these symmetry operations also act on the spin. In particular, that rotation 

of a spin by 0360  returns the wave function (6.20) to itself with a minus sign.  Thus, to 

construct a representation of the symmetry of a spinor, one should add a symmetry 

element, Q , that describes the rotation of the spin in 0360  around some arbitrary axis. 

This element satisfies the condition 2Q E= , and its relation to the rotation operations are: 
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                                                           n

nc Q=   and 2n

nc E= .                                                       (6.21) 

Inversion commutes with any rotation, therefore 2i E= . On the other hand,  inversion can 

also be represented as a product of rotation in 0180  followed by reflection through the 

plane perpendicular to the rotation axis, 2i c= . This relation together with 2i E=  implies 

that 

                                                           2 Q =   and  4 E =                                                          (6.22) 

The double group of G  dented by G  is obtained from the direct product  ,G E Q .  

The rules for building the character tables of  double groups are the following: 

1. If the set of elements in the original group,  ig , forms a conjugacy class, then  ig  

and  iQg  are two separate conjugacy classes of the double group, with two 

exceptions listed below. 

2. The first exception refers to the case of 
2c  rotation for which there is another 

2c  

rotation around a perpendicular axis or a reflection plane containing the 2c  

rotation axis.  In this case 2c  , and 2Qc are in the same conjugacy class (see Ex. 1).  

3. The second exception to rule No. 1 is for a reflection   when there is another 

perpendicular reflection plane or a 2c  rotation axis within the reflection plane. Also 

in this case  and Q belong to the same conjugacy class (see Ex. 1) 

4. Any irreducible representation of the original group is also an irreducible 

representation of the double group with the same characters. 

5. Apart from the irreducible representations mentioned in the previous rule, there 

are additional irreducible representations such that the total number of irreducible 

representations is the number of conjugacy classes. For the spin ½  irreducible 

representations of the group, the character of the element Qg is ( ) ( ).Qg g = −  

When rules No. 2 and 3  apply, g and Qg  are in the same conjugacy class; hence 

their characters should vanish because ( ) ( ) ( )g Qg g  = = − . 

 

Example: The character table of the double group 2D   

The dihedral group 2D contains three 2c -rotations around three perpendicular axes  (see  

Figure 4-7 and the character table below).  For this group, rule No. 2 applies, and the 

conjugacy classes of the double group are:  E , Q ,  2 2,c Qc ,  2 2,c Qc  , and  2 2,c Qc  . 

Thus,  there are five conjugacy classes and eight elements in the double group. Since all 

the one-dimensional irreducible representations of 2D  appear in the double group, the 

additional irreducible representation of the double group must be two-dimensional to 

ensure that 2 2 2 2 21 1 1 1 2 8+ + + + = .  This irreducible representation is simply the 
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representation of spin ½  particle ( ),  . The character table, listed below, is easily 

constructed using rule No. 5.  

The appearance of a two-dimensional irreducible representation in the double group 

manifests the Kramer degeneracy of spin ½ systems with time-reversal symmetry. 

 

 

 

 

 

 

 

Example: The character table of the double group 3vC  

The 3vC  contains six symmetry elements; therefore, the double group has 12 elements: 

                                    2 2

1 2 3 3 3 1 2 3 3 3; ; ; ; ; ; ; ; ; ; ;E c c Q Q Q Q Qc Qc                                        (6.23) 

 Neither rule No. 2 nor rule No. 3 apply; hence the conjugacy classes are:  E , 3 , 

 32 ,c   Q , 3Q , and  32Qc . Since the double group must contain the irreducible 

representations of the original group (by choosing the identity representation for  ,E Q

),  3vC  must contain three additional irreducible representations, one two-dimensional and 

two one-dimensional representations. The character table, in this case, takes the form:  

 

  

 

 

 

 

 

The first three irreducible representations in this table describe a spin-zero particle, while 

the other three describe a spin ½ particle. Here, the characters of the additional pair of 

one-dimensional representations are identified using the property that characters of one-

dimensional representations are representations by themselves and the relation 2 Q = .  

 2 2,c Qc    2 2,c Qc    2 2,c Qc Q   2D 

1 1 1 1 1 A 

1−  1−  1 1 1 1B  

1−  1 1−  1 1 2B  

1 1−  1−  1 1 3B  

0  0  0  2−  2  E  

2c   2c   2c   2D  

1 1 1 1 A  

1−  1−  1 1 1B  

1−  1 1−  1 2B  

1 1−  1−  1 3B  

3Q  
32Qc Q  3 

32c  E 3vC 

1 1 1 1 1 1 1A 

1− 1 1 1− 1 1 2A 

0 1− 2 0 1− 2 E 

0 1− 2− 0 1 2 E 

i

i

− 



 
1

1
 

1

1

−

−
 

i

i−
 

1

1

−

−
 

1

1





 *

A

A




 

EE
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Thus ( ) ( ) ( ) ( )2 1Q   =  =  =  =  − .  The other entries of the table are 

obtained from the orthogonality condition of the rows. The pair of the one-dimensional 

irreducible (complex) representations of the spin are usually grouped together, *A A  , 

and considered as a two-dimensional representation (called separably-degenerate 

representation). It is because, by Kramer’s theorem, this pair of one-dimensional 

representations must be associated with degenerate states.     

 

6.3 Spin-orbit interaction in graphene – the Kane Mele term  
 

This section aims to show that spin-orbit interaction in graphene opens a gap at the K -

points.  For this purpose, we should extend our description of graphene in two manners: 

(a) Include time-reversal symmetry by doubling the number of components of the wave 

function to take into account the valley space (see Eq. (6.17));  (b)  Double the number of 

components, once again, in order to take in to account the spin degree of freedom. Thus, 

the wave function contains eight components classified by the sublattices A and B , the 

valleys K and K  , and the spin states s = .  

Now let us try to identify the largest possible degeneracy of the energy levels of graphene 

in the presence of spin-orbit interaction. The group 6vC  contains 2c  rotation, and all the 

reflection planes contain the corresponding axis of this rotation; therefore, the conjugacy 

classes of the double group 6vC are: 6 6 3 3, , 2 ,2 ,2 ,2E Q c Qc c Qc ,  2 2,c Qc ,  3 ,3v vQ  , and 

 3 ,3 .d dQ  Altogether we have nine conjugacy classes and 24 elements. Six out of the 

nine irreducible representations are of the original group; therefore, the additional three 

irreducible representations must satisfy the condition 2 2 2

7 8 9 12l l l+ + =  , which means that 

all spin ½ representations are two-dimensional.  The extended group obtained from this 

double group contains 15 conjugacy classes which can be deduced from those of 6vC :

         2 2 2 2 2 2

2 2 2 2 2 2 6 6 6 6 6 6, , , , , , , , , , , , 2 ,2 ,2 , 2 ,2 ,2 ,E Q t t Qt Qt c Qc c t Qc t c t Qc t c c t c t Qc Qc t Qc t

 2 23 ,3 ,3 ,3 ,3 ,3v v v v v vt t Q Q t Q t      , 2 23 ,3 ,3 ,3 ,3 ,3d d d d d dt t Q Q t Q t      ,  2

3 3,c c , 

       2 2 2 2 2 2 2

3 3 3 3 3 3 3 3, , , , , , ,Qc Qc c t c t Qc t Qc t c t c t  and  2 2

3 3,Qc t Qc t .  This extended double 

group contains 72 elements and 15 irreducible representations. Nine of these irreducible 

representations are associated with the original double group, and six more should satisfy 

the condition: 2 2 2 2 2 2

10 11 12 13 14 15 48l l l l l l+ + + + + = . The only way of satisfying this equation  

(according to Kramer’s degeneracy) is with 10 11 12 13 2l l l l= = = =  and 14 15 4.l l= = Thus, the 

largest irreducible representation of the extended double group (describing graphene with 

spin-orbit interactions and time-reversal symmetry) is four-dimensional.  However, 

noticing that time-reversal symmetry implies degeneracy of →−k k  with →−s s , while 

the inversion symmetry of graphene implies degeneracy of →−k k  with →s s  we see 
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that fourfold degeneracy already accounts for Kramer’s degeneracy and the valley 

degeneracy. Therefore, there is no possibility of having Dirac points in the spectrum as 

these would imply an 8-fold degeneracy of the energy levels.  In other words, if we were 

able to tune up the strength of the spin-orbit interaction in graphene,  we would have seen 

that it opens a gap in the Dirac spectrum.  

 Kane and Mele showed that  the constant matrix,  

                                                        so so

S KK AB

z z zH    


=   ,                                                 (6.24) 

describes spin-orbit interaction in graphene, where so  is a constant that determines the 

strength of the interaction. This Hamiltonian is called the  Kane-Mele term.  It does not 

break any spatial symmetry, and one can check that it is invariant under all required 

symmetry operations: 

(a) Time reversal symmetry:  Taking into account that the time-reversal operator  in 

the spin space is given by Eq. (3.16), while in the valleys and sublattices spaces by 

Eq. (6.18), we have  ˆS KK AB

y xi K I 


 = −   (where K̂ is the complex conjugate 

operator), and one can check that 

                                                         1

so soH H−=   .                                                       (6.25) 

(b) Inversion symmetry: This symmetry exchanges the sublattices A  and B , and takes 

K point into K   point and vice versa. Inversion does not influence the spin; thus, 

the inversion operator is ˆ S KK AB

x xi I  


=   . One can check that the spin-orbit 

Hamiltonian is invariant under this symmetry operation. 

                                                        1

so so
ˆ ˆH i H i−= .                                                          (6.26) 

The proof of Eqs. (6.25) and (6.26) is given as an exercise.  

(c) Finally, since the spin-orbit Hamiltonian (6.24)  is independent of k , reflections and 

rotation of the 3vC  group (i.e., those operations that do not mix the sublattices), 

also leave the Hamiltonian invariant.  All other symmetry operations are obtained 

from those of 3vC  and inversion. 

A derivation of the Kane-Mele term is given as an exercise (No. 4) in the next chapter. 

Before discussing its implication, we comment that there are, of course, additional 

contributions to the spin-orbit interaction which are k dependent. However, since these 

depend on the deviation, k , from the K  point (or the K point) their contribution is 

expected to be small compared to the Kane-Mele term.  
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 When employing symmetry considerations to deduce the form of the Hamiltonian,  the 

“rules of the game” are that if there is no symmetry that forbids the existence of some 

term in the Hamiltonian, then it generically exists. Therefore, the local Hamiltonian  of 

graphene near the K -point should have the form 

                                             ( ) so
ˆ s AB S AB

z zvI     =   + k k  .                                        (6.27) 

This approximation holds only close enough to the K -point so that higher-order terms in 

k  can be neglected.  Also, notice that the Kane-Mele term is diagonal in the spin space; 

therefore, spin is conserved.  

Diagonalization of the above Hamiltonian gives  

                                                         ( ) ( )
2 2 2

so,
hv k   

 
=  +k  .                                       (6.28) 

From here, we see that spin-orbit interaction opens a gap in the spectrum, as shown in Fig. 

6-2.  This gap, in principle, turns the graphene into a band insulator. However, in reality, 

so  is very small - in units of Kelvin degrees, it is smaller than 01 mK . For this reason, no 

gap has ever been observed in graphene.  

 

                               

 

Figure 6-2 The opening of a gap in the energy spectrum of graphene due to spin-orbit interaction. 

 

6.4 Topological insulators  

 

Viewing graphene as a band insulator due to spin-orbit coupling (and when Fermi energy 

is in the middle of the gap), is to a large extent, just an academic issue. Nevertheless, it 

constitutes a simple example by which we can introduce the idea of topological insulators.   

The analysis presented in the previous section holds for an infinite system. In a finite 

system, translation symmetry breaks - it does not apply in the direction perpendicular to 

the system edge - hence our result does not necessarily apply. Moreover, as we already 
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know, the Rashba term associated spin-orbit interaction near the system's boundary results 

in a Dirac point at zero energy (see Fig. 3-1). This degeneracy point is protected by time-

reversal symmetry, and it is always there no matter how small the spin-orbit interaction is. 

The wave function associated with this Dirac point describes a particle that moves along 

the boundary. Its spin is perpendicular to both the particle velocity and the normal to the 

boundary.  

How can we reconcile the behavior of the bands within the bulk with that near the 

boundary? In Fig. 6-3 we present a schematic picture of the energy levels in a semi-infinite 

graphene layer with a boundary parallel to the x  axis (where the normal to the boundary 

is in y  direction).  The solid black line represents the energy level of the bulk spectrum 

associated with 0yk = . Above this line, there are additional levels (not drawn) that 

correspond to 0yk  . The red and blue lines represent the surface states of the system 

that describe a particle that moves along the boundary. The red curve is associated with a 

right-moving particle ( x xv k=   ) with spin pointing in the z direction, while the blue 

line corresponds to a left moving particle with spin pointing in the opposite direction. 

 In a stripe of graphene, particles moving in the same direction along the two stripe 

boundaries have opposite spins.  In a closed sample,  the particles move along the boundary 

in opposite directions and opposite spins (as required by time-reversal symmetry)  

A topological insulator is a system where an electric current can flow only along the 

system's boundary, while the bulk is a band insulator.  The surface states are protected by 

time-reversal symmetry; namely, they are not destroyed by defects or disorder. However, 

in the presence of an external magnetic field (or magnetic impurities), the system is not 

time-reversal symmetric anymore, a  gap also opens in the surface states, and the system 

becomes an insulator.   

 

Figure 6-3 An illustration of the spectrum of a topological insulator with the boundary energy states 
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6.5 Exercises  
 

1. Prove rules Nos. 2&3 for the construction of double groups (on page 116). 

2. Prove Eqs. (6.25) and (6.26). 

3. Construct the character tables for the double groups 4D , 4vC ,  and 2dD  (notice these 

are isomorphic groups) 

4. Find the dimensions of the irreducible representations of the double group hO . 

 

Advice:  To simplify the analysis, use the following property of the octahedral group, 

h iO O C=  , where iC  is the group that contains the identity and the inversion 

elements, while O  is the symmetry group of an octahedron (see Fig. 4-22, and 

character table on the same page). Use the five rules on page 116 to identify the 

conjugacy classes of the double group O , and with this information, deduce the 

dimensions of its irreducible representations. Using these results, find the dimensions 

of the irreducible representations of the double group hO . 

 

5. Rutile is a mineral made of titanium dioxide, 2TiO . The 

Bravais lattice of this crystal belongs to the tetragonal 

system, and the structure of its unit cell is shown in Fig. 

6-4, where oxygen atoms are marked in red. Find the 

largest possible degeneracy of the energy levels at the 

 point, taking into account spin-orbit interaction. 

Advice: Assume that the lattice is described by the 4hD  

point group (see comment below). In order to identify 

possible degeneracy of the energy levels, you have to 

find the dimensionality of the irreducible representations of the corresponding double 

group. To simplify the calculation, use the property  nh n iD D C=   which holds for even 

n . For 4D ,  use the results of Ex. 3.  

 

Comment: At first sight,  the point group describing the symmetries of the unit cell of 

Rutile is 2hD  (which contains eight elements). However, the space group of this crystal 

is non-symmorphic. There are additional symmetry operations. In particular, a rotary 

translation  4 |c l  with  ( )ˆ ˆ ˆ2 2a c= +l x y + z , and seven additional operations: 

 3

4 |c l , two  2 |c l , 4 |S l , 3

4 |S l , and two  |v l . These operations and those of 

2hD  define a space group that is isomorphic to the direct product of the translation 

group by 4hD . 

 

Figure 6-4 The unit cell of Rutile 
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7  Methods for calculating  band structure  
 

The strength of the symmetry approach that we have developed in the previous chapters is its 

ability to provide a qualitative picture of the band structure even without detailed information 

about the system. The main shortcomings of this approach are: (a) It does not account for the 

global behavior of the energy bands in the Brillouin zone; (b) It cannot tell us the position of the 

Fermi level which selects the relevant bands; and (c)  It does not provide the constants that 

characterize the spectrum, such as the velocity v ,  the triangular warping constant  
wh  near the 

K -point of graphene, and the value of the spin-orbit coupling, 
so , that opens the gap in the 

spectrum. To get this information, one has to diagonalize the Hamiltonian of the system.  

However, from the simple example of the Kronig Penney model (discussed in the first chapter), 

we already know that obtaining exact analytical solutions for the energy bands of a system is a 

difficult task.  On the other hand,  we usually do not need the band structure's complete 

information - an approximate description is sufficient.   

In this chapter, we discuss three approximation methods for calculating the band structure of a 

system: The nearly free electron approximation, the tight-binding approximation, and the k p  

approximation.  These methods are complementary in the sense that they describe the system 

in different limits and under different physical assumptions. 

 

7.1 The nearly free electron approximation 
 

The nearly free electron approximation relies upon the assumption that the effect of the lattice 

is perturbative.  It is instructive to present this approximation, first,  for one-dimensional systems. 

Consider the problem of a particle moving in a one-dimensional periodic potential. The 

Schrödinger equation that describes  this system is:   

                                                            ( ) ( ) ( )
2 2

22
u x x x

m x
 

 
− + = 

 
,                                                 (7.1) 

with the potential   

                                                          ( ) ( ) ( )expj

j

u x a u x u ijbx+ = = .                                                (7.2) 

Here 2b a= is the reciprocal lattice constant, j  is an integer,  and ju are the Fourier expansion 

coefficients of the potential that satisfy the condition *

j ju u− =  (to ensure that ( )u x  is a real 

function).  
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From Bloch’s theorem it follows that the solutions of this equation have the form 

( ) ( ) ( )exp kx ikx x = , where ( ) ( )k kx a x + =  is a periodic function with the same period of 

the potential. Therefore, ( )k x  can also be expanded in a similar Fourier series, and the wave 

function may be presented in the form 

                                                             ( ) ( ) ( ) ( )exp exp
j

k

j

x ikx c ijbx =  ,                                             (7.3) 

where ( )j
kc  are the expansion coefficients of ( )k x . Substituting Eqs. (7.2) and (7.3) in (7.1)  and 

using the convolution theorem, we obtain that, in Fourier’s space, the Schrödinger equation is: 

                                    ( ) ( ) ( ) ( ) ( )
0

j j j

k j j k k

j

k jb c u c k c 


−


+ + = ,    with     ( )
2 2

0
2

k
k

m
 = .                        (7.4) 

This equation represents a set of an infinite number of 

coupled equations (i.e., a matrix equation of infinite size). 

Their solutions are equivalent to the exact diagonalization 

of the problem. Yet, usually, the coefficients ju  decay fast 

as a function of j  (recall that the Fourier expansion 

coefficients of analytic functions decay faster than any 

power-law function), and it might be enough to take into 

account only a few harmonics of the periodic potential. In 

what follows, we set 0 0u = , without loss of generality, 

because this coefficient only shifts all energy levels by a 

constant.  We also assume that the periodic potential is 

sufficiently weak and can be treated perturbatively. 

In the first (zeroth) approximation, we set ( ) 0u x = , but 

its periodicity is taken into account. In this limit, the band 

structure is obtained by folding the spectrum of a free 

particle into the first Brillouin zone, as demonstrated in 

Fig. 7-1. Namely, the parabolic spectrum, ( )0 k , is 

duplicated an infinite number of times, and each copy is 

shifted by the reciprocal lattice constant, ( )0 k jb + . The 

energy levels within the first Brillouin zone constitute the 

zeroth approximation for the spectrum called the “empty 

lattice approximation”. This approximation is merely a 

 

Figure 7-1 The empty lattice approximation 
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different way of counting the energy levels of a free particle.  

Now let us include the effect of the potential. Assuming ( )u x is sufficiently weak, one expects it 

to open gaps at the degeneracy points of the energy levels obtained in the zeroth approximation, 

see red disks on Fig. 7-1.  Consider, for example, the lowest degeneracy point, at the edge of the 

Brillouin zone,  2k b a= = , where the functions ( )0 k  and ( )0 k b −  intersect. Assuming that 

the harmonics of the periodic potential decay fast, it is sufficient to consider only the coefficients 

1u
 and neglect all the others.  With this assumption, one can consider the subspace of 

degenerate wave functions whose coefficients are ( ) ( )( )0 1
,k kc c

− , hence  Eq. (7.4)  reduces to the 

2 2 matrix equation:  

                                    
( )

( )
( )

( )

( )

0 02

1

* 2 1 1
1

k k

k k

c cv k k u
k

u v k k c c

  


   − −

    + +
=       − +    

,                      (7.5) 

with 2k k b = − , while 

                                                  
2 2

8

b

m
 =  ,    

2

b

m
 = ,    and    

2

2m
 = .                                                             (7.6) 

Diagonalization of the above matrix gives the behavior of the energy levels near the lowest 

degeneracy point close to the edge of the Brillouin zone:  

                                                        ( )
22 2 2 2

1k k u v k     = +  + .                                                  (7.7) 

Thus, the gap that opens between the two lowest energy levels at the edge of the Brillouin zone,  

(i.e.  when 0k = )  is 12 u . 

Now, let us take a look at the intersection of the energy levels ( )0 k b   at 0k = . Considerations 

similar to those presented above show that in the subspace of these degenerate levels, whose 

coefficients are ( ) ( )( )1 1
,k kc c

−
, the Schrödinger equation (7.4) reduces to 

                               
( )

( )
( )

( )

( )

1 12

2

* 2 1 1
2

4 2

4 2

k k

k k

c cvk k u
k

u vk k c c

 


  − −

    + +
=       − +    

,                               (7.8) 

and  diagonalization gives 

                                                     ( )
22 2 2 2

24 4k k u v k   = +  + .                                                     (7.9) 
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Hence,  the second harmonic of the periodic potential determines the gap in the energy levels, 

which is 22 u .  

This result raises the following question: What happens if 
2 0u = ? Are the energy levels remain 

degenerate?  To answer this question, consider the Schrödinger equation in a larger subspace 

containing three components ( ) ( ) ( )( )1 0 1
, ,k k kc c c

−
 (but with 2 0u = ): 

                                     

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1 1

0 1

0 0*

1 0 1

* 1 1
1 0

0

0

k k

k k

k k

c ck b u

u k u c k c

u k b c c



 

 − −

   − 
    

=    
    +        

 .                                 (7.10) 

Let us write the second row of this equation explicitly: 

                                                       ( ) ( ) ( ) ( ) ( ) ( )1 0 1 0*

1 0 1k k k ku c k c u c k c 
−

+ + = .                                                  (7.11) 

As we are interested in the vicinity of 0k = , this equation may be simplified by the following 

approximations:  ( ) ( )0 0 0 0k  = , and ( ) ( ) ( )0 0k k b b  + . In the second approximation, 

we replaced ( )k  by the unperturbed energy level at 0k = .  Solving the resulting approximate 

equation for ( )0

kc  we obtain: 

                                                                    ( )
( ) ( )

( )

1 1*
0 1 1

0

k k
k

u c u c
c

b

−
+

= .                                                           (7.12) 

Substituting this formula in the first and the third rows of Eq. (9-10) yields 

                                      

( )
( ) ( )

( )
( )

( )

( )

( )
( )

( )

( )

2 2
1 1

0 1 1

2 1 1*2
11

0

k k

k k

u u
k b

b b c c
k

c cuu
k b

b b


 




 

− −

 
 − + 

    
=       

    
+ + 

 

 .                          (7.13) 

Thus, up to a constant shift of the energy levels by ( )
2

1u b  , we have returned to the original 

equation (7.8) albeit with 2u  replaced by ( )2

1u b . The conclusion drawn from this example is 

that even if the periodic potential does not have a second harmonic, the second-order 

perturbation theory lifts the degeneracy of the energy levels. 

A generic one-dimensional system does not have any degenerate points in its spectrum, as 

illustrated in Fig. 7-2.  To have a degeneracy point requires fine-tuning of the functional form of 
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the periodic potential. Nevertheless, since the Fourier 

expansion coefficients of an analytic function usually decay 

exponentially,  the energy gaps also decay exponentially to 

zero in the high energy limit,  → 1.      

From the viewpoint of group theory, a one-dimensional 

periodic system can either have a reflection symmetry or 

not.  In both cases, all irreducible representations of the 

little groups are one-dimensional.  Therefore, one should 

not expect to have a normal degeneracy of energy levels. 

In other words, if there is such a degeneracy, it is 

accidental, namely due to a very particular and non-generic 

choice of the periodic potential.  

In systems with higher dimensionality, the band structure 

calculation in the nearly free electron approximation 

follows a similar procedure.  First, the zeroth-order (the 

empty lattice) approximation is constructed by folding the 

spectrum into the first Brillouin zone. It is obtained by 

duplicating and shifting the free-electron spectrum to each 

point of the reciprocal lattice. In Fig. 7-3, this construction 

is demonstrated for a two-dimensional hexagonal lattice. 

The dark hexagon in the figure represents the first Brillouin 

zone into which the free-electron spectrum is folded.  

When the dimension of the system is two or three,  it is 

customary to draw the energy levels along distinct lines 

within the Brillouin zone - usually, lines that connect the 

special points in k space.  For hexagonal lattice, these are 

the lines connecting the points,  , K , and M  as shown in 

the inset of Fig. 7-4. The figure shows the empty lattice 

spectrum along these lines. For convenience,  we have 

indicated each energy level by a number associated with 

the copy of the free particle spectrum shown in Fig 7-3. For 

clarity, we also separated curves that fall one on top of the 

other.   

                                                           
1In the Kronig-Penney model, discussed in the first chapter, the potential was non-analytic in the form of a periodic 

 -function for which Fourier coefficients are constant. Hence the energy gaps remained constant also in the limit 
 → (see Ex. 3 on page 23).  

 

Figure 7-2 The typical spectrum of one 

dimensional system in the nearly free 

electron approximation. 

 

Figure 7-3 Construction of the empty 

lattice approximation of hexagonal 

lattice 
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Figure 7-4 The electron spectrum of hexagonal lattice in the empty lattice approximation 

From the above figure, it follows that in the framework of the empty lattice approximation, the 

energy spectrum has a six-fold degeneracy at the  -point.  However, as we know, the little group 

at this point is 6vC , hence the largest possible (normal) degeneracy is two-fold.  Indeed, this 

degeneracy is lifted when we include the effect of the periodic potential in the nearly free 

electron approximation - as shown in Fig. 7-5 . 

 

Figure 7-5 The electron spectrum of hexagonal lattice in the nearly free electron approximation 
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7.2 The tight-binding approximation 

 

The tight-binding approximation applies in the opposite limit of the nearly free electron 

approximation. It assumes that, in the zeroth approximation, the electron’s wave function is 

localized within one unit cell. The energy spectrum is now calculated by assuming that the 

transition amplitude from one cell to the other is very small and can be treated perturbatively. 

At first sight, one might assume that the localized states on 

each unit cell are the atomic orbitals of the electrons.  For 

instance, in the case of graphene,  each carbon atom forms 

three  -bonds with its neighbors, while the fourth orbital, 

associated with the conduction band electrons, is a 2 p

orbital perpendicular to the graphene sheet, as shown in Fig. 

7-6.   

However, the atomic orbitals of different unit cells are not 

orthogonal, and in order to have a well-defined procedure 

for calculating the electronic spectrum, one should define an 

orthogonal basis of localized wave functions. The functions 

of this basis are called Wannier functions, which we turn to define now.  

 Let  

                                                         ( ) ( ) ( ) ( ) ( )exp
j j

i = k kr k r r                                                         (7.14) 

be the Bloch wave function of a particle in a lattice, where j  is the band index, k is Bloch’s wave 

number, and ( ) ( ) ( ) ( )j j
 + =k kr a r is a periodic function with the periodicity of the lattice.  These 

wave functions are orthonormal; namely, they satisfy the condition 

                                                       ( ) ( ) ( ) ( )*

,

j jd

jjd r   


  = k k k kr r ,                                                     (7.15) 

where d  is the (effective) dimension of the system, and the integral is over the entire d -

dimensional space of the system.  To be consistent with the limit, =k k  one should demand that 

                                                       ( ) ( ) ( ) ( )* 1j jd

jj

UC

d r
N

  


= k k
r r  ,                                                     (7.16) 

where the integral is over one unit cell and N is the number of unit cells in the lattice. 

The Wannier functions are defined by 

                                                       ( ) ( ) ( ) ( ) ( )
1

exp
j j

BZ

w i
N




= − a k

k

r k a r ,                                       (7.17) 

 

Figure7-6  The 2 zp orbitals of carbon 

atoms in one hexagon of graphene 
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where a  is the Bravais lattice vector that indicates the position of the unit cell on which the 

Wannier function is localized, while the sum is over the wavenumber vectors in the first Brillouin 

zone2. 

 The Wannier functions are orthogonal, 

                                                            ( ) ( ) ( ) ( )*j jd

jjd rw w  


  = a a a ar r ,                                                 (7.18) 

 have the same shape in any unit cell, i.e. ( ) ( ) ( ) ( )j j
w w= −0a r r a , and satisfy the closure relation: 

                                                             ( ) ( ) ( ) ( ) ( )*

,

j j

j

w w  = − a a

a

r r r r .                                                            (7.19) 

Using Eq. (7.17), one can express the Bloch wave function as a sum over Wannier functions: 

                                                      ( ) ( ) ( ) ( ) ( )
1

exp
j j

i w
N

 = k a

a

r k a r .                                             (7.20) 

The proof of the last three equations is left as an exercise. 

Let us now identify the Hamiltonian in k space using the basis of Wannier functions. This can be  

obtained by calculating the matrix element of the Hamiltonian in the basis of Bloch’s wave 

functions as follows: 

                                 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ),

ˆ

1
          

1
          exp  ,

j j

jj

j j j j j j

jj

H

w w H w w
N

H i
N

  

 





  

 









=

=

=  −  

 



k k

k a a a a k

a a

a a

a a

k r r

r r

k a a

                       (7.21) 

where we have used formula (7.20) and the closure relation (7.18).  In the last line, we  define 

                                                               ( ) ( ) ( )
,

jj j j
H w H w

 

 =
a a a a

.                                                            (7.22) 

                                                           
2 In the continuum limit, i.e. when the system is large enough compared to the size of a unit cell,  the sum over the 

wave number vectors can be replaced by an integral, 

                                                                                      

( )

Vol
 ,

2

d

d

k BZ

d k


→ 
 

where Vol  is the volume of the system. In this limit  the Kronecker  -function in Eq. (7.15) should be replaced by a 

 -function according to the rule: 

                                                                                    ( )
( ),

2
.

Vol

d


 
→ −k k k k  
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Diagonalization of ( )ˆ
jj  k  is equivalent to the exact solution of the problem; therefore, this form 

of the Hamiltonian is still useless. To make progress, we shall use formula (7.21) in order to 

construct an efficient approximation. The tight-binding approximation is built on two main 

approximations: The first is to consider only those Wannier functions associated with the lowest 

energy band and ignore all other bands. The second approximation assumes that the significant 

matrix elements, given by Eq.  (7.22),  are only those with  =a a  and when a  and a are nearest 

neighbors sites, i.e., when −a a  is the smallest possible distance between different lattice sites. 

The transition between sites separated by a larger distance is negligible because Wannier 

functions are localized.  With these assumptions, one can rearrange the double sum in (7.21) so 

that one sum is over all lattice sites while the other over its nearest neighbors. The first sum gives 

the total number of unit cells, N , that cancels out with the factor 1 N  in Eq. (7.21). Thus the 

Hamiltonian reduces to  

                                                      ( ) ( ),
ˆ expH i 



=  −   a a

a  

k k a a ,                                                    (7.23) 

where the sum over a includes the term  =a a  and the nearest neighbors of a . Here we have 

suppressed the indices j  and j , as we consider only the lowest energy band.  

The advantage of the tight-binding model defined by the above Hamiltonian is that one needs 

only a small number of parameters to characterize the system. For a given lattice, there are 

essentially two parameters: the onsite energy 0H w H w = =a,a a a , and the hopping term 

,H w H w t = = −a a a a ,  where a  is the nearest neighbors of a . To calculate them, one needs 

the precise structure of the Wannier functions; however, these matrix elements are usually 

treated as phenomenological parameters.  

Finally, notice that it is customary to present  the tight-binding model of a system in real space 

by  Hamiltonian of the form 

                                                       † †

0
ˆ ˆ ˆ ˆ . .i i j i

i ij

H c c t c c h c= − +  ,                                                        (7.24) 

where †

îc  and îc are the creation and annihilation operators of a particle at site i , and ij denote 

sum over nearest neighbors sites.  

 

Example: the Wannier functions for the Kronig-Penney model 

In this example, the Wannier functions of the Kronig-Penney model, for  -potential wells, are 

calculated.  Namely, we consider a particle moving in a one dimensional periodic potential of the 

form: 

‘ 
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                                                               ( ) ( )
2

n

u x x na
ma


= − −                                                       (7.25) 

where   is a dimensionless parameter that characterizes the potential strength (see Eq. (1.24), 

m is the particle’s mass, and a  is the lattice constant. 

In order to have a reference point for comparison, let us first calculate the wave function that 

describes the bound state of a particle in a single  -function well. This wave function is 

analogous to the atomic orbitals mentioned at the beginning of this section. The Schrödinger 

equation for this problem is  

                                                   
( )

( ) ( ) ( )
22 2

22

x
x x x

m x ma

 
  


− − =


.                                       (7.26) 

Thus, when 0x   this equation reduces to that of a free particle. The solution associated with a 

bound state, 0  , is described by a decaying exponential function and takes the form 

                                                                  ( )
1

exp 2x B m x 
 

= − − 
 

,                                           (7.27) 

where B is the normalization constant. Next, we integrate the Schrödinger equation (7.26) from 

0x −= to 0x += ,  

                                                                     
( )

( )
0

0 0

x

x

x a

 


+=


− − =


,                                            (7.28) 

substitute (7.27) and solve for  . The result is the energy of the bound state: 

                                                                                
2 2

22ma


 = − .                                                                        (7.29) 

Finally, calculating the normalization constant, B , we obtain the corresponding wave function: 

                                                                   ( )0 expx x
a a

 


 
= − 

 
.                                                        (7.30) 

Let us, now, calculate the Wannier functions of the system. The first step is to identify the Bloch 

wave functions.  For  -function potential, the wave function in the range 0 x a  , is a sum of 

decaying exponents,  

                                                             ( ) ( ) ( )exp expx A x A x    = − + ,                                        (7.31) 

where  A and A  are constant that we  should find, and the energy 
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2 2

2m





= −                                                             (7.32) 

sets the value of  . By Bloch’s theorem ( ) ( ) ( )exp kx ikx x =  where ( ) ( )k kx x a = + ; 

therefore, the periodic component of the Bloch wave function (in the range 0 x a  ) is: 

                                                ( ) ( ) ( ) ( )exp exp expk x A x A x ikx    = − + −   .                           (7.33) 

From the periodicity of this function, ( ) ( )0k k a = , and the jump in its derivative, 

( ) ( ) ( ) ( )0 2 0 0k k ka a    − + − = , we obtain two equations for A and A  that can be written as 

a matrix equation: 

                                

( ) ( )

( ) ( )( ) ( ) ( )( )

1 1

02 2
1 1

ik a ik a

ik a ik a

e e
A

Aik e ik e
a a

 

  
 

 − + −

 − + −

 − −
   =    + − − − − − −   

 

.          (7.34) 

A non-trivial solution of this equation is obtained when the determinant of the above matrix 

vanishes. This condition yields the equation 

                                                         ( ) ( )
( )sinh

cos cosh
a

ka a
a


 




= −


 .                                          (7.35) 

The solution of this transcendental equation gives   as a function of Bloch’s wave number k .  

There is no closed-form solution for the equation, but it can be easily solved numerically.  

Eq. (7.34)  also provides a relation between A  and A .   Substituting it  in  Eq. (7.33), we obtain: 

                  
( ) ( ) ( ) ( ) ( )

( )   ( )  ( )

exp exp
2

         sinh exp sinh exp

ika a ika a

k

B
x e e x ikx e e x ikx

B x ika x a ikx

   

 

 −
  = − − − − + − −
 

  = − − −  

                       (7.36) 

where B is the normalization constant that we choose to be real, so that 

                  ( ) ( )
( )

( ) ( )2

sinh1
cos cosh 1 cosh cos

a
ka a a ka aN

B a


 



 
 = − + +     

,                 (7.37)             

The above formula for ( )k x  holds only in the range 0 x a  . In order to obtain a description 

over the entire range, x−    , it should be extended periodically. Let 
( ) ( ) ( )p

k k

n

x x an = − , be this extended function, then the Bloch wave function is 

( ) ( ) ( ) ( )exp
p

k kx x ikx = . Substituting this function in Eq. (7.17) , and replacing the discrete sum 
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over k  by an integral (see footnote on page 130) we obtain that the Wannier function is 

expressed as the following integral over the first Brillouin zone: 

                                                    ( ) ( ) ( ) ( )0 exp
2

a
p

k

a

dk
w x a N x ikx








−

=  .                                             (7.38) 

In the limit 1 , a →  (see Eq. (1.26)), ( )2 expB Na → − , and Bloch function in the 

range 0 2x a   (of the unit cell centered at the origin)  reduces to  

                 ( ) ( ) ( ) ( )exp 2 exp sinh sinh expk x ikx x x ika
aN a a

  
  

    
→ − − − +    

    
.        (7.39) 

Substituting this function in (7.38) we obtain  

                                ( ) ( )0 2 exp sinh expw x x x
a a a a

   
 

   
→ − − → −  

   
 ,                           (7.40) 

which is the same as the wave function of the bound state of a particle in a  -potential, ( )0 x .  

Thus, in the limit of deep potential wells, the difference between ( )0w x  and ( )0 x  is negligible 

because the wave function decays to zero, essentially, within a distance of one unit cell.  Thus, 

the overlap of two wave functions located in neighboring lattice sites is negligible,  implying that 

they are approximately orthogonal.  

                     

Figure 7-7 The Wannier function for the  Kronig Penney model with  -potential wells (black line), and the solution 

of the bound state of a particle in a single  -potential well (red line) 

 

However, when   is not large, the tails of the wave function (7.30) extend over a much larger 

distance than that of one unit cell.  The orthogonality condition of Wannier functions, in this limit,  

forces them to change  sign.  An example of this behavior is shown in Fig. 7-7,  where the Wannier 

( )0 x  
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function for 2 =   (obtained by numerical solution of the problem), is drawn by the solid black 

line, while the red line represents the wave function ( )0 x .         

Example: The tight-binding model in one dimension 

In one dimension, Eq. (7.23) reduces to 

          
( ) ( ) ( )

( )

0

0

exp exp

       2 cos  .

k t ika t ika

t ka

 



= − − −

= −
           (7.41) 

(The onsite energy, 0 , and the hopping term, t , are 

defined below Eq. (7.23).) This formula for the band 

energy is depicted in Fig. 7-8. It constitutes a good 

approximation when all other energy bands are 

sufficiently far such that their influence is negligible. 

An example of a situation where this approximation 

is invalid is shown in Fig. 7-2.  Here the bands become 

very close to each other at some particular point in k  space, near the edge of the Brillouin zone, 

for example. 

 

Example: The tight-binding model for graphene 

To calculate the band structure of graphene in the framework of the tight-binding approximation, 

one has to take into account its two sublattices, which induce a pseudospinor structure of the 

wave function.  In particular, the hopping matrix element between neighboring sites is from one 

sublattice to the other and vice versa. Therefore, in the basis of the Wannier functions, the 

Hamiltonian is a  2 2  matrix of the form 

                                                                       
0

0

AB

BA

H
H

H

 
=  
 

.                                                         (7.42) 

Here, without loss of generality, we set the onsite energy (i.e. the diagonal components in the 

above matrix) to be zero, 0 0 = .  The Hamiltonian in k  space (7.23) is therefore  

                                                                 ( )
( )

( )*

0
ˆ

0


 
=  

 

k
k

k
 ,                                                          (7.43) 

where 

                                                                  ( ) ( )
:

exp j

j A B

t i
→

 = k k a                                                      (7.44) 

 

Figure 7-8 The spectrum of the tight binding model 

in one dimension 
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is the contribution of hopping from sublattice A  to sublattice 

B . Here ja are the vectors connecting a lattice point, of 

sublattice A , to its three nearest neighbors on sublattice B  as 

shown in Fig.  7-9. These vectors are:  

                   

1 2

3

1 1 1
0, ,      , ,   

23 2 3

1 1
          , , 

2 2 3

a a

a

   
= − =   
   

 
= − 
 

a a

a

              (7.45) 

where a is the lattice constant.  Substituting Eq. (7.45) in (7.44) 

yields 

                         ( )
1 1 1

exp 2cos exp
23 2 3

y x yt i k a k a i k a
     

 = − +      
     

k ,                               (7.46) 

and diagonalization of the Hamiltonian (7.43) gives the energy levels:  

                    ( ) ( ) 2 1 1 3
1 4cos 4cos cos

2 2 2
x x yt k a k a k a

    
=   =  + +            

k k                   (7.47) 

The energy surfaces described by this formula are depicted in Fig. 7-10.  In the right panel of this 

figure, we present only the lower energy surface, ( )− k ,  to highlight the Dirac cone structure 

near the K and the K    degeneracy points in the Brillouin zone. 

 

            

Figure 7-10 The energy surfaces of graphene obtained from the tight-binding model 
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To find the position of the K and K points along the 
xk  axis,  one should solve the equation

( )
0

0
yk

 =
=k , which is  

                                                    2 1 1
1 4cos 4cos 0

2 2
x xk a k a

   
+ + =   

   
.                                           (7.48) 

The solution is 4 3xk a=  ,  hence  

                                                    ( )
4

1,0
3

K
a


=k  and ( )

4
 1,0

3
K

a


 = −k .                                            (7.49) 

Now, let us expand the Hamiltonian ( )̂ k  in the vicinity of the K   point. For this purpose, we 

substitute K = +k k k  in  Eq. (7.46)  for ( ) k and expand to second order in k . The result is 

                                            ( ) ( ) ( )
23

2 8
x y x y

t t
k i k k i k    − + + +k                                       (7.50) 

thus 

                   ( )
( )

( )
( )2 2

*

0 3
ˆ 2

0 2 8

AB AB AB

x y x x y y

t t
k k k k       

 
 =  + − −    

k
k k

k
 .           (7.51) 

Notice that this local approximation has the same structure as that we obtain in Eq. (5.16) from 

pure symmetry arguments.  Comparing the parameters obtained here with the ones found using 

the group theory approach, we see that 3 2v t= and 8wh t= − . Thus, the tight-binding 

approximation provides the relation between these phenomenological parameters. 

 

Example: Degenerate bands in a square lattice 

 

The tight-binding approximation has been derived under the assumption that energy bands are 

sufficiently far apart such that the effect of higher energy bands on the lower one is negligible.  

Namely, when the energy gap between nearby bands is larger than the hopping energy t . 

However, there are situations where one each lattice point, there are few degenerate orbitals. 

Examples of such materials are iron pnictides. These materials consist of weakly coupled two-

dimensional layers. In each layer, the iron atoms form a square lattice. The states that contribute 

the charge carriers to the system are  the xzd  and the yzd   degenerate orbitals of each iron atom. 

These orbitals are illustrated schematically in Fig. 7-11 by red and green colors.  
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The generalization of a tight-binding model for such a 

system is obtained by defining two wave functions 

associated with these orbitals, ( )
,x y

x

i ic   and ( )
,x y

y

i ic .  Here the 

upper index refers to the type of the orbital (by 

indicating its direction in space), and the lower indices 

denote the position on the lattice.   

There are two sorts of hopping matrix elements 

between nearest neighbors orbitals: 1t−  associated 

with  - bond and 2t−  associated with  - bonds. These 

are represented, respectively, by the solid and the 

black dashed lines in Fig. 7-11.  Thus, assuming hopping 

only to nearest neighbor sites, the tight-binding model 

is defined by the equations:   

 

                                                  

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

1 1, 1, 2 , 1 , 1 ,

1 , 1 , 1 2 1, 1, ,

x y x y x y x y x y

x y x y x y x y x y

x x x x x

i i i i i i i i i i

y y y y y

i i i i i i i i i i

t c c t c c c

t c c t c c c





+ − + −

+ − + −

− + − + =

− + − + =
                                         (7.52) 

Here, as in the previous example, we set the onsite energy to be zero.   Notice that the symmetry 

of the orbitals implies no matrix element connecting  x -type and y - type orbitals within this 

nearest neighbor approximation. Hence the energy levels obtained from the above equation 

include two bands where each one corresponds to a different  type of  orbital: 

                                                      

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2

1 2

2 cos 2 cos ,

2 cos 2 cos .

x

x y

y

y x

t k a t k a

t k a t k a





= − −

= − −

k

k
                                       (7.53) 

Here a  is the lattice constant.  

These energy bands are degenerate along the 

x yk k=  line, as shown in Fig. 7-12. Here the 

energy levels (7.53) are plotted along the 

contour  X W→ → →  in the Brillouin 

zone (the special points in the Brillouin zone of 

a square lattice are defined in Fig. 5-13), and 

the line x yk k=  is the one form   point to W -

point. This degeneracy is lifted once hopping 

into the next nearest neighbors is taken into 

 

   Figure 7-11 The orbitals xzd and yzd in a 

square lattice   

 

 

Figure 7-12 The energy bands of Eqs. (7.53) 
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account. The corresponding hopping matrix elements are denoted by 3t  in Fig. 7-11. They 

generate coupling between the two types of orbitals, and consequently between Eqs. (7.53),   see 

Exercise 2.  

 

7.3 The k p  approximation, Kane’s model, heavy holes and light holes 

 

The k p  approximation is designed to treat situations where energy bands are close to each 

other, at some points in the Brillouin zone,  by providing a local description near these points.   

Starting from the Schrödinger equation of a particle moving in the periodic potential ( )u r ,    

                                           ( ) ( ) ( ) ( ) ( ) ( )
2

2

2

j j

ju
m

  
 
−  + = 
 

k kr r k r ,                                                (7.54) 

we express the Bloch wave function of the j -th band in the form ( ) ( ) ( ) ( ) ( )exp
j j

i = k kr r k r , 

where ( ) ( )j
k r  is an unknown periodic function. Then the left-hand side of the equation is 

expanded as follows:  

             

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2
2 2

2 2
2

2 22
2

exp
2 2

                 exp exp
2

                 exp .
2 2

j j

j j

j j

u i u
m m

i i
m m

i u i
m m m

 

 

 

   
−  + =  −  +   
   

 
+ −   −    

 

 
=  −  + + +  −  

 

k k

k k

k k

r r k r r r

r k r k r r

k
k r r r k r

           (7.55) 

From (7.54) and (7.55), we obtain an equation for ( ) ( )j
k r : 

                      ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2

2

2 2

j j j

ju i
m m m

   
 
−  + + +  −  = 
 

k k k

k
r r k r k r .                 (7.56) 

The second term on the left-hand side of this equation is the reason for the name of the 

approximation that we are about to develop.  Let us assume that the functions ( ) ( )0

j
 r , 

associated with 0=k , and any j , are known from the solution of the equation 

                                                 ( ) ( ) ( ) ( ) ( ) ( )
2

2

0 00
2

j j

ju
m

  
 
−  + = 
 

r r r .                                            (7.57) 
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These functions form a basis for all functions within one unit cell with periodic boundary 

conditions. Here we choose them to satisfy the normalization condition: 

                                                            ( ) ( ) ( ) ( )*

0 0

uc

j jd

jjd r  


= r r ,                                                            (7.58) 

where the integral is over the volume of one unit cell of the lattice.  Now we shall use this basis 

in order to expand any other function ( ) ( )j
k r  corresponding to a non-zero value of k , 

                                                                     ( ) ( ) ( ) ( )0

j j

j

j

c 






=k r r ,                                                                (7.59) 

where jc   are the expansion coefficients that we seek to find. Substituting Eq. (7.59) in (7.56), 

multiplying the equation by  ( ) ( )*

0

j
 r  and integrating over r  in one unit cell we obtain (using Eq. 

(7.58)):  

                                                     ( ) ( )
2 2

0
2

j j j jj j

j

c c
m m

   



 
− − = −  

 


k
k k p ,                                 (7.60) 

where 

                                                             ( ) ( )( ) ( ) ( )*

0 0

j jd

jj

uc

d r i 


 = − p r r .                                          (7.61) 

Equation (7.60) is an infinite matrix equation that is still exact.  Thus, its solution is equivalent to 

an exact solution of the problem. 

The approximation scheme that one can build using Eq. (7.60) is based on the property that 

several energy levels might come close together near special points of the Brillouin zone.  In this 

situation,  one can neglect all other energy levels of much higher (or lower) energy.  Thus the 

k p  approximation is obtained by truncating the infinite matrix , jjp , to a small finite matrix.  

The larger the dimension of this matrix is, the better is the approximation.  

Another approximation, usually employed in this framework, is to replace ( ) ( )0

j
 r  by the local 

electronic orbitals. This approximation is valid when the orbitals are well localized within each 

unit cell. Finally, we comment that although we have considered the expansion near the  point, 

a similar approximation can be constructed near any other special point of the Brillouin zone.  

 

Example: Kane’s model 

To demonstrate the k p  approximation, consider a lattice where each unit cell contains four 

(relevant) orbitals with nearby energies: One orbital is associated with the conduction band, 
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( )0 0 2g = , and three orbitals with degenerate energy ( ) ( ) ( )0 0 0 2x y z g   = = = −  (i.e., 

orbitals of holes) that create the valance bands. It is instructive to think about the first orbital as 

the s  orbital of some atom while considering the other three as the degenerate xp , 
yp , 

and zp  orbitals.  These four orbitals span the subspace of the k p  approximation.  Selection 

rules imply that all diagonal matrix elements of ijp  vanish and, similarly,  0xy xz yz= = =p p p , 

where 
ij i jp p=p p , and , , ,i j x y z= . The only nonzero matrix elements are 

0 0 0
ˆ ˆ ˆ,   ,   ,x y zp p p= = =p x p y p z  and their hermitian conjugates. Here  0i is p=p p , while  x̂ , 

ˆ ,y and ẑ  are unit vectors in the direction of the axes. Symmetry implies that these nonzero 

matrix elements have the same absolute value. From the above considerations, we get that Eq. 

(7.60) can be approximated  by:  

                  ( )

2 2

2 2
0 0*

2 2
*

2 2
*

2 2

0 0
2 2

0 0
2 2

0 0
2 2

g

x y z

g

x
x x

y yg

y

z z

g

z

vk vk vk
m

c c
v k

c cm

c c
v k

c cm

v k
m










 
+ 

 
    

− −     
     =
    

− −     
    

 
− − 

 

k

k

k
k

k

,                (7.62) 

where /v p m= , and for the three hole-orbitals, we have changed the sign of the mass. This 

equation is the Kane model.  In this form, it does not take into account spin-orbit interaction, but 

this generalization can be obtained by doubling the matrix size.  

To solve Kane’s model, it is convenient to define the vector ( ), ,x y zc c c=c . With the help of this 

vector, the above equation can be written in the form 

                                     ( )0 0

*

v c c

v


     
=    

 −    

k
k

k c c
,  with 

2 2

2 2

g

m


 = +

k
.                              (7.63) 

Now, one can identify two cases: The first is when c is parallel to k  while the other is when these 

vectors are perpendicular to each other,  

                                                                         
0

ˆ

c

c

 
 
 k

    and    
0

⊥

 
 
 c

,                                                        (7.64) 
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respectively. Here k̂  is a unit vector in the direction of k and ˆ
⊥ − c = c k c  is perpendicular to .k

Notice that these two vectors are orthogonal as required by solutions of the Schrödinger 

equation. For the first solution, Eq. (7.63) reduces to a 2 2  matrix equation, 

                                                               ( )0 0

*

vk c c
k

v k c c


    
=    

−    
,                                             (7.65) 

whose straightforward diagonalization  yields 

                                                                   ( )
22 2 2

, k v k  =   + .                                                (7.66) 

Expansion of these energy levels, up to second order in k ,  in the vicinity of  0k =  gives: 

                                                             ( )
222

2

,
2 2

g

g

v
k k

m







 
   + 

 
 

.                                           (7.67) 

Consider now the case where c  is perpendicular to k . Now, Eq. (7.63) reduces to  

( )k⊥ ⊥ ⊥− =c c which has two degenerates solutions (associated with the two possible 

directions of the vector
⊥c ) describing the holes spectrum: 

                                                                       ( )
2 2

2 2

g k
k

m


⊥ = − − .                                                     (7.68) 

 

 

Figure 7-13 The energy levels of Kane’s model 
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The spectrum that we obtained in Eqs. (7.66) and (7.68) is presented in Fig.  7-13. To understand 

its meaning, notice that the effective mass of the particle obtained from the first couple of 

solutions in Eq. (7.67) depends on the energy gap g .  When this gap is small, the effective mass 

is approximately 

                                                                          eff, 2
2

g
m

v


  .                                                                   (7.69) 

Namely, it can be very small depending on g .  In this case, the energy band with negative mass 

describes particles known as “light holes”. The effective mass of the other solutions (7.68) is  

effm m= − . These solutions are associated with particles called “heavy holes”.  

As a concrete example, let us present the experimental data of two semiconductors: InSb

(indium antimonide) and GaAs  (gallium arsenide). In GaAs , the energy gap is 1.42eVg , and 

the measured effective masses are 00.045em m  for 

electrons, 00.06lhm m  for light holes, and 00.4hhm m for 

the heavy holes, where 
0m is the free electron mass. In InSb  

the energy gap is much smaller, 0.17eVg , and the 

effective masses are: 00.014e lhm m m , and 00.4hhm m .  

Let us look at the problem, once again,  from a  group theory 

perspective. The unit cell of both semiconductors 

mentioned above is displayed in Fig. 7-14.  Its symmetry is 

the symmetry of a regular tetrahedron (see also Figs. 2-40 

and 4-20).  Therefore, its point group is the tetrahedral 

group dT ,  whose character table is listed on the next page. 

The four energy levels of the Kane model, at 0=k , are associated with the 1A  irreducible 

representation and the 
2F  three-dimensional irreducible representation, as denoted in Fig. 7-13. 

Now consider the matrix element  
i jp  , where ,i j  are selected from the four wave 

functions associated with the aforementioned energy levels, while p  is a component of the 

momentum vector.  This matrix element is a scalar that must be invariant under all symmetry 

operations of the group. Therefore, it should belong to the identity representation, 1A . 

 

 

 

and  InSbThe unit cell of14 -Figure 7

GaAs 
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From the character table of 
dT ,  we see that the momentum (being a vector) belongs to the 

2F  

irreducible representation.  Therefore, the matrix element of the momentum between two 

wavefunctions that also belong to 2F  is nonzero if the direct product 2 2 2F F F  contains the 

identity representation.  Similarly, the matrix element between wave functions, where one 

belongs to 
2F and the other to 1A ,  is nonzero if 

2 2 1F F A   contains the identity representation. 

Finally, the momentum matrix element between wavefunctions where both belong to the 

identity representation is non-zero only if  
1 2 1A F A   includes the singlet representation 

(which is, clearly, not the case). These conditions set the selection rules for the matrix element 

ijp .  Using the following products of irreducible representations, 

        
1 1 2 2 1 2

1 1 1 1 2 2 2 1 1 2 1 2 2 1 2

                              E F F F                         E F F F

F F A E F F          F F A E F F          F F A E F F

 = +  = +

 = + + +  = + + +  = + + +
      (7.70) 

we see that the matrix element of the momentum between wave functions where one belongs 

to the identity representation 1A  while the other to the 2F   representation are non-zero. Those 

where both wave functions belong to 1A  vanish. On the other hand, the direct product 

2 2 2F F F  contains the singlet and, apparently, implies that the matrix element   p

where both  and    belong to 2F  is non-zero. However, time reversal  symmetry of the problem 

implies that     = −p p  because the wave dunctions belong the same representation 

as p ; hence under time reversal symmetry they change sign. Another way to get the result is by 

noicing that the only way of obtaining a scaly from three vectors is by  p   which is not 

the quantity we need. These group theory considerations prove the structure of Kane’s 

Hamiltonian presented in Eq. (7.62).  
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7.4  Exercises  

 
1. Prove Eqs.  (7.18) (7.19) and (7.20). 

2. Solve the tight-binding model of a square lattice with two degenerate orbitals. Take into 

account  hopping to next nearest neighbors as illustrated by the dashed diagonal lines in Fig. 

7-11.  Plot the energy levels in the same way they are plotted in Fig. 7-12. Compare your 

results with those of  Exercise 1 in chapter 5. 

3. Solve the tight-binding model for the Kagome 

lattice shown in Fig. 7-15, assuming hopping 

only to nearest neighbors sites.  The Bravais 

lattice of this system is Hexagonal, and each 

unit cell contains three sites. In other words, 

the Kagoma lattice is made of three hexagonal 

sublattices. These are indicated, in Fig. 7-15, 

by different colors.   

Denoting the primitive basis vectors of the 

Bravais lattice by  

   ( )1 1,0a=a    and   ( )2 1, 3
2

a
=a         (7.71) 

where a is the lattice constant (see Fig 7-15), the positions of the  red, green, and blue points 

of the  Kagome lattice are, respectively,  given by   

                                                     ( )1 0,0=s ,  2
2

2
=

a
s  and 1

3
2

=
a

s .                                              (7.72) 

Calculate the energy levels of this model and plot them along the line K M→ → →  in 

the Brillouin zone.  

4. The purpose of this exercise is to derive the Kane-Mele term from the tight-binding model of 

graphene. The generalization of the tight-binding model for a system with spin-orbit 

interaction requires doubling the number of components in the wave functions to account 

for the two possible spin states. Hence the size of the matrix that describes the Hamiltonian 

is also doubled. For graphene, assuming hopping is only to nearest neighbors sites, the 

Hamiltonian that describes spin-orbit interaction is of the form: 

 

Figure 7-15 Kagome lattice 



146  

 

                                             ( )
( )

( )so *

0

0

S

S
H

 
=    

d k
k

d k




 ,                                                  (7.73) 

where S  are Pauli matrices acting on the spin space, while ( )d k  are function determined 

by spin-orbit interaction. The blocks of this matrix act in the space of sublattices of the 

graphene. 

(a) Use inversion symmetry, i.e. −k k , and the symmetry to exchange of sublattices 

A B to show that ( ) ( )*= −d k d k . 

(b) Use time-reversal symmetry to show that ( ) 0=d k . 

 

From the above results it follows that to include spin-orbit interaction, one should go beyond 

nearest neighbors hopping and include the next-nearest neighbors.  In graphene, it implies 

hopping between sites belonging to the same sublattice. Hence, assume that the spin-orbit 

interaction associated with a transition from two sites of sublattice A  is of the form 

                                   ( ) ( ) ( )2

( )

expA A S

so z

a nnn

H it i →





= −  −   aa
k k a a .                                        (7.74) 

Here 2t is a constant that characterizes the 

coupling, and the factor ( ) 1S

z  = aa  is 

determined according to the direction of the spin 

and the path of the electrons between the points. 

In Fig. 7-16, we show the sign of this factor for 

one of the spin states (say spin up). The rule is the 

following: ( ) 1   = +aa  if while passing from A  

sublattice point to its neighboring point on the 

same sublattice, a nearby point of sublattice B  is 

on the right side of the path, while ( ) 1   = −aa  if 

the point is on the left side of the path. For a spin 

pointing down, these signs should be reversed. 

This choice respects the symmetries of spin-orbit 

interaction (3.23).   
 

(c) Calculate the term (7.74), expand it to the leading (zeroth) order in the distance from 

the K and K   points, and show that it is identical to the Kane-Mele term given by Eq. 

(6.24). Find the relation between the parameters so and 2t . 

 

Figure 7-16 Extension of the tight binding model to 

include next nearest neighbor hopping in order to 

account for  spin-orbit interaction 
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8  Topological metals  
 

This course is centered around the role of symmetry in condensed matter physics. Among 

other issues, its role in identifying degeneracy points in the Brillouin zone. However, 

another aspect of degeneracy points also applies to cases where the degeneracy is 

accidental -  the aspect of topology. In a nutshell, topology is concerned with characterizing 

geometric objects, such as the surfaces illustrated in Fig. 8-1, by numbers. In the examples 

of Fig. 8-1,  it is the number of holes in the surface. The left panel of the figure shows a 

surface that can be continuously deformed into a sphere (with no tearing or gluing), and 

therefore we say that it has the topology of a sphere. The object on the right panel of the 

figure has the topology of a torus, which is characterized by a single hole (a mug with one 

handle has the same topology).   The number of holes in a closed surface is a topological 

(integer) number called the genus of the surface. 

                                 
 

Figure 8-1 Surface having the topology of a sphere (left panel) and a torus (right panel) 

 

As we shall see in this chapter, in some cases, degeneracy points of electronic spectra can 

also be associated with topological numbers. The importance of this characterization rests 

on the fact that, in general, these degeneracy points are not affected by small 

perturbations. Similar to smooth deformations of surfaces that do not change the genus 

of the surface, degeneracy points associated with topological numbers preserve their 

identity under perturbation like impurity scattering or application of some external forces. 

It is simply because integer numbers cannot be changed continuously. In these situations, 

we say that the degeneracy points are “protected by topology”.  

To introduce the main ideas of this field, we begin this chapter with a qualitative discussion 

of mercury telluride (HgTe), showing how to obtain accidental (but robust) degeneracy 

points in the spectrum, called Weyl points. Next, we present some general ideas of 

topology, such as parallel transport and curvature, to motivate the introduction of  Berry’s 

curvature in quantum mechanical systems. The latter allows us to calculate the topological 

numbers associated with band touching points. Finally, we discuss the exotic behavior of 

the surface states in materials with the Weyl points spectrum.  
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8.1 Energy bands in mercury telluride – a qualitative discussion.   

 

Mercury telluride has the structure of a zinc blende crystal. Thus, the symmetry group of 

this crystal is that of the tetrahedral point group 
dT . This group is also the little group at 

the   point where 0=k . The point group  
dT  has two irreducible representations of 

dimension 3, one of dimension 2,  and two additional one-dimensional representations. 

Thus ignoring the spin degree of freedom,  the spectrum near the  point is expected to 

contain the typical band structure of light and heavy holes with three-fold degeneracy 

emerging from the three p -type orbitals of the Te atoms and the s -type orbital of the Hg 

atoms, as demonstrated in the left panel of  Fig. 8-2 (see also Fig. 7-13). In this figure, we 

denote degenerate energy bands by thick lines.  

Now let us take into account the spin degree of freedom. In the absence of spin-orbit 

interaction, all energy bands become doubly degenerate. However, in the presence of 

spin-orbit interaction, one expects some of the degeneracy to be lifted. To Identify the 

dimensions of the irreducible representations of the double group  dT  ,  one can see from 

the rules on page 116  that it has eight conjugacy classes:  E ,  Q , 38c ,  38Qc ,

 2 23 ,3c Qc ,  46S , 46QS , and  6 ,6Q  . Hence it has eight irreducible 

representations. Five of these must be those of the original group (without spin), 

containing 24 symmetry elements. Therefore, the dimensions of the additional three 

representations satisfy the condition 2 2 2

6 7 8 24+ + = . The only way to satisfy this 

equation is by choosing the dimensions of 4, 2, and 2. Thus the highest possible normal 

degeneracy is fourfold.   

         

 

 

No spin HgTe CdTe 

Figure 8-2 A schematic illustration of the energy levels in a zinc blende crystal near the  point.  Twofold 

degenerate levels are drawn by thick lines, whereas nondegenerate levels are drawn by thin lines. Left panel 

is the band structure in the absence of spin. Middle panel shows the normal ordering of levels in CdTe with 

spin-orbit interaction, and the right panel shows band inversion in HgTe that appears when spin-orbit 

coupling  is  strong. 
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From the above analysis, one expects that the typical band structure in the presence of 

spin-orbit interaction will be similar to that depicted in the middle panel of Fig. 8-2. This is 

indeed the situation in cadmium telluride which has the same crystal structure of HgTe. 

However, in mercury telluride, relativistic effects are much stronger (because the atomic 

number of mercury is 80 while that of cadmium is only 48), and these push the s -type 

band down such that it crosses the two p -type bands, as demonstrated in the right panel 

of Fig. 8-2. This phenomenon is called band inversion.  

Band inversion generates two accidental degeneracy 

points along the [1,1,1] direction. They are accidental 

because they are not located at any symmetry point 

of the Brillouin zone. To understand why,  recall that 

Zinc blende crystals are made of two 

interpenetrating fcc sublattices (see Fig. 7-14), 

therefore, the Bravais lattice is fcc, and the reciprocal 

lattice is bcc. The corresponding Brillouin zone with 

its special points is presented in Fig. 8-3. The global 

band structure of HgTe, obtained from ab initio 

calculations, and its magnification near the   point, 

is shown in Fig. 8-4. Notice the difference between 

the energy scales of the two panels. 

 

Figure 8-4 The band structure of HgTe. The left panel shows the local behavior near the   point along the 

(1,1,1) direction (i.e., the line passing through the  and the L  points in Fig. 8-3). The right panel shows the 

global band structure along the red path presented in Fig. 8-3. Taken from Zaheer et al. Phys. Rev B 87 045202 

(2013). 

The fourfold degeneracy at the  point results from the high symmetry of the crystal. One 

may lift this degeneracy by reducing the symmetry of the lattice, say by applying external 

stress. A stress applied along the [1,1,1] direction can be either compressive or tensile. In 

both cases, it reduces the tetrahedral symmetry to 3vC , and lifts the degeneracy. However, 

the degeneracy is lifted in two different manners, as demonstrated in Fig. 8-5. The 

compressive stress opens a gap in the spectrum, while tensile stress leaves lift the 

 

Figure 8-3 The Brillouin zone of HgTe 
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degeneracy into two degenerate points below and above the Fermi level, as shown in the 

magnified view of the region near the  point shown in the lower panel of the figure.  

 

                                                          

            
 

                                           
          

Figure 8-5 The band structure of HgTe under compressive  (left) and tensile (right) stress along the [1,1,1] 

direction of the crystal. The lower right panel shows the splitting into four degeneracy points due to addition 

zJ  perturbation. Adapted from Zaheer et al. Phys. Rev B 87045202 (2013).  

 

Each of the points marked by the red circles in the lower panel of Fig. 8-5 is threefold 

degenerate due to the mirror symmetry of the deformed crystal about the plane that 

contains the [1,1,1] axis. However, this symmetry can be broken by adding a perturbation 

proportional to zJ  - the component of the angular momentum of the p -type orbitals in 

the z direction.  

The four degeneracy points that we obtained here are Weyl points or Weyl nodes, and a 

system with a spectrum that comprises Weyl points is called Weyl semimetal. It should be 

emphasized that these are accidental degeneracy points obtained by “fine-tuning” of 

zJ perturbation 
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parameters and not due to symmetry. However, once formed, they are robust to 

perturbations; namely, they will not disappear due to additional system factors that 

cannot be controlled, such as impurity scattering or application of weak external forces. 

 

8.2 Weyl points  

The distinctive feature of Weyl nodes is that their linear spectrum is in the vicinity of the 

band touching point. A 2 2  matrix describes the local spectrum near such a point (in the 

k p  approximation) because only two energy levels are involved. Hence, the most general 

form of the local Hamiltonian is 

                                            ( ) ij i j

ij

H v k  = k    with    det 0ijv  ,                                   (8.1) 

where k  is the wavenumber vector measured from the Weyl point, j  are Pauli 

matrices, ijv  are some system-dependent parameters (having the dimension of velocity), 

and without loss of generality, we choose the energy at the degeneracy point to be zero.  

The Hamiltonian ( )H k  is robust to perturbations, i.e., there is nothing we can do to get 

rid of the band touching point. The reason is that we have used all 3 Pauli matrices; 

therefore, any perturbation  (which is not a trivial constant shift of the energy levels) is of 

the form   , where   is some general vector function of k . However, this 

perturbation can only shift the position of the Weyl point to a different location in the 

Brillouin zone or change the slopes of the dispersion by altering the parameters ijv . 

Denoting by ( )i
Fv  the eigenvalues of the matrix ijv and redefining the directions of the 

coordinate system according to the corresponding eigenvectors, we obtain that the energy 

spectrum is 

                    ( )( )
2

i

F i

i

v k =   .                 (8.2) 

This spectrum is linear, similar to that obtained 

at the K -point of graphene (in the absence of 

spin-orbit interaction). An illustration of this 

spectrum along the line, 0zk = ,  is shown in 

Fig. 8-6.  

In order to have a spectrum with Weyl points, 

one must have two non-degenerate energy 

bands at any value of k  other than that of the 

Weyl point. This condition, however, cannot be 

satisfied in a system with both time-reversal 

 

Figure 8-6 The spectrum near Weyl point 
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and inversion symmetry. The reason is that the time-reversal operator,  , takes →−k k

and flips the direction of the spin, while the inversion operator, i ,  takes →−k k  without 

flipping the spin direction. Thus, applying the two operations, i , on a wave function 

yields another state with the same wave number vector but with a flipped spin. However, 

if the system is symmetric to both operations, this new state must have the same energy 

as the original one. In other words, the energy at each value of k  is doubly degenerate. 

From these considerations, it follows that either inversion symmetry or time-reversal 

symmetry (or both) must be broken in a system with Weyl points spectrum. 

Consider now the isotropic  limit of Hamiltonian (8.1), where ij F ijv v =  , and assume that 

Weyl point is at the origin: 

                                                                     FH v =  k                                                            (8.3) 

One obtains the same spectrum, Fv =  k , for either choice of sign in this Hamiltonian. 

However,  the wavefunctions corresponding to the same energy are different. Treating 

similar to a spin degree of freedom (which we call pseudospin), the eigenstates of the 

system can be divided into two categories: One, when the pseudospin is parallel to k  

(right-handed chirality), and the second is when it is antiparallel (left-handed chirality). A 

state with positive energy will have k  parallel to   for H+  while antiparallel for H− . 

Accordingly, one can associate a number (chiral charge) 1  to Weyl points described by 

H . As we shall see below, this number is a topological number similar to the genus of a 

surface. 

Comment: When   is taken to be the real spin of a fermion and Fv  replaced by the speed 

of light, Hamiltonian (8.3) becomes the Weyl Hamiltonian for massless relativistic fermions 

- called Weyl fermions. 

 

8.3 Curvature, parallel transport, and topological numbers 

My goal now is to weave the relation between  

Weyl points and topology. To this end, it will be 

instructive to start by presenting some of the basic 

ideas of topology with the help of two-

dimensional surfaces. These ideas will be 

generalized to quantum mechanical systems in 

the next section 

 One of the intrinsic properties of a smooth 

surface is its Gaussian curvature. To define it, 

consider a point, r , on the surface. The normal to 

the surface at this point, n , is a vector 

perpendicular to the tangent plane at the same 

 

Figure 8-7 The normal vector to a surface, a 

normal plane  and the corresponding  normal 

section a surface (dashed line) 
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point. Planes that contain the normal vector are called normal planes, and their 

intersections with the surface are curves called normal sections, see Fig. 8-7. For each 

normal section, one can define the osculating circle at the point, r . It is the circle residing 

on the normal plane and touches the point r  additional pair of points on the normal 

section (one from each side of r ) that are infinitesimally close to r , see Fig. 8-8. 

                                   

  Figure 8-8 the osculating circle at point r of a normal section 

 

The normal curvature,  ,  associated with a normal plane is the inverse of the radius of 

the osculating circle. In general, this curvature depends on the direction of the normal 

plane. The maximal and minimal curvatures, 1  and 2 ,  are called the principal curvatures. 

The Gaussian curvature of the surface at the point r  is defined as the product 1 2K  = . 

The sign of the Gaussian curvature is positive if both osculating circles, associated with the 

principal curvatures, reside on the same side of the surface, while it is negative if they are 

located on both sides of the surface, see Fig. 8-9.   

 

                        

Figure 8-9 Examples for points on a surface with  positive (left) and negative  (right) Gaussian curvatures 
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The above definition of the Gaussian curvature utilizes the accommodation of the surface 

in a three-dimensional space. But imagine the existence of intelligent two-dimensional 

creatures living on a two-dimensional universe in the form of a surface - would they be 

able to know and measure the Gaussian curvature of their world even though they cannot 

move into the third dimension? The answer is yes! and it relies on an alternative definition 

of the Gaussian curvature based on a procedure called “parallel transport".  

Parallel transport is a method for transporting geometrical objects (say vectors) along 

curves on manifolds (say surfaces). Let ( )tC denote a curve on a manifold parameterized 

by t , and let ( )tV  be a vector field defined along the curve. In a flat space,  we say that 

( )tV  is kept parallel on ( )tC  if ( ) 0d t dt =V . In other words,  when the direction of ( )tV  

is independent of its position along the curve, as demonstrated in the left  panel  of  Fig. 

8-9. However, if the ( )tC  resides on a non-flat surface, the situation becomes more 

complicated. We say that ( )tV  is parallel transported along the curve if the orthogonal 

projection of ( ) 0d t dt =V  on the tangent plane to the surface at ( )tC  is zero, see right 

panel of Fig. 8-10. 

 

      
 
              Figure 8-10 Parallel transport of vectors along a curve in a flat (left) and curved (right) surface  

 

This definition ensures that the two-dimensional creatures walking along the curve ( )tC  

will see no change in the direction of the vector ( )V t . Notice that to characterize parallel 

transport one needs only the curve and the tangent planes to the surface. Therefore,  

parallel transport of a vector along a curve, ( )tC , is the same for any two surfaces tangent 

along ( )tC . We shall use this property in the following example. 

 

Example: Parallel transport along a latitude circle on a sphere. 

 

Parallel transport along some general curves can be tricky to visualize. As an example, let 

us consider the parallel transport along a latitude circle on a sphere, as illustrated in Fig. 
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8-11. Here one can use the fact that the same parallel transport is obtained for a circle on 

a conical surface that is tangent to the sphere, as shown in the figure. However, the 

curvature of a conical surface is zero everywhere (except at the cone apex where it is not 

defined); therefore, we may cut open the cone along the dashed line shown in the left 

panel of the figure and flatten it onto a plane as demonstrated in the right panel. On a 

plane, parallel transport becomes easy because one has to keep the vector in the same 

direction as shown in the right panel of the figure. Gluing the cone back along the dashed 

line gives the parallel transport of the vector on the sphere. Notice that, in general, the 

parallel transport of a vector along a closed curve on a surface (which is not flat) results in 

a finite angle   between the initial and final directions of the vector. Simple geometrical 

calculation shows that for a latitude circle, with angle  , the angle   defined in the figure 

is  ( )2 1 cos  = − 1.   

 

       
 

Figure 8-11 Parallel transport on a latitude circle on a sphere 

 

 

Parallel transport becomes much easier on geodesics. A geodesic cure is defined as a curve 

along which parallel transport keeps a fixed angle between the vector and the tangent to 

the curve. It can also be shown that a geodesic going through nearby points is the shortest 

possible trajectory between these points (when the points are far apart, a geodesic is a 

stationary path, namely a path whose length is, essentially, not affected by small 

deformations).   

                                                           
1  The angle 2 cos −  is  the precession angle of Foucault pendulum after 24  hours. Also, the contribution 

of  Thomas precession to spin-orbit interaction comes from a similar reason. It  is due to curvature effect which 

results in rotation of the spin by an  angle ( )2 cosh v c−  (where v is the particle velocity and c is the speed 

of light) upon completing a closed trajectory. 
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Example: Parallel transport along geodesics on a sphere. 

 

The geodesics on a sphere are great circles, i.e. 

intersections of the sphere with planes passing 

through its center. One can construct a closed-

loop from few geodesics, say by starting from the 

north pole and descending along a longitude to 

the equator; then follow the equator for some 

distance, and come back to the north pole along 

a different longitude, as shown in Fig. 8-12. 

Starting from a vector parallel to the latitude we 

see, that parallel transport along this closed path 

results in a finite angle between the initial and 

final vectors.   

 

Clearly, the curvature of the surface affects the value of the angle   obtained by parallel 

transport because it is always zero in a flat plane. Moreover, it turns out that the Gaussian 

curvature can be defined in terms of this angle as follows: To calculate the curvature at 

some point, r , on the surface, we construct a closed-loop (on the surface) around that 

point, call it rC ,  and calculate the mismatch angle, 
rC , obtained by parallel transport 

along that loop. If the area enclosed by the loop is A
rC then the Gaussian curvature is 

obtained from the limit where the loop length shrinks to zero by  

                                                                  
0

limK
A



→
= r

r
r

C

C
C

.                                                              (8.4) 

In the example of the parallel transport along the latitude, we obtained that 

( )2 1 cos .  = − On the other hand, the area enclosed by the loop is 

( )2 2 1 cosA R  = − ,  where R  is the sphere radius, hence the ratio 21A R = (which is 

independent of   because we consider a simple case) is the curvature of the sphere.  

 

Finally, the relation between the Gaussian curvature, K , and the genus, g , of a closed 

surface,  ,  is given by the Gauss-Bonnet theorem (which we present without proof): 

                                                          
1

1
4

dsK g




= − .                                                          (8.5) 

Here the integral is over the whole surface and ds is an infinitesimal area element on this 

surface. The Gauss-Bonnet theorem shows that the topological number g  (the number of 

holes in the surface) can be obtained from an integral of the curvature over the surface. It 

is straightforward to check that the above formula applies to a sphere.  

 

Figure 8-12 Parallel transport along geodesics 
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8.4 Berry’s curvature  

Consider the Hamiltonian, H x
, which depends on a set of parameters, 1 2 3( , , , ).nx x x x=x

These parameters can be, for example, the three components of an external magnetic 

field,  the strength and the direction of tensile stress acting on a system, some microscopic 

parameters that determine the structure of the potential, etc. For simplicity, we assume 

the system size to be finite, such that the energy levels are discrete and that the system 

does not possess symmetries so that all degeneracies are accidental. For each typical value 

of x , diagonalization of the Hamiltonian, H x
, yields a different set of non-degenerate 

energy levels and wave functions:  

                                                             ( ) ( ) ( )n n n
H   =

x x x x
.                                                     (8.6) 

 Now suppose that we can change these parameters, ( )tx ,  very slowly in time (as slow 

as we wish), then adiabatic theorem tells us that assuming the system does not pass 

through a degeneracy point, it will remain in the same n -th eigenstate, 
( )
( ) ( )n

t
t

x
,  at any 

time t ,  if it has been prepared in the n -th eigenstate when 0t = ,  
( )
( ) ( )0

0
n


x

.  This 

property also holds when the energy of the n -th state changes significantly over time.  

Now consider the adiabatic evolution of the system along a closed contour in the 

parameter space, ( )tC , such that at times 0t =  and t T=  the control parameters are 

equal, ( ) ( )0T =x x .  In this case, the wave function of the system must return to its initial 

state up to a phase factor: 

                                                       
( )
( ) ( ) ( ) ( )

( ) ( )0
exp 0

n n

T
T i  =

x x
.                                       (8.7) 

 Naively, one would guess that if the change of the parameters is sufficiently slow, then for 

each infinitesimal time interval  the energy of the particle, 
( )
( )n

t


x
,  can be assumed to be 

constant; therefore the phase,  ,  is the total dynamical phase  accumulated during the 

evolution of the system, i.e., 

                                                                 
( )
( )

dynamical

0

1
T

n

t
dt = −  x

.                                                    (8.8) 

(In the case where the parameters are kept fixed in time, ( )t =x x , this formula reduces 

to the familiar result, ( )
dynamical

n
T = − x

) . However, Berry showed that there is an 

additional contribution  to the phase which is geometric,  

                                                                 ( )dynamical n  = + C ,                                                     (8.9)      
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where ( )n C  depends on the contour C  in the parameter space (but independent of its 

time parametrization). This phase is called the Berry phase (Michal Berry calls it the 

geometrical phase).  

Before we turn to calculate ( )n C , let us draw some parallels between quantum 

mechanical systems and two-dimensional geometrical surfaces: The parameter space in 

the quantum problem is analogous to the two-dimensional surface; Close contours on this 

parameter space correspond to closed loops on the surface; Vectors on the geometrical 

surface are analogous to eigenfunctions of the Hamiltonian, and parallel transport is the 

adiabatic evolution of the system. Finally, the mismatch phase that we have obtained by 

parallel transport along a closed contour,  , is analogous to Berry’s phase, ( )n C , as we 

shall see below.  

This analogy suggests that one can also define the curvature of a quantum system in the 

parameter space similar to the definition of Gaussian curvature (8.4), and that the system 

may be characterized by topological numbers obtained by an integral of the curvature, 

analogously to the Gauss-Bonett theorem (8.5).   

To calculate Berry’s phase, we solve the time-dependent Schrödinger equation,  

                                                    ( )
( ) ( ) ( ) ( )

( ) ( )n n

t t t
i t H t

t
 


=


x x x

,                                          (8.10) 

with a wave function of the form 

                                            ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( )

0

1
exp

t

n n n n

t t t
t i dt i t   



 
= − + 

 
 

x x x
.                          (8.11) 

Here, ( ) ( )n
t  is some unknown function of the time, while 

( )
( )n

t


x
 is a solution of the time-

independent Schrödinger equation (8.6) with ( )t=x x . The left-hand side of Eq. (8.10) 

gives: 

                    

( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( )
( )

( ) ( )
( )
( ) ( )

( )
( ) ( ) ( )

( ) ( )

( )

0

0

1
exp

                     

1
                     exp

t

n n n n

t t t

n

n n

t t

t

n n n

t

t

i t i i dt i t
t t

d ti
i i t

dt

t
i i dt i t

t

   


 

  





=

  
= − + 

    

 
= − + 

  

   
+ − +  

    





x x x

x x

xx

x x

x

x

              (8.12) 

while  from (8.6), the right-hand side is: 

                                                           
( ) ( )

( ) ( ) ( )
( )

( )
( ) ( )n n n

t t t t
H t t  =

x x x x
.                                               (8.13) 



159 

 

Hence equating the last two expressions we obtain: 

                                               
( ) ( )

( )
( ) ( ) ( )

( )

0

n

n n

t

t

d t t
i

dt t


 

=

 
− +  =

 
xx

x x

x

x
.                       (8.14) 

Multiplying the above equation from the left  by 
( )
( )n

t


x
 we obtain: 

                                                   
( ) ( ) ( ) ( ) ( )

( )

n

n n

t

d t t
i

dt t


 

=

 
= 

 
x x

x x

x

x
.                                 (8.15) 

The Berry phase is obtained by integrating this formula along the closed contour in the 

parameter space, 

                                   ( )
( ) ( ) ( ) ( ) ( )

( )
0 0

T Tn

n n

n
t

d t t
dt i dt

dt t


  

=

 
= = 

   x x
x x

x

x
C  ,                  (8.16) 

and changing the variables of integration we obtain 

                                                        ( ) ( ) ( )n n

n i d  


= 
 x xx
x

C

C .                                                (8.17) 

This formula shows that Berry’s phase is purely geometrical because it is independent of 

time. It only depends on the contour in the parameter space. One can also prove that it is 

purely real (see Ex. 2), thus 

                                                        ( ) ( ) ( )
Im

n n

n d  


= − 
 x xx
x

C

C .                                      (8.18) 

The integrand in the above formula is called Berry’s connection.  

Finally,  for simplicity, let us restrict the discussion to a three-dimensional parameter space 

where ( )1 2 3, ,x x x=x . In this case, we can use Stokes’ theorem to replace the above 

contour integral with an area integral: 

                                       ( ) ( ) ( )
Im

n n

n d  
 

= −  
  x xs
x x

C  ,                                               (8.19) 

where ds is an infinitesimal area element in the parameter space whose direction is 

determined by the right-hand rule with respect to the direction of the contour C . The 

integral is  taken over an arbitrary surface whose boundary is the contour C ,  as shown in 

Fig. 8-13. 

Using the identity ( ) 0f =x  we can rewrite Eq. (8.19) in the form: 

                                                   ( ) ( )Imn nd = −  s V xC  ,                                               (8.20) 
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where 

                                   ( ) ( ) ( ) ( ) ( )
Im Im

n n n n

n    
   

=  = 
   

x x x xV x
x x x x

                   (8.21) 

For sufficiently small loop in the parameter space, ( )nV x is approximately constant. Thus, 

the integral (8.20) may be replaced with the product of ( )nV x  by the area of the surface 

enclosed by the loop. Thus, in analogy with definition (8.4) of the Gaussian curvature, 

( )nV x  should be interpreted as the curvature of the parameter space. This curvature is 

called Berry’s curvature or the adiabatic curvature.  

 

                                                
 

Figure 8-13 The surface integral for the Berry phase in a three dimensional parameter space 

 

Example: The curvature near a band touching points (Weyl points) 

In the vicinity of a band touching point, only two bands are essential, and the Hamiltonian 

of a system can be approximated by a 2 2  matrix of the form (8.3). This Hamiltonian 

contains three parameters which are the three components of Bloch’s wavenumber 

vector. The number three is also the minimal number of parameters needed to obtain an 

accidental degeneracy point. In what follows, we calculate Berry’s curvature of the 

Hamiltonian (8.3), where ( ), ,x y zk k k=x k =  is the parameter space. Consider first, H+ , 

and let us calculate Berry’s curvature associated with  the upper energy level d  for which 

                                                                   FH v k+ =d d .                                                   (8.22) 

In chapter 3 (see Eqs. (3.36), (3.37) and Ex. 2), we proved that this state is  given by: 
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( )

cos
2

sin exp
2

i






  
  
  =

  
  

  

d ,                                                        (8.23) 

where  and  are polar coordinates that parametrize the Bloch wavenumber: 

                                              ( )cos sin ,sin sin ,cosk     k = .                                          (8.24) 

From formula (8.21), it follows that the l -th component of Berry’s curvature is given by 

                                   ( ) Im Im ijll
l i jk k


    

=  =        
V k d d d d

k k
,                      (8.25) 

where ijl is the antisymmetric tensor and repeated indices should be summed over. Using 

Eq. (8.23), we have 

                

cos sin 0
2 21

sin2
sin cos 2

2 2

i

i ij j j j
i ek k k k

e e



 

 

 


 

      
−        

           = = +               
         

      

d ,           (8.26) 

therefore  

                                                     2sin
2j j

i
k k

   
=  

  
d d .                                                 (8.27) 

Substituting this result in Eq. (8.25) we obtain 

                                               ( ) sin cos
2 2

ijll
i jk k

   


    
=           

V k .                                         (8.28) 

Thus 

                                                          ( )
sin

2


 =  k kV k ,                                                   (8.29) 

where k is the gradient operator in k space. Working with polar coordinates,  

                                                   
1 1ˆ ˆ ˆ

sink k k  

  
 = + +

  
k

k   ,                                      (8.30) 

we obtain 

                                                             ( ) 2 2

ˆ1 ˆ ˆ
2 2k k

=  =
k

V k   .                                                        (8.31) 
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Repeating the calculation of H−  (see Ex. 3)  yields the same result but with a minus sign. 

Thus, the Berry curvature  of Weyl points described by the Hamiltonians (8.3)  are 

                                                                ( ) ( ) 2

ˆ

2k


= 

k
V k .                                                         (8.32) 

The vector fields associated with these curvatures are illustrated in Fig. 8-14. This figure 

shows that band touching points act as sources and sinks of Berry’s curvature.  

 

 

                           

Figure 8-14 The vector fields of Berry curvature associated with Weyl points 

 

8.5 Chern numbers and the chiral charge 

Similar to the Gauss-Bonnet theorem (8.5) one can integrate ( ) ( )
V k  over a closed surface 

surrounding the band touching points. Formula (8.32) has the form of an electric field 

generated by a charged particle, and from Gauss theorem, we obtain the analog of the 

Gauss-Bonett theorem: 

                                                      ( ) ( )
1

1
2

d



=  =  s V kC                                                             (8.33) 

The integer number, C , obtained when integrating Berry’s curvature over a closed surface 

in momentum space is called the Chern number. In the case of Weyl point, it is the chirality 

charge. This number is a topological number analogous to the genus of a two-dimensional 

closed surface. However, in general, the Chern number may be any integer, 

0, 1, 2=  C . 

An important constraint on the Chern numbers in a compact domain (such as the Brillouin 

zone, which is periodic) is that their total sum is zero. It is because the field lines of the 

( ) ( )+
V k  

( ) ( )−
V k  
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source of Berry curvature on a compact domain must end somewhere within the domain, 

and the only possibility is to have a sink. Thus, Weyl points must appear in pairs of opposite 

chirality charges.   This property is known as the Nielsen-Ninomiya theorem. It implies that 

the only way of removing a Weyl point is by annihilating it with another point with opposite 

chirality.  

The Nielsen-Ninomiya theorem dictates the minimal number of Weyl points in a system. 

As we saw in Sec. 8.2, one must break either time-reversal symmetry or inversion 

symmetry (or both) to obtain Weyl points. Time reversal symmetry reversers the 

momentum →−k k  and the pseudospin →−  , and therefore does not change the 

chiral charge. Thus, a system with time-reversal symmetry must have at least four Weyl 

points to satisfy the Nielsen-Ninomiya theorem. On the other hand, inversion symmetry 

reverses the momentum, →−k k , but does not change pseudospin →  . Hence the 

chiral charge is reversed by inversion. Thus, in a system with broken time-reversal 

symmetry, one can satisfy the Nielsen-Ninomiya theorem with only two Weyl points.  

 

8.6 Dirac points 

Dirac points are two Weyl points of opposite charge sitting at the same point in the 

Brillouin zone. The simplest Hamiltonian describing such a point is a 4 4  matrix of the 

form: 

                                                         
0

0

F

F

v
H

v





 
=  

−  

k

k
.                                                     (8.34) 

However, adding generic perturbations, such as 

                                                                   
0

0

m
H

m


 
=  
 

,                                                          (8.35) 

mixes the two Weyl points and opens a gap in the spectrum. An example of this scenario 

we saw when we added spin-orbit interaction to graphene. Thus, Dirac points are not 

genetic because they require fine-tuning of parameters to obtain a fourfold degeneracy of 

the energy levels. Nevertheless, breaking time-reversal or inversion symmetry may split a 

Dirac point into two Weyl points of opposite charges, which are topologically protected (A 

similar procedure was employed for HgTe, where degenerate points were separated by 

adding  zJ perturbation that breaks time-reversal symmetry.)   

 

 8.7 Fermi arcs 

 

Any physical system is finite, and one naturally asks what happens at the boundary of a 

system hosting the Weyl points spectrum. To keep the discussion simple, let us consider 

Weyl fermion with one chiral charge,  described by the Hamiltonian: 



164  

 

                                                                   FH i v= −   ,                                                          (8.36) 

and assume that the system occupies half-space,  0x  . Namely, it has a boundary at 

0x = . What are the corresponding boundary conditions for Weyl fermions? Consider a 

particle moving perpendicular to the 0x =  plane. Usually, one expects the particle to be 

reflected and reverse its direction,  keeping the component of the angular momentum in 

the x  direction intact. However, this will imply that the chirality of the Weyl fermion is 

reversed, as illustrated in Fig.   8-15.  

                                            

                      Figure 8-15 reflection that preserves angular momentum and reverses chirality 

 

Thus, to preserve the chirality of the reflected Weyl fermion, the angular momentum 

cannot be preserved on the boundary. A boundary condition that can do the work is a 

condition that the wave function on the boundary is not an eigenfunction of x . Instead, 

it is an eigenfunction of the spin in some perpendicular direction, such as: 

                                    
0 0x x

M 
= =
=    with  cos siny zM    = +                                   (8.37) 

One can prove (see Ex. 5)  that this boundary condition ensures that H is hermitian, i.e., 

1 2 1 2H H   =  for all wavefunctions that satisfy (8.37). In general, there will be an 

additional momentum-dependent contribution to the matrix M ; however, assuming the 

energy to be sufficiently close to the degeneracy point, the momentum is also small; 

therefore, this contribution can be neglected. The angle   depends on the microscopic 

details of the crystal that we ignore. Here, without loss of generality, we rotate the 

coordinate system around the x -axis such that 0 =  so that the boundary condition 

(8.37) reads: 

                                                                    
0 0yx x

  
= =
=  .                                                      (8.38) 

Now let us look for a solution to the time-independent Schrödinger equation with zero 

energy, 
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                                                 0F x y zi v
x y z

   
   

− + + = 
   

,                                       (8.39) 

assuming that y  =  everywhere (namely, the particle’s spin points in the y  direction), 

and 0y  = , i.e.,  the y  component of the  particle’s momentum, vanishes. Using the 

following property of Pauli matrices, z x yi  = − , the above equation reduces to  

                                                            0F xi v i
x z

 
  

− − =   
.                                             (8.40) 

The solution to this equation is 

                                                 ( ) 0exp z zik z k x = − +    with   0 0y  = .                               (8.41) 

More generally, the solution of the Schrödinger equation, H = , for non-zero  

(positive) energy,  , is: 

                                   ( ) ( ) 0exp expy z zik y ik z k x = − + ,    with F yv k = .                             (8.42) 

This solution is normalizable only when 0zk  . Therefore, it describes edge states localized 

near the boundary of the sample. When 0zk →  the solution (8.42) reduces to a plane 

wave moving in the y  direction- indistinguishable from the bulk solutions. 

The energy   is independent of zk  along the line 0zk  . Hence, on the two-dimensional 

Brillouin zone associated with the surface states,  the line 0zk  , y Fk v= ,  should be 

part of the Fermi surface. This line is called “Fermi arc”. The description that we built for 

this line holds only sufficiently close to zero energy where the Hamiltonian (8.36)  provides 

a valid approximation to the system.  

Finally, repeating the above calculation for a Weyl fermion with opposite chirality shows 

that normalizable solutions exist for 0zk  .    

Now consider a system with broken time-reversal symmetry having two Weyl points of 

opposite chirality located, say at ( )00,0, k . From each one of these points, a Fermi arc 

emerges. However, since these arcs should end at points where surface states become 

bulk states, the two arcs should merge and form a single curve connecting the two Weyl 

nodes, as illustrated in Fig.  8-16.   This behavior is very different from the traditional view 

of the Fermi surface, which should form closed loops in the Brillouin zone of a two-

dimensional system. However, it is because the system is not indeed two-dimensional.  
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Figure 8-16 The Fermi arc in a system containing two Weyl points corresponding to Fermi energy 0 = . 

 

 

8.8 Exercises  

 
1. Find the geodesic on a conical surface and use it to calculate  .  

 

2. Prove that Berry’s phase is real.  

 

3. Calculate the Berry curvature of FH v− = − k   associated with the upper energy 

band.   

 
4. Prove the following formula for Berry’s curvature: 

                          ( )

( ) ( ) ( ) ( )

( ) ( )( )
2

Im

n m m n

n
n m

m n

H H
   

 

 


 =

−


x x
x x x x

x x

x xV x  .                            (8.43) 

Advice: insert the Identity operator, ( ) ( )m m

m

  x x ,  to rewrite Eq. (8.21) in the form 

                               ( ) ( ) ( ) ( ) ( )
Im

n m m n

n

m n

   


 
= 

 
 x x x x

V x
x x

.                           (8.44) 
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 Now take the derivative of the Schrödinger equation (8.6) with respect to x , multiply 

it from the left by ( )m


x  and show that 

                                               ( ) ( )

( ) ( )

( ) ( )

m n

m n

n m

H
 

 
 



 =
 −

x
x x

x x

x x

x

x
.                                 (8.45) 

Using the last two equations, prove Eq. (8.43). 

 
5. Prove that the Weyl Hamiltonian is Hermitian in the Hilbert space spanned by wave 

functions that satisfy the boundary condition (8.37). Use the anti-commutation 

property of Pauli matrices, which implies that 

 

                                                       , 0x x xM M M  = + = .                                             (8.46)  
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9  Crystals in a constant electric field  

In this chapter, we study the response of the electrons to a constant (time-independent) electric 

field in crystals. This issue has many aspects, and we shall present five of them:  We begin with 

the physical response of dielectric materials to an electric field. Here we shall see how 

symmetries constrain the response of these materials to the external electric field.  Next, we 

consider metallic systems in the presence of a time-independent electric field, focusing our 

attention on the dynamics of the electrons. To this end, we shall develop the effective mass 

approximation that holds when the energy bands are far apart. Then we will use this 

approximation to explain the phenomenon of Wannier-Stark oscillations. Next, we consider 

situations where the effective mass approximation fails when two energy bands come too close 

to each other. Finally, we discuss the Landau-Zener tunneling, which describes the dielectric 

breakdown in the aforementioned situation.    

 

9.1 Physical response in dielectric crystals 

Consider a dielectric (an insulator) crystal under the influence of an external electric field whose 

components are E .  In such materials, the electric field polarizes the system by creating a  finite 

polarization vector, P .  Here we shall assume that the external force and the response are 

smooth functions in space, i.e., the spatial changes in these functions are on length scales that 

are much larger than the lattice constant.  Generally,  one expects that for a sufficiently weak 

electric field, the response of the system is given by the asymptotic expansion: 

                                        
( ) ( ) ( )1 2 3

0 ; ;

Pockless Kerr

P E E E E E E              
 
 = + + +
 
 

 ,                                     (9.1) 

where repeated indices are assumed to be summed over,  and 0  is the dielectric constant of the 

vacuum.  The first term of this expansion represents the linear response of the system. Here ( )1

  

the electric susceptibility tensor.  The second term is responsible for the Pockles effect. The latter 

is an electro-optical effect that changes or produces birefringence by changing the refractive 

indices proportional to the electric field.   The third term is responsible for the Kerr effect.  It also 

affects the crystal's optical properties, but the change in the refractive indices is quadratic in the 

electric field.   More generally, the term ( )n
  is called the n -th order susceptibility tensor. 

Notice that the asymptotic expansion (9.1) does not describe a situation where the response has 

an essential singularity,  such as ( )*exp E− E , where *E  is constant.  In the last section of this 

chapter, we shall deal with a case of this type associated with dielectric breakdown. Here we 
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neglect these terms and see how symmetry constrains the number of parameters in the 

expansion (9.1). The nominal number of parameters in ( )1
 is 3 3 9 = , but time-reversal 

symmetry reduces this number to 6; ( )2
  contains 18 parameters and ( )3

 has  30  parameters. 

The guiding principle for applying symmetry considerations is that the terms on the left-hand side 

of Eq. (9.1) should belong to the same irreducible representation of the terms on the right-hand 

side of the equation. If this is not the case, then applying some of the symmetry operations to 

Eq. (9.1) would give different results on both sides of the equation. As an example, consider a 

system with a symmetry 2vC . The character table of this point group is displayed below.   

 
 

 

 

 

 

 

The component of the polarization vector , P , and those of the electric field, E ,  are associated 

with the x , y , and z  basis functions. For example, zP  belongs to the 1A  irreducible 

representation; hence all the terms on the right-hand side of Eq. (9.1) (associated with  zP ) must 

also belong to 1A  irreducible representation. Thus, using the basis functions of the identity 

representation, we obtain: 

               ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 2 3 3 32 2 2 3 2 2

1 ; ; ; ; ; ;A :     z z z z zz z z xx x z yy y z zzz z z zxx z x z zyy z yP E E E E E E E E E      = + + + + + + .        (9.2) 

Similarly, the expansions of the two other components of the polarization vector are:  

               ( ) ( ) ( ) ( ) ( )1 2 3 3 32 3 2

1 ; ; ; ;:     x x x x xz x z x xzz x z x xxx x x xyy x yB P E E E E E E E E    = + + + + ,                                       (9.3) 

               ( ) ( ) ( ) ( ) ( )1 2 3 3 32 3 2

2 ; ; ; ;:     y y y y yz y z y yzz y z y yyy y y yxx y xB P E E E E E E E E    = + + + + .                                   (9.4) 

Why  xP  does not contain the term ( )2 2

;x xx xE  in its expansion?  Because if we apply 2c rotation on 

the x component of vectors, x xP P→−  and x xE E→− ,  but ( )2 2

;x xx xE  does not change sign. For 

the same reason xP  does not contain the term ( )2

;x xy x yE E in its expansion. On the other hand,  the 

   ( )v yz  ( )v xz 2c E 
2vC 

3 2 2, ,z x z y z 2 2 2, ,x y z z 1 1 1 1 
1A 

xyz xy 
zR 1− 1− 1 1 

2A 

2 3 2, ,xz x xy xz , yx R 1− 1 1− 1 
1B 

2 3 2, ,yz y x y yz , xy R 1 1− 1− 1 
2B 
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z  component of a vector is not affected by the 2c  rotation, therefore, xP  contains the term 

( )2

;x xz x zE E in its expansion. 

For another example, consider a crystal having the symmetry of a regular tetrahedron. The point 

group in this case is dT  , and its character table is listed on page 144. Looking at the  basis function 

of this character table, we see that the polarization vector belongs to the 2F  irreducible 

representation, hence 

                                   ( ) ( ) ( ) ( )

3

1 2 3 33 2

1 2

3

x x y z x x

y y z x y y

z z x y z z

P E E E E E

P E E E E E

P E E E E E

   

       
       

= + + +       
        
        

E .                            (9.5) 

Here, the high symmetry of the system severely constrains the number of parameters that 

determine the response. 

 

9.2 The effective mass approximation 

In this section, we consider metallic crystals. Our aim is to characterize the response of the 

electrons in such systems to the application of an external electric field. Namely, we are 

interested in the solution of the Schrödinger equation, 

                                                            ( ) ( )
2

2

2
u e

m
  

 
−  + − = 
 

r r .                                              (9.6) 

The first two terms on the left-hand side of the equation describe an electron moving in a periodic 

potential, while the third term represents its interaction with the external electric field, E , 

represented by the scalar potential ( ) = − r E r . Here e−  is the electron charge and m is its 

mass.  The primary simplifying assumption that allows solving this problem is that ( ) r  changes 

very slowly in space - over distances much larger than the lattice constant. This condition, 

however,  does not preclude situations where the scalar potential is large; therefore, its effect 

might be non-perturbative.   

As a reference point for our future discussion, we first consider the problem of a free-electron 

under the influence of a constant electric field,   

                                                                 
2

2

2
e

m
 

 
−  +  = 
 

E r .                                                      (9.7) 

To obtain the solution of this equation, it is convenient to express the wave function as a 

superposition of plane waves, 



171 

 

                                                            ( )
( )

( ) ( )exp
2

d

d

d k
c i


= r k k r ,                                                  (9.8) 

where ( )c k are the Fourier expansion coefficients. Substituting this formula in the kinetic energy 

term gives: 

                       
( )

( ) ( )
( )

( ) ( )
2 2 2

2 exp exp
2 22 2

d d

d d

d k d k k
c i c i

m m 
−   =  k k r k k r ,                             (9.9) 

while the potential energy term may be manipulated using integration by parts: 

                          
( )

( ) ( )
( )

( ) ( )

( )
( ) ( )

exp exp
2 2

                                             exp  .
2

d d

d d

d

d

d k d k
e c i e c i

i

d k
ie c i

 




  =  



 
=   

 

 



E r k k r k E k r
k

E k k r
k

                    (9.10) 

Thus, the Schrödinger equation in k space is a first-order differential equation: 

                                                            ( ) ( )
2 2

2
ie c c

m


 
+  = 

 

k
E k k

k
.                                                  (9.11) 

The separation of variables in this equation yields a plane-wave solution in perpendicular 

directions to the electric field.  In what follows, we shall ignore this trivial part of the solution and 

focus our attention on the wavenumber component parallel to the electric field.  Thus, the 

interesting part of Eq. (9.11) is along the electric field direction, where the equation becomes 

                                                            ( ) ( )
2 2

2

k
ieE c k c k

m k


 
+ = 

 
.                                                  (9.12) 

The solution of this equation is: 

                               ( )
2 2 2 3

0 0exp exp
2 6

k ki i
c k c dk c k

eE m eE m
 

      
= − = −      

      
 ,                     (9.13) 

where 0c  is the normalization constant. Returning to real space using the  inverse Fourier 

transform gives 

                                           

( )
2

3

0

1 1
3 3

0 2 2

exp
2 3 2

2 2
        Ai  ,

xdk i
x c k ik x

meE eE

meE meE
c x

eE










−

    
= + −    

   

      
 = −     

       


                                 (9.14) 
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where ( )Ai z  is the Airy function, and we choose the electric field to point in the direction of the 

x  axis. The behavior of this wave function is depicted in Fig. 9-1.  In the above solution, the 
electron energy may assume any value. However, different energy values only shift the particle's 

turning point by eE  along the x axis.  Beyond this turning point, the wave function decays 

exponentially.   

                  

Figure 9-1 The Airy function describing an electron in a constant electric field 

 

We turn now to discuss the case where the electron moves in a lattice. Here it is natural to expand 
the wave function of the electron in the basis of Bloch’s wave functions: 

                                                 ( )
( )

( ) ( ) ( ) ( )exp
2

d
j

jd
j BZ

d k
c i 


=   k

r k r k r ,                                  (9.15) 

where 
( ) ( ) ( )exp

j
i k r k r  is the Bloch function of the j -th band, ( )jc k  are expansion 

coefficients,  and the integral is over the first Brillouin zone.  In this basis, the part of the 
Schrödinger equation  which does not include the electric field yields  

                            ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )
2

2 exp
2 2

d
j j

jd
j BZ

d k
u c i

m
  



 
−  + =  
 

  kr r k k r k r ,             (9.16) 

where ( )j k  is the eigenenergy of the particle in the absence of the external electric field. 

Consider now the contribution from the electric field. Here integration by parts gives: 
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e c e i
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 

   
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 
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E r r k r E k r
k

E k r k r
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k r
E r E k k r

k k

     (9.17) 
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The first term in this integral is analogous to the free particle problem, see Eq. (9.10), but there 

is an additional term proportional to  
( ) ( )j

i k k r . The latter is a periodic function of r with 

periodicity of the lattice because 
( ) ( )j

k r  is the periodic component of Bloch’s wave function. For 

any given value k , the set of functions ( ) ( ) j




k
r  with 0,1,j =  forms a complete basis for any 

function defined in the unit cell with periodic boundary conditions. In particular,  one may expand 

the function 
( ) ( )j

i k k r  in this basis:  

                       
( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )*

uc

 

jj

j j

j j jd

jj

j j

i i d r
 

  



  



 

 
 = =

 
 

k k

k k k

k

r r
r r k r

k k



 ,                 (9.18) 

where the integral is over the volume of a unit cell, and we choose the periodic components 

Bloch’s wave functions to be normalized as follows: 

                                                                 ( ) ( ) ( ) ( )*

uc

j jd

jjd r  



   = k k

r r .                                              (9.19) 

Thus, the difference between the equation of a free electron and that of an electron in a lattice 

is the vector matrix element: 

                                                                  ( ) ( ) ( )j j

j j i  





=


k kk

k
 .                                                   (9.20) 

The diagonal elements of this vector are the Berry connections. Substituting (9.16)-(9.20) in the 

Schrödinger equation (9.6), we obtain that, in the basis of Bloch’s wave functions, it reduces to  

                                          ( ) ( ) ( ) ( )j jj jj j jie e c c    

   
+  +  =    

k E E k k k
k

                           (9.21) 

The first two terms on the left-hand side of the equation are diagonal in the band index, but the 

third is an infinite matrix. Nevertheless, in many cases, the contribution of this term is negligible. 

We can estimate it to be proportional to the lattice constant, 

                                                     ( ) ( )
( ) ( )

( )

j
j

kj jk
jj k k

j

a
b


 








 =


 k

k
,                                      (9.22) 

while the term ik  (which is, essentially,  representation of the operator r  in momentum space) 

can be of the order of the size of the sample. The effective mass approximation is the 

approximation where ( )jje E k  is neglected altogether.  Within this approximation, Eq. (9.21) 

reduces to 
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                                                          ( ) ( ) ( )j j jie c c 
 

+  =  
k E k k

k
.                                            (9.23) 

The meaning of this approximation is that we ignore possible coupling between different energy 

bands. Thus, we expect it to break when two energy bands intersect or become close to each 

other.  We shall return to this issue later in section 9.4. Meanwhile, let us explore the implications 

of the above formula for electron dynamics.  

 

9.3  Stark ladder and Wannier-Stark oscillations  

 

Eq. (9.23) has the same structure as that of a free electron (9.12).  The critical difference between 

the two cases is that, now, one has to impose periodic boundary conditions on the expansion 

coefficients, ( )jc k , at the edges of the Brillouin zone. To keep the discussion simple, in what 

follows, we assume that the structure of the Brillouin zone and the direction of the electric field 

allow separation of variables, such that the periodic boundary condition in the direction of the 

electric field is 

                                                                        
2 2

j j

b b
c c
   
− =   
   

 ,                                                            (9.24) 

where b is the reciprocal lattice constant.  

Integration of  Eq. (9.23) gives 

                                                         ( ) ( )0

2

exp

k

j j

b

i
c k c dk k

eE
 

−

 
 

  = −  
 
 

 ,                                     (9.25) 

and imposing the boundary condition (9.24) leads to  

                                   ( ) ( )
2

2

exp exp 1

b

j j

b BZ

i i
dk k dk k b

eE eE
   

−

 
     

    − = − =     
     

 

  .                (9.26) 

This condition is satisfied only for discrete values of the energy satisfying the equation: 

                                                               ( )
1 2

2n j

BZ

dk k n
eE a


  
 

 − = 
 

                                               (9.27) 

with integer n , i.e., for 
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                                                                   ( )
2

n j

BZ

dk
neEa a k 




= +  .                                                (9.28) 

The second term on the right-hand side of the equation is a constant. Thus, we obtained a set of 

equidistant energy levels similar to those of a harmonic oscillator. This series of energy levels is 

called the Stark ladder. It implies that if we have prepared the electron in some typical wave 

packet, its motion should be periodic in time with frequency eEa = . 

A physical  picture of the periodic behavior of the electron follows from the semiclassical analysis 

of the Hamiltonian  

                                                                         ( )H k eEx= + ,                                                             (9.29) 

where ( )k  is a periodic function of k . Hamilton’s equations for this system,  

                                                                          
( )

( )
,

,

k
x v k

k

k eE


= =



= −

                                                           (9.30) 

yield a linear time dependence of the wavenumber, k eEt= − . On the other hand,  the velocity, 

being a derivative of ( )k ,  is  periodic in k ,  

                                                                  ( ) ( )
2

v k b v k v k
a

 
+ = + = 

 
.                                             (9.31) 

Hence ( )v eEt−  is a periodic function of time with a period   given by 

                                                                 
2 2

       
eE

a eEa

  
=  =  .                                                      (9.32) 

These oscillations of the electron in the lattice are called Wannier-Stark oscillations.  Their 

intuitive explanation is as follows: Imagine an electron initially at the bottom of the band. In this 

region, the effective mass is positive, and the electric field accelerates the electron. This 

acceleration raises the electron's energy until it becomes close to the top of the band, where the 

effective mass becomes negative. Consequently,  the electric field decelerates the electron, and 

its energy reduces until the effective mass becomes positive again and the process repeats itself. 

The excess momentum gained by the electron in each period of this motion is transferred to the 

lattice via the Bragg reflection mechanism (when the electron reaches the edge of the Brillouin 

zone, its wavelength is twice the lattice constant).      
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9.4  Beyond the effective mass approximation – the k p  approximation 

 
In section 9.2, we mentioned that the effective mass approximation breaks down when energy 

bands become close to each other. This section aims to show how one can improve the 

description in these situations.  Before that,  let us illustrate the breakdown of the effective mass 

approximation with a simple example.   

Consider a one-dimensional system with two 

energy bands, as illustrated in Fig. 9-2.  We 

assume that the  gap between the bands, 2 , is 

much smaller than the band’s width , band , 

                                    
band

1



,                             (9.33) 

and that all other bands are sufficiently far so that 

their effect can be neglected.  

Near the point where the gap is minimal, the 

Hamiltonian of the system can be approximated, locally, by a 2 2  matrix: 

                                                               b

b

v k
H

v k

 

 

+  
=  

 − 
,                                                    (9.34) 

where k  is measured relative to the wavenumber at which the gap is minimal, and b  is the 

middle energy between the bands at this point.  Diagonalization of this Hamiltonian gives the 

energy   levels  ( )
2 2

b v k   =  +  and the wave functions: 
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v k v k
N

 
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+

 + + 
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  and  
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k

v k v k
N

 


−

−

 − + 
 =
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,        (9.35) 

where N  are the normalization constants.  Substituting these wave functions in Eq. (9.20) gives 

the vector-matrix elements ( )jj k .  The non-diagonal matrix element (responsible for the 

transition between the energy levels) is   

                                       ( ) ( ) ( )

( )
3

2 422
k k

v
k i i

k
v k

  



− +

+−

 
 = = −

  + 
 

 ,                                   (9.36) 

and at the point where the gap reaches a minimum, i.e. 0k = , it reduces to  

 

Figure 9-2 An illustration of a band structure where 

the effective mass approximation breaks down 
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                                                                         ( )0
2

v
i+− = −


.                                                              (9.37) 

Now, the band’s width can be estimated to be band vb , where 2b a=  is the reciprocal 

lattice constant, therefore 

                                                                       ( ) band0 a a


+−


.                                                        (9.38) 

This result shows that, at points where the gap between energy bands is small, the contribution 

from ( )jj k  cannot be ignored.  On the other hand, this problem usually appears only near a 

few isolated points in the Brillouin zone. Thus, one may construct an approximate description of 

the system focused only on these “dangerous” points. This is the k p  approximation that we 

turn to present now. 

Let 0k  denote the wave number vector at the point where the gap between bands is minimal, 

and let us expand the wave function as   

                                                                  ( ) ( ) ( ) ( )
0

j

j

j

c = kr r r ,                                                      (9.39) 

where ( ) ( ) ( ) ( ) ( )
0 0 0exp
j j

i = k kr r k r  is the Bloch wave function associated with the j -th band 

and the wavenumber 0k .  The expansion coefficients ( )jc r  are functions that change slowly in 

space. Notice that here, unlike the k p approximation discussed in chapter 7, the wavenumber 

vector is fixed. The r  dependence of the expansion coefficients, ( )jc r , gives rise to deviation 

from the spatial behavior of the wave function ( ) ( )
0

j
 k r .  

To derive the equation for ( )jc r  we substitute (9.39) in the Schrödinger equation (9.7). Consider, 

first, the terms which do not include the electric field potential.  
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        (9.40) 

To calculate the last term on the right-hand side of this equation, we rewrite its first factor in the 

form 
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                                      (9.41) 

Now, as in section 9.2,  we expand the periodic function ( ) ( )
0

j
 k r  in the basis of the periodic 

components of Bloch’s wave functions,  ( ) ( )
0

j




k r . Using (9.19), we obtain 
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Defining  the matrix  

                             ( ) ( ) ( ) ( )
0 0

*

0

j jd

jj jj

uc

d r i
m

  


 
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   = + −  
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 k kV v r r ,   with 0

0
m

=
k

v ,                          (9.43) 

the Schrödinger equation (9.10) becomes 

                             ( ) ( ) ( ) ( ) ( ) ( )
2 2

0
2

j j jj j j

j

e c i c c
m

   



 
− − +  −  = 

 
k r r V r r .                          (9.44) 

The advantage of this equation is that it does not contain the dependence on the matrix ( ) ,jj k

, which diverges when the gap between the energy bands closes. Its disadvantage is that it 

contains a different infinite matrix,  jjV , which complicates the solution.  This matrix, however, 

can be handled in a similar way as in the k p approximation introduced in chapter 7. Namely, it 

can be truncated to account only for the relevant energy levels. The more distant energy levels 

can be taken into account by perturbation theory (if necessary).  

 

Example: Graphene in an electric field 
 
We consider graphene in a constant electric field and focus our attention on the region of the K

-point, i.e., we choose 0 K=k k .  In this case, one has to reinterpret the index j  (in Eq. (9.44)) as 

also associated with the sublattice index of the pseudospin wave function. Adopting this view, 

we notice that the local description of the graphene near the K -point (5.16) has, already, the 

structure of Eq. (9.44) when ( ) 0 =r . Therefore, in the k p  approximation, the local equation 

of graphene, in the presence of an electric field, is 

                                                 ( ) ( ) A AAB

B B

c c
v i e

c c
 

   
 −  − =    

   
 r .                                                   (9.45) 
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Setting E  to point along the negative x  direction, and separating variables, yields the following 
equation for the  x  component: 

                                                       A A

B B

eEx i v
c cx

c c
i v eEx

x



 
− −    

=    
    − − 
 

.                                                 (9.46) 

The   dependence of this equation can be eliminated by shifting the position coordinate:  

( )x x eE→ − .  Next, we define new combinations of the variables, 
Ac  and  

Bc  by the rotation  
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A
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b c
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          or            
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B
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−
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=    
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                            (9.47) 

These diagonalize the equation because: 

    

0
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0
1 1 1 12

0

eEx i v i v eEx
b bx x

b b
i v eEx i v eEx

x x

− −
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    

        (9.48) 

Thus, we obtained a pair of independent equations, ( )ˆ ˆ 0vp eEx b − =  (where we have used 

operator notation). These equations describe a right moving electron (+ sign) and a left moving 

electron (−  sign) without scattering at a constant velocity.  This phenomenon is sometimes called 

Klein tunneling. The reason for this terminology will become apparent in the next section. 

For future reference, we write down the wave functions obtained from the solution of Eq. (9.48)  

                                                            ( )
2

0 exp
2

eEx
b b i

v
 

 
=  

 
,                                                                      (9.49)   

where ( )0b  are arbitrary constants that satisfy the normalization condition

( ) ( )
2 2

0 0 1b b+ −+ = .    

               

9.5  Dielectric breakdown  (Landau-Zener tunneling) 
 

Consider a one-dimensional system with almost degenerate energy bands in the presence of a 

constant electric field. In the framework of the k p approximation, we focus our attention only 

on two energy levels in the vicinity of the point where the gap between the levels is minimal.  In 

the absence of an electric field, Eq. (9.44) reduces to 
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                                                           1 1

2 2

i v
c cx

c c
i v

x



 
− −    

=    
    −  
 

,                                           (9.50) 

where the quadratic ( )2 2 2m  term is neglected, 

12 21V V v= =  is assumed to be real, and we choose 

( )1 0k = −  and ( )2 0k = +  (the middle point 

between the energy levels is set to be zero without loss 

of generality). Diagonalization of the above 

Hamiltonian gives the energy levels of the system, 

                   ( ) 2 2 2 2k v k =   + ,                       (9.51) 

where k is measured relative to 0k . These energy 

levels are presented in Fig. 9-3. 

Adding to Eq. (9.50) the potential energy resulting from  

an electric field, E , pointing in the negative x  

direction, we obtain the equation that we seek to solve 

in this section:  

                                                         1 1

2 2

eEx i v
c cx

c c
i v eEx

x



 
− − −    

=    
    −  − 
 

.                                                (9.52)  

 

Before deriving the solution of this equation, consider the dynamics it dictates in the framework 

of the effective mass approximation where the transition between different energy bands is 

forbidden. Suppose we have prepared the election in a wave packet localized near some negative 

value of the wavenumber ik k= −  in the lower energy band. The electric field exerts a force on 

the electron, and from Hamilton’s equations, we see that the wave number increases linearly in 

time,  /ik k eEt= − + .  The particle's velocity is positive until it reaches the point 0k = , because 

( ) 0k k−  , see  Fig. 9-3. Beyond that point, assuming the particle remains in the lower energy 

band, the velocity reverses the sign, and its absolute value increases. In real space, it implies that 

the particle is reflected. This dynamical behavior is the familiar Wannier-Stark oscillations 

discussed in section 9.3.   

 

Figure 9-3 The energy levels obtained from the 

solution of Eq. (9.50) 
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Consider now the limit where the effective mass approximation is invalid because the gap 

between the energy levels is too small. Now there is another possibility: that the particle tunnels 

to the higher energy band. In this case, the particle velocity remains positive; namely, it continues 

with its motion without reflection (similar to the solution we found for graphene in an electric 

field). This phenomenon is known as Landau-Zener breakdown (or tunneling).  It describes 

situations where the applied electric field is sufficiently strong to induce a current in an insulator 

by transferring charge carriers from the valance band to the conduction band. The physics of the 

Landau-Zener breakdown is analogous to tunneling through a potential barrier, as illustrated in 

Fig. 9-4.  It is characterized by two parameters: the reflection and the transmission coefficients,  

r  and t , respectively. 

           

Figure 9-4 The analogy between Landau-Zener breakdown and tunneling under the barrier 

Viewing the Landau-Zener breakdown phenomenon as tunneling under the barrier allows us to 

obtain the qualitative solution to the problem. Recall that the transmission coefficient for 

tunneling under the barrier, within the WKB approximation, is ( )expt pw− , where p  the 

(imaginary) momentum under the barrier, and w  is the width of the barrier. In the analogous 

dielectric breakdown problem, the imaginary momentum is of order v , and the only length 

scale in the problem is w eE=  , hence  

                                                                
2

expt
v eE


 
−  
 

,                                                                              (9.53) 

where   is a constant of order one that cannot be determined from these qualitative 

considerations.  Nevertheless, this result highlights the singular dependence on the electric field 

in the limit 0E → .  In particular, a slight change in E   results in a dramatic change in the 
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transmission coefficient.  Notice that in the limit  0→ , i.e., when the gap between the bands 

closes, 1t → , as we have obtained in the graphene example (the Klein tunneling).  

 

The rest of this section is devoted to the proof of Eq. (9.53) and to the calculation of the numerical 

constant   (which gives 2 = ). We begin by transforming Eq. (9.52) into a more convenient 

form by repeating the steps presented in the graphene example on pages 178-179. Namely, first,  

we shift the position coordinate,  ( )x x eE→ − , to eliminate the   dependence, and then use 

rotated variables as defined by Eq. (9.47). The resulting equation is 

                                                          0

i v eEx
bx

b
i v eEx

x

−

+

 
−   

=  
   − − 
 

.                                      (9.54) 

Next, we eliminate the trivial dependence of b−  on the electric field (see Eq. (9.49), in the limit 

0 = ,  by defining the new variables 

                                                                
2

exp
2

b beEx
i

b bv

− −

+ +

    
= −        

.                                                    (9.55) 

With these variables, Eq. (9.54)  becomes 

                                                                0

2

i v
bx

b
i v eEx

x

−

+

 
   

=     − − 
 

.                                        (9.56) 

The Fourier transform of this equation is 

                                                                  0
2

vk
b

vk ieE b
k

−

+

−   
  =     −    

,                                          (9.57) 

where b  are the Fourier transforms of  b .  From the first line of this matrix equation, we obtain 

( )b b vk− +
 =  . Substituting this relation in the equation obtained from the second line of 

(9.57), gives an equation for b+ ,  

                                                              
2

2 0vk ieE b
vk k

+

  
+ − = 

 
.                                                    (9.58) 

Its solution is: 
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2 2

2

2

1
ln ln

2 2 2 2

k

v

i i vk
b dk vk vk

eE vk eE v
+


−

      
  = − + = − − + +    

     
 ,                  (9.59) 

where   is an arbitrary phase that can be ignored.  The choice of the lower bound in the above 

integral is merely for convenience. Changing it will only affect the phase  . Taking the inverse 

Fourier transform of b+  and substituting the result in (9.55) we obtain an exact integral 

representation of the solution for the coefficient b+ : 

                      
2 2

2

0 exp exp ln
2 2 2 2 4

eEx dk vk v
b b i i i k ikx

v eE v eE



+

−

     
= − − − − +    

    
 ,                      (9.60) 

where 0b  is an arbitrary constant that depends on the way we prepared the system. 

To simplify the above formula, we shall evaluate b+  in the asymptotic limit of large distance, 

/x eE .  In this limit, the integral over k can be evaluated by the steepest descent method. 

In this technique, the integration path is deformed from the real k  axis into the complex plane 

such that it passes through the saddle point of the phase and follows the steepest descent 

trajectory. The first step is to choose the branch cut of the logarithm in Eq. (9.60). It is convenient 

to choose is to overlap the negative imaginary axis of k  as shown in Fig. 9-5. 

 

 

Figure 9-5 the choice of the logarithm branch cut in the Landau-Zener problem  

Next, we identify the saddle point of the integral (9.60) by finding the stationary points of the  

phase (in the exponent of Eq. (9.60)),  
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( )

0
d k

dk


= ,                                                                              (9.61) 

where 

                                                   ( )
2

2ln
2 2 4

vk v
k i k kx

eE v eE


   
= − − + −  

  
.                                       (9.62) 

From here, we obtain a quadratic equation whose solutions, in the limit x → , are 

                                            
( )

2

2 2

2

2
x

keExeEx eE vxk
v v eEx

k
v

−

 →

+

 
=− 

=  ⎯⎯⎯→
 =


                                (9.63) 

To identify the steepest descent paths that pass through the stationary points, we write the real 

and imaginary parts of ( )k ik + ,  where  k and k  are real,  

                                                              ( ) ( ) ( ), ,k ik k k i k k    + = + .                                            (9.64) 

Here both, ( ),k k   and ( ),k k  , are real functions. In particular, the imaginary part is given by 

                                          ( )
( )2 2 2

2 2, ln
4 2 2

v k k v
k k kx k k

eE veE


−   
 = − + − + 

 
.                   (9.65) 

The steepest descent path going through a saddle point 

is the path along which the imaginary part of ( )k ik +  

is constant (and hence equal to its value at the saddle 

point), i.e. ( ) ( ), ,0k k k  
 = . This equation, however, 

defines two trajectories: One is the steepest descent 

path along which the integrand decays at the highest 

rate with the distance from the saddle point. The 

second path is the steepest ascent path one we should 

avoid.  Fig. 9-6 presents the steepest descent and 

steepest ascent paths obtained from the above 

condition.  The red trajectory passing through the  k−  

saddle point is an artifact that results from the 

multivaluedness property of the logarithm function.  It 

does not represent a steepest descent path. The blue 

and the green trajectories are the steepest descent and 
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steepest ascent paths going through k+ , respectively. Thus, one has to deform the integration 

path from the real axis to the blue trajectory in the complex plane. One can easily see that for 

x → , k+ → , and deformation of the integration path does not cross any pole or branch cut.  

 The advantage of integrating along the steepest descent path is that the contribution to the 

integrand is localized near the saddle point. Thus, to evaluate the integral, it is sufficient to 

expand ( )k  to second order in k k k += − : 

                                  ( )
2 2

2ln
2 4

eEx eEx hv
k k i i i i k

v eE v eE
   +

   
+ − − −    

.                           (9.66) 

Here, we have used the definition of the branch cut of the logarithm function shown in Fig. 9.5.  

With this approximation, the integral (9.60) becomes a Gaussian integral, and its evaluation 

yields:   

         ( )
2 2 2

0 exp exp ln ,         
2 2 2 4

eE eEx eEx
b x b i i i x

v eE v v eE v eE

 


+

      
= − − −    

    
.             (9.67) 

    We turn to evaluate ( )b x+  for negative values 

of x , when ( )x eE− .  With the analogy to 

the problem of tunneling under the barrier (see 

Fig. 9-4),  we expect that in this case, there will be 

two contributions: one associated with the 

incoming wave, while the other describes the 

reflecting wave.  Indeed, when ( )x eE−  the 

saddle point, * 2 /k eEx v= − , is located to the left 

of the branch cut, and to deform the contour 

along the steepest descent trajectory, it must go 

around the branch cut as illustrated in Fig. 9-7. 

This integration path gives two contributions: one 

from the saddle point and the other from the 

branch cut:  

                                                                ( ) ( ) ( )sp cutb x b x b x+ + += +                                                        (9.68) 

The calculation of the contribution from the saddle point is similar to the above calculation. The 

only difference is that now the argument of the logarithm is positive and therefore does not 

contain an imaginary contribution. Thus 

 

Figure 9-7 The integration path for the case 

( )x eE−  
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                    ( )
2 2

SP

0 exp ln ,         
2 2 4

eE xeE eEx
b x b i i i x

v v eE v eE




+

   
= − − −  

   

.                      (9.69) 

The second contribution, from the path that goes around the branch cut, can be calculated in the 

following way: 

                            

2 2
cut 2

0

cut

02 2
2

0

0
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0
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     
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    

     
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    
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2 4
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i k ikx

eE v eE

  
− − +  

  

               (9.70) 

Changing variables to k iz= − , and taking into account the jump in the function across branch cut 

(see Fig.9-5), we obtain  

                                       2 2

2 2 2
cut

0

exp sinh
4 2

2
2

0

3
exp exp exp

2 4 4

       exp ln  .
2 2 2 4

eE v eE v

eEx
b ib i

v eE v eE v

dz vz v
i i z z x

eE v eE

 

 



+

    
− −      

   



       
= − − − −      

      

   
 − + −  

  


                          (9.71) 

From here, it follows that in the limit x →− , the only contribution to the integral comes from 

a small region (of order 1/ x ) near 0z = . Thus, the quadratic term in z  can be neglected.  

Changing variables to y z x= ,  the integral may be approximated by  

                         

( )
2 2

0

2 2

1
exp ln exp ln

2 2 2 2

1
                           exp ln 1 .

2 2 2 2

dy v
y i y i

x eE v eE v x
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



     
− − −          

     
= −  −          


                    (9.72) 

Next, we use the following identity of the gamma function, 

                                                    ( )
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1 1 1

1

i
i i i
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,                           (9.73) 
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collect the various terms 
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                (9.74) 

and rearrange them 
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 −              − − − +                 +  
  

          (9.75) 

This formula describes the contribution from the reflected wave (moving in the direction of the 

negative x  axis) because the first factor in this expression (which contains the space dependence) 

is the complex conjugate of  ( )spb x+  that describes the incoming wave.   

From the ratio of the various components that we have calculated, one can identify the 

coefficients of transmission and reflection, respectively, given by 
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2 2
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= − 

 

  
 −             = − − − +                 +  
  

           (9.76) 

In particular, comparing the above formula for the transmission coefficient with (9.53), we see 

that 2 = . 
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9.6  Exercises  

 

1. The one dimensional tight-binding model of an electron in a constant electric field, E , is: 

                                   ( ) ( )† † †

1 1
ˆ ˆ ˆ ˆ ˆ ˆ

j j j j j j

j j

H eEaj c c t c c c c + −= + − +   ,                                 (9.77) 

where a  is the lattice constant. Diagonalize this Hamiltonian  and show that the energy 

levels are 

                                                               m eaEm = + ,                                                           (9.78) 

where m is an integer, while the corresponding wave functions are  

                                                        ( ) ( )
2

1
j

m m j

t
j J

eEa
 −

 
= −  

 
,                                                   (9.79)    

where ( )nJ x is the Bessel function of n -th order. Use the following integral: 

                                          ( ) ( ) exp sin
2

n

d
J x i n x






  


−

= − + +   .                                  (9.80) 

Analyze  and interpret the behavior of the wave function (9.79)  in the limits of strong and 

weak electric fields using the following properties of the Bessel function: 

                                                                    ( ) ,00n nJ =  ,                                                         (9.81) 

and 

                                        ( ) ( ) ( )

1 1

3 3

,

2 2
lim 1 Ai

n

n
x n
n x

J x n x
x x

−
→

 
    = − −   

    
 

                                (9.82) 

 

2. Find the relation between the matrix ij ,  defined in Eq. (9.20), and the matrix  ijV   

defined in Eq.(9.43). Notice that the first describes matrix elements of the position 

operator r , while the second is the matrix element of the velocity operator, v .  
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10  Crystals in a constant magnetic field 

This chapter discusses electrons moving in a periodic lattice and subjected to a constant and 

uniform magnetic field.  Generally, the introduction of  electric, E , and magnetic, B , fields in 

quantum mechanical systems is obtained using the scalar potential,  , and the vector potential, 

A , that satisfy the relations: 

                                                                      

,

.
t






= − −



B = A

A
E

                                                                     (10.1) 

The Hamiltonian of a particle with charge q  moving in a periodic potential, ( ) ,u r  in the presence 

of an electromagnetic field is: 

                                                    
( )

( ) ( )

2

2

q
H q u

m


−  = + +
p A r

r r .                                                  (10.2) 

This Hamiltonian is not periodic in space, even for the simplest case of a uniform magnetic field. 

For instance, for a constant B  pointing in the z direction, a possible vector potential choice is 

ˆBxA = y , where ŷ  is a unit vector in y direction. The linear dependence of the vector potential 

in the x coordinate makes the Hamiltonian (10.2) non-periodic; hence one cannot employ Bloch’s 

theorem to solve the problem.  

Nevertheless, if the electromagnetic field is weak, one can assume that the vector and scalar 

potentials are locally constants and keep using Bloch’s decomposition of the wave function as a 

leading-order approximation. This approach is valid for a large class of physical problems. 

When the magnetic field is strong but uniform, it turns out that for specific values of its strength, 

the periodicity of the system can be restored, albeit by a larger unit cell which is an integer 

multiple of the original cell. These are the situations where the magnetic flux threading one unit 

cell is a rational fraction of the quantum flux unit, 0 2 e = . The most prominent consequence 

of the multiplication of the unit cell is the disintegration of bands into minibands and the creation 

of self-similar fractal patterns in the spectrum.   

This chapter is divided into two main parts. In the first, we discuss the limit of a weak magnetic 

field.  Here we begin by presenting the gauge invariance property of the system and its relation 

to charge conservation. Next, we use gauge invariance to introduce the electromagnetic field 

into Bloch’s Hamiltonian in the framework of the effective mass approximation. Then we present 

the dynamics of lattice electrons in the presence of a magnetic field and quantize their energy 

levels.  Finally, we discuss the magnetic breakdown phenomenon.   
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In the second part of this chapter, we discuss the limit of a strong magnetic field. Here we, begin 

by discussing Moiré patterns to show how the increased size of the unit cell generates minibands. 

Moiré patterns are obtained, e.g., from superimposed layers of two lattices with slightly different 

lattice constants. Next, we define the magnetic translation operators that describe electrons in 

crystals subjected to a strong magnetic field and conclude by presenting the celebrated  

Hofstadter’s butterfly describing the spectrum of electrons subjected to a uniform magnetic field 

in a two-dimensional lattice. 

 

10.1  Gauge invariance and charge conservation 

 

For a given electric E   and magnetic B  fields, the scalar and vector potentials are not unique. 

There is freedom in choosing them. From Eq. (10.1), it follows that changing potentials as:  

                                                                         

,

,

f

f

t
 

→ +


→ −



A A

                                                                  (10.3) 

where f is some arbitrary function of space and time, yield precisely the same fields E  and B . 

This property is called gauge invariance. It tells us that the scalar and vector potentials 

themselves do not have a physical meaning. Only the electric and magnetic fields, which do not 

depend on gauge,  are physical quantities.  

On the other hand,  the gauge invariance (10.3) is a continuous symmetry of the system, and 

from Noether’s theorem, one expects this symmetry to manifest itself in a conserved quantity.  

In other words, similar to the symmetry for translation in time, which implies conservation of 

energy, or symmetry to rotations which leads to conservation of the angular momentum, it is 

expected that gauge invariance is associated with a conservation law.  As we shall see below, this 

conserved quantity is the particle charge.  

 

Reminder: Conservation laws in classical mechanics 

In classical mechanics, the equations of motion, i.e., the Euler Lagrange equations,  are 

derived by  variation of the action: 

                                                                  ( )cl ,S dtL=  r r ,                                                                  (10.4) 

where ( ),L r r  is the Lagrangian of the system.  Namely 

                                                          
( )
cl 0             

S d L L

t dt





 
=  =

 r r r
                                              (10.5)
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Now, let  us define the following infinitesimal transformation of coordinates and time: 

                                                                     ( ), , t = +r r R r r                                                    (10.6) 

                                                                      ( ), ,t t T t = + r r                                                      (10.7) 

where ( ), , tR r r  and ( ), ,T tr r  are some general functions, and   is an infinitesimal 

dimensionless constant. This transformation is a symmetry of the system if it does not 

change the action at any time interval i.e., when  

                                                               ( ) ( ) ( )2, ,dt L dtL O    = +r r r r .                                            (10.8) 

Then the stationarity of the action with respect to the infinitesimal transformation (10.7) 

yields the conservation law: 

                                       ( )cl 0             0
dS d L

T TL
d dt

 
=   − + =  

R r
r

                                        (10.9) 

Namely, the quantity in the square brackets is the conserved quantity associated with the 

symmetry   (10.6-7). For instance, symmetry to translation in time, where 0=R  and 

constantT = , shows that the Hamiltonian, i.e., the energy of the system, is conserved: 

                                                                  0
d L

T L
dt

 
−  − =  

r
r

.                                                           (10.10) 

Similarly, symmetry to translation in space, 0 constant= =R R and  0T =  implies 

conservation of momentum: 

                                                                       0 0
d L

dt

 
 =  

R
r

.                                                              (10.11)  

The proof of (10.9) can be found in the literature (see, for example, in section 6.12.1 of the 

book ‘Waves & Optics’, of the Open University).  

 

To identify conservation laws in quantum mechanical systems, one can employ a procedure 

similar to classical systems. Let us define the action: 

                                                              ( )*

qu

d

tS dtd r i H =  − ,                                                  (10.12)                                      

where H  is the Hamiltonian (10.2). Variation of this action with respect to *  yields the 

Schrödinger equation of the problem: 



192  

 

 

                        ( ) ( ) ( )
2

*

1
0           

2

S
i i q u q

t m

 
 



  
=  = − − + +   

A r r .                          (10.13) 

Changing the gauge by  (10.3) transforms this equation to  

                                  ( ) ( ) ( )
21

2

f
i i q q f u q q

t m t


 

  
= − − −  + + −   

A r r .                       (10.14) 

It looks very different from the original one; however, this change does not affect the value of 

any physical quantity. In particular, one can check that if we substitute 

                                                                    ( )exp iqf  =                                                          (10.15) 

 in the above equation, it reduces to the original one (10.13) for   .  

The conservation law associated with the symmetry (10.3) is obtained from the stationarity of 

the action with respect to the gauge transformation, i.e. 

                                                   qu qu qu
0              0

S S S

f t

  

  


=  + =

 A
                                (10.16) 

This equation has the structure of a  continuity equation (which is a conservation law).  To identify 

its ingredients, notice that 

                                                                         qu *
S

q


  


= =                                                        (10.17) 

is the charge density, while 

                                           ( ) ( )qu * *

2

S q
i q i q

m


   



−
 = = − − + − j A A

A
 ,                       (10.18) 

is the electric current density. The equation obtained by substitution of (10.17) and (10.18) in 

(10.16),  

                                                                             0
t


+ =


j ,                                                              (10.19) 

implies that the charge cannot disappear; it can only move from one point to another. In 

particular, integrating the above equation over the whole space,  using the divergence theorem, 

and assuming no charge or current at infinity, shows that  

                                                                  0
dQ

dt
= ,     where    3Q d r=                                        (10.20) 

is the total charge of the system.  
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 10.2  The effective mass approximation 

 

To construct the effective mass approximation for a particle moving in periodic potential 

subjected to a weak magnetic field, let us first recall the case 0=A .  Namely, consider a particle 

of charge q  moving in periodic lattice and subjected only to the force generated by the scalar 

electric potential, ( ) r  (that we consider to be a general function in space but time-

independent).  The wave function of this system can be expanded in the basis of Bloch’s wave 

functions of the bare Hamiltonian, ( )2

0 2H p m u= + r : 

                                                      ( )
( )

( ) ( ) ( )
BZ

, ,
2

d
j

jd
j

d k
t c t 


=  k

r k r ,                                        (10.21) 

where the integral is carried over the first Brillouin zone, ( ),jc tk  are expansion coefficients,  and 

( ) ( ) ( ) ( ) ( )exp
j j

i = k kr r k r  is Bloch’s wave function of the j -th band and wave number k. The 

latter is obtained from the solution of the Schrödinger equation, 0H  = . Substituting 

expansion (10.21)  in the Schrödinger equation,  

                                                                  ( )0i H q
t


 


= +  

r ,                                                         (10.22) 

we obtain an equation for the expansion coefficients ( ),jc tk . Defining the vector, 

( ) ( ) ( ) ( )( )0 1 2, , , , , ,t c t c t c t=c k k k k , this equation takes the form, 

                                            
( )

( ) ( ) ( )
, ˆˆ ,
t

i q i t
t

 
    

= + +     

c k
k k c k

k
 ,                                 (10.23) 

where ( )̂ k  is a diagonal matrix whose elements are the eigenvalues of 0H , i.e. 

( ) ( )ˆ
j ijij

  =  k k , while  ( )̂ k  is a matrix whose elements are  

                                                          ( ) ( ) ( )j j

j j i  





=


k kk

k
 .                                                            (10.24) 

The proof of Eq. (10.23) is given as an exercise.  

How to incorporate the magnetic field into this description?  The natural way is by imposing the 

condition of gauge invariance (i.e., charge conservation).  Namely, the change of gauge (10.3) 

manifests itself only in the phase of the wave function (10.15).  However,  the change of the wave 

function by a phase factor,  
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                                                  ( ) ( )ˆexp
q

i f i
   

→ +    
c k c k

k
,                                             (10.25) 

is due to the following transformation of the Hamiltonian, 

                                 ( ) ( )ˆ ˆˆ ˆexp exp
q q

i f i i f i 
        

→ + − +             
k k

k k
,                         (10.26) 

which ensures that ( ) ( ) ( )̂ =k c k c k .  Thus, by identifying the dependence of the transformed 

Hamiltonian on the function f , one can deduce the dependence on the vector potential.   

In the effective mass approximation, one neglects the matrix ̂ .  It is a justified approximation 

if ( )f r  changes very slowly on the scale of the lattice constant and the energy bands are well 

separated from each other such that transitions between them are weak.  Setting ˆ 0 = , the 

transformed Hamiltonian  is given by 

                                                           ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆexp expi i   → −k k .                                            (10.27) 

where 

                                                                ( )ˆexp exp
q

i i f i
   

=     k
                                                  (10.28) 

Assuming the energy bands to be analytic functions in the Brillouin zone (recall we assume there 

are no band touching points), ( )̂ k can be expanded as a Taylor series in k . Then any term of 

this expansion can be represented in the following manner: 

                           

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆexp exp

ˆ ˆ ˆ ˆ ˆ ˆexp exp exp exp   exp exp

i k k k i

i k i i k i i k i

  

  

 

     

−

= − − − .             (10.29) 

Thus, to obtain the transformed Hamiltonian it is sufficient to calculate the transformation of the 

wave number vector,    ˆ ˆexp expi i → −k k , which gives 

                                               ˆ ˆexp exp
q

i i f i 
 

→ − = −   
 

k k k
k

.                                          (10.30) 

Before proving this result, let us discuss its meaning.  The form of the gauge transformation (10.3) 

implies that the introduction of a vector potential into the system is obtained by Peierls 

substitution: 

                                                                   
q

i
 

→ −  
 

k k A
k

 .                                                          (10.31) 
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Thus, to include the magnetic field in the effective mass approximation, the Hamiltonian should 

be transformed according to: 

                                                              ( )ˆ ˆ
q

i 
   

→ −     
k k A

k
.                                                  (10.32) 

Proof of Eq. (10.30) 

 

To obtain Eq. (10.30) we shall use the following commutation formula that applies to an arbitrary 

pair of operators A  and B : 

                                                            
1

0

; ;B B sB sBe A e dse A B e− −  =   .                                                  (10.33) 

The proof of this  formula follows from the fact that  

                                                             
0

; ;

t

tB tB sB sBe A e dse A B e− −  =                                                 (10.34) 

is trivially satisfied for 0t = , while its derivative with respect to time yields  ,tB tBe A B e−  in both 

sides of the equation.  

Using Eq. (10.33) we have, 

                                             
1

ˆ ˆ ˆ ˆ ˆ ˆ

0

ˆ; ;i i i i is ise e e e dse i e     − − − = = −  k k + k k + k  .                             (10.35) 

To calculate the commutation of  ˆ; i−k , let us consider, for simplicity,  the one-dimensional 

case, and expand ˆ
q

i f i
 

=  
 k

 in Taylor series, i.e. ( ) n

n

n

f x f x= . Then 

                           

 

1

ˆ; ;

           

           

          

n

n

n

n n

n n

n n

q q q
k i k i f i ik f i i f i k

k k k

q q
ik f i i f i k

k k

q q q
ik f i ik f i i if n i

k k k

q
f i



−

         
− = − = − +              

    
= − +   

    

       
− + +     

       


= −



 =

,
k

 
 
 

                   (10.36) 

and a straightforward generalization to the tree-dimensional case gives  
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                                                              ˆ;
q

i f i
 

− = −   
 

k
k

.                                                       (10.37) 

Substituting this formula in Eq. (10.35) and noticing that all three terms in the integrand are 

functions of i k  and therefore commute among themselves yields Eq. (10.30).   

 

10.3  Perturbative corrections to the effective mass approximation 
 

The implementation of gauge invariance to identify the correct form of the Hamiltonian, as 

discussed above, can be extended in order to calculate the perturbative corrections to the 

effective mass approximation.  In this section, we derive the leading order correction to the 

Hamiltonian in the matrix ̂  defined in Eq. (10.24), and present a basic application of this 

correction in physical systems – a direct optical transition in crystals. 

Consider the transformed Hamiltonian (10.26) and let us calculate it by keeping terms that are 

first order in  ̂ , thus 

                

( )

( )

( ) ( )

ˆ ˆˆexp exp

ˆ ˆˆexp 1 1 exp

ˆˆ ˆexp  ;  exp

q q
i f i i f i

q q q q
i f i i f i f i f i

q q q
i f i i f i f i





 

        
+ − +             

            
+   −   −                     

       +   −          

k
k k

k
k k

k k
k k

ˆˆ ˆ ;  .
q q

f i i f f i 

  
  
  

         
= −  +   −               

k k
k k

                  (10.38) 

Also, expanding of the scalar potential to leading order in ̂  yields 

                                                              ˆ ˆi i  
    
+ = +   

    k k
.                                           (10.39) 

From the last two equations and the gauge invariance condition (10.3), it follows that the 

Hamiltonian of the system transforms according to: 

                                            

( )ˆ ˆ

ˆ ˆˆ            ;  

q
i q i

iq q
i q

  

 

      
→ − +    

     

    
+  − +    

   

k k A
k k

A k A
k

                                   (10.40) 
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Here the first line is the Hamiltonian in the effective mass approximation, while the second line 

represents the first-order correction in ̂ . This is the leading order correction in a  , where a  

is the lattice constant and   is the typical scale of the spatial variations in the electromagnetic 

field.  The improved form of the Hamiltonian (10.40) still holds only when energy bands are far 

apart. However, for cases where the system is subjected to an electromagnetic field that induces 

transitions between energy bands, the leading order correction that we have calculated plays a 

dominant role, as we shall see in the following example. 

 

Example: Direct optical transitions in crystals 

The general form of the Schrödinger equation associated with the Hamiltonian (10.40) is a set of 

an infinite number of  coupled equations:  

                      

( )
( )

( )

,
ˆ ,

ˆ ˆˆ                  ;  ,

t q
i i q i t

t

iq q
i q t

 

 

        
= − +     

       

      
+  − +     

     

c k
k A c k

k k

A k A c k
k

                             (10.41)      

However, when two energy bands become close to 

each other while all others remain sufficiently far, 

this system can be truncated to only two coupled 

equations.  

For example, consider the problem of a crystal 

subjected to electromagnetic radiation that 

generates transitions between two energy bands, 

( )1 k  and ( )2 k . We assume that the smallest gap 

between these bands is reached at 0=k k , as 

illustrated in Fig. 10-1. The electromagnetic wave’s 

frequency,  ,  is set to induce transitions between 

the two levels, i.e.,  ( ) ( )2 0 1 0  − =k k . It will 

also be assumed that the wavelength of the 

electromagnetic wave, 2 /c  = , is much larger 

than the lattice constant, a , in order to justify the leading order expansion of the Hamiltonian 

(10.40).  Under these assumptions, the matrix ̂  reduces to a two by two matrix: 

                                                                    
12

*

12

0
ˆ

0

 
 =  

 




                                                                  (10.42) 

 

Figure 10-1 Direct transition in a crystal 
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The diagonal matrix elements (which are the Berry connection)  are zero because the energy 

levels are far apart; hence Berry’s curvature is negligible. 

Substituting (10.42) in the leading order correction of the Hamiltonian (second line of  Eq. (10.40)) 

we obtain:     

       ( )

( )

12 1 12

* *

12 2 12

2 1 12

*

2 1 12

0 0 0
ˆ ˆˆ; ;

0 0 0

0

                                 

0

iq iq
q q

i
q

i
q


  



  

  

      
  +  = +                

  
− +   

  =
 − 

− +   
  

A
A

A

A

A

 

 





        (10.43) 

Now using the assumption that ( ) ( )2 0 1 0  − =k k , we see that 

              ( )  2 1 12 12 12 12

i
q q i q q

t
     

   
− +  = +  = +  = −       

A
A A E    ,      (10.44) 

where to obtain the last equality, we have used Eq. (10.1), and the replacement of  iA  by t A  

follows from the assumption of coherent radiation at frequency   implying that 

( )0 exp i tA = A .  Thus, the Schrödinger Eq. (10.41) reduces to  

                                                     
( )

( )
1 121 1

*

12 22 2

qc c
i

qc ct





−     
=     

−      

k E

E k




.                                     (10.45)                          

This equation shows that 12q−   is the electric dipole moment of the system.  Using Fermi’s 

golden rule, we obtain that the rate of transition from the lower band to the upper one is: 

                                                                       
2

0 12 12

12

1 2
q





= E  ,                                               (10.46) 

where 12 is the density of states at the excited state of the system. This result shows that 12

determines whether the direct optical transition is allowed  ( 12 0 ) or not  ( 12 0= ).  

 As a final comment, observe that the term “direct transition” refers to situations where the 

change in the electron momentum is negligible. It follows from our assumption a  which 

implies that the momentum carried by the photon (and absorbed by the electron), 2  , is 

much smaller than the lattice momentum 2 a . 
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10.4  Charged particles in a crystal subjected to a magnetic field  

 

In this section, we describe the dynamics of charged particles (electrons or holes) in a periodic 

lattice subjected to a static and uniform magnetic field, B .  Our starting point is the effective 

mass approximation,    

                                                                        ( )ˆH q= −p A ,                                                          (10.47) 

where q  is the particle charge, p  is the canonical momentum, and ( )̂ p  represents the 

Hamiltonian of the system in the absence of electromagnetic field.  

The dynamical momentum of the particle is defined to be  q= − p A  (In the case of a free 

particle with mass m , m  is the particle’s velocity). Let us calculate the commutation relations 

of its components: 

                                    

; ; ; ;

            ,

i j i i j j i j i j

j i
ijk k

i j

p qA p qA p qA qA p

A A
i q i q B

x x

 



       = − − = − −       

  
= − =    

                             (10.48) 

where hereinafter summation over repeated indices is implied, and ijk  is the anti-symmetric 

tensor.  It is convenient to present this result in the form: 

                                                               
2

2
;

ijk k

i j

B

B
i

l B


   =  ,                                                            (10.49) 

where  

                                                                        
Bl

q
=

B
                                                                      (10.50) 

is the natural length scale of the problem called the magnetic length. The magnetic length is the 

radius of a circle threaded by half of the unit magnetic flux, 2

0 2Bl B = , where  0 2 / e = . 

For a typical field of one Tesla, the magnetic length is 257Å.   The effective mass approximation 

is valid when the magnetic length is much larger than the lattice constant.  

 

We turn to derive the Heisenberg equations for the operators,  and r . These are given by  

                                  
ˆ ˆ ˆ

; ;i
i i j ijk k

ij j

i i
H q B q

t

   
   

 

 − −    
 = = = =       

B  ,                 (10.51) 

and 
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                                                          
ˆ ˆ

; ;i
i i j

j i

r i i
r H r

t

 


 

 − −  
 = = =   

.                                    (10.52) 

The dynamics that result from the above equations ensure energy conservation because 

                                         
ˆ ˆ ˆ ˆ ˆ ˆ

0i
ijk k

i i j

q B q
t t

     


  

      
= = =   = 

       
B

 
.                        (10.53) 

Thus, the particle can move only on the energy surface.  

From now on, we adopt a semiclassical approach, where functions replace operators.  This 

approximation allows us to describe the particle trajectories in space. Multiplying Eq. (10.51) 

vectorially from the right by B and substituting Eq. (10.52), we obtain 

                                              2q q qB
t t t t

      
 =   =  −   

      

 r r r
B B B B B ,                             (10.54) 

where the second equality is obtained from the vector identity ( ) ( ) ( ) .   − A B C = A C B B C A

Thus, if we denote by ⊥r  the component of the vector which is perpendicular to the magnetic 

field, then the above equation reduces to  

                                                                    ( )2

1
0

t qB
⊥

 
 + = 

  
 B r .                                                 (10.55) 

Its integration over time yields 

                                                                      ( ) ( )2

1
t

qB
⊥ ⊥= − r R B ,                                             (10.56) 

where ⊥R is a time-independent constant called the guiding center.  

Multiplying Eq. (10.51) by iB  and summing over i  

shows that the component of the dynamical 

momentum, in the direction of the magnetic field, is 

time-independent. Thus, the particle's motion is 

restricted to the cross-section of the Fermi surface 

and the plane ˆ constant =B , where B̂  is a unit 

vector in the direction of the magnetic field,  as 

demonstrated by the dashed line in Fig. 10-2.  

In particular, if we choose a coordinate system 

where the magnetic field is pointing in the z

direction, then constantz = = . On this plane, the 

particle is confined to move on the contour  

 

Figure 10-2 The cross section of the Fermi 

surface and the plane ˆ constant =B  
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( ), , constantx y    =  in the Brillouin zone. Finally, Eq. (10.56) shows that the particle’s 

trajectory in real space, projected on the plane perpendicular to the magnetic field, is the same 

as the trajectory in the (dynamical) momentum space up to rotation by 090 , and a change of the 

physical dimensions. 

 

Examples 

1. Consider a two-dimensional system of electrons ( q e= − ) moving in a lattice subjected to a 

constant magnetic field perpendicular to the system, ˆB=B z .  The dynamical momentum, in 

this case, contains two components  ( ),x y = , and assuming that near the bottom of the 

band the spectrum is parabolic and isotropic, the Hamiltonian is  

                                                                         
2

eff2
H

m
=


,                                                           (10.57) 

where effm  is the effective mass.  In two-dimensional systems, it is convenient to use complex 

coordinates,  r x iy= +  and x yi  = + . In terms of these coordinates, the equations of 

motion (10.51) and (10.56)  become 

                                                      
ci

t


 


= −


   and    

i
r R

eB


= − ,                                               (10.58) 

where  effc eB m =  is the cyclotron frequency. 

The solution of the above equations is straightforward:  

                                       ( )0 exp ci t  = −      and     ( )0 exp c

i
r R i t

eB


= − − ,                       (10.59) 

where 0  is a vector whose magnitude is determined by the energy, 0 eff2m = , while 

the initial conditions fix its direction.  This solution describes a circular motion, both in real 

and momentum space, as demonstrated in Fig. 10-3. 
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Figure 10-3 The circular motion of an electron  in a two-dimensional system near the bottom of a parabolic band  

 

2. When the Fermi energy is lifted away from the bottom of the band, the Fermi surface may 

develop a more complicated structure.  This structure is reflected in the electron motion 

because the electrons are constrained to move on this surface. In particular, if the Fermi 

surface  (a line in two dimensions) is closed, the electron motion in real space follows a closed 

trajectory with the exact shape of the Fermi surface but rotated by  090 , as illustrated 

schematically in Fig. 10-4. 

                                     

Figure 10-4 A schematic illustration of the electron trajectory in real space (left) and momentum space (right) 

for the case where the Fermi level is far from the bottom of the band (in two-dimensional systems) 

 

3. An intriguing behavior appears in systems with open Fermi surfaces, as illustrated in the right 

panel of Fig. 10-5.  Assuming the particle is subjected to a uniform magnetic field and moves 

on the upper branch of the Fermi surface, its dynamical momentum in the y  direction is 

positive at all times, but in the x direction it changes periodically in time. Therefore, the 

particle does not follow a closed contour in real space, as one might expect from the action 
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of Lorentz force. Instead, it forms a winding trajectory along the y  axis, as shown in the left 

panel of Fig. 10-5.  

                     

Figure 10-5  The trajectory of an electron subjected to uniform magnetic field in a two dimensional system with 

open Fermi surface.  

 

To quantify the electron motion in real space, consider the following form of the upper branch 

of the Fermi surface: 

                                                                      x
y

x

g g
b




 
= +  

 
,                                                       (10.60) 

where  0g   is a constant,  ( )g   is some general periodic function (in the Brillouin zone)  

with zero mean, and xb is the size of the Brillouin zone in the x  direction. We also assume 

that ( )max ,g g    to ensure that the upper branch of the Fermi surface remains positive 

for any value of x . For electrons ( )q e= −  moving in two-dimensional systems with a 

perpendicular magnetic field, the equations of motion (10.54)  reduce to 

                                                          x y
eB

t t

 
= −

 
,   and    

y x
eB

t t

 
=

 
.                                   (10.61)                                                  

Integration of these equations give a parametric representation of the electron’s trajectory, 

where the parameter of the representation is the x - component of the dynamic momentum:    
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0

0

1
                     

1
 

x

x

x

y y
eB

x x g g
eB b






= −


   
 = + +  
   

                                                  (10.62) 

This representation of the electron trajectory shows that it is periodic in the x direction while 

linear in the y  direction.  From the above solution, one can deduce the distance that the 

electron advances along the  y  axis  during a whole period of its motion in the x  direction: 

                                                        
22

2x B

x x

b l
y

eB eBa a


 = = = ,                                                     (10.63) 

where 2 /x xa b=  is the size of the lattice cell in the x direction.  

 

10.5  Bohr-Sommerfeld quantization and Landau levels  

 

The classical solutions obtained above can be used to carry out a semiclassical quantization of 

the system, using the Bohr-Sommerfeld approach.  Let us recall the basic idea of this approach. 

Consider a closed trajectory of an electron of length L , and assume that the electron’s 

wavelength is  , then constructive interference of the wave along the trajectory requires that 

L  accommodates an integer number of wavelengths, 1L n = + , where 0,1,2n = . The 

momentum of the particle is 2p  = ,  therefore, one may write this condition in the form 

( )2 1pL n= + .  Since the momentum is a function of the energy,  , this condition yields a 

quantized set of energy levels.  

Now consider a situation where the momentum changes along the trajectory. Assuming the 

wavelength to be sufficiently small, one can divide the trajectory into small segments and 

calculate the number of wavelengths in each one of them. It amounts to replacement of pL   by 

an integral of p  along the closed trajectory of the particle, C .  The latter is nothing but the 

action: 

                                                                       ( )S d =  r p
C

.                                                              (10.64) 

This action, divided by , is, in principle, the total phase accumulated by the particle along a 

closed trajectory. However, one should also add contributions to this phase that come from 

turning points along its trajectory. Consider, for instance, Dirichlet boundary conditions on the 

edge of an infinite potential well. The reflected wave from this edge has an opposite sign to 

ensure that the total wave function vanishes on the boundary. It amounts to the accumulation 
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of a − phase. In the case of a soft boundary, as in parabolic potential well, the phase of the 

reflected wave is 2− .  This result is obtained by linearizing the potential near the turning point 

and analyzing the local solution that takes the form of an Airy function (see Eq. (9.7)).   

Denoting the accumulated phase of the particle due to the turning points by − , the Bohr-

Sommerfeld quantization condition takes the form: 

                                                                 ( ) ( )
1

2 1nS n  = + − .                                                     (10.65) 

The phase  is called the Maslov phase, and more generally, in high dimensions,  it also contains 

contributions from focusing points, but for our purpose, it is enough to count the number of 

turning points and multiply them by the appropriate factor.  

As an example for the application of the Bohr-Sommerfeld quantization, consider the  harmonic 

oscillator:   

                                                                    
2

2 21

2 2

p
H m x

m
= + .                                                         (10.66) 

The particle’s momentum dependence on the energy is 
2 2 22p m m x =  − ,  where the sign 

depends on the direction of the motion. The two turning points are the points where the 

momentum vanishes. These are located at 22x m  =  , and since the turning points are 

from a soft potential,  = .   

The action along the closed trajectory of the particle is  

                                         ( ) 2 2 2 2
2 2

x

x

S dxp dx m m x


  


+

−

= = − =  .                                       (10.67) 

Notice that this action is the area, ( )A , enclosed 

by the trajectory in phase space, see Fig. 10-6.  

Substituting (10.67) and  =  in the quantization 

condition (10.65)  yields the energy levels of the 

harmonic oscillator:   

                               
1

2
n n 

 
= + 

 
.                            (10.68) 

Now let us return to the closed trajectories of charged 

particles subjected to magnetic field on the Fermi 

surface. The key observation for the semiclassical 

 

Figure 10-6 The trajectory of harmonic 

oscillator in phase space 
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quantization of these systems is that the components of the dynamical momentum in the plane 

perpendicular to the magnetic field behave as canonically conjugate variables. In particular, 

choosing the magnetic field to be in the z -direction, the x and the y  components of the 

dynamical momentum satisfy the commutation relations (see Eq. (10.49)): 

                                                       
2

2
;              , ,i j ijz

B

i i j x y
l

    = =  ,                                         (10.69) 

where Bl  is the magnetic length defined in Eq. (10.50).   This equation implies that  in the 

quantization condition (10.65) should be replaced by 2 2

Bl ; Hence the equitized energy levels 

are obtained from the formula: 

                      ( ) ( )
2

2
2 1B

n

l
S n  = + − ,                      (10.70) 

where 

                      ( ) ( )x yS d d   = = A                   (10.71) 

is the area enclosed by the trajectory in the momentum 

space,  see illustration in Fig. 10-7. Noticing that there are 

two turning points of the trajectory, the Bohr-

Sommerfeld quantization condition yields the general 

formula: 

                          ( )
2

2

1
2

2
n

B

n
l

 
 

= + 
 

A .                  (10.72) 

If the Fermi level is near the bottom of the band, the Hamiltonian of the system may be 

approximated by (10.57), and the particle’s  trajectory in momentum space is a circle of radius 

2 effm  . The area enclosed by this trajectory is ( ) 2 effm  =A .  Substituting it in formula 

(10.72) give the energy levels: 

                                                                      
2

2

1

2
n

eff B

n
m l


 

= + 
 

                                                       (10.73) 

Finally, substituting 2

Bl q= B  and the formula for the cyclotron frequency, effc eB m = , we 

obtain 

                                                                        
1

2
n c n 

 
= + 

 
                                                          (10.74) 

These energy levels are called Landau levels. 

 

Figure 10-7 The area enclosed by trajectory 

in the momentum space 
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10.6  Magnetic breakdown  

 

Magnetic breakdown, similar to dielectric breakdown, is associated with situations where the 

particle trajectory deviates from the path dictated by the on-shell-energy condition, namely 

situations where the particle tunnels between trajectories separated by a potential barrier. There 

are several typical cases where a magnetic breakdown is likely to occur. One of them is when the 

Fermi surface passes near the edge of the Brillouin zone, as illustrated in Fig 10-8. In this case, 

the particle may tunnel between adjacent Brillouin zones and follow trajectories that are similar 

to those of the open Fermi surface. In Fig. 10-8, red discs denote the regions where such 

tunneling is expected.   

 

                                   

Figure 10-8 Magnetic breakdown at regions near the edge of the Brillouin zone where a transition between 

trajectories, by tunneling,  becomes likely  

 

Another situation where a magnetic breakdown might occur is in systems with open Fermi 

surfaces, at regions where two Fermi surfaces almost touch, as illustrated in Fig. 10-9.  
 

                         

Figure 10-9 Hot spots of magnetic breakdown in systems with open Fermi surface 
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The calculation of the transition probability between trajectories is similar to that of dielectric 

breakdown and is given as an exercise. However,  one can deduce the functional dependence of 

the transition coefficient, t ,  on the magnetic field without any calculation.  The commutation 

relation of the dynamical momentum (10.69) indicates that the effective  in the problem is  

2 2

Bl ;  hence, the transition coefficient should have the form ( )2 2exp Bt l− A , where A  is 

an area in the momentum space that characterizes the transition between two nearby 

trajectories.  This area is a property of the Fermi surface; therefore, it is independent of the 

magnetic field. Thus, the primary dependence on the magnetic field comes from the magnetic 

length  2

Bl q= B , which implies that the transition coefficient takes the form 

                                                                          ( )0expt B B− ,                                                      (10.75) 

where 0B  is the typical value of the magnetic field above which a  magnetic breakdown takes 

place. This value is system and energy dependent. Notice the singular dependence of the 

transition coefficient (10.75) on the magnetic field, which is similar to that of the electric field for 

the case of dielectric breakdown, see Eq. (9.53). 

 

Example:  Pippard’s model  

 

Pippard’s model (1962) is a simple model for which the threshold magnetic field, 0B , can be 

calculated analytically.  It consists of a two-dimensional system with a potential that is periodic 

only in one direction, say, along the x  axis. The periodic potential, ( )u x , is assumed to be 

sufficiently weak to employ the nearly free electron approximation for calculating the band 

structure. In the empty lattice approximation, ( ) 0u x = ,  the Fermi surface is folded into the first 

Brillouin zone by duplicating the Fermi surface of a free electron in each Brillouin zone, as 

demonstrated in Fig. 10-10.  

                                           
Figure 10-10 Fermi surface of Pippard’s model  in the empty lattice approximation 
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Each circle in this figure represents the Fermi surface of a free electron, and the vertical lines are 

the boundaries of the Brillouin zones, which in our case are vertical stripes.  The main effect of 

the weak periodic potential, ( )u x , is to lift the degeneracy at the points where Fermi surfaces 

intersect, as shown in Fig. 10-11.  Thus, the Fermi surface contains both open and closed sectors.  

In the presence of a perpendicular magnetic field, depending on the initial conditions,  electrons 

may follow closed or open trajectories in real space, similar to those shown in  Figs. 10-4 and 10-

5.  The arrows in Fig. 10-11 show the electron trajectories in the momentum space. 

 

Figure 10-11 The Fermi surface in a two-dimensional electronic system with weak periodic potential , ( )u x  

 

Magnetic breakdown in this system is realized 

when an electron, prepared in the upper branch 

of the Fermi surface, tunnels into the closed 

elliptical sector of the Fermi surface, then into 

the lower branch of the Fermi surface, and back 

to the upper branch through the closed sector.  

If the magnetic field is sufficiently strong, the 

transition probability is high, and the particle 

completes a full circular motion, as shown by 

the dashed line in Fig. 10-12. In other words,  the 

electron behaves as if it was a free particle in a 

magnetic field.  It is what one should expect 

when the effect of the magnetic field overcomes 

that of the periodic potential.  Thus, to estimate 

the typical magnetic field , 0B , above which 

magnetic breakdown takes place, one should 

 

Figure 10-12 The trajectory (dashed line) of magnetic 

breakdown in Pippard’s model 
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compare the energy correction to the Landau levels due to the periodic potential to the energy 

difference between adjacent Landau levels.  

Since the periodic potential is assumed to be weak, the calculation of the energy correction to 

the Landau levels can be carried out in the framework of first-order perturbation theory which 

we turn to present now.  To be concrete, we consider the Hamiltonian 0 ( )H H u x= +  where 

                                                       
( ) ( )

22 2

0
2 2

x yp p eBxe
H

m m

+ +
= =

p+ A
,                                                     (10.76) 

is the Hamiltonian of a free electron moving in a two-dimensional plane with a perpendicular 

magnetic field (where we choose  the gauge ˆxB=A y ), and  

                                                                    ( ) 0

2
cosu x u x

a

 
=  

 
 ,                                                         (10.77) 

is the perturbation potential. Here  0u  is a constant that characterizes the strength of the 

potential, while a  is the period of the potential.   

Diagonalization of 0H  is obtained by separation of  variables,  

                                                                    ( ) ( )exp yik y X x = ,                                                       (10.78) 

which reduces the problem to the solution of the Harmonic oscillator, 

                                                          
2 2

2 2

2

1

2 2
c

X
m x X X

m x
 


− + =


,                                                (10.79)  

where   is the energy of the particle, while 

                                                          
c

eB

m
 =      and    

yk
x x

eB
 = + .                                                  (10.80) 

Thus, the energies of 0H  are Landau levels given by Eq. (10.68), and the wave functions 

associated with the n -th Landau level are 

                                                          ( ) ( ) ( ),

1
, exp

yn k y nx y ik y X x
L

 = ,                                      (10.81) 

where L  is the size of the system in the y  direction,   and 

                                      ( )
1

4
21

exp
22 !

c c c
n n

n

m m m
X x x H x

n

  



    
= −            

,                            (10.82) 
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Here ( )nH z  are the Hermite polynomials.  Notice that these wave functions are normalized to 

unity. Thus, the first-order correction to the n -th energy level due to the potential (10.77) is: 

                                    ( ) ( )2

, , 0

2
cos

y y

y

n n k n k n

k
u x dxX x u x

a eB


  



−

  
 = = −  

  
 .                  (10.83) 

Comparing this correction to the distance between Landau levels, c , yields the value of 0B . 

Our goal, now,  is to calculate n  in the limit of high energies 1n . For this purpose, one may 

use the semiclassical approximation for the wave function ( )nX x .  Within this approximation, 

the amplitude of the wave function is the square root of the classical density of the particle in 

space: 

                                                            ( )
( )2 2

*

cl
2 2

*

x x
x

x x






−
=

−
,                                                                  (10.84) 

where 2

* 2 cx m =  is the turning point of a particle with energy  , while ( )z  is the 

Heaviside step function, which is one for 0z   and zero otherwise1. Notice that we choose to 

normalize ( )cl x  such that its integral over space is unity.  

The phase of the wave function is determined by the action (measured from some arbitrary point 

in space which here we choose to be the origin) divided by : 

                                                                     ( ) ( )
0

1
x

x dx p x  =  ,                                                       (10.85) 

where the momentum is given by 

                                                                  ( )
2

2

*

2 1
x

p x m
x


 

= − 
 

.                                                     (10.86) 

Thus, the semiclassical approximation for the (normalized) wave functions is: 

                                                           
1 The classical distribution is obtained by projecting the  microcanonical distribution on the energy shell  down to 
real space.  For  

                                                                              
2

2 21

2 2
c

p
H m x

m
= + , 

The microcanonical distribution  is ( )N H  − , where N is the normalization constant, therefore   

                                                                    ( )
2

2 2

cl

1

2 2
c

p
x N dp m x

m
   



−

 
= − − 

 
 . 
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                                             ( ) ( )
( )

( )
2 2

*
2 2

*

cos2

sin

x
X x x x

xx x






    
= −  

 −    

,                                           (10.87) 

where the cosine and the sine functions describe even and odd wave functions (as the system is 

symmetric to reflection thought the origin).  

Substituting formula (10.87) in Eq. (10.83), we obtain the first-order correction to energy:   

                                        ( )( )
*

*

0

2 2

*

2
1 cos 2 cos

x

x

u
dx x x

ax x


 

−

 
  =    

 −
  ,                                    (10.88) 

where the + and − signs correspond to even and odd wave functions, respectively. Here, we have 

suppressed the shift of the cosine function by yk eB . This dependence is trivial and will be 

resorted in the final result.  

The oscillatory component of the above integral changes very rapidly compared to the distance 

between the turning points, *x , therefore the integral can be calculated in the stationary phase 

approximation. Neglecting the contribution from the integral over ( )cos 2 x a  because it 

changes very rapidly in space, and using the identity ( ) ( )2cos cos cos cos     = − + + , the 

above integral can be approximated by  

                           ( ) ( )
*

*

0

2 2

*

2 2
cos 2 cos 2

2

x

x

u
dx x x x x

a ax x

 
  

−

    
  −  +    

    −
  .          (10.89) 

From here, we obtain the stationary phase conditions: 

                                                                        ( )
2

2 0
d

x x
dx a




 
 = 

 
,                                               (10. 90) 

which give the stationary points, spx , as solutions of the equation 

                                                                             ( )sp 0k x
a


 = ,                                                        (10.91) 

where ( ) ( )k x p x=  is the local wavenumber with the momentum defined in Eq. (10.86). Since 

( )k x  is positive within the range  
*x x ,  real solutions of the above equation are obtained only 

for the minus sign. The stationary points obtained in this case are: 

                                                                      
( )

2 2

sp * 2
1

2
x x

m a






=  −  .                                                        (10.92) 
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Notice that they lie within the integration range, i.e.  sp *x x . 

It is convenient to define the angle   by the 

relation: 

                              cos
2a m





= .                   (10.93) 

Fig. 10-13 shows the geometrical meaning of this 

angle: It is the angle in a right-angled triangle 

whose hypotenuse is the particle wavenumber 

while its leg is half of the lattice wavenumber.  With 

this angle, the stationary points can be written in 

the form 

                              
( )
sp * sinx x 

=  .                    (10.94) 

The solutions of the stationary equation (10.91) 

with the plus sign yield imaginary saddle points, 

and one can show that their contribution is 

exponentially small in the limit of large energy. 

From the above analysis, it follows that the main contribution to the integral (10.89) comes from 

the first term in the square brackets; therefore, we may rewrite it in the form: 

                                            ( )
*

*

0

2 2

*

2
Re exp 2

2

x

x

u
dx i x i x

ax x


 

−

 
  − 

 −
  .                              (10.95) 

To evaluate this integral in the stationary phase approximation, we set 
( )
spx x


= in the pre-

exponential factor and approximate the argument of the exponential term by expanding it  to 

second-order around the stationary points:  

                                                      ( ) ( ) ( )( )
2

sp

*

2 2
2 tan

m
x x x x

a x

 
  


−  −  ,                            (10.96) 

where 

                                                             ( )( ) ( )
sp sp

2
2

yk
x x

a eB


 

+ + 
= − − 

 
.                                          (10.97) 

Here we have restored the dependence on  yk eB  (see comment below Eq. (10.88)).                                 

 

Figure 10-13 The geometrical interpretation of the 

stationary phase condition in Pippard’s model 
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With these approximations, the integral (10.95) becomes a simple Gaussian integral.  Collecting 

the contributions from both stationary points we obtain: 

                                                         
( )

0 cos
sin 2 4

cu
 

 
 

 
 =  − 

 
.                                               (10.98) 

The energy correction,  ,  depends on yk  through its dependence in  ; hence the condition 

for the validity of perturbation theory is max c    where the maximum value of    is 

obtained at values of yk for which  ( )cos 4 1 − = .  Thus, the threshold value of the magnetic 

field,  above which the system experiences a magnetic breakdown, is obtained from the condition 

max c  = , i.e. 

                                                                        
( )

2

0
0

sin 2

mu
B

e  
= .                                                                   (10.99) 

The 0B  dependence on the strength of the periodic potential and the particle energy is what one 

should expect: The threshold for magnetic breakdown is lowered as the periodic potential 

becomes weaker or as the particle energy increases.  The quadratic dependence on 0u  is also 

expected because 0B cannot depend on the sign of the potential. The more interesting ingredient 

in the above formula is the angle  : Formula (10.99) shows that when 0 → , 0B → ; namely, 

there is no magnetic breakdown. This strange behavior is because when 0 =  the electron wave 

number equals half of the lattice wave number (see Fig. 10-13); namely, the Bragg reflection 

condition is satisfied.  Bragg reflection implies that the electron always gets the required lattice 

momentum needed to pass from one edge of the Brillouin zone to the opposite edge (i.e., passing 

to the next Brillouin zone); therefore, the magnetic breakdown is suppressed.   

 

10.7  Strong magnetic field – Preliminary discussion (Moiré patterns) 

 

Until now, we considered the weak magnetic field limit where the breakdown of the lattice 

translation symmetry is ignored. This limit is realized when the magnetic flux threading one unit 

cell of the lattice is much smaller than the quantum unit of magnetic flux  0 2 e = . This regime 

applies to most physical systems, but it breaks down when the magnetic field is strong. 

Nevertheless, it turns out that if the magnetic flux threading one unit cell is a rational fraction of 

0 , the lattice translation symmetry can be restored at the cost of increasing the size of the unit 

cell.  The following section demonstrates how it is obtained by defining a new type of translation 
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operators called magnetic translations. This section will explore the implications of increasing 

lattice constant by an integer multiple on the band structure. We will do that with the help of a 

somewhat remote issue known as the Moiré patterns. As we shall see,  increasing unit cell size 

by factor n  leads to disintegrating of the energy band into n  minibands.  

Moiré patterns are large-scale patterns produced when superimposing two periodic objects with 

slightly different periods or at different angles of one with respect to the other. The patterns 

generated this way are similar to the phenomenon of beats in acoustics. Recall that  

superposition of two sinusoidal waves (say with the same amplitude) of nearby frequencies, 1  

and 2 ,  such that 
1 2 1 2,   −   yields a modulated sinusoidal wave:  

                                ( ) ( ) 1 2 1 2
1 2cos cos 2 cos cos

2 2
A t A t A t t

   
 

+ −   
+ =    

   
,                    (10.100) 

shown in Fig. 10-14.  The period of the modulation, 
1 24  − , is much larger than the period 

of each one of the waves. 

 

                       

Figure 10-14 The beats phenomenon in acoustics 

Similarly, a superlattice is obtained by superimposing two lattice layers with slightly different 

lattice constants. An example of such a system is when one layer is graphene while the other is 

boron nitride (BN). One of the reasons for preparing such heterostructures is to open a small (and 

controllable) gap at the K -points of graphene to make it a semiconductor. (In pure 

dichalcogenides, such as BN, the energy gap is too large, about 6 eV; hence, they are good 

insulators.)  However, the lattice constants of graphene and BN are slightly different. In graphene, 

the bond length is 1.42 Å, while in BN, it is 1.444Å - a difference of 1.7% between the lattice 

constants.   The superlattice obtained from the superposition of two layers of these materials is 

periodic on a much larger scale, as illustrated in Fig. 10-15. 

 An alternative way of obtaining superlattices is by taking two layers of the same lattice but 

slightly rotating one of the layers with respect to the other.   
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Figure 10-15 A superlattice obtained from two honeycomb lattices with slightly different lattice constants 

Continuing with the example of graphene on boron nitride (BN), let b  and ( )1 − b  denote the 

vectors of the reciprocal lattices of graphene, and BN, respectively, where 0.017 .  Also, let 

( )BNu r  denote the potential that the BN layer generates at the point r of the graphene.   

Expanding this potential in Fourier series, we have 

                                                            ( ) ( ) ( )exp 1
BN

BNu u i = −    b

b

r b r ,                                  (10.101) 

where ( )BN
ub

 are the Fourier expansion coefficients.  Evaluating this potential on the lattice points 

of the graphene layer, =r a , yields ( ) ( ) ( )exp 2
BN

BNu u i n = − bb
a  with an integer n .  To obtain 

this result, we have used the relation between the vectors of the Bravais lattice and the reciprocal 

lattice, 2 n =a b . Thus the period of the potential created by the BN layer on the graphene, 

( )BNu a ,  is a  . This period is much larger than the graphene lattice constant - of the order of 

100Å. 

Having a contribution to the potential energy with a periodicity that is 1 −  times larger than the 

original periodicity of the graphene implies that the Brillouin zone becomes smaller by a factor 
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of  . Treating ( )BNu r  as a small perturbation, we can repeat the procedure of nearly free 

electrons. Namely, first, we fold the original spectrum of the graphene into the reduced Brillouin 

zone and then use perturbation theory to open gaps at the crossing points of the bands.  The 

new bands obtained in this manner are called minibands. This procedure is schematically 

illustrated in Fig. 10-17 for a threefold increase of the lattice constant, 3a a→ , in a one-

dimensional system. 

                           

Figure 10-17  Disintegration of bands into minibands in a one-dimensional system due to a weak external potential 

that increases the lattice constant by a factor of 3. The left panel shows the original spectrum of the system. The 

middle panel shows the spectrum in the empty lattice approximation (here, the new Brillouin zone is highlighted by 

the bright middle stripe). The right panel is the spectrum obtained when the perturbation potential is included. This 

potential opens gaps in the intersection points of the energy levels shown in the middle panel.    

 

10.8  Magnetic translations 

 

Consider the problem of an electron moving in a two-dimensional periodic lattice subjected to a 

perpendicular magnetic field which is uniform in space and time-independent. The Hamiltonian 

of the system is   

                                                                   
( )

( )

2

2

e
H u

m

  = +
p + A r

r ,                                            (10.102) 

and we choose to work with the symmetric gauge: 

                                                                             
1

2
A = B r ,                                                           (10.103) 

where B is constant.  

It seems paradoxical that the Hamiltonian (10.102) is not invariant under the translation group 

of the lattice, while the physical quantities, i.e., the magnetic field and the potential, ( )u r , are 

invariant. Namely  for any lattice vector a : 
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                                              ( ) ( )+ =B r a B r     and     ( ) ( )u u+ =r a r .                                           (10.104) 

To reveal the cause of the problem, let us first apply the translation operator 
1

T
a  on the 

Hamiltonian, where  1a  is one of the primitive lattice vectors: 

                                ( )
1 1 1

2

1

1

1

2 2 2

e e
T HT H i u

m

−

→ +

 
= = −  +   + 

 
a a r r a

B r + B a r .                   (10.106) 

The extra term that we got here is the source of the problem.  However, it can be canceled out if 

we redefine the translation operators such that their operation includes multiplication by a phase 

factor:   

                                                                 ( )
1 11exp

2

e
T i T

 
= −   

 
a aB a r                                           (10.107) 

so that 

                                                                              
1 1

1T HT H− =a a
.                                                                 (10.108) 

This type of translation is called magnetic translation (Zack 1964, Brown, 1964).  Notice that the 

order of the terms on the right-hand side of Eq. (10.107) is not important.  

To check for consistency of the above definition of magnetic translations, let us apply them to  

wave functions:  

                                                ( ) ( ) ( )
1 1 1exp

2

e
T i 

 
= + −   

 
a r r a B a r .                                (10.109) 

Operating on the above formula by  another magnetic translation operator, 
2

Ta
, associated with  

the second primitive lattice vector, 2a , gives 

           ( ) ( ) ( ) ( ) ( )
2 1 1 2 1 2 2exp exp

2 2

e e
T T i i 

   
= + −   −     

   
a a r r a + a B a r + a B a r .       (10.110) 

Now,  by reversing the order of the translations, we obtain  

           ( ) ( ) ( ) ( ) ( )
1 2 1 2 2 1 1exp exp

2 2

e e
T T i i 

   
= + −   −     

   
a a r r a + a B a r + a B a r .      (10.111) 

Thus 

                                

( ) ( )

( )

1 2 2 1

1 2

1 2 2 1

1 2

exp
2 2

        exp

e e
T T T T i i

e
T T i

 
= −   +   

 

 
= −   

 

a a a a

a a

B a a B a a

B a a

                             (10.112) 
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But 
1 2a a  is the area of one unit cell, hence ( )1 2  = B a a  is the magnetic flux threading a 

unit cell. Using the definition of the quantum magnetic flux, 0 2 / e = , we can rewrite the 

above result in the form: 

                             
2 1 1 2

0

exp 2T T T T i





 
= − 

 
a a a a

,                           (10.113) 

 or  alternatively     

                            
2 1 2 1

0

exp 2T T T T i





− −

 
= − 

 
a a a a

.                      (10.114) 

The phase factor in the last equation can be interpreted as due 

to the Aharonov-Bohm phase (or the Berry phase) that the 

particle accumulates when taken along the closed trajectory 

illustrated in Fig. 10-18. Thus, the naïve argument for periodicity 

of the system as follows by the periodicity of the magnetic field 

and the potential (10.104) is wrong because one must take into 

account also the Aharonov-Bohm phase, which is a pure 

quantum effect.  

Notwithstanding this problem,  there are situations where it does not exist. One possibility is 

when  0p =  where p  is some integer.  Namely, when the flux threading a unit cell is an integer 

multiple of the quantum unit flux, so that 

                                                                         
0

exp 2 1i





 
− = 
 

                                                      (10.115) 

In this case, the magnetic translations commute and the translation groups with or without the 

magnetic field are identical.  

Another possibility is when 0 q =  with 2q l= , where l  is an integer.  In this case, multiplying 

the unit cell by l  in each direction of the primitive basis vectors, such that the new primitive 

lattice vectors are 1la and 2la , produces a new lattice whose area is q  times larger than the area 

of the original unit cell, 2

1 2 1 2 1 2l l l q =  = a a a a a a . Therefore, the flux threading this new 

large cell is precisely 0  , and the translation group is restored, albeit for a larger lattice constant.  

When 0 q =  where q  is an integer but not a square of an integer, one can extend the unit cell 

by choosing the new primitive lattice vectors to be  1qa and 2qa , so that the area of the unit cell 

is 2q  larger than that of the original lattice.  The total magnetic flux threading the new lattice cell 

 

Figure 10-18 a closed trajectory 

along the edges of one unit cell 
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is also an integer multiple of the quantum unit flux:  ( ) 2 2

1 2 1 2 0 0q q q B q q q   =  = =B a a a a , 

and translation symmetry applies for the new lattice.  

The new Brillouin zone is smaller than that of the original system by factor of 2q , and as in the 

case of Moiré patterns, each band will be split into minibands. However, the unit cell area is q  

times larger than needed to obtain a phase of 2 . It suggests that the energy levels are q  times 

degenerate. To prove that, consider the Bloch wave function of the lattice with the extended unit 

cell, which satisfies the conditions:  

                         ( ) ( ) ( )2 2exp i + =k kr a ka r   and   ( ) ( ) ( )1 1expq i q + =k kr a k a r          (10.116) 

This function is a valid Bloch wave function because the magnetic translation operators 
1qT a

and 

2
Ta

commute, hence the translation group they define, is identical to that obtained by the usual 

translation operators 
1qT

a and 
2

T
a . Now let us define 1q −  additional functions obtained from 

( ) k r  by magnetic translations of distances 1ja  where 1,2, 1j q= − : 

                                                ( ) ( ) ( ) ( )1 1exp
2

j e
j i j 

 
= +   

 
k kr r a r B a .                                   (10.117) 

These functions have the same energy as  ( ) k r  because the Hamiltonian is invariant under 

magnetic translations (see Eq. (10.108)), but as we shall see, they correspond to a different quasi-

momentum.  Translation by 2a  gives 

                            

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 1 2 1 2

1 2

exp exp
2

                   exp ,
2

j

j

e
j i j i

e
i j

 



 
= +   

 

  
= +    

  

k k

k

r + a r a r + a B a ka

r k B a a

                 (10.118) 

while translation by 1qa  is 

                        

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 1

1 1

exp exp
2

                 exp .
2

j

j

e
q j i q j i q

e
i j q

 



 
= +   

 

  
= +    

  

k k

k

r + a r a r + a B a k a

r k B a a

               (10.119) 

From here it follows that 
( ) ( )j

 k r Bloch functions whose quasi-momentum, is ( )1
2

e
j+ k B a , 

hence 

                                                                 ( )1
2

e
j 

 
= +  

 
k k B a .                                                    (10.120) 

Thus, the energy levels are q -fold degenerate. 
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10.9  Hofstadter’s butterfly 

 
Imagine an electron in a two-dimensional lattice subjected to a uniform magnetic field  

(perpendicular to the sample).   Let us observe the behavior of the electronic spectrum when 

increasing the magnetic field. From the above discussion it flows that this spectrum undergoes a 

series of changes: Each time the magnetic flux, threading a unit cell, reaches a value that equals 

0p q =  (where q  and p are coprime integers) the band disintegrates into q  minibands.  

However, since the rational numbers are dense, one expects that the dependence of the 

spectrum on the magnetic field is fractal.  In 1976 Hofstadter solved, numerically,  the tight-

binding model in a square lattice subjected to a uniform magnetic field. He plotted the energy 

levels (divided by the hopping matrix element )t  as a function of the magnetic flux passing 

through a unit cell divided by quantum unit flux; see Fig. 10-19.  In the picture’s leftmost and  

rightmost sides, corresponding to  0 =  and 0 = , the spectrum is identical and contains a 

single band. Between these sides, one can see a self-similar behavior of the spectrum of the 

Landau levels. For instance, at 0 3 =  the spectrum contains three minibands and the local  

behavior near this value is similar to the behavior near 0. =  

 

Figure 10-19 Hofstadter’s butterfly 
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10.10  Exercises  
 
 
1. Prove equation (10.23). 

 

2. Show that in the framework of the tight-binding model, the hopping terms, t , to nearest 

neighbors in the presence of a weak magnetic field are: 

 

                                                         ( )exp
q

t t i d

 
 =  

 

a

a

r A r ,                                                (10.121) 

Where, t ,  is the hopping term without magnetic field, q  is the particle charge, a and a are 

neighboring lattice points and ( )A r  is the vector potential. 

Advice: Show that Wannier functions in the presence of the magnetic field, ( )wa r , are 

obtained from Wannier functions in the absence of magnetic field, ( )wa r , by 

                                             ( ) ( ) ( )exp
q

w w i d
 

 =  
 


r

a a

a

r r r A r ,                                             (10.122) 

and  satisfy  

                                               ( ) ( ) ( )exp
q

Hw i d Hw
 

 =  
 


r

a a

a

r r A r r ,                                 (10.123) 

where H  and H  are, respectively, the Hamiltonians of a particle moving in a periodic lattice 

in the presence or in the absence of a magnetic field.  

 
3. Calculate Landau levels of graphene in a magnetic field (neglecting Zeeman effect) 

Advice: Focus on the region of K -point and use Peierls substitution (10.31)  to obtain the 

effective Hamiltonian within the effective mass approximation. Write down the time-

independent Schrödinger equation as two coupled equations for the components of the 

dynamical momentum. Substitute one equation in the other and use the commutation 

relations (10.69). 

 

4. Prove equations (10.98) and (10.99). 
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5. Calculate the transition coefficient in the problem 

of magnetic breakdown for the following model. 

Consider the point 0k  in the k  space, where two 

energy bands become close, as illustrated in Fig. 

10-20. In the k p  approximation, the local 

Hamiltonian in the vicinity of this point is  

             
y y x x

x x y y

v k v k
H

v k v k

 + 
=  

− + 
,     (10.124) 

where k  is measured from 0k . Here 2  is the 

minimal energy gap between the levels (at 0k = ), 

xv and yv are parameters of the system, and 

without loss of generality, we set the Fermi energy 

to be zero.  Now, assume the magnetic field is applied in the z  axis direction and calculate 

the transition coefficient between the upper and the lower bands of the spectrum shown in 

the figure. 

Advice: Chose the Landau gauge yA Bx=  and 0x zA A= = , and  reduce the problem to that 

of dielectric breakdown model discussed in the previous chapter.  

6. Twisted bilayer graphene is obtained when superimposing two graphene layers with one of 

the layers twisted by a small angle   with respect to the other. Assuming a  is the lattice 

constant of graphene, what is the lattice constant of the superlattice?   

                                                   

              

 

 

 

Figure 10-20 A model for magnetic breakdown 
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11 Elastic deformations, sound waves, and phonons   

 
Until now, we have studied electronic preparties of crystals, assuming them to have perfect 

periodic structures. However, there is no such thing as a perfect crystal (even for the mere reason 

that any crystal is finite in size). In reality, atoms are shifted from their equilibrium position, and 

the periodic structure of the crystal is destroyed. There are many reasons for that; For instance, 

defects and impurities in the crystal, thermal and quantum fluctuations, external forces acting 

on the crystal, and sound waves propagating within the crystal. The distortion created by these 

factors affects the behavior of the electrons in the system because Bloch’s theorem does not 

apply anymore in its strict sense.  In our quest to understand the physical properties of crystals, 

an important step is to clarify the nature of elastic deformations in crystals and sound waves that 

represent time-dependent deformations. We begin this chapter by developing the mathematical 

tools that describe elastic deformations in crystals. Next, we discuss the energy of such 

deformations and use it to derive the equations for sound propagation in a crystal. Then, we will 

introduce phonons obtained from quantizing these sound waves, and finally, discuss optical 

phonons that appear in crystals whose unit cells contain more than one atom.    

 

11.1 The strain tensor  
 
Lattice deformations are states of the lattice in which the atoms move from their equilibrium 
position, as illustrated in Fig. 11-1. In this figure, the black disks represent the positions of the 
atoms at equilibrium, while the gray disks are the locations of the atoms in the deformed lattice. 

The vector ( )u r   describes the shift of an atom from its equilibrium position at r  into its new 

position at ( )+r u r . It is called the displacement vector.  

 

Figure 11-1 Deformation of the lattice structure as atoms shift from their equilibrium positions  
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Here we assume that the lattice deformations change very slowly in space, i.e.,  

                                                                            
( )

1
i

j

u

r





r
.                                                                (11.1) 

This assumption allows us to ignore the discrete structure of the lattice and treat r  as a 

continuous variable. Notice, however, that the above condition does not imply that the 

magnitude of the displacement vector, ( )u r , is smaller than the lattice constant. In fact, it can 

be much larger than the lattice constant because small changes in the distances between nearby 

atoms may accumulate to a large displacement vector. 

The object that we need in order to understand the elastic properties of a crystal is its energy 

dependence on deformations.  This energy comprises two main ingredients: the electrostatic 

repulsion of the ions and the electronic energy that compensates for the repulsion energy and a 

bit more so that all atoms are held together.  The electron energy is traditionally calculated in 

the Born-Oppenheimer approximation (slow ions and fast electrons). Here the Schrödinger 

equation for the electrons is solved for a given static configuration of the ions, and the obtained 

eigenenergy serves as the potential energy for the motion of the ions. In particular, the global 

minimum of this potential energy determines the crystal structure. 

Thus, to calculate the electronic contribution to the energy of deformations, one needs to 

consider the potential energy of the electrons in the deformed lattice:  

                                              ( ) ( )a j j

j

V v  = − −
 r r R u R .                                            (11.2) 

Here the sum is over all ions of the lattice that, in equilibrium, are located at points jR , while 

( )av r  is the potential energy created by a single ion sitting at the origin. In general, crystals are 

made from several different types of ions that create different potential energies; however, this 

complication does not affect the results we will derive below.  

In principle, one would like to expand the potential energy in the displacement vectors, as 

                                           ( ) ( )
( )

( )
?

a

a a j

j

v
v v u

r

 −
− − − −   

r R
r R u R r R R .                                (11.3)   

However,  ( )av r  typically changes over atomic scales, while ( )u r  may be much larger than the 

lattice constant. Thus, we cannot use the above expansion. To avoid this problem, let us define a 

new coordinate system that follows the ion's displacements. Namely,  a new coordinate,  r ,  that 

satisfies the condition:  

                                                                           ( )r + u r = r .                                                                 (11.4) 
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Taking into account that ( )v r  is local and changes a scale of order of the lattice constant (i.e. 

approximately proportional to a  -function) and the assumption expressed in Eq. (11.1),  we see 

that in this coordinate system the potential energy is periodic in space  with the original lattice 

periodicity: 

            ( ) ( ) ( ) ( ) ( ) ( )j j j j j

j j j

V v v v V   = − − = − − − 
     r r R u R r + u r R u R r R r .    (11.5) 

However, the new coordinate system is not cartesian anymore. Namely, the distance scale 

between points depends on their position in space. Thus, in order to work with these coordinates, 

one should use the metric tensor 
jkg  that allows one to calculate distances in the new coordinate 

system. If ds  represents an infinitesimal distance in the physical plane, then the new coordinate 

system satisfies the relation 2

ij i jds g drdr= , where repeated indices are summed over. In our 

case: 

                                   

( )

2

     2 ,

jk

i i i i
j k ij ik j k

j k j k

g

jk jk j k

dr dr u u
ds d d dr dr dr dr

dr dr r r

u dr dr

 



   
=  = + +      

= +

r r =

                         (11.6) 

where 

                                          
1 1

2 2

j jk i i k
jk

j k j k j k

u uu u u u
u

r r r r r r

       
= + + +   

           

                                                 (11.7) 

is the strain tensor.  Notice that the nonlinear term can be neglected using the assumption of 

slow changes in the displacement vector (11.1). 

A non-trivial metric enforces changes in the form of the Laplacian operator. Using the chain rule 

for derivatives, one can show that the transformed Laplacian is: 

                                                             2 1 ij

i j

gg
r rg

 
 →

 
,                                                              (11.8) 

where 1ij

ijg g −= is the inverse of the metric matrix, while det ijg g=  is the determinant of the 

metric tensor. This operator is called the Laplace-Beltrami operator. We will not prove this 

formula but  demonstrate it with the simple example of polar coordinates: 

                                                        2 2r x y= +   and    arctan
y

x


 
=  

 
.                                          (11.9) 

The metric associated with these coordinates can be obtained by the following calculation: 
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( )2 2 2 2 2

2

1 0

0

ijg

drdr d
dx dy dr r d

r d






  
+ = + =   

  
                                 (11.20) 

Therefore 2g r=  and the inverse matrix of the metric tensor is  

                                                                     1

2

1 0

1
0

ij

ij

ij

g g

r

−

 
 = =
 
 

                                                               (11.21) 

Substituting these results in the Laplace-Beltrami operator (11.8), we obtain 

                         
2 2

2 2 2 2

1 1 1 1 1 1ij

i j

g g r r
r r r r r r r r r r rg   

          
= + = + +   

           
,        (11.22) 

which is the familiar Laplacian in polar coordinates. 

Let us return to the problem of finding the electronic contribution to the energy of a deformed 

lattice. Having the form of the Laplacian (11.8) and the potential energy (11.5) in the coordinate 

system that moves with the atoms, we can write the Schrödinger equation for an electron moving 

in the deformed lattice in the form 

                                                      ( )
2 1

2

ij

i j

gg V r
m r rg

 
  
− + = 

   

.                                   (11.23) 

This equation is the starting point for a perturbative expansion of the electronic energy in the 

strain tensor (11.7), because the deviation of the metric 2jk jk jkg u= +  from the Cartesian 

metric  ( )0

jk jkg = is small (due to our assumption (11.1) that deformations are very smooth in 

space). Similar considerations also apply to the total energy of the system, which includes that of 

the ions.   

 

11.2 The energy of elastic deformations  
 

The energy of a deformed crystal is a functional of the strain tensor:  

                                              ( ) ( )elastic elastic

d

ij ijE u d r u   =   r r ,                                                 (11.24) 

where ( )elastic iju   r  is the energy density for a local deformation of the lattice.  It is clear that 

calculating this energy, from first principles, even in the framework of perturbation theory in the 
strain tensor, is a formidable task. However, assuming that deformations do not produce 
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dramatic changes in the band structures of the electrons, the above considerations suggest that 

the energy density can be expanded in powers of ( )iju r  

                                                            ( )elastic ;

1

2
ij ij kl ij klu u u =  + ,                                                   (11.25) 

where, as usual, repeated indices should be summed over.  Elasticity theory is obtained when 

this expansion terminates at the second order.  Notice that the linear term does not appear in 

this expansion because we are interested only in small deviations from the minimal energy of the 

equilibrium configuration.   

In the above formula, 
;ij kl  is the elastic modulus tensor.  In general, a tensor with four indices in 

a three-dimensional space contains 43 81= elements. However, this number is reduced to 21 

independent elements due to the following properties: First, it is symmetric to index changes of 

i j  and to k l  (because the strain tensor is a symmetric matrix). Second, it is symmetric to 

an interchange of pairs of indices ij kl . Spatial symmetries of the lattice are expected to 

reduce the number of independent parameters of the elastic modulus tensor even more, as we 

shall see now.   

Let us show how to employ group theory considerations to identify the number of independent 

parameters of 
;ij kl . The starting point is our understanding that the elastic energy (11.25) is 

invariant under all symmetry operations of the lattice. Therefore, the right-hand side of  Eq. 

(11.25) must belong to the identity representation. Thus, one should identify the irreducible 

representations of the strain tensor 
iju , and from their direct products (because the energy is 

quadratic in the strain tensor) select the identity representation. The number of times that the 

identity representation appears in these products is the number of independent parameters of 

;ij kl .  

To identify the irreducible representation associated with the strain tensor 

                                                                      
1

2

ji
ij

j i

uu
u

r r

 
= +    

 ,                                                       (11.26) 

notice that its symmetry is the same as the basis function 
i jr r  because both  iu  and jr  behave 

as vector’s components: iu  is a component of the displacement vector, while   jr  , is a 

component of the gradient operator which behaves the same as a vector concerning rotations, 

reflection, and inversion. 
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Example 1: The elastic energy of a two-dimensional lattice with
3vC symmetry 

Consider the in-plane deformations of a two-dimensional 

lattice with 
3vC  symmetry (such as boron nitride). The 

quadratic basis functions of the irreducible representations of 

this group  (associated only with the in-plane coordinates)  are 

shown in the table to the right. This table shows that xx yyu u+  

belongs to the identity representation, while ( ), 2xx yy xyu u u−

is a basis function of the two-dimensional irreducible 

representation.  For the first case, it is clear that 1 1 1A A A = ; hence the elastic energy must 

contain a term proportional to ( )
2

xx yyu u+ . For the second case, the product 

1 2E E A A E =    also contains the identity representation. The singlet associated with the 

latter product is the square of the norm of the basis functions. (one can see that the square of 

this norm ( ) ( ) ( )
2 222 2 2 22x y xy x y− + = +  is the same as the square of the 1A  basis function). 

Thus, one expects the elastic energy to have an additional term that is proportional to 

( )
2

24xx yy xyu u u− + ; hence the elastic energy of this lattice is 

                                     ( ) ( )
1

2 2
2

elastic A E

1 1
4

2 2
xx yy xx yy xyu u u u u  =  + +  − +

  
,                              (11.27) 

where 
1A  and E  are system-dependent parameters. These considerations show that 

;ij kl  

depends only on two parameters in the case of a two-dimensional lattice with 3vC  symmetry.    

 Comment: To identify the basis functions associated with the identity representation of  

products of higher dimensional representations (such as E E  in the above example), one 

should work with the correct normalization of the basis functions. That is a normalization for 

which unitary operators describe the actions of the symmetry operations.  For this choice, 

the sum of the square of the components of the basis functions is a singlet, because it is 

invariant under all symmetry operations represented by unitary transformations. The factor 

2 that appears in the second term of the basis function  ( )2 2 , 2x y xy−  ensures this property; 

however, many character tables do not use this convention. Ex. 7 of chapter 4 explains how 

to build basis functions that possess this property.  

Opening the brackets in the second term of the elastic energy (11.27), and rearranging the terms 

one obtains:  

 
 

3vC  

2 2x y+  1A  

 
2A  

( )2 2 , 2x y xy−  E  
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( )

( ) ( )

1

1

2
2 2 2

elastic A E

2 2
2 2 2

A E

1 1
4 2

2 2

1 1
        2 2 4 .

2 2

xx yy xx yy xy xx yy

xx yy xx yy xy xx yy

u u u u u u u

u u u u u u u

  =  + +  + + − 

 =  + +  + + − +
  

                   (11.28) 

This elastic energy can also be written in terms of traces of the strain tensor and its square:  

                                                      ( ) ( )

( )

1

2

elastic A E E

2 2

1

2
ˆtr ˆtr 

ii ij jiu u u

uu

 =  − +  ,                                        (11.29) 

where û stands for the strain tensor matrix. Notice that writing the energy density only in terms 

of ˆtr u and 2ˆtr u implies that the elastic energy of this system is rotationally symmetric. 

The first term on the right-hand side of the above formula is the energy associated with 

compression or decompression of the lattice, i.e., the energy associated with volume changing 

and shape-preserving deformation. It is because ˆtr u  is the relative change in the system volume 

due to deformation: To see why,  recall the Jacobian, g , of the transformation from r  to r , is 

the ratio of volume elements in both spaces. Therefore, the relative change in the volume can be 

evaluated as follows: 

                 

( ) ( )

( )

deformed equilibrium

equilibrium

V V 1
ˆ ˆ1 det 2 1 exp ln det 2 1

V 2

1 1
ˆ ˆ ˆ                             exp tr ln 2 1 exp tr 2 1 tr 

2 2

g I u I u

I u u u

−  
= − = + − = + − 

 

   
= + − −   

   
,

               (11.30) 

where we have used the identity ln det tr lnA A=  which holds for any diagonalizable matrix A .  

The second contribution to the energy density (11.29) is due to shear deformations. 

 

Example 2: The elastic energy of a crystal with tetrahedral symmetry 

The quadratic basis functions of the irreducible 

representation of the tetrahedral group, dT , are 

presented in the table to the right.  The basis functions 

of the E  and 2F  irreducible representations were 

calculated in Ex. 7 of chapter 4.  Here, the direct product 

of each irreducible representation by itself contains the 

identity representation. However, one should also 

check whether a direct product of two different 

irreducible representations contains the identity 

 

dT   

1A  
2 2 2x y z+ +  

2A   

E  ( )2 2 2 2 22 , 3z x y y x − − −
 

 

1F   

2F  ( ), ,xy xz yz  
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representation. It is not the case here because 2 1 2F E F F =  . Using the same procedure 

presented in the previous example leads to 

                                 
( ) ( )

( ) ( )

1 2

2
2 2 2

elastic A F

22

E

1 1

2 2

1
        2 3 ,

2

xx yy zz xy xz yz

zz xx yy yy xx

u u u u u u

u u u u u

 =  + + +  + +

 +  − − + −
  

                                   (11.31) 

Thus, the elastic modulus tensor contains only three system-dependent parameters, 
1A , 

2F  

and 
E . Rearranging the terms in this formula allows to write the elastic energy density  in the 

form: 

                     ( )( ) ( )2 2

1

2 F F 2 2 2

elastic A E E

cubic symmetry
spherical symmetry

1 1
2 6

2 4 2 2
ii ij ji xx yy zzu u u u u u

  
=  −  + +  − + + 

 
.               (11.32) 

The first two terms in this formula are expressed in terms of ˆtr u and 2ˆtr u , therefore, represent 

a rotationally symmetric contribution. The third term reflects the symmetry of a cube.  

 

11.3 Sound waves in crystals   
 
Sound waves in crystals are time-dependent smooth deformations.  They come from the periodic 

conversion of potential energy into kinetic energy and vice versa.  Thus, apart from the potential 

energy of the deformations one should include the kinetic energy of the atoms.  The Hamiltonian 

that describes such a system is: 

                                               
( )

( ) ( )
2

;

1

2 2

d

ij kl ij klH d r u u


 
= +  

 


p r
r r                                            (11.33) 

where   is the mass density and ( )p r  is the momentum density that satisfies the commutation 

relation:   

                                                        ( ) ( ) ( );n m nmp u i   = − −  r r r r                                               (11.34) 

(recall that ( )u r is the displacement vector at the point r .)   

We turn now to derive the equations of motion that follow from  Hamiltonian (11.33).  The time 

derivative of the displacement vector is obtained from its commutation with the Hamiltonian. 

Using Eq. (11.34) we obtain: 
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( )
( )

( ) ( )

( )
( )

( )

; ;

      .

ndm
m n m

n md

mn

pdu i i
H u d r p u

dt

p p
d r



 
 


 = =      


 = − =





r
r r r

r r
r r

                                (11.35) 

A similar calculation for the time derivative of the momentum density gives 

                     

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

;

;

;

;

; ;

      ; ;
2

1
      

2

1
      

2

dm
m ij kl ij m kl

d

ij kl ij m l m k

k l

d

ij kl ij ml mk

k l

d

ij kl ml

dp i i
H p d r u p u

dt

i
d r u p u p u

r r

d r u
r r

d r

   



  = = −       

  
   = −  +          

  
   = −  − + − 

   

= 









r r r r

r r r r r

r r r r r

( ) ( )
( )

( );      .

ij ij

mk

k l

ij km ij

k

u u

r r

u
r

 
    

+ − 
    


= 


r r
r r

r

            (11.36) 

Defining the stress tensor to be  

                                                                 ( )
( )

;km ij km ij

km

H
u

u





=  =r

r
                                             (11.37) 

we can write equation (11.36) in the form of a continuity equation: 

                                                                       0m
km

k

dp

dt r



− =


                                                                 (11.38) 

showing that the stress tensor is the momentum flux density.   

Taking the time derivative of Eq. (11.35) and substituting Eq. (11.36), we obtain the wave 

equation: 

                                                                ( )
2

;2

1m
ij mn ij

n

d u
u

dt r


= 


r .                                                 (11.39) 

To solve this equation, we substitute  a solution in the form of a traveling wave: 

                                                                   ( ) expm mu Ue i i t=  −q r ,                                                        (11.40) 
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where U  is the wave amplitude, e  is a unit vector that defines the direction of the displacement 

vector,  q is the wavenumber, and   is the frequency. With this choice, the strain tensor (11.7) takes 

the form 

                                                        ( ) ( )exp
2

ij i j j i

i
u U e q e q i i t= +  −q r .                                     (11.41) 

Substituting  (11.41) and (11.42) in the wave equation  (11.40), we obtain the dispersion relation 

of the sound wave 

                                                                ( )2

;

1

2
m ij mn i j j i ne e q e q q


=  + .                                        (11.42) 

To identify the sound velocity,  

                                                                      ( )ˆc
q


=q ,                                                                       (11.43) 

of a wave moving direction of the unit vector ˆ q=q q ,  we use the symmetry of  
;ij mn  to the 

index change i j  to obtain 

                                                                ( )2

;

1
ˆ ˆ ˆ

m ij mn j n ic e q q e


= q .                                                    (11.44) 

The above equation is an eigenvalue equation for the 3 3 matrix  

                                                                     
;

1
ˆ ˆ

mi ij mn j nM q q


=  .                                                          (11.45) 

Its three eigenvalues are the squares of the sound velocities, ( )2 ˆc q  ( )1,2,3 = ,  for a given 

direction of the wave proparagion, q̂ . The eigenvectors of 
miM  are the normal modes of the 

vibrations, ( ) ( )ˆ
e q  (which also depend on the propagation direction of the wave). These modes 

are orthogonal  

                                                              ( ) ( ) ( ) ( )
3

1

j j

j

e e
   


=

 = =e e ,                                                 (11.46) 

and form a complete basis 

                                                                             ( ) ( )
3

1

i j ije e
 




=

= .                                                                   (11.47) 

The role of the unit vector e  is similar to polarization in electromagnetic waves; therefore, it is 

called the wave polarization vector.  
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Example 1: The spherical approximation of sound waves in a lattice 

Consider the case where the elastic modulus tensor is rotationally invariant. Such a tensor has 

the form   

                                                   ( );ij kl ij kl ik jl il kj       = + + ,                                                   (11.48) 

where   and   are constants called Lamé parameters. This tensor satisfies the required index 

symmetries, and the elastic energy obtained from this tensor (11.25) is expressed only in term of  

traces of the strain tensor and its square: 

                               
( )

( ) ( )

elastic ;

2 2

1 1

2 2

ˆ ˆ       tr tr
2 2 2

ij kl ij kl ij kl ik jl il kj ij kl

ii kk kj kj lj jl

u u u u

u u u u u u u u

       

  


 =  = + +
 

= + + = +

                               (11.49) 

This form of the elastic modulus tensor provides an approximation for zinc blende crystals when 

the third term in Eq. (11.32)  is negligible.  Substituting it in Eq. (11.44), we obtain: 

                       

( ) ( )

( ) ( )( )

2

;

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ             ,

m ij mn j n i ij mn j n i im jn in jm j n i

m m m

c e q q e q q e q q e

q e q

 
     

  

 

 

=  = + +

=  + + 

q

q e q e

                   (11.50) 

or in the vector form: 

                                                         ( ) ( )2 ˆ ˆ ˆc
  

 

+
 +q e = q e q e .                                                   (11.51) 

Now we can identify two cases: Longitudinal waves where the wave propagates in the same 

direction of the displacement vector, ˆ 1 =q e , and two degenerate modes of transverse waves 

where the displacement vector is perpendicular to the propagation direction, ˆ 0 =q e . From the 

above equation, we obtain that for  longitudinal waves, 

                                                                     
2

c
 



+
= ,                                                                 (11.52) 

while for transverse waves   

                                                                          c



⊥ = .                                                                        (11.53) 

Thus, transverse waves propagate at a lower velocity than longitudinal waves. Typically, the ratio 

of the sound velocity of the transverse waves to that of the longitudinal wave is small: 
2 110 10 .c c − −

⊥   
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The dispersion of sound waves in this spherical 

approximation is illustrated in Fig. 11-2.   

 

We remark that this figure only describes the 

depression of sound waves at small wave numbers, 

namely wave numbers that are much smaller than 

the lattice wave number. It is because our derivation 

is based on the assumption of slow and smooth 

deformations in space.  

 

Example 2: Sound waves in zinc-blende crystals 

The elastic energy of a zinc-blende crystal was derived in the previous section and is given by  Eq. 

(11.32).  Redefining its constants, we write it in the form: 

                                           ( ) ( )
2 2 2 231 2

elastic
2 2 2

ii ij ji xx yy zzu u u u u u
 

= + + + + .                                (11.54) 

The elastic modulus tensor, in this case, is  

                                    ( )2
; 1 3

, ,2
ij kl ij kl ik jl jl ik i j k l

x y z

   


         
=


 =  + + +  ,                         (11.55) 

and it can be used in order to calculate the matrix M by formula (11.45).   Alternatively, one can 

construct this  matrix directly from the elastic energy using the formula: 

                                                                   
2

elastic1
mn

m n

M
e e






=

 
                                                             (11.56) 

where   

                                                   elastic ;

1

2
ij kl ij klu u =       and  ( )

1
ˆ ˆ

2
ij i j j iu e q e q= +                                   (11.57) 

The proof of this formula is given as an exercise. Here we use it to calculate the velocity of sound 

of waves that move in the direction  1,1,1  and for general direction on the ( )1,0,0  plane.   

In the first case ˆ ˆ ˆ 1 3x y zq q q= = = ,  therefore ( ) ( )2 3ij i ju e e= + . Now, let us calculate the 

various contributions to the mnM  matrix coming from the elastic energy (11.54). The first term 

is:  

 

Figure 11-2 The dispersion relation of sound 

waves in the spherical approximation  
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                                                          ( )1 1 1
elastic

2 6
ii jj i j

ij

u u e e
 

 
= =  ,                                                 (11.58) 

and from here, we obtain 

                                   ( )
( )

( )
12

1 elastic 1 1

1 1 1

1 1 1
6 3

1 1 1

mn im jn jm in

m n ij

mn

M
e e


   

 

 
    

= = + =     
 

 .                    (11.59) 

The second contribution to the elastic energy (associated with the middle term in Eq. (11.54)) is 

                                                     ( ) ( )( )2 2 2
elastic

2 24
ij ji i j j i

ij

u u e e e e
 

 
= = + +                                  (11.60) 

which gives 

                                      

( )
( )

( )( ) ( )
22

2 elastic 2 2

2

1
12 6

1 1 1 1 0 0

1 1 1 0 1 0  .
6

1 1 1 0 0 1

mn im jm in jm mn

m n ij

mn

M
e e


    

 



  
= = + + = +
 

    
     

= +    
        



           (11.61) 

Finally, the last contribution to the elastic energy is, 

                                          ( ) ( ) ( ) ( ) ( )
22 23 2 2 23 3

elastic
2 6

xx yy xx x y zu u u e e e
 

  = + + = + +
  

,                         (11.62) 

hence 

                                                        ( )
( )32

3 elastic 3

1 0 0

0 1 0
3

0 0 1

mn

m n

mn

M
e e





 
   

= =     
 

 .                                           (11.63) 

Collecting all terms, we obtain that the matrix mnM  for a wave propagating in the  1,1,1  direction 

is: 

                     ( ) ( ) ( )1 2 3 2 1 2
3

1 0 0 1 1 1
21

0 1 0 1 1 1
3 2 6

0 0 1 1 1 1

M M M M
 

   
  +    

= + + = + +        
   

.            (11.64) 

The diagonalization of this matrix is simple because a matrix whose all elements are ones has one 

eigenvalue that equals three and two degenerate eigenvalues that equal zero. Taking into 

account this property, we obtain that  the wave velocities are   
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                                         32
1,2

6 3
c

 


= +         and         31 2

3

2

3 3
c

  

 
= + +  .                         (11.65) 

One can check that 
3c  is the velocity of the longitudinal wave that moves in the  1,1,1  direction, 

while 1,2c are the velocities of the transverse waves.   

 

Consider now the case of a sound wave moving in some general direction on the ( )1,0,0 plane. 

For this case ˆ 0xq =  hence  ( )ˆ ˆ 2ij i j j iu e q e q= + for , ,i j y z= , while ˆ 2xj jx x ju u e q= =  for ,j y z=

and 0xxu = . Following the same procedure presented above, we have:  

                     ( ) ( )
21 1 1

elastic
ˆ ˆ

2 2
ii jj y y z zu u e q e q

 

 
= = + ,       ( )1 21

2

0 0 0

ˆ ˆ ˆ0

ˆ ˆ ˆ0

y y z

z y z

M q q q

q q q


 
  

=  
 
 

                      (11.66) 

                                      ( ) ( ) ( )
2 22 2 2

elastic

, ,

ˆ ˆ ˆ
8 4

i j j i x j

ij y z j y z

e q e q e q
 

= =

 
= + +  ,                                          (11.67) 

                                      ( )2 22

2

1 0 0 0 0 0

ˆ ˆ ˆ0 1 0 0
2

ˆ ˆ ˆ0 0 1 0

y y z

z y z

M q q q

q q q


   
    

= +   
    
    

 ,                                           (11.68) 

and 

                            ( ) ( ) ( )
2 23 3

elastic
ˆ ˆ

2
y y z ze q e q



  = +
  

 ,     ( )3 23

2

0 0 0

ˆ0 0

ˆ0 0

y

z

M q

q


 
  

=  
 
 

                               (11.69) 

Thus 

                             

2

232 2 1 1 2

231 2 2 2 1

0 0
2

ˆ ˆ ˆ0
2 2 2

ˆ ˆ ˆ0
2 2 2

y y z

y z z

M q q q

q q q



     

     

 
 
 
         
 = + + + +   
    
 

         + + + +    
    

 .                  (11.70) 

From here, it is clear that one wave velocity is:  

                                                                               2
1

2
c




=                                                                     (11.71) 

while the two others are obtained from diagonalization of the 2 2 submatrix : 
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        ( ) ( )
2 2

2 2 23 32 1 2 1 1 2
2,3

3 1 1
cos 2 sin 2

4 2 2 2 2
c  

       

            
= + + + + + +     

     
,       (11.72) 

where we choose ˆ cosyq =  and ˆ sinzq =  (so that 

ˆ 1=q  because ˆ 0xq = ). Thus, we obtained three 

different wave velocities for this case, which is the 

typical situation as demonstrated in Fig. 11-3. 

Finally, we comment that, in general, the polarization 

vector need not be parallel or perpendicular to the 

direction of wave propagation. In other words, the 

characterization of waves as longitudinal or transverse 

is, in general, only approximate.   

 

11.4 Phonons  
 
Phonons are obtained from the quantization of sound waves. Each normal mode of the lattice 

vibrations (assuming its amplitude to be sufficiently small)  is essentially a simple harmonic 

oscillator. Quantization of the latter, as we know, can be easily obtained by expressing the  

position operator, x̂ , and the momentum operator, p̂ , in terms of the creation and annihilation 

operators, †â and â ,  defined by 

                                     ( )†ˆ ˆ ˆ
2

x a a
m

= + ,    and   ( )†ˆ ˆ ˆ
2

p i m a a= − − ,                                   (11.73) 

where m  is the oscillator mass and   is its frequency.  With these variables, the Hamiltonian of 

the harmonic oscillator takes the form: ( )†ˆ ˆ 1 2H a a= + .  

Similarly, to quantize the sound waves of a crystal, one has to expand the displacement vector 

and the momentum density in terms of the system's normal modes and then quantize each 

normal mode treating it as a simple harmonic oscillator.  In analogy to Eq. (11.73), the 

displacement vector and the momentum density are given by: 

                 

( )
( )

( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

†

,

†

,

ˆ ˆ ˆexp exp ,
2 Vol

ˆ ˆ ˆexp exp ,
2Vol

j j

j j

u e a i a i

p i e a i a i



 
 



 






 =  + −  

 = −  − −  





q

q

r q q q r q q r
q

q
r q q q r q q r

           (11.74) 

where ( ) ( )ˆc  =q q q .  Here we assume the system to be finite in size (but large) and denote  

 

Figure 11-3 Typical dispersion of sound 

waves in crystals 
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its volume by Vol . This assumption implies that the wavenumber vector q  can take only discrete 

values set by the boundary conditions. The operators ( )†â q  and ( )â q  are the creation and 

annihilation operators of a phonon with a wavenumber q  and polarization  . Since  these are  

bosons, their commutation relations are : 

                  ( ) ( ) ( ) ( )† †ˆ ˆ ˆ ˆ; ; 0a a a a   
    = =   q q q q ,   and   ( ) ( )†ˆ ˆ;a a    

  =  q,qq q .             (11.75) 

The above representation of the displacement vector and the momentum density ensures that 

these quantities satisfy the commutation relation (11.34)  (see Ex. 4), and since each vibrational 

mode of the lattice is an independent harmonic oscillator, substituting Eqs. (11.74) in the 

Hamiltonian (11.33) yields: 

                                                      ( ) ( ) ( )†

,

1
ˆ ˆ

2
H a a  




 

= + 
 


q

q q q .                                           (11.76) 

The expectation value of the number operator ( ) ( ) ( )†ˆ ˆ ˆn a a  =q q q  is the number of phonons 

that occupy the normal mode with wave q  number and polarization  . Thus, if we denote by 

( )n q  the occupation state with ( )n q  phonons,  then similar to the harmonic oscillator, 

                                        
†1 1n a n n   + = +   and 1n a n n   − = .                            (11.77)   

At thermal equilibrium, the average occupation of phonons is given by Planck’s distribution: 

                                                           ( )
( )

1

exp 1
B

n

k T




=

 
− 

 

q
q

,                                                  (11.78) 

where Bk  is the Boltzmann constant, while T  is the temperature. From here, it follows that the 

typical frequency of phonons at equilibrium is  Bk T  , and their typical wavenumber is 

Bq k T c , where c  is the speed of sound. Since the total vibrational energy of a system is 

obtained from an integral dd q  over Planck’s distribution multiplied by ( ) Bk T q  (Here d  

is the system's dimensionality), it is of order 1d d dU q T T c+ . Hence the variation of this 

energy, due to a T  change in the temperature, is ( )
d

U T c T  . Thus, the heat capacity of 

the phonons is: d

VC U T T=    . 

There is nothing mysterious about the second quantization procedure that we used here to 

characterize sound waves in quantum systems. If we had treated the position and momentum of 

each particle in the lattice as quantum operators, all the way through, the resulting energy levels 

and eigenstate would be precisely those of the Hamiltonian (11.76) - see Ex. 5. 
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11.5 Optical vibrations in crystals  (optical phonons) 

  

In the previous sections, we discuss lattice vibrations associated with deformation that, 

essentially, do not affect the internal structure of each unit cell. For a simple crystal made from 

one type of atom situated on Bravais lattice, these vibrational modes, called acoustic modes or 

acoustic phonons, are all one can have. However, if each unit cell contains ucN atoms, it has ucN d  

degrees of freedom, where d  is the system dimension. Thus, there must be ( )uc 1N d− additional 

vibrational modes associated with all possible internal deformations of a unit cell. These 

vibrational modes are called optical vibrations or optical phonons (when quantized). A schematic 

illustration of the phonon spectrum in three-dimensional systems where each unit cell contains 

two atoms is shown in Fig. 11-4. 

 
Figure 11-4 A schematic illustration of the phonon spectrum in a three-dimensional lattice 

 
 

All phonon branches, whether acoustic or optical, satisfy the condition ( ) ( )2 2 = −k k dictated 

by time-reversal symmetry.  Translational symmetry implies that ( ) ( )2 2 + =k b k  where b  is 

an arbitrary vector of the reciprocal lattice.  The highest frequency of the acoustic branches of 

the spectrum appears at the edge of the Brillouin zone ( k a=  in the above figure). The highest 

frequency among them is called Debye frequency and denoted by D . At temperatures much 

smaller than Debye’s frequency, DT  , the heat capacitance is d

VC T , as we saw above. 

However, when DT   the law of equipartition implies 2V B ucC k N d .  
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Example:  Waves in a one-dimensional system 
 

Consider a one-dimensional system made of particles connected by springs having identical 

spring constants, K . Each unit cell of this lattice contains two particles with masses 1m and 2m  

as shown in Fig. 11-5.  We shall consider only longitudinal vibrations of this system and denote 

by 
( )1

ju and 
( )2

ju the displacement vectors of the particles in the j -th unit cell, along the chain, as 

indicated in the figure below.   

 

 

Figure 11-5 A one-dimensional chain made of two types of particles connected by identical springs 

Newton’s second law yields the equations of motion: 

                                                         

( )
( ) ( ) ( )

( )
( ) ( ) ( )

12

2 1 2

1 12

22

1 2 1

2 12

2 ,

2 .

j

j j j

j

j j j

d u
m K u u u

dt

d u
m K u u u

dt

−

+

 = − +
 

 = − +
 

                                             (11.79) 

Defining 2 K m  =  ( 1, 2 = ) and substituting solution of the type 
( ) ( )expju A ikaj i t


 = − , 

where k is wave number and a  is the lattice constant, reduces the above equations to  

                                            
( )

( )

2 2 2

1 1 1

2 2 2
22 2

2 1 exp 0

01 exp 2

ika A

Aika

  

  

 − + −      
  =    + −      

 .                          (11.80) 

A nontrivial solution of this equation is obtained only when the determinant of the above matrix 

vanishes. This condition yields the biquadratic equation: 

                                                         ( )4 2 2 2 2 2

1 2 1 22 4 sin 0
2

ka
    

 
− + + = 

 
                                          (11.81) 

whose solutions are: 
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                                  ( ) ( )
2

2 2 2 2 2 2 2

1 2 1 2 1 24 sin
2

a

ka
k       

 
= = + − + −  

 
,                          (11.82) 

and  

                                 ( ) ( )
2

2 2 2 2 2 2 2

1 2 1 2 1 24 sin
2

o

ka
k       

 
= = + + + −  

 
.                          (11.83) 

The first solution (11.82) represents the acoustic branch of the vibrational spectrum.  Expanding 

it to leading order in k yields a linear dispersion: 

                                                                     ( )
( )

1 2

2 2

1 22
a

a
k k




 +
.                                                   (11.84) 

The second solution (11.83) represents the optical branch of the spectrum.  Its expansion, to 

leading order in k , yields: 

                                                       ( ) ( )
( )

2 2 2
2 2 21 2
1 2 3

2 2 2

1 2

2

4 2
o

a
k k

 
  

 
+ −

+

                              (11.85) 

Thus, the frequency of the optical branch in the limit 0k →  is a positive constant. It is easy to 

check that in the limit, 0k →  the eigenvectors of the acoustic modes describe a rigid translation 

of the whole unit cell with 1 2A A= , while for the optical mode, the particles move one against the 

other, keeping the center of mass of each unit cell fixed, 2 2

2 1 1 2A A = − , see Fig. 11-6. Notice that 

identifying acoustic modes with a motion of the whole unit cell and optical modes with situations 

where particles move one against the other becomes meaningless as k it approaches the edge 

of the Brillouin zone.  

 

 

 

Figure 11-6 Acoustic and optical modes in a one-dimensional mass chain in the limit of vanishing wavenumber   
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11.6  Symmetry approach to optical modes in crystals 
 
The observation that optical modes, in the limit of vanishing wavenumber are, essentially, the 

vibrational modes of an individual unit cell suggests harnessing symmetry considerations for 

revealing their properties - similar to our study of molecules in chapter 4. Identifying the 

symmetries of these optical modes is also crucial for the characterization of the lattice optical 

response to the electromagnetic field discussed in the next chapter. To identify the irreducible 

representations of the optical modes, one may use the following procedure: 

(a) Identify the symmetry group of the system at 0k = . 

(b) Construct the character table associated with the lattice displacement vectors 

representation.  Here to simplify the analysis, it is convenient to represent the lattice 

displacement vector representation, which we denote by lattice ,  in the form: 

                                                       lattice atom-sites vector =   ,                                               (11.86) 

where vector  is the irreducible representation associated with symmetry operations on 

vectors, while atom-sites  is the atom-site representation determined only by the positions 

of the atoms and not by their displacements (which are taken into account by vector ). The 

character of the atom-site representation for a given symmetry operation is the number 

of atoms that remain at their positions or moved to points that differ by one of the lattice 

vectors.  

(c) Find the composition of the displacement vectors representation in terms of the 

irreducible representations of the group.   

(d) Identify the irreducible representations of the optical phonon by subtracting the ones 

associated with the acoustic modes from the direct sum of irreducible representations 

obtained in the previous step. Notice that here one should not subtract irreducible 

representation associated with rotations since, in a lattice, local rotations of unit cells 

are also part of the phonon spectrum. 

 

Similar to the normal coordinates describing the small oscillations of a system near its 

equilibrium, the optical vibration modes of a lattice are associated with normal coordinates ( )
i


 ,

where the index   denotes the irreducible representation of the vibrational mode,  and 

1,i = , where    is the dimension of the representation. The Hamiltonian that describes 

these normal coordinates is: 
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2 2

2

1 2 2

d i
i

i

p
H d r



 
=

 
= + 

 
 ,                                              (11.87) 

where ( ) ( ) ( );i j ijp i     = − − r r r r , and the equations of motion are those of simple 

harmonic oscillator whose frequency,   , is  -fold degenerate:  

                                                                                    
2

,

.

i i

i i

p

p 



 

=

= −
                                                             (11.88) 

 
   

Example: Optical phonons in graphene 
 

As we already know, the symmetry group of graphene is 6vC , and each unit cell contains two 

atoms belonging to two sublattices, A and B.  The characters for the atom-site representation 

depend on whether the symmetry operation replaces the two sublattices or not. If the symmetry 

operation replaces them, then the character is zero, while if it leaves atoms on the same 

sublattice, the character is two because there are two atoms in each unit cell. This consideration 

yields the following character table: 

 

 

 

 

 Now, with the help of the  character table of 6vC on page 94 we can identify the composition of 

this representation: 

                                                          ( )
1A

1
2 1 2 2 1 3 2 1 1

12
n =  +   +   =                                             (11.89)  

and 

                                                           ( )
1

1
2 1 2 2 1 3 2 1 1

12
Bn =  +   +   = .                                           (11.90) 

Thus atom-sites 1 1A B =   and since the irreducible vector representation of is vector 1E =  (because 

the linear basis function of 1E  is a vector ( ),x y ) we obtain that the composition of the lattice 

displacement vector representation is: 

                                                               ( )lattice 1 1 1 1 2A B E E E =   =                                            (11.91) 

3 d   3 v   2c   32c   62c   E   
6vC  

0  2 0  2 0  2 
atom-sites  
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Acoustic phonons are associated with simple displacement of the unit cells; therefore, their 

irreducible representation is  1E .  Thus, the two optical vibrations modes of the graphene belong 

to 2E  , and clearly, their frequencies are degenerate. One can identify them from the condition 

that the center of mass in each cell does not move, and from their properties under the symmetry 

operations of the group  (in particular that under 2c  rotation the basis functions of the 2E

representation return to themselves - see table on page 94). These optical modes are shown in 

Fig.  11-7. 

                                     

Figure 11-7 Optical modes of graphene 

 

Example: Optical phonons in zinc blende crystals 
 

The symmetry of zinc-blende crystals is the symmetry 

of a regular tetrahedron, see Fig. 11-8.  It is made of two 

interpenetrating fcc sublattices (see Fig. 7-14).  The 

symmetry group is dT  , and its character table can be 

found on page 144. One can check that all symmetry 

operations of the group leave the atoms on their cites 

modulo a change in the lattice vector; hence the 

character table of the atom site representation is: 

 

 

 

Since the vector irreducible representation is vector 2F = ,  we obtain the composition of the lattice 

displacement representation: lattice 1 2 22A F 2F =  = . From here, it is clear that the optical 

6 d 46S 23c 38c E dT 

2 2 2 2 2 atom-sites 

 

Figure 11-8  An  element of a zinc blende crystal 
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phonons are basis functions of the  2F  which is threefold degenerate. These modes are shown in 

Fig.  11-9. 

                      

                               Figure 11-9 The optical modes of zinc-blende crystals at 0=k ( -point) 

 

Comment: The threefold degeneracy of 

the optical phonon modes at 0→k  

appears only in systems of infinite size. 

In reality, there is no degeneracy 

between the longitudinal optical modes 

(LO)  and the transverse optical modes 

(TO) as one can see, for example, in the 

phonon spectrum of GaAs shown in  Fig. 

11-10. This situation where the system's 

behavior at 0=k  is different from the 

behavior in the limit 0→k  is called  

“anomaly”.   

This anomaly is due to the slight ionic 

nature of the crystal and the long-range 

Coulomb interactions. To explain the 

mechanism, consider waves moving in 

the  1,1,1  direction, such that the 

gallium and the arsenic atoms reside on 

different ( )1,1,1  planes. The plane of 

the gallium and the arsenic atoms are 

slightly charged: gallium planes are 

positive while the arsenic planes are 

negative. In transverse optical waves,  

these planes glide parallel to each other, 

 

Figure 11-10 The phonon spectrum of GaAs 

 

Figure 11-11 An illustration of the charge accumulated on 

the surface of  a system due optical vibration modes 
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and there is no net charge accumulated on the system's boundary. On the other hand, in 

longitudinal optical waves,  the same plans move towards or away from each other such that a 

net charge is accumulated on the surface of the system. This charge accumulation is similar to 

that of plasma waves of electrons in metals, see Fig. 11-11.  The surface charge creates an electric 

field that exerts an additional restoring force on the planes that increases the frequency of the 

longitudinal optical mode with respect to that of the transverse modes. In the next chapter, we 

will return to this feature and discuss the anomaly from a different perspective. 

 

 

11.7  Exercises 
 
1. Identify the components of the elastic modulus tensor for a three-dimensional hexagonal 

lattice. 

Advice: The point group of hexagonal lattice in three dimensions is 6hD ; however it is 

sufficient to use the irreducible representations of the 6vC and then to verify that the 

resulting elastic energy is invariant to reflection through a plane perpendicular to the 

principle symmetry axis.  

2. A trigonal crystal in three dimensions is described by 3dD  point group. Find all components 

of the elastic modulus tensor of this crystal. 

Hint: Recall that the subgroup 3D  of 3dD  is isomorphic to 3vC . 

3. Calculate the sound velocities in a three-dimensional hexagonal lattice for a wave moving in 

an arbitrary direction.  

Advice: Show that the elastic energy has a full rotational symmetry around the principal axis 

of symmetry (in any angle) and use it to set to zero one of the components of the 

wavenumber vector in the direction perpendicular to this axis.   

4. Prove that Eqs. (11.74) for the displacement vector and the momentum density satisfies the 

commutation relations (11.34). 

5. Consider a one-dimensional chain of identical particles connected by identical springs and 

described by the Hamiltonian: 

                                                           ( )
2

2

1

1

1

2 2

N
j

j j

j

p
H K x x

m
−

=

= + − ,                                              (11.92) 
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where m  is the mass of each particle, K  is the spring constant, jx  and jp  are, respectively, 

the displacement and momentum of the j -th particle, while N  is the number of particles 

in the chain.  For simplicity, assume it to be an odd number.  Also, choose periodic boundary 

conditions, i.e., 0 1Nx x +=  and 0 1np p += .  

(a) Define the Fourier series representation of the variables by 

            
1 2

expjx X i j
NN








 
=  

 
   and 

1 2
expjp P i j

NN







 
= − 

 
                     (11.93) 

where 

                                      
1 3 3 1

, , 0 ,
2 2 2 2

N N N N


− − − −
= − − .                                        (11.94) 

Use the inverse Fourier transform of the above quantities  and the commutation relations 

,j k ikx p i   =   to show that X  and P  are canonically conjugated variables, i.e. 

                                                               ,X P i    =  .                                                       (11.95) 

(b) Calculate the Hamiltonian in the new variables and show that 

                                              21

2 2

P P
H m X X

m

 
  



−
−

 
= +  

 
 .                                          (11.96) 

where  2 24 sin
K

m N


 
 =  

 
. 

(c) Now express the canonical variables in terms of creation and annihilation operators: 

                              ( )†

2
X a a

m
  



−= +


     and   ( )†
2

m
P i a a
  −


= − − .             (11.97) 

Verify that with this definition, the commutation relation (11.95) is satisfied and show 

that the Hamiltonian of the system reduces to the second quantized form: 

                                                         † 1

2
H a a  



 
=  + 

 
 .                                               (11.98) 
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6. Consider a two-dimensional lattice made of two 

interpenetrating square sublattices of two different 

atoms, as shown in Fig. 11-12. The symmetry group of 

this lattice is 4vC  , and its character table is provided 

below. In this exercise, assume that deformations 

only occur in the lattice plane. 

(a) Identify the elastic modulus tensor of this lattice.. 

(b) Assuming the mass density to be  , calculate the 

wave velocity of acoustic waves in an arbitrary 

direction. 

(c) Find the character table of the atom-site representation and identify the composition of the 

Lattice displacement representation. 

(d) Draw the optical phonon modes of this lattice. 

 

 

 

 

   2  2 
2c 3

4 4,c c E 4vC 

( )3 2 2,z z x y+ 
2 2 2,x y z+ z 1 1 1 1 1 1A 

   1− 1− 1 1 1 2A 

( )2 2z x y− 
2 2x y−  1− 1 1 1− 1 1B 

xyz xy  1 1− 1 1− 1 2B 

( ) ( ) ( )2 3 3, , , , ,z x y xy y x x y ( ),z x y ( ),x y 0 0 2− 0 2 E 

 

Figure 11-12  Interpenetrating square lattices 
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12 Crystals in an electromagnetic field 

The following chapter focuses on the interaction between lattice vibrations and 

electromagnetic waves. This subject is vast and deserves a course of its own because it 

includes many interesting optical phenomena such as absorption, dispersion, anomalous 

dispersion, double refraction, conical refraction, optical activity, dichroism, reflection, skin 

effect,  and Faraday effect. Here, however, we consider only a few features associated with 

the interaction of electromagnetic waves with optical phonons. There are three main aspects 

associated with the interaction of electromagnetic waves and optical phonons: One is the 

absorption of electromagnetic waves by excitation of lattice vibrations – a phenomenon 

called infrared activity. The second is the scattering of electromagnetic waves, which involves 

either excitation or absorption of an optical phonon - an effect called Raman scattering. 

Finally, the third aspect concerns the propagation of electromagnetic waves in a crystal. Here 

we shall see that when the coupling between the optical lattice vibrations and the 

electromagnetic field is strong, a new type of excitation appears, which mixes both. This 

excitation is called a polariton.  

 

12.1 Infrared activity 

 
One of the essential experimental tools for investigating materials is the study of their 

absorption spectrum of electromagnetic waves. In atoms, this absorption is associated with 

the excitation of electrons into higher energy levels. These transitions are dictated by 

selection rules, namely a nonzero value of the transition dipole moment between the atom’s 

initial and final states.  Similarly, when an electromagnetic field impinges a crystal, it may 

excite one of its optical vibrational modes.  This process that results in absorption (typically 

in the infrared regime of the electromagnetic spectrum) is called infrared activity. Our goal in 

this section is to formulate the selection rules for infrared absorption and identify which 

crystals are infrared active.   

The transition matrix element required for the absorption of an electromagnetic wave is of 

the dipole operator 

                                                                          3

dipoleH d r= −  E P ,                                              (12.1) 

where E is the oscillatory electric field acting on the crystal, and  P  is the induced electric 

dipole moment that results from the shifts of the atoms from their equilibrium positions.  This 

dipole moment appears only in optical phonons, where atoms with a different number of 

valence electrons move in opposite directions to create a dipole moment.  Thus, in general, 

                                                                                   PP =                                                              (12.2) 
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where  is one of the normal coordinates of the optical vibrational modes and 
P  is the 

charge density generated due to the atom shift.  Crystals in which 0P   are called 

polarizable. From the above equation, we see that in order to satisfy this condition, the 

irreducible representation of the optical phonons ( ) should be the same as the irreducible 

representations of a vector ( P ). 

An alternative way of presenting this condition is by looking 

at the transition matrix element dipoleES GSH   between 

the ground state GS  and the excited state ES of the 

system, represented by the diagram in Fig. 12-1.  The 

selection rule for absorption is that this matrix element is 

nonzero.  Now, the ground state of a system is generally the 

most symmetric state belonging to the identity irreducible 

representation 
1A .  On the other hand, the operator dipoleH  

belongs to the vector irreducible representation since the 

dipole moment is a vector. Now, in order to have 

dipole 0ES GSH   , this matrix element must be invariant under all group operations.  

Hence, the excited state must also belong to the vector irreducible representation (because 

the direct product of the vector irreducible representation by itself contains the identity 

representation).  However, the excited state ES  has the same symmetry of   ; therefore, 

the selection rule is that   should belong to the vector irreducible representation.  

 

 

Example: Zinc blende crystals 

 

We have seen that the optical phonons of zinc-blende crystals belong to the 2F  irreducible 

representation  (see example on page 244). This is also the irreducible vector representation 

of dT ; therefore, zinc-blende crystals are infrared active.  

 

Example: Diamond 

 

A diamond is a crystal made only from only carbon atoms 

in the form of a zinc-blende crystal. Namely, it is made of 

two interpenetrating fcc lattices, as shown in Fig.  12-2. In 

this figure, the two colors denote the two sublattices, 

where one is shifted with respect to the other by the 

vector ( )1,1,1 4a=l , where a  is the lattice constant. 

Being made of only carbon atoms, such that each one of 
Figure 12-2 the structure of a diamond 

as two interpenetrating fcc sublattices 

 

Figure 12-1 A diagram representing  

the absorption of electromagnetic 

wave in a crystal 
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them is connected to four other atoms in a tetrahedral shape, one expects this material to be 

infrared inactive. Let us verify that using the group theory approach.  

The space group of a diamond is nonsymmorphic. In addition to the 24 symmetry operations 

of the tetrahedral group, 
dT  it contains symmetry operations such as glide reflection and 

rotary translation. The conjugacy classes of the additional symmetry operations are:  |i l , 

 38 |ic l ,  23 |ic l ,  26 |c l , and  46 |c l . Altogether the group contains 48 elements  (apart 

from translations), and the group is isomorphic to the octahedral group 
hO . Below is the 

character table of the group. 

 
 

To identify the irreducible representation of the optical phonons, we need to construct the 

character table of the atom-site representation. Recall that, in this construction, a symmetry 

operation that transforms atoms between the same sublattice is considered the identity 

operation. Hence all symmetry operations of the dT  group leave the atoms on their sites, and 

taking one atom from each sublattice, the corresponding character is 2. On the other hand, 

all other operations that involve translation by l  swap atoms between the two sublattices; 

therefore, the corresponding characters vanish. Thus, the characters of the atoms-site 

representation are: 

 

 
 

 26 |c l  23 |ic l  48 |ic l  46 |c l  |i l 23c 46c 26c 38c E 
Diamond 

0 0 0 0 0 2 2 2 2 2 
atom-sites 

46S  
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From the character table of the 
hO  group, one can see that atom-sites 1 2A Ag u =  , hence the 

composition of the lattice representation is  

                                                   ( )lattice 1 2 1u 1u 2gA A F F Fg u =   =  .                                      (12.3) 

We see that the optical phonons belong to the 2gF  irreducible representation, which is not 

the vector representation, 
1uF . Thus, diamond is a nonpolarizable crystal, i.e., infrared 

inactive. Silicon crystal has precisely the same crystal structure as diamond; hence it is also a 

nonpolarizable crystal.   

However, it is worth emphasizing that, contrary to the impression obtained from the example 

of diamond, monoatomic crystals may be infrared active. For example, graphite made of 

graphene layers stacked one on top of the other is infrared active, see Ex. 1.  

 

12.2  Raman scattering  

 
Raman scattering is an inelastic scattering of electromagnetic waves by molecules or crystals, 

where the scattered wave has a different frequency from that of the incoming wave. Usually, 

the frequency of the incoming and outgoing waves is within the visible spectrum.  The small 

difference in their frequencies is due to the absorption or emission of an optical phonon. The 

process where the scattered wave has a lower frequency than that of the incoming wave, 

                                         1photon, photon, phonon, 0 ⎯⎯→ + k ,                              (12.4) 

is called "Stokes’ process”. The wavenumber of the emitted phonon is approximately zero 

because the momentum transferred to the phonon is ( )1 c − , where 
1 −  is very small 

while the speed of light c  is very large.  Another form of the Stokes process is by the creation 

of two phonons with opposite momenta: 

                                1photon, photon, phonon, phonon, ⎯⎯→ + + −k k                   (12.5) 

Here the total momentum transfer to the lattice is approximately zero as follows from the 

above argument, but the momentum of each phonon may be significant. However, the matrix 

element for two phonon emissions is much smaller than that of a single phonon emission.   

An anti-Stokes process is an inelastic scattering of an electromagnetic wave where the 

scattered wave has a higher frequency than the incoming wave due to the absorption of a 

phonon. This process becomes significant when the temperature of the crystal is sufficiently 

high such that many optical phonons are excited and may deliver their energy to the scattered 

photon.   

The Raman scattering can be viewed as a two-step process: In the first step, the system 

absorbs the photon and in the second, it emits a photon with a slightly different frequency.  
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Since the frequency of the electromagnetic wave is much higher than the typical phonon 

spectrum, the intermediate state after the absorption of the photon is a virtual state of high 

energy.  Figure 12-3 illustrates the various processes of absorption and scattering of light in 

crystals. The left side of the figure shows the infrared absorption process. The second from 

the right pair of arrows represents the elastic Rayleigh scattering where the incoming and the 

outgoing wave have the same frequencies. The Stokes and the Anti-Stokes Raman scattering 

are illustrated from both sides of the Rayleigh scattering process.  

                                 

Figure 12-3 Illustration of  the main processes of interaction of light and crystal vibrations 

 

Being a two-step process, the Raman scattering is obtained by a second-order perturbation 

theory in the dipole Hamiltonian, dipoleH . A diagrammatic representation of this two-step 

process is shown in Fig. 12-4. Here IS denotes the initial state of the crystal, VS  is its 

intermediate virtual state, and FS is the final state of the crystal. E  and E denote the 

incoming and outgoing photons, respectively.   

             

Figure 12-4 Diagrams of Raman scattering 

Thus, the matrix element for Raman scattering is of the form: 

              dipole dipole dipole dipole

FS IS FS IS

VS VSIS VS IS VS

H VS VS H H VS VS H

E E E E
   

 
+

− + − −
  .           (12.6) 
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From here, one can deduce the selection rules for Raman scattering: Since dipoleH  belongs to 

the irreducible vector representation, the above matrix element will be nonzero if the normal 

coordinate   belongs to irreducible representation with quadratic basis functions of the form 

i jr r .  In principle, the product of two vector representations (each one of them stands for 

dipoleH ) also contains the identity representation, and one may argue that a nonzero matrix 

element is associated with a final state that also belongs to  
1A . However, this process does 

not excite the lattice's optical vibrational modes required for Raman scattering.  In other 

words, it is associated with Rayleigh scattering.   

Examples 

(a) Graphene: We have seen that the in-plane optical phonons of graphene belong to the 

2E irreducible representation of 6vC . This irreducible representation has quadratic 

basis functions ( )2 2 , 2x y xy−  (see table on page 94); hence graphene is Raman active.  

(b) Zinc blende crystals:  Here, we have seen that optical phonons belong to 
2F  which is 

the irreducible vector representation. It contains the basis function ( ), ,yz xz xy  (see 

character table on page 142); hence this family of materials is Raman active.  

(c) Diamond: The optical phonons of diamond belong to the 2F g  irreducible 

representation, which has a basis function ( ), ,yz xz xy  (see table on page 251). Hence 

diamond is Raman active.  

(d) NaCl (salt): Sodium chloride is an ionic crystal whose 

structure is shown in Fig. 12-5. Here each type of 

atom is located on an fcc sublattice, and the two 

sublattices are shifted from each other by half of the 

lattice constant.  A unit cell of this crystal contains 

two atoms, and the corresponding point group is the 

octahedral group hO . One can check that all 

symmetry operations of this group shift the atoms 

only within their sublattices. Hence the atom site 

representation is atom-sites 12A g = , and the lattice 

representation is lattice 1 1 12A F 2Fg u u =  = .  This decomposition implies that the 

optical phonons belong to the 1Fu  irreducible representation, which does not have 

quadratic basis functions (see table on page 251). Hence, sodium chloride is Raman 

inactive. 

 

 

Figure 12-5 NaCl crystal 
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12.3 Electromagnetic waves in polarizable crystals and polaritons 

 

This section discusses the propagation of electromagnetic waves in polarizable crystals. To 

begin with, let us calculate the polarization vector of the crystal due to the application of a 

time-dependent electric field.  From Eqs. (11.87) , (12.1) and (12.2), we obtain that the 

Hamiltonian of a polarizable crystal subjected to electric field is: 

                                               
2 2

2

1 2 2

d i
i P

i

p
H d r



  
=

   
= + −  

   
 E  ,                                            (12.7) 

and the equations of motion are: 

                                                        = p     and    2

0 P = − +p E .                                           (12.8) 

From now on, for simplicity, we assume that )at 0k = ( there are only three degenerate 

optical phonons with frequency 0 =  (hence the system is invariant to rotations). Taking 

the time derivative of the first equation of motion and substituting it in the second equation, 

we have: 

                                                                     2

0 P + = −  E .                                                           (12.9) 

The Fourier transform of this equation with respect to time allows one to solve for  . 

substituting this solution in formula (12.2) for the polarization vector we obtain: 

                                                                    ( )
( )2

2 2

0

P 


 
=

−

E
P .                                                        (12.10) 

The electric displacement field is given by  

                                          ( )
( )
( )

2

0 0 , 2 2

0 0

r

P
e r

 


   

  


 
 = +

−  

D = E + P + P E ,                         (12.11) 

where ( )0 , 1e r  = −P E  is the polarization vector due to the electrons that occupy the 

atoms’ outer shells in the crystal. We ignore the frequency dependence of eP  because it is 

only relevant at high frequenciesw - well above the phonon spectrum. The ratio of the electric 

displacement field to the electric field is the dielectric constant of the material. Dividing it by 

the permittivity of the vacuum, 0 , we obtain  the relative dielectric constant: 

                                              ( )
( )

2 2 2

, , 2 22 2
00 0

P L
r r r

  
   

   
 

−
= + =

−−
,                                (12.12) 
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where 
L  is the frequency at which ( )r   vanishes, as demonstrated in Fig.  12-6. Notice 

that ( ), limr r


  
→

= . We also denote ( ),0
0

limr r


  
→

= . In GaAs, for instance, 
,0 12.9r =  while 

, 10.9r  = . 

 

                       
 

Figure 12-6 An illustration of the relative dielectric constant in polarizable crystal 
 
 

To describe the propagation of electromagnetic waves in such a crystal, consider the Maxwell 

equations in a material that does not have free charges or free currents.  Namely, when the 

effect of the electric field on the charge carriers can be accounted for by the polarization 

vector we have calculated above.  Then, in Fourier space, the Maxwell equations take the 

form: 

                                                     

0

0,                    0,

1
,              . 



 =  =

=  = − 

k D k B

B k E D k B
                                    (12.13) 

Substituting Faraday's law in Ampere-Maxwell law and using (12.11) gives 

          ( ) ( ) ( )2 2 2

0

0 0 0

1 1 1
  r     

  
 = −  −   = −  D E = k B = k k E k E k E k .     (12.14) 

Now looking for a solution of transverse waves, 0 =k E , and taking into account that the 

speed of light in a vacuum is  ( )2

0 01c  = , we obtain that the dispersion relation  of 

electromagnetic waves in a polarizable medium takes the form ( )2 2 2 r c k   = , i.e. 

                                                                      
2 2

2 2 2

, 2 2

0

L
r c k

 
 

 


−
=

−
.                                                (12.15) 

This relation is a biquadratic equation for   with solutions: 
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                                 ( )
2

2 2 2 2 2 2 2 2 2 2

, , , 0

,

1
4

2
r L r L r

r

c k c k c k      


   



 
= +  + − 

 
.             (12.16) 

The behavior of these solutions, in the limits 0k →  and k → , is: 

                                       

0
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2 2
2 20

0 2

,0 0

,

,
2

k

r

L
Lk

r L

c
k
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
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  
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−
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0

,

,

.

k

k

r

c
k

 




− →

+ →



⎯⎯⎯→

⎯⎯⎯→
                 (12.17) 

 
These solutions describe transverse waves, however, there is an additional solution 

describing longitudinal waves for which  0 =k E . From Faraday's law it follows for such a 

solution 0=B ; hence the Ampere-Maxwell law implies 0 =D . A nontrivial solution of this 

equation exists for 0=D  (but 0E ), i.e. when the polarization vector precisely 

compensates the electric field (see Eq. (12.11)). This condition is equivalent to ( ) 0r  = , 

thus  

                                                                                  L = .                                                           (12.18) 

 

 

Figure 12-7 Dispersion relation curves in a polarizable crystal 

The solutions that we have derived above are depicted in Fig. 12-7.  Three different curves 

represent them. Two curves are associated with the solutions ( )k .  Each one of these 

curves represents two degenerate solutions since they describe transverse waves 

characterized by two possible polarizations. The fifth solution (12.18) is the longitudinal wave. 

Here the magnetic field component vanishes. Thus, the oscillatory nature of this wave comes 

from  two sources: The mechanical restoring force acting on the atoms and the force due to 

the electric field created by the motion of the atoms.   
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In the absence of coupling between the electromagnetic waves and lattice vibrations, these 

five solutions reduce to 3 phonon modes (two transverse and one longitudinal) and 

electromagnetic waves having two possible polarizations.  However, the lesson from the 

above result is that in a polarizable material, one cannot decouple the lattice vibrations from 

the oscillations of the electromagnetic waves.  

Nevertheless, in the limit c →  and 0k →  such that 
Lck  the solutions of the dispersion 

relations reduce to the flowing: Two degenerate solutions 
TO 0   =  that describe the 

transverse optical vibrations of the lattice (essentially in the absence of electromagnetic field 

since the wavelength is very large), and an additional solution,  LO L   = ,  describing the 

longitudinal optical vibrations of the lattice.  These are the three solutions for the optical 

vibrations in zinc-blende materials discussed in the previous chapter.  From the above result, 

one can show (the proof is given as an exercise) that the frequency ratio of the longitudinal 

to the transverse optical vibrations satisfies the  Lyddane-Sachs-Teller (1941) relation:  

                                                                          
2

,0LO

2

TO ,

r

r



  

= .                                                                (12.19) 

Two additional solutions describe the dispersion of electromagnetic waves ,rck  = , 

with a refraction index ,1 rn  =  that results from the electronic polarization of the crystal.  

In the opposite limit, 0ck  , the solution ,0rck −  describes the dispersion of a 

transverse electromagnetic wave moving in material with a refractive index determined by 

the crystal’s electronic and ionic polarizations, ,01 rn = . On the other hand, ( )k+  is the 

dispersion relation of a quasiparticle called polariton that behaves quadratically in the limit 

0k → . A polariton is an excitation of the system in the limit where the coupling between the 

electromagnetic field and the lattice vibrations is strong, because the frequency of the 

electromagnetic waves is in resonance with the frequency of the lattice vibrations. In this 

limit, the photon and the phonon cannot be considered to be separate particles - they are 

strongly entangled and form one quasiparticle.  
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12.4 Exercises  

1.   - graphite is a crystal made carbon atoms obtained from 

staking graphene layers one on top of the other in a periodic 

form, ABABAB… such that layer B is obtained from the shift of 

layer A by ( )1 2 3 2= + +l a a c  where 
1a and 

2a  are the 

primitive basis vectors in the graphene plane, and c  is the 

primitive basis vector in the perpendicular direction, see Fig.  

12-8.  Each unit cell contains four atoms which are 

represented by different colors in the figure.    

The space group of this crystal is nonsymmorphic. In addition 

to the symmetry operations of 
3hD  it contains the following 

operations:  62 |c l ,  2 |c l ,  23 |c l ,  |i l ,  62 |S l , and 

 3 |d l .  This group is isomorphic to 6hD  group whose 

character table is given below 

 

Identify  the characters of atom site representation and show that the composition of the  

lattice representation is given by   

                                              ( )lattice 2 2 1 22 A B E Eu g u g =     

Identify the composition of the vibrational modes and show that  -graphite is infrared 

active.  

 

Figure 12-8 A unit cell of   graphite 
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2.  Identify the optical vibrational modes of graphene, which also include those that are out-

of-plane. Draw the out-of-plane optical phonon of the system. Is graphene infrared 

active?   

3. Is graphite Raman active?  

4. Prove the rule of mutual exclusion, which states that in a system with a center of symmetry 

(i.e., symmetric to inversion), vibrational modes that are infrared active are Raman 

inactive and vice-versa. 

5. Prove the Lyddane-Sachs-Teller relation given by formula (12.9). 
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13 Piezoelectric and polar crystals 
 
The previous chapter discussed crystals that become electrically polarized when subjected to 

an electric field or deformed by optical phonons.  However, some crystals possess 

spontaneous electric polarization even at equilibrium. These materials are called polar 

crystals, and in this chapter, we briefly discuss them. 

 

13.1  Piezoelectric crystals 

According to their point group symmetries, all 230 crystal structures can be divided into 32 

crystal classes. Of these, 21 classes are noncentrosymmetric, i.e., associated with point groups 

that do not possess inversion symmetry. Out of these 21 classes, 20 are associated with 

materials that may possess an electric dipole within the elementary unit cell of the crystal1. 

These materials are called piezoelectric crystals. Their prominent property is the ability to 

change their electric polarization vector, P ,  by mechanical stress. Ten crystals classes out of 

the piezoelectric class are called polar-neutral. In these materials 0P =  in equilibrium but  

0P  when the crystal is mechanically deformed.  Namely, 

                                                                        ;i i kl klP u= ,                                                                    (13.1) 

where klu  is the strain vector. The tensor ;i kl  is called the piezoelectric tensor.   

                                                   

Figure 13-1 the mechanism of the piezoelectric effect in noncentrosymmetric crystals 

 

The mechanism that generates polarization by stress is illustrated in Fig. 13-1. The left panel 

shows a unit cell of a crystal with no stress. Here, the “center of mass” of the negative and 

the positive charge is precisely at the center of the cell; hence the polarization vector 

vanishes. In the middle panel, compressive stress in the horizontal direction is applied to the 

crystal.  Now the center of mass of the negative and positive charges shift in opposite 

                                                           
1 The classes are: 

1 2 1 3 4 4 2 2 3 3 3 6 4 4 2 3 6 6, , , , , , , , , , , , , , , , , , ,h v h v v d h vC C C C C S D C C D C C D C D D D C T  and 
dT . The 

21st class is associated with the O  point group (see Ex. 1). 
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directions and create a polarization vector. In the right panel, the compressive stress is 

applied in the vertical direction. Here again, the lattice deformation shifts the centers of mass 

of the charges, resulting in polarization (albeit in the opposite direction from horizontal 

stress). 

Identifying the non-zero elements of the piezoelectric tensor is obtained in a similar way as 

in the Pockless effect discussed in section 9.1. Namely, to ensure that Eq. (13.1) is satisfied 

under all symmetry operations, one has to look for irreducible representations having, both, 

linear and quadratic basis functions. Notice that it is impossible in centrosymmetric materials.  

Example: Piezoelectricity in 3vC crystals  

Consider the case of a lattice with 3vC  symmetry 

(a two-dimensional version of such a crystal is 

shown in Fig. 13-1). Here the 1A  and the E  

irreducible representations have both linear and 

quadratic basis functions, therefore: 

                                                      

( ) ( ) ( )

( ) ( )

1 1A A

1 2

E E

1 2

,

.
2

z xx yy zz

x xx yy xz

y xy yz

P u u u

P u u u

P u u

 

 

= + +

−     
= +     

     

                                           (13.2) 

The above equation shows that compression in the x  or in the y  direction results in 

polarization vector in the x  direction (as illustrated in Fig. 13-1), while shear stress gives rise 

to a finite xyu  component of the strain tensor, which results in polarization in the y  direction.    

 

Example: Piezoelectricity in 6vC crystals  

In crystals with  6vC  group symmetry, the  1A  and the 

1E  irreducible representations have both linear and 

quadratic basis functions, hence: 

                         

( ) ( ) ( )

( )

1 1

1

A A

1 2

E

z xx yy zz

x xz

y yz

P u u u

P u

P u

 



= + +

   
=   

   

        (13.3) 

Notice, however, that if the strain tensor does not 

have a component in the z  direction, one cannot 

obtain polarization in the xy plane.  

 

  
3vC 

2 2 2,x y z+ z  
1A 

  
2A 

( ) ( )2 2 , 2 , ,x y xy xz yz− ( ),x y  E 

  
6vC 

2 2 2,x y z+ z  
1A 

  
2A 

  
1B 

  
2B 

( ),xz yz ( ),x y 1E 

( )2 2 , 2x y xy−  
2E 
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Example: Piezoelectricity in zinc-blende crystals  

The symmetry of zinc-blende crystals is dT , and from the character table on page 90, one can 

see that only 2F  irreducible representation has, both, linear and quadratic basis functions. 

Therefore, there is only one constant that characterizes the piezoelectric effect in these 

materials:  

                                                                      ( )2F

x yz

y xz

z xy

P u

P u

P u



  
  

=   
   
   

 .                                                         (13.4) 

The symmetry group 
dT  is the highest symmetry that enables piezoelectricity.  Finally, we 

comment that diamond has a similar lattice structure; however, its symmetry group is hO  (see 

table on page 252), and the irreducible representation of vectors, 1uF , does not have 

quadratic basis functions. Therefore, diamond is not piezoelectric material.   

 

13.2  Pyroelectric crystals  

 

In the previous section, we mentioned the ten crystal classes of the 

20 piezoelectric classes that are polar-neutral. The other 10 are 

crystals that exhibit spontaneous polarization, 0P , at equilibrium. 

These crystals are called pyroelectric. An example of such a crystal is 

zinc oxide, ZnO , whose crystal structure is shown in Fig. 13-2. It is 

made of two interpenetrating close-packed hexagonal lattices2 of 

zinc and the other of oxygen. The oxygen layers are shifted from the 

middle point between the layers of zinc. Thus, each atom of one kind 

is surrounded by four atoms of the other kind, creating a 

tetrahedron. This structure is called wurtzite crystal. Since the 

valences of oxygen and zinc atoms are different, it has a nonzero 

polarization vector.   

The polarization charge density is  given by  

                                                                          pol = − P ,                                                                (13.5) 

and from Gauss law, 0 pol E = , we know that 

                                                                            0−E = P ,                                                           (13.6) 

                                                           
2 A closed packed hexagonal (cph) lattice is made from layers of two dimensional hexagonal lattice ordered in 
an alternating manner such that nearby layers are shifted from each other by half of the lattice constant (as 
shown by the red sphere in Fig. 13-2).  

 

Figure 13-2  The crystal  

structure of ZnO  
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where 0 is the permittivity of the vacuum.  An illustration of the microscopic behavior of the 

electric field in a pyroelectric crystal is presented in Fig. 13-3.  This figure highlights the 

following main features:  

(a) The polarization charge is accumulated on the 

surface of the system. This property follows 

from Eq. (13.5) when P  is assumed to be 

constant within the crystal and zero outside.  

(b) The electric field outside the crystal vanishes. 

(c) Within the sample, the electric field changes 

rapidly in space (on the scale of the lattice 

constant); however, its average is finite. This 

average is essentially the field generated by the 

effective accumulated charge on the surface of 

the crystal.  

An important point that deserves attention is that although the charge accumulates only on 

the surface, the energy associated with such a configuration is proportional to the system's 

volume. It is because the energy is given by the integral of the square of the electric field over 

the whole volume of the system.  This property implies that in reality, “free” charges coming 

from impurities and the ambient atmosphere will adhere to the surface to compensate the 

electric field and lower the energy.   

Thus, under normal circumstances, polar materials do not display a net electric dipole 

moment. Nevertheless, the polarization vector is temperature dependent; therefore, changes 

in the polarization vector, P , of pyroelectric crystals can be detected by changing the 

temperature. In particular, if the temperature is changed by  T :  

                                                                        ;        , ,i iP T i x y z =  = ,                                        (13.7) 

where i , are the pyroelectric coefficients. This material property is the pyroelectric effect. 

 

Since P  is a vector that transforms according to the symmetry operations of the group, while 

i  is material property independent of symmetry operations, the only way of fulfilling the 

above relation is in crystals with a group symmetry in which the identity representation 1A  

contains linear basis functions. The crystals (within the piezoelectric class) having this 

property are characterized by a group symmetry belonging to one of the polar point groups, 

1 2 1 2 3 3 4 4 6, , , , , , , , ,h v v vC C C C C C C C C  and 6vC .  This class is called the pyroelectric class. 

 

 

 

 

Figure 13-3 The electric field in 

pyroelectric crystal 
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13.3  Ferroelectric crystals  

 

Pyroelectric crystals having the property that their polarization vector can be reversed by 

application of an external electric field are called ferroelectric. An additional property of these 

materials is that nonzero polarization appears only below some critical temperature, cT , thus     

                                                               0=P      for     cT T  ,                                                     (13.8) 

while                                               

                                                               0P      for     
cT T  .                                                    (13.9) 

A prototype family of ferroelectric materials is the family of perovskite oxides. These materials 

have a chemical composition 3ABO . Above the critical temperature, and in ideal situations,  

they form a lattice of cubic symmetry, as shown on the left panel of  Fig. 13-4.   In this lattice, 

the A  cations form a simple cubic lattice;  the O  anions are located on the corners of a 

regular octahedron, while the B  cations are at the center of each cell.  When the temperature 

reduces below some critical value, the unit cell undergoes a structural phase transition, as 

shown on the right panel of Fig. 13-4: The B cation shifts from the center of the cell, and 

lattice symmetry reduces to 4vC . This phase transition is accompanied by a finite polarization 

vector. Notice, however, that it is a spontaneous symmetry breaking since the energy for the 

case where the B  cation moves up is the same as if it moves down or sideways (in any 

direction of one of the oxygen atoms).   

                                         

Figure 13-4 An illustration of the ferroelectric phase transition in perovskite oxides. 

 

To understand the mechanism for the ferroelectric transition shown in the above figure, let 

us construct the system’s energy using symmetry considerations. The energy contains three 

main terms: 

                                                                 elastic couplingP   = + +                                                     (13.10) 
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The first is the energy due to electric polarization.  To the lowest order in the polarization 

vector, it should be of the form: 

                                                       ( ) ( )2 4

P ij i j ijkl i j k l

ij ijkl

PP PP P P  = + +  .                                       (13.11) 

This expansion contains only even powers of the polarization vector because odd powers 

cannot produce a scalar. Demanding also that the above expansion is invariant under all 

symmetry operations of the hO  group,  and using its quadratic basis functions, we obtain: 

                  ( ) ( ) ( )
2

2 2 2 2 2 2 2 2 2 2 2 2

1 2 3P x y z x y z x y x z y zP P P P P P P P P P P P   = + + + + + + + + .           (13.12) 

(Notice that the term associated with the square of 

the norm of the basis function of the Eg  irreducible 

representation yield terms that can be absorbed 

into the quartic terms of the above expansion). 

The second contribution to the total energy of the 

system is the elastic energy of deformation, which is 

given by:  

                                
( ) ( )

( ) ( )

1 2

2
2 2 2

elastic A F

22

E

1 1

2 2

1
         2 3 .

2

g

g

xx yy zz xy xz yz

zz xx yy yy xx

u u u u u u

u u u u u

 =  + + +  + +

 +  − − + −
  

                              (13.13) 

This energy is the same as that of crystals with tetrahedral symmetry , dT , (see Eq. (11.31)).  

Finally, the coupling between the lattice deformation and the polarization vector is of the 

form: 

                                                          ( )coupling ;ij ij kl ij k l

ijkl

u u P P = − .                                             (13.14) 

Requiring this  energy to be  a singlet we obtain: 

      
( )( ) ( )

( )( ) ( )( )
1 2

2 2 2

coupling A F

2 2 2 2 2

E              2 2 3 .

g

g

xx yy zz x y z xy x y xz x y yz y z
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u u u P P P u P P u P P u P P

u u u P P P u u P P

  



= − + + + + − + +

 − − − − − + − −
 

         (13.15) 

Now, let us assume that polarization may be generated along the z -axis, i.e., assume

0x yP P= = , and use the symmetry in the xy plane to set yy xxu u= .  One can see that 

0x yP P= =  implies that there is no coupling of the polarization vector to shear deformations; 

therefore, we also set 0xy xz yzu u u= = = . With these assumptions, the energy reduces to: 

 

hO   

1A g  
2 2 2x y z+ +  

Eg  ( )2 2 2 2 22 , 3z x y y x − − −
 

 

2F g  ( ), ,xy xz yz  
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     (13.16) 

where to obtain the second equality, we have completed the squares and redefined the 

coefficient 2  to include the contribution of the quartic terms obtained by this procedure.   

The condition for minimum energy follows from the equations: 

                                                            0
z xx zzP u u

    
= = =

  
.                                                             (13.17) 

Taking first the derivatives with respect to the strain tensor, summing and subtracting the 

resulting equations, we obtain that minimization with respect to the strain vector implies 

that: 

                                1
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g
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with the solution 

                    1
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.                      (13.19) 

Substituting Eqs. (13.18) in the energy function (13.16) one obtains  

                                                                      2 4

1 2z zP P  = + .                                                                      (13.20) 

Minimizing this energy with respect to zP  leads to the equation: 

                                                                   ( )2

1 22 0z zP P + = .                                                                   (13.21) 

Now choosing ( )1 2 cT T = − , we see that for cT T , the only real solution is  0zP =  which 

also implies that the strain tensor (13.19) vanishes. However, for cT T  there are two 

additional solutions: 

                                                      
( )

2

c

z

T T
P





−
= 


,         cT T ,                                                   (13.22) 

and one can quickly check that they are of lower energy than the solution 0zP = . These 

solutions describe spontaneous symmetry breaking associated with a non-zero value of 

polarization and hence deformation of the lattice as follows from Eqs. (13.19), and illustrated 

in the right panel of Fig. 13-4. 
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The energy as a function of the electric polarization, at temperatures above and below the 

critical temperature, is illustrated in Fig. 13-5.  Notice that the energy barrier between the 

two polarization states (13.22), depends on the temperature and becomes smaller as the 

temperature approaches the critical temperature. Thus, close enough to the critical 

temperature, the electric field required to flip the direction of the polarization can be very 

small. In contrast,  the energy barrier required to flip the polarization in pyroelectric crystals 

(which are not ferroelectric)  is very high. Here, the electric field required for reversing the 

polarization exceeds the threshold for dielectric breakdown.  

                                            

Figure 13-5 The energy as function of electric polarization in ferroelectric materials 

 

Example: Landau-Lifshitz-Kittel domains in ferroelectric layers 

Consider a layer of ferroelectric material with thickness h , width w , and length  L , such that 

h w L .  Let us assume that the crystal directions dictate the electric polarization vector 

to be perpendicular to the layer. Namely, the polarization charge is accumulated on the upper 

and lower surfaces of the layer.  

Assuming constant polarization throughout the sample, the electrostatic energy required for 

such configuration is   

                                                           ( )
2

20 30
electric

02 2
d r Lwh





= =

P
E ,                                           (13.23) 

where we have used Eq. (13.6).  

However, it is possible to reduce this energy by creating domains with opposite polarization 

vectors, as illustrated in Fig. 13-6.  In this configuration, the average charge accumulating on 

the surface is zero. In particular, if we assume that the width of each domain is a , then the 

electric field penetrates, essentially, only to a distance of order a  into the sample. Therefore, 

the electrostatic energy of this configuration  is  obtained from Eq. (13.23)  by replacing h

with a :      

                                                                ( )
2

electric

02
a Lwa



P
.                                                        (13.24) 
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Figure 13-6 A cross-section of a ferroelectric layer in which the ferroelectric order disintegrates into domains   

 

On the other hand, breaking the homogeneous configuration of the ferroelectric order into 

domains where the polarization vector points in opposite directions requires energy in order 

to create domain walls between two nearby domains.  The energy of such a domain is 

proportional to its area. If we take into account that there are  L a  such domain walls, the 

energy needed in order to create them is   

                                                              ( )domain-wall

L
a hw

a
 =  ,                                                        (13.25) 

where  is a constant with dimensions of surface tension energy.  The last two equations 

show that the electrostatic energy prefers small domains, while the domain wall energy 

becomes smaller when domains are large. The optimal size of the domains is obtained by 

minimizing the total energy with respect to a : 

        ( ) ( )
2 2

electric domain-wall 2

0 0

0
2 2

d d L L
a a Lwa hw Lw hw
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   

 

 
 + = + = − =  

 
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,      (13.26) 

which gives 

                                                                              0

2

2 h
a


=

P
.                                                       (13.27) 

These domains are called Landau-Lifshitz-Kittel domains (Landau Lifshitz 1935, Kittel 1946).  

The above result applies to the case of thin layers where anisotropy of the lattice dictates only 

two possible orientations of the polarization vector. In cases where the polarization vector 

can point in more directions and in three-dimensional samples, one may obtain different 

configurations of domains. An experimental picture of the domains in a three-dimensional 

system of the perovskite oxide 3BaTiO  is presented in Fig. 13-7. 
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Figure 13-7 Domains in Ferroelectric rode of 3BaTiO   

(Adapted from  Catalan et. al, J. Phys.: Cond. Mat. 19 ,  132201 (2007).) 
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13.4  Exercises  

 

1. Explain why crystals described by O  point group do not belong to the piezoelectric 

class even though this group lacks inversion symmetry.  

2. Identify the piezoelectric tensor for crystals with 4D  symmetry 

3. Write an expression for the total energy (due to polarization, elastic deformation,  and 

the coupling between them) for lithium niobate3, 3LiNbO  having a rhombohedral unit 

cell with 3dD   group symmetry at the paraelectric phase, see Fig. 13-8.  

Minimize the energy and find the polarization value below the critical temperature.  

Consider two cases, one for which 0zP  , while 0x yP P= = , and a second case where 

0zP =  while 0xP   and/or 0yP  . 

                   

Figure 13-8  The unit cell of 
3LiNbO  (at the paraelectric phase). Left panel side view, 

and right panel top view.  

 

                                                           
3  This unique material is used nowadays extensively in telecommunication, mobile phones, optical switches, 

optical waveguides, optical deflectors, surface acoustic devices, and many other applications.   
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14 Electrons in deformed crystals 
 
Until now, we have discussed the electrons’ behavior and the lattice deformations (whether 

static or dynamic) separately. However, to get a complete physical picture of a crystal, we 

need to consider the coupling between electrons and lattice deformation. Here we start 

presenting this issue by discussing the interplay between electrons and static deformations 

of the lattice. We begin the chapter with the effect of deformations induced by external stress 

on the electronic spectra of crystals and how they deform the Fermi surface. Next,  we 

consider the effect of local deformations, created by dislocations, on the wavefunction of the 

electrons. Finally, we show that metallic crystals may spontaneously deform and become 

insulators due to the interaction between electrons and lattice deformations - a phenomenon 

called Peierls instability.  

 

14.1 The effect of lattice deformation on the electron’s energy spectrum  

 

Generally, one expects lattice deformation to produce a perturbation proportional to the 

strain tensor. There are two types of contributions: One is a local contribution that results 

from  a  local change in the potential seen by the electrons due to the shift of atoms from 

their equilibrium position: 

                                                             ( ) ( )ij ijH u =r r ,                                                              (14.1) 

where ij  are system-dependent constants. The second type is a nonlocal contribution that 

appears in piezoelectric materials. Here the polarization charge density induced by 

deformations, 

                                                      pol ;i kl kl

i

P u
r

 


= − = −


,                                                       (14.2) 

generates a long-range potential according to Coulomb’s law: 

                         ( )
( ) ( )pol3 3

;

0 04 4

kl

i kl

r r i

e ue
H d r d r

r


 

   

 
 = − =

  − −  
r r

r
r r r r

,                  (14.3) 

where r  is the relative dielectric constant of the material. Usually, this is the dominant 

contribution in piezoelectric materials; however, we focus only on the local contribution of 

lattice deformations. 

Lattice deformations commonly reduce the system’s symmetry; hence, they are expected to 

lift degeneracies in the electronic spectra. However, as we know, this should not always be 

the case because degenerate points may be protected by topology. In this section, we 

demonstrate both these scenarios by concrete examples. 
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Consider first the spectrum of electrons near the   point of a crystal with tetrahedral 

symmetry, dT .  The typical behavior of the energy bands in such materials is shown in Fig.  14-

1. Here the upper band is nondegenerate and belongs to the 1A  irreducible representation, 

while the two other bands are degenerate and belong to the E  irreducible representation. 

To identify the structure of the Hamiltonian (14.1) of the system, one has to construct singlet 

terms that are linear in the strain tensor. The latter behaves as the quadratic basis functions 

of the irreducible representation. The quadratic basis functions of dT  are listed in the table 

on the right.  

Consider first the energy level associated with the 1A   

irreducible representations. From the table, it  

follows that the local Hamiltonian that takes into 

account the lattice deformation is of the form: 

                 ( ) ( )

1

2 2
1

A def

eff2
ii

k
u

m
 = +k ,                      (14.4) 

where ( )1

def , is a constant that characterizes the strength of the coupling between the 

electrons and the lattice deformation. (Recall that repeated indices are summed over). The 

term ( )1

def iiu  is known as the deformation potential. This perturbation simply shifts the energy 

band.  

Consider now the degenerate energy levels associated with the E   representation. Assuming 

the  Pauli matrices  ,x y   to be  basis functions of this representation, the local Hamiltonian  

 

 

Figure 14-1 A typical be behavior of energy bands 

near   point of a crystal with dT  symmetry   

dT   

1A 2 2 2x y z+ + 

2A  

E ( )( )2 2 2 2 22 , 3z x y x y− − − 

1F  

2F ( ), ,yz xz xy  

 

 
 

Figure 14-2  A gap opening in the spectrum 

of a crystal as a result of lattice deformation 
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takes the form:  

                              
( ) ( ) ( )

( ) ( ) ( )

2 2
2 2 2 2 2

E

eff

2

def

2 3
2

                   2 3 ,

z x y x x y y

zz xx yy x xx yy y

k
k k k k k

m

u u u u u

   

  

 = − + − − + −
 

 + − − + −
 

k
                      (14.5) 

where effm ,  , and ( )2

def  are constants that characterize the system. The first two terms in 

this local Hamiltonian describe two quadratic energy levels that are degenerate at 0k = . The 

third term is the perturbation due to deformation. Its form is similar to the second term, and 

therefore, it is a singlet. This term lifts the degeneracy at  0k = , unless xx yy zzu u u= = , as 

demonstrated in Fig. 14-2.  

We now analyze the effect of lattice 

deformations on the electronic spectrum of 

graphene near the  K  and K   points of the 

Brillouin zone.   Recall that the little group 

associated with these points is 3vC . The basis 

functions of this point group are listed in the 

table to the right. From this table, it follows that 

the local Hamiltonian near the K  points,  which 

takes into account planar lattice deformation, 

is:  

                               

( ) ( )
( ) ( )

1

def

2

def

 

   2

KK AB KK AB

z xx yy

KK AB AB

x xx yy y xy

H v I I u u

I u u u

  

  

 



=    +

 +  − +
 

k +
                                        (14.6) 

The first term accounts for Dirac’s spectrum of graphene. Here the wavenumberk is a four-

component vector describing the deviation from the degeneracy points, i.e. 

                                                                       K

K




− 
  − 

k k
k =

k k
                                                            (14.7) 

The second term, obtained from the quadratic basis function of the 1A  representation, is 

associated with compressive (or tensile) deformations of the lattice. This contribution shifts 

the whole energy spectrum and is not very interesting.  

The third term is a singlet formed from the E  irreducible representation, which has the same 

form as the triangular wrapping term (see Eq. (5.16)). It plays a role similar to vector potential 

because the Hamiltonian can be rewritten in the form   

                          ( ) ( ) ( )1

def def KK AB KK KK AB

z z xx yyH v I I u u   
  

=   −   +k A + ,                    (14.8) 

where 

  
3vC 

2 2x y+  
1A 

 AB

z 2A 

( )

( )

2

2

x iy

x iy

 −
 
 + 

 ;

AB AB

x y

AB AB

x y

ix iy

ix iy

 

 

 ++ 
    −−   

 
E 
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( )2

def
def 2

xx yy

xy

u u

uv

 − 
= −  

 
A .                                                           (14.9) 

This contribution does not open a gap at the degeneracy points. It only shifts the Dirac points 

in the energy and the momentum space, as illustrated in Fig. 14-3. Notice that  the K  and K 

points are shifted in opposite directions in the momentum space to preserve time-reversal 

symmetry.  

 

 

                     

 
 
 
 
 
 
 
 

 
Figure 14-3 Changes in the electronic spectrum of graphene due to lattice deformations. The left panel shows 

the shift of Dirac points, while the right panel depicts a cross-section along xk  axis when 0xyu = . 

 

The Hamiltonian (14.8) implies that in the case where the lattice deformations are not 

homogenous in space, such that def 0A  ,  the system may be viewed as subject to 

magnetic field pointing perpendicular to the graphene layer, but with opposite signs for the 

particles occupying the K and the K   points (so that time-reversal symmetry is preserved). 

 

14.2 Deformation of  the Fermi surface of metals due to lattice deformations 

 

In the previous section, we discussed the effect of lattice deformation on the degeneracy 

points of the spectrum. In metals, however, the Fermi surface is usually far from such points, 

and the effect of lattice deformation is mainly to deform the Fermi surface. To account for 

this effect,  one cannot ignore a basic property of metal -  its ability to screen electric charge 

effectively. As we shall see below, this feature constrains the form of deformation of the 

Fermi surface.  

The simplest theoretical description of screening is by the Thomas-Fermi approximation. If 

we denote by ( )V r the potential seen by one electron due to all charges in the system (ions 

and other electrons) and assume that it changes slowly in space (such that a semiclassical 

approximation applies), then the charge density in space due to the electrons is given by  

                                                    ( )
( )

( )
F

e F

V

e d e V



    = − − −  
r

r r ,                                          (14.10) 
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where   is the electron density of states which we assume to be essentially constant, for 

simplicity, and we have neglected temperature effects since it is usually much smaller than 

the Fermi energy (by a few orders of magnitude). A schematic illustration that explains the 

above formula is shown in Fig. 14-4.  

                                   

Figure 14-4 An illustration explaining formula (14.19): The density of electrons at a given point r is proportional 

to the number of levels between the bottom of the potential ( )V r  and the Fermi energy F . 

 
The total electric charge in the system is  

                                                                 tot ion exte   = + + .                                                    (14.11) 

Here ion Fe = +   is the positive charge due to the ions of the crystal (averaged over distances 

larger than the lattice constant; hence considered to be homogeneous), while ext  is the 

external charge.   Substituting (14.10) in (14.11), we obtain 

                                                                 ( )2

tot exte   = − +r                                                      (14.12) 

where ( ) ( )V e = −r r  is the electric potential. Using Gauss law 

                                                                        tot

0




 =E ,                                                               (14.13) 

where ( )= −E r , we obtain the self-consistent equation:  

                                                                ( ) ( )
2

2 ext

0 0

e 
 

 
− = − +r r .                                         (14.14) 

In particular, the electric potential generated by a point charge, Q , located at the origin is 

obtained from the solution of 

                                                                  ( ) ( ) ( )2 2

0

TF

Q
q  


− + =r r ,                                             (14.15) 

where TFq  is the Thomas-Fermi wavenumber given by:   
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2

2

0

TF

e
q




= .                                                                 (14.16) 

The solution of Eq. (14.15) is1 : 

                                                                      ( ) ( )
0

exp
4

TF

Q
r q r

r



= − .                                        (14.17) 

Thus, at distances much smaller than 1s TFr q= , the potential is essentially the Coulomb 

potential of a point charge, while for 
sr r , the potential is essentially zero. This behavior 

manifests the screening of a charge by the conduction electrons and sr  is the corresponding 

screening length. In metals, sr  is of the order of the Fermi wavelength, and screening implies 

that these systems are quasi-neutral.  

Crystal deformations do not introduce charge into the system; hence, quasi-neutrality 

imposes constraints on how the Fermi surface can change. In particular, the  electronic charge 

density which is given by the integral  

                                                                              
( )

2
2

d

d

d k



=                                                     (14.18) 

over the volume enclosed by the Fermi surface in the first 

Brillouin zone (see illustration in Fig. 14-5), must remain 

unchanged. In the above formula, the factor of 2 is due to 

spin.  

To formulate the quasi-neutrality constraint, let us  assume 

that the Fermi surface is deformed  as  

                           ( ) ( ) ( )ˆ ˆ ˆ
F F F→ +k n k n k n ,              (14.19) 

where n̂ is a unit vector pointing in some arbitrary direction 

in k space (see figure), ( )ˆFk n  is the Fermi wavenumber in 

that direction, and ( )ˆFk n  is the change in the Fermi surface 

                                                           
1  Taking into account the radial symmetry of the problem, and expressing the  Laplacian in polar coordinate Eq. 

(14.15) reduces to  

                                                                      ( )
2

2

2

1
0TFr q

r r
 


− + =


      for   0r  . 

Substituting  r =  one obtains a simple equation for  , whose physical solution is  

                                                                                         ( )exp TF

b
q r

r
 = − . 

The constant b is now determined from the requirement that in the limit 0r → ,   should reduce to the 

Coulomb potential of a point charge.  

 

Figure 14-5 An illustration of Fermi 

surface in three dimensional system 
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due to the lattice deformation. Quasi-neutrality requires that the change in the electron 

density vanishes, i.e. 

                                               
( )

( ) ( )22
ˆ ˆ ˆ 0

2
F Fd

d k 


=  = n k n n .                                         (14.20) 

Here ˆ ˆd dn = n  and d  is an infinitesimal element of the solid angle in k space. Now the 

most general distortion of the Fermi surface, which is linear in the strain tensor, is:   

                                                                         , ;
ˆ

F i ij kl kl jk u n =  ,                                                       (14.21) 

where ;ij kl  is some general tensor. Substituting this formula in (14.19)  yields the following 

condition on  ;ij kl :  

                                                                   ( )2

;
ˆ 0i ij kl kl j Fdn u n k = n .                                         (14.22) 

 

Example – The spherical approximation for ;ij kl  

The spherical approximation for ;ij kl  is  

                                                  ( )2
; 1

2
ij kl ij kl ik jl il jk     


 =  + + ,                                            (14.23) 

where at this point 
1  and 

2  are free parameters. However, substituting  (14.23) in (14.22) 

yields: 

                                         

( ) ( )

  ( ) 

22
1

2

1 2

ˆ
2

ˆ            0

i ij kl ik jl il jk kl j F

kk il l i F

dn u n k

u d u n dn k

     
 

 + + 
 

=   +  =





n

n n n

                             (14.24) 

If we assume that ( )2 ˆ
Fk n is symmetric for reflections: 

                            ( ) ( ) ( ) ( )2 2 2 2, , , , , , , ,F x y z F x y z F x y z F x y zk n n n k n n n k n n n k n n n= − = − = − ,          (14.25) 

then  in the  integral over ( )2

2
ˆ

F il l ik u n dnn  only diagonal terms survive ( ) ( )2

2
ˆ

F ii i ik u n dnn ; 

thus quasi-neutrality implies 

                                                                             2
1

3


 = −   .                                                   (14.26)     

From here, it follows that the Fermi surface deformation is  

                                                                ,

1

3
F i il l kk ik u n u n

 
=  − 

 
.                                                  (14.27) 

In particular, compressive deformation where ij iju   implies that 0F =k . 
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14.3 Dislocations  

Perfect crystals are extremely rare. In reality, any crystal has defects that destroy its perfect 

periodic structure. A common defect is a dislocation, illustrated in Fig. 14-6 for a two-

dimensional square lattice. Here an extra row of lattice points appears on the right side of the 

lattice, and far from the endpoint of this row  (the dislocation center), the lattice seems to 

have a perfect structure2. Thus, dislocation represents a nonlocal lattice deformation, which 

is noticeable only when encircling the dislocation. The mathematical characterization of 

dislocations is obtained using the Burgers vector  defined by the following integral 

                                                                              k
k i

i

u
b dr

r


=

                                                          (14.28) 

along a closed contour that encircles the dislocation, see Fig. 14-6. The value of this integral 

is independent of the contour’s shape or its distance from the dislocation point as long as it 

encircles the dislocation center.   

 

Figure 14-6 A dislocation in a two-dimensional square lattice and the definition of the Burgers vector 
 

As we shall see in this section, dislocations may play a role similar to magnetic flux lines. We 

begin the section with a reminder of the Aharonov-Bohm effect due to magnetic flux lines, 

then discuss dislocations in graphene, and finally, in the framework of the k p  

approximation. 

 

Reminder: Magnetic flux lines and Aharonov-Bohm phase 

A magnetic flux line in a two-dimensional system is obtained from a magnetic field 

perpendicular to the system and concentrated at a point. For instance, if the flux line is 

located at the origin of the xy  plane, then  

                                                           
2 Dislocations play a central role in explanation of the plastic  properties of materials.  In particular they explain 

large difference (of several orders of magnitude) between the experimental measurement of the force needed 

for plastic deformation, and the theoretical results which assume perfect lattice structure.    
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                                                                         ( ) ( )zB =r r ,                                                       (14.29) 

so that at any point 0 =B = A  but still  

                                                                          d  = A r ,                                                       (14.30)  

as flows from Green’s theorem. Thus, although the magnetic field is zero, the vector 

potential is not, and the Hamiltonian of a particle with charge q  is given by  

                                                                    
( )

( )
2

2

i q
H V

m

− −
= +

A
r                                         (14.31)    

The wave function obtained from the solution of the Schrödinger equation with this 

Hamiltonian can be written in the form:   

                                                          ( ) ( ) ( )0exp
q

i d 
 

 =  
 


r

r r A r r .                                (14.32) 

Here ( )0 r  is the solution of Schrödinger’s equation with 0=A , and boundary conditions 

(around the flux line) that ensure a single-valued function, ( ) r . The phase in the 

exponent of (14.32) is the Aharonov-Bohm phase (Aharonov & Bohm, 1959). Along a 

contour that encircles the flux line it equals 02  , where 0 2 q = is the unit quantum 

flux. Thus, when   is not an integer multiple of 0 , the exponential factor in (14.32) must 

have a jump somewhere along the closed contour that encircles the flux. One can choose 

this jump along an arbitrary line that starts at the flux line and extends to infinity. The 

freedom of choosing this branch cut is due to the gauge invariance of the electromagnetic 

potential. In particular, for the problem considered above,  one can choose it to be along 

the positive x  axis, as demonstrated in Fig.  14-

7. Thus, if we denote by ( )
0


 the wave function 

above and below the branch cut, as shown in 

Fig. 14-7, then: 

                    ( ) ( )
0 0

0

2
exp i


 



− + 
=  

 
               (14.33) 

This condition and the requirement that ( ) r

is a single-valued function are manifested in a 

shift of the energy levels and the existence of 

persistent currents.  

To illustrate these features, consider the simple 

example of a free particle of mass m moving in a ring of radius R  threaded by a flux line, 

 . The wave functions of the system are ( ) ( )0 expx b ikx = , where x  is the coordinate 

along the ring, k  is a free parameter, and b  is the normalization constant. The condition 

(14.33) yields 

Figure 14-7 The branch cut  of  flux line 
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                                                        ( )
0

2
exp 2 expb b ik R i






 
=  

 
                                      (14.34) 

and, hence,   

                                                               
0

2
2 2kR n


 


+ = ,                                                 (14.35) 

where n is an integer. Thus,  

                                                                        0

n

k
R




−

= ,                                                     (14.36)  

and the energy levels of the system of the particle are: 

                                                                   

2
2

2

02
n n

mR






 
= − 

 
                                           (14.37) 

The electric current associated with the n -th state is 

                                                             
0

n
n

k
j e e n

m mR





 
= − = − − 

 
                                  (14.38) 

Assuming 0 2  , and an even number of particles (with two possible spins) that occupy 

all the lowest energy states of the system , , 1, ,0, 1,n N N N N= − − + − , the total 

current flowing in the system is  

                                                         
( )

tot

0

2 1
2

N

n

n N

N
j j e

mR




=−

+
= = ,                                   (14.39) 

This current is zero for 0 =  (due to time-reversal symmetry); however, it is finite for a 

non-zero value of the flux. 

Notice that if we had an odd number of particles that occupy the lowest energy states of 

the system with 0 = , then the currents of all particles, except that at the highest energy 

level, will flow in opposite directions and cancel each other. In this case, the total current 

in the system is that of the last particle ( ) ( )1 1Nj e N mR+ = + . It shows that the persistent 

current (14.39), for 
0 2  , is approximately the current carried by the most energetic 

particle.  
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We now show that dislocations behave as 

Aharonov-Bohm flux lines in some situations. It 

is convenient to start with the example of 

graphene, where we already know that 

deformations appear in the form of a vector 

potential, see Eq. (14.8), and then generalize the 

result to other systems.  

In Fig. 14-8, we depict a dislocation in graphene 

lattice. It is realized by two disclinations: A cell 

with a polygon shape with seven sides attached 

to another cell with five sides. This distortion 

appears as a column of hexagonal unit cells 

inserted below the x -axis.   

In the continuum limit, we can choose the 

negative y -axis to be the branch cut where the 

jump that gives the Burgers vector, occurs. Thus, 

over distances  much larger than the size of a unit 

cell,  the translation vector associated with  the dislocation is given by:  

                                       

0
4

arctan
2

0
4

x

a
x

a y
u

ax
x




 

= − +  
  − 



,    and     0yu = ,                     (14.40) 

where a  is the lattice constant. The function ( ),xu x y  is presented in Fig. 14-9. Substituting 

Eqs. (14.40) in formula (14.9) for the vector potential  due to deformation we obtain:  

                                                
( ) ( )2 2

def def
def 2 2 2

1 ya a

xv x y v r

   
= − = 

−+  

z r
A .                                   (14.41) 

Now one can quickly check that the magnetic 

field associated with this vector potential 

vanishes,  

                     def def 0B =  = A ,               (14.42) 

but the magnetic flux is finite:  

             
( )2

def
def 2

a
d

v


 =  = A r .              (14.43) 

Thus,  the effect of dislocation on the behavior 

of electrons is similar to that of magnetic flux 

 

Figure 14-8 Dislocation in graphene 

 

Figure 14-9 The continuum limit of the translation 

vector  for the dislocation presented in Fig. 14-8. 
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line (with opposite signs for electrons in the K  and the K   valleys, to endure time reversal 

symmetry).  

 

Dislocations in the framework of the k p  approximation 

 

We now show that the analogy between dislocations and magnetic flux lines goes beyond the 

particular example of graphene and also applies for cases where the k p  approximation 

holds near a point in the Brillouin zone which is not the   point  (Iordanskii & Koshelev, 1985). 

 

In the continuum limit, a dislocation can be described as a  branch cut on which the translation 

vector, ( )u r , jumps as demonstrated in Fig. 14-9. Recall that the convenient coordinate 

system to work with is defined by ( )+ =r u r r  (see Eq. (11.4)). Thus if we denote by +r  and 

−r  the coordinates at the same point in space but from both sides of the branch cut, then 

+ −− =r r b,where b  is the Burgers vector. However, the wave function should be single-

valued, ( ) ( ) + −=r r ,  therefore ( ) ( ) − += −r r b  as shown in the figure below.  

 

 
 

Figure 14-9 The branch cut associated with dislocation and the wave function on its both sides. 

 

Now,  in the framework of the k p  approximation, the wavefunction near a valley at 0k  is 

approximated by a sum over bands: 

                                                             ( ) ( ) ( ) ( ) 
0

j

j

j

c = kr r r ,                                                            (14.44) 

where ( ) ( )
0

j
 k r  is the Bloch wave function of the j -th band at 0=k k , and ( )jc r  are 

functions that change slowly in space. Let us identify the change of the wave function when 

going along a contour the encircles the dislocation  from the upper side of the branch cut to 

its lower side:  

                                   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0 0exp
j j j j

i   + − + +→ = − = − k k k kr r r b r k b ,                (14.45) 
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where for the last equality we have used the fact that ( ) ( )
0

j
 k r  is a Bloch wave function and 

that the Burgers vector is a lattice vector (i.e., a  linear combination of the primitive lattice 

vectors). From here, it follows that  

                                                           ( ) ( ) ( )0expj jc c i− += − r r k b                                               (14.46) 

Thus the wave function, ( )jc r , accumulates a phase  0 = − k b  similar to the Aharonov-

Bohm phase obtained when a particle encircles a flux line (see Eq. (14.33)). This phase is 

obtained by adding the vector potential ( )def 0= − A k u  to the Hamiltonian by minimal 

substitution:  

                                                              ( )0i i− → − + k u .                                                   (14.47) 

Notice that the magnetic field associated with this vector potential vanishes, def 0= =B A ,  

but its integral around the dislocation is  , hence dislocations can be regarded as magnetic 

flux lines.  

 

14.4 Peierls instability 

 

One of the dramatic manifestations of the interaction between electrons and lattice 

deformation is when this interaction drives a metal into an insulator. If the interaction is 

sufficiently strong, the system favors a lower energy state in which the lattice deforms such 

that the unit cell is doubled, and a gap opens at the Fermi level. This phenomenon, called 

Peierls instability, is generic for half-filled one-dimensional systems, which we now discuss. 

Consider a one-dimensional lattice and let us assume that each unit cell, represented by a  

lattice point of the Bravais lattice, contributes one electron to the conduction band. The spin 

degree of freedom implies that the conduction band is half-filled, as illustrated in Fig.  14-10, 

and the system is, apparently, metallic.  

     

                                                                                      

Figure 14-10  The spectrum of a one-dimensional lattice where each unit cell contributes one 

electron to the conduction band 
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However, consider a scenario where pairs of lattice units approach each other. This can be 

realized with alternating shifts of the original lattice points, by  , to the left and  right, as 

shown in Fig. 14-11. We shall assume that these shifts are much smaller than the original 

lattice constant a , i.e. a .  

 

                          
       

Figure 14-11 A deformation of one-dimensional lattice that doubles the unit cell 

  
This deformation doubles the unit cell of the lattice; therefore, the Brillouin zone becomes 

smaller by a factor of 2. The electronic spectrum in the deformed lattice is obtained by folding 

the original spectrum into the new Brillouin zone and opening a gap at the degeneracy points, 

as shown in Fig. 14-12 (the lift of the degeneracy follows from the same arguments presented 

in section 7.1 for nearly free electrons ).   

 
 

 

Figure 14-12 The electronic spectrum obtained from doubling the size of a unit cell as shown in Fig. 14-2 

 

Now the electrons will fill the lower energy band; hence the gap that has been formed at the 

Fermi energy lowers the electronic energy, electorn 0  .  Clearly, lattice deformations 

requires elastic energy, defrom 0  . However, if the total change in the system’s energy is 

negative,  deform electron 0   = +  ,  the original lattice becomes unstable. Namely, it will 

deform, as illustrated above, and the system will become an insulator. This scenario is generic 

in one dimensional-systems (as we shall see below). In higher dimensions, Peierls instability 

depends on details of the system, such as the band structure, the elastic modulus tensor, and 

the strength of coupling between the electrons and the lattice deformation.  
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To be concrete, let us calculate the total energy of a one-dimensional lattice in the nearly free 

electron approximation. This energy is given by a sum of the electronic energy and the elastic 

deformation energy : 

                                                                
tot deform electron  = + .                                                               (14.48) 

Our goal is to calculate the dependence of these energies on the deformation parameter,  , 

defined in Fig. 14-11.   

The deformation energy can be deduced from general principles: It should be proportional to 
2  (being a shift from an equilibrium position), and to the length of the system, L . Therefore  

                                                                      
2

deform

1

2
L

a




 
=   

 
,                                                     (14.49) 

where the constant   (having the same physical dimensions as the elastic modulus tensor) 

accounts for the elastic restoring force. Here we normalized   by the lattice constant of the 

undeformed system a .  

The electronic energy is given by the integral 

                                                  ( ) ( )electron

0

2 4
2 2

F F

F

k k

k

dk dk
L k L k  

 
−

= =  ,                                            (14.50) 

where the factor 2 accounts for the spin degeneracy, ( )k  is the lowest energy band, and 

                                                                               
2

Fk
a


=                                                                (14.51) 

 is the Fermi wavenumber. 

 To calculate ( )k  , we employ a procedure similar to the nearly free approximation. Namely, 

we first fold the original spectrum into the reduced Brillouin zone and then treat the 

degeneracy point at the edge of the Brillouin zone by perturbation theory in ( )V x  where 

the latter is the perturbation potential obtained from the shifts of the atoms from their 

positions by  . Namely, if we represent the potential of the undeformed lattice, ( )V x ,  as a 

sum over the potentials produced by the ions in each unit cell,   

                                                                     ( ) ( )
n

V x v x na= − ,                                                   (14.52) 

then  

                             ( ) ( )( ) ( )
( )

( )1 1
n n

n n

v x na
V x v x na v x na

x
 

 −
 = − + − − − −


         (14.53) 

where we assume 1a .  
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Let us now focus on the two lowest bands within the range ( )0 2Fk k a  = . 

Furthermore, let 
( ) ( )k x


 denote the wave functions corresponding to the lower and upper 

bands,  as shown in Fig.  14-13.  

                      

Figure 14-13 The energy spectrum of deformed one-dimensional lattice in the nearly free electron approximation 

 

In the nearly free electron approximation, these wave functions are approximately  given by  

                                  
( ) ( ) ( )

1
expk x ikx

L


−
=   and   

( ) ( ) ( )
1

exp 2k Fx i k k x
L


+

= −              (14.54) 

Notice that in the range  0Fk k  , the higher energy band describes a left moving particle, 

while the lower energy branch is associated with a right moving particle. In the basis of these  

functions, the Hamiltonian takes the form: 

                                              

( ) ( )

( ) ( ) ( )

2 2

22

2

2

2

k k

F

k k

k
V

m
H

k k
V

m

 

 

− +

+ −

 
 

 =
 −

 
 

 ,                                    (14.55) 

where m  is the electron mass. The diagonal matrix elements of the perturbation vanish 

because the space average of ( )V x  is zero. The off-diagonal matrix elements can be 

expressed as Fourier coefficients of the Fourier series of the perturbation potential: 

                              

( ) ( ) ( ) ( )

( ) ( )

2

2

*

2

1
lim exp 2

1
                        exp 2

2 F

L

k k FLL

a

F k
a

V dx V x ik x
L

dx V x ik x V
a

 
− +

−→

−

 =  −

=  − = 





                       (14.56) 

where to obtain the second equality, we have used the 2a  periodicity of the integrand. The 

Fourier coefficient, 2 FkV , can be expressed as (see Ex. 2): 
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2 22

F Fk F kV i k v
a


 = − ,                                                      (14.57) 

where  

                                                             ( ) ( )expkv dxv x ikx


−
=  .                                                    (14.58) 

Substituting (14.55) and (14.57) in (14.55), and diagonalizing  the Hamiltonian yields: 

                       ( )
( ) ( )

2 2 22 42 2
2

22
4

2 2 F

F FF
F k

k k k kk
k k v

m m m a




− −  
= +  +  

 
.                     (14.59) 

Since the lower band is the one occupied by the electrons, the total energy density is: 

                                                           ( )
2

tot

0

1
4

2 2

Fk

dk
k

L a

 



−

 
=  + 

                                            (14.60) 

To find the minimal value of this energy, we take its derivative with respect to the 

deformation parameter,  , and demand it to be  zero: 

                     

( )

2

2

tot
2

20 24 2

2

2

2 1

2 2
2 2

22

4 2

8

4

8
               tanh 0

4

F
F

F

F

F

k
F k

F k

F k F

k

F

mk v
a d adk
L d a

k k m v
a

k m v k

a a
m v

k
a





  






−

=  −

 
− +  

 

 
 
 

=  − = 
 
 +
 



                (14.61) 

The solution of this equation (with minimal energy) is 

                       
2 2 2

2
22 2 2

2

2

exp
8

2cosh
8

F F
F

F

F F

k k F k

F k

k k aa

m v m v mk v

mk v






 
 =   −

  
   

 
 

.                (14.62) 

It shows that no matter how stiff the elastic deformations are or how small the coupling of 

the electrons to the lattice, the system’s total energy can be lowered by deforming the lattice, 

thereby opening a gap in the electronic spectrum makes the system insulating.  

 

 

 



290  

 

Comment: Mott instability  

Doubling of the unit cell, which in the case of half-filling, transforms the system into an 

insulator,   can also be archived by spin ordering, as demonstrated in Fig.  14-14. 

                         

                       Figure 14-14 Doubling of the unit cell due to the antiferromagnetic ordering of spins  

Such an antiferromagnetic spin ordering will open a gap in the conduction band and transform 

the system into an insulator -  a  phenomenon known as the metal-insulator Mott transition. 

Like the Peierls instability, the  Mott instability always occurs in one-dimensional systems. In 

two and three dimensions, it depends on the strength of electron-electron interaction. In 

some cases, this transition can be induced by external forces such as compression stress. 

 
14.5 Exercises 
 

 
1. Consider the square lattice presented in the example on page 136  and Ex. 2 of the same 

chapter and assume it is subjected to shear stress as illustrated in Fig. 14-15 below. 
 

 
Figure 14-15 A square lattice with degenerate bands subjected to a shear stress 

 

 
Let us model the effect of the shear by changing the hopping matrix elements shown in 

the figure such that  

 

                                                      ( )3 1t t = +   and    ( )3 1t t = − ,                                       (14.63) 
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where 1 . Analyze the behavior of the energy levels near   as function of  , by 

expanding the Hamiltonian to second order in the components of the wavenumber. In 

particular, check the possibility of obtaining accidental degeneracy points.   

 

2.  Prove Eq.  (14.57). 

Advice:  Show that Fourier coefficients of the Fourier series for the periodic function 

( )V x  (with periodicity 2a ) is: 

        
( ) ( )

( ) ( )
( )

( )

1
exp exp

2 2

      1 exp
2

a

k
a

k

v x v x a
V V x ikx ikx

a a x x

k
i v ika

a







−
−

  − 
 =  = − 

  

= − −  

 
,                         (14.64) 

and the set 2 Fk k= . 

3. In a tight-binding approach to Peierls instability, one considers the Hamiltonian 

                                                          †

1 . .j j j

j

H t c c h c+= − + ,                                                                     (14.65) 

where  hopping matrix elements  between nearest neighbors site is  

                                                        ( )1 1
j

jt t
a

 
= + − 

 
  ,                                                                (14.66) 

where a  is the lattice constant and   represents the deformation parameter.  

(a) Calculate the energy bands of this tight-binding model. 

(b) Use formula (14.49) for the elastic energy and the result of (a) to obtain the following 

equation for the minimum of the total energy of the system:  

                         
( )

( ) ( )

22

tot
2

0 2 2

sin4
0

cos sin

Fk
kaa d t

dk
L d

ka ka
a


   

=  − =

 
+  
 

 ,                   (14.67) 

        where ( )2Fk a= . 

(c) To evaluate the above integral in the limit 0 → , notice that it diverges logarithmically 

due to divergence near ( )2Fk k a= = . Expand the numerator and denominator of 

the integrand to leading order around Fk k= , evaluate the resulting integral and solve 

the equation for . 
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15 Electron-phonon interaction 

 
In the previous chapter, we discussed the effect of a static deformation of the crystal on the 

electronic spectrum. Now we shall extend the discussion to the interaction of electrons with 

dynamical deformations of the crystal, i.e., phonons. There are few channels for the electron-

phonon interaction that depend on the crystal's nature (e.g., whether it is piezoelectric, polar, 

or neither)  and the type of phonons  (e.g., acoustic or optical). We begin this chapter by 

discussing the case where the electron-phonon coupling is due to local deformations of the 

crystal and see how the kinetic equations that follow from this coupling take the system into 

an equilibrium state (hence breaking the time-reversal symmetry on a macroscopic level). 

Next, we consider piezoelectric coupling and interaction of electrons with optical phonons 

that give rise to an excitation called “polaron”.  

 

15.1 Deformation interaction 

 

The guiding principle for describing the interaction of electrons and phonons is the 

observation that electrons are light and move fast while phonons, associated with the 

dynamics of heavy ions, are slow. This property justifies the Born-Oppenheimer 

approximation in which the potential seen by the electrons, at any given time, is the one 

generated by the deformed lattice.   

Deformation interaction refers to the coupling between electrons and acoustic phonons that 

is described by the interaction Hamiltonian: 

                                                                       ( )e-ph ij ijH u= r ,                                                       (15.1)   

where  ( )iju r  is the strain tensor, while ij  are arbitrary coupling constants (at this stage),  

and, as usual, repeated indices should be summed over. Since ( )iju r  is a symmetric tensor, 

ij can also be chosen to be symmetric without loss of generality. The above Hamiltonian 

manifests the  Born-Oppenheimer approximation because the electron-phonon interaction 

depends only on the deformation potential and does not involve coupling between the 

electrons and the momentum density of the lattice deformation.  

Thus, the total Hamiltonian of the system contains three components: 

                                                                 e ph e-phH H H H= + + .                                                       (15.2) 

The first is the Hamiltonian of an electron in a periodic lattice. The second is the Hamiltonian 

of the phonons,  

                                                 ( ) ( )ph

,

1

2q

H n 



 

= + 
 

 q q ,                                                    (15.3) 
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where ( ) q  is the phonon frequency on the   branch of the sound wave spectrum with 

wavenumber q , while 

                                                              ( ) ( ) ( )†n a a  =q q q                                                           (15.4) 

is the number operator expressed in terms of the creation and annihilation operators with 

the property:  

                                        1a n n n= − ,    † 1 1a n n n= + + .                                            (15.5) 

Finally, the third contribution to the Hamiltonian (15.2) is the coupling Hamiltonian (15.1).  

In order to express the coupling Hamiltonian in terms of the creation and annihilation 

operators of  phonons, we use Eq. (11.74) for the translation vector: 

                   ( )
( )

( ) ( ) ( ) ( ) ( ) ( )†

,

ˆ ˆ ˆexp exp
2 Vol

j ju e a i a i


 
 

 =  + −  
q

r q q q r q q r
q

,       (15.6) 

where  is the mass density of the crystal, Vol is the volume of the system, 
( ) ( )ˆje


q  is the j

-th component of the polarization of a wave moving in the direction q̂ = q q  with frequency

( ) q . With this representation, the strain tensor takes the form: 

       ( )
( )

( ) ( )

( ) ( ) ( ) ( )†

,

ˆ ˆexp exp
2 Vol 2

i j j i

ij

e q e q
u i a i a i

 

 
 

+
 =  − −  

q

r q q r q q r
q

.     (15.7) 

To shorten the notations, from now on, we suppress the dependence of the polarization 

vector on the propagation direction of the wave. Taking into account that the coupling  tensor, 

ij , is symmetric,  we obtain that Eq. (15.1) can be written in the form:  

               
( )

( ) ( ) ( ) ( ) ( )†

e-ph

,

ˆ ˆexp exp
2 Vol

ij i jH i e q a i a i


 
 




 =  − −  
q

q q r q q r
q

.          (15.8) 

Our goal now is to project this Hamiltonian on the basis of Bloch’s wave functions, i.e., to 

calculate the transition matrix elements between two Bloch states: 

                                                               ( ) ( )
e-ph e-phH H

 
 



=k k

k k ,                                                        (15.9) 

where 
( ) ( )

 k r  is Bloch wave function of the  -th band and with wavenumber k .   

Apart from cases where energy bands become degenerate or very close to each other, energy 

conservation hinders transitions between different energy bands; hence, we shall consider 

only the matrix elements between Bloch wave functions of the same band and suppress the 

band index. Let us represent these functions in the form: 



294  

 

 

                                                       ( ) ( ) ( )
1

exp
Vol

i = 
k k

r r k r ,                                                 (15.10) 

and expand the periodic component of this  Bloch wave function in Fourier series  

                                                           ( ) ( ) ( )expc i = k b

b

r k b r ,                                                  (15.11) 

where ( )cb k  are the Fourier expansion coefficients, and the sum is over all vectors of the 

reciprocal lattice. The normalization of  ( ) k r  implies that  

                              
( ) ( ) ( ) ( )

( ) ( ) ( )

2
*

2*

1
exp

Vol

                     1 .

d dd r d r c c i

c c c









 



= −   

= = =

 

 

k b b

bb

b b b,b b

bb b

r k k b b r

k k k

                      (15.12) 

To calculate the matrix elements of the electron-phonon interaction (15.9), we need to 

calculate the following matrix element: 

        

( ) ( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )

*

*

*

,

1
exp exp

Vol

1
                                  2

Vol

                                   

d

d

i d rc c i

c c

c c

 

 



 







  − −



    = −  −   

  = −  −

=







k k b b

b,b

b b

b,b

b b k k q+b b

b,b

q r k k k k q + b b r

k k k k q + b b

k k

          (15.13) 

In order to simplify this result, we shall assume that: (a) =b b  (ln the next chapter we will 

discuss situations where this is not the case), and (b) consider only acoustic phonons of long 

wavelength such that 0− =k k q , hence ( ) ( )* *c c
b bk k . With these assumptions and the 

normalization condition (15.12), we obtain the momentum conservation condition:  

                                                            ( ) ,exp i   − k k k k qq r .                                        (15.14) 

Substituting (15.8) in (15.9) and using (15.4) yields 

                          
( )

( ) ( ) ( )†

e-ph , ,

,

ˆ ˆ
2 Vol

ij i jH i e q a a


 
 

  




 − −
 = − k k

k k q k k q

q

q q
q

.             (15.15) 

The first term in this Hamiltonian describes an absorption of a phonon by an electron that 

changes its momentum from k  to ( )+k q . The second term is associated with emission 

of a phonon when the electron changes its momentum, from k  to ( )−k q . These 

contributions are represented by the diagrams shown in Fig.  15-1. 
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Figure 15-1 Diagrammatic representation of absorption and emission of a phonon when 

an electron scatters from lattice vibrations  

 

The effects of electron-phonon scattering can be classified into two main groups: 

(a) Real scattering processes where an electron may change its energy by emitting and 

absorbing phonons - a mechanism that drives the system into thermal equilibrium.   

When the system is subjected to an electric field, these real scattering processes 

generate finite electrical resistance. 

(b) Virtual processes of phonon emission followed by absorption of the same phonon. 

These processes manifest themselves in the renormalization of parameters, such as 

the effective mass of the electron. 

In what follows, we shall focus our attention on real scattering processes. The essential tool 

for describing these processes is Fermi’s golden rule which gives the transition rate from one 

state to another. Hence, before turning to calculate the transition rate between electronic 

states (due to electron-phonon interaction), we remind Fermi’s golden rule. 

 

Reminder: Fermi’s golden rule 

 

Consider the Hamiltonian 0H H H= + , where 0H  represents the unperturbed 

Hamiltonian that satisfies the time-independent Schrödinger equation 

                                                                       0 nH n n= ,                                                            (15.16) 

while H  is some perturbation. The time-dependent Schrödinger equation of the system is 

                                                                 ( ) ( )i t H t
t
 


=


.                                               (15.17)  

Its solution, to leading order perturbation theory in H , is obtained by expanding ( )t  in 

the basis eigenfunctions  of the unperturbed Hamiltonian: 

                                               ( ) ( )exp n
n

n

t
t c t i n




 
= − 

 
 .                                                  (15.18)  
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Substituting (15.18) in (15.17), one obtains: 

                             
( )

( )exp exp
n n n

n

n n

c t t t
i i n c t i H n

t

     
− = −    

    
  .                   (15.19) 

Multiplying this equation by k  from the left leads to  an equation for the expansion 

coefficients:  

                                     
( )

( )
( )

exp
n kk

n

n

tc t
i c t i k H n

t

  −
 = − 
 
 

 .                          (15.20) 

This equation is still exact. To solve it, in the leading order perturbation theory, we assume 

that the system has been prepared (at the time 0t = ) in an eigenstate of the unperturbed 

system i  and replace ( )nc t ,  on the right-hand side of the equation, by the zeroth-order 

solution, ( )n nic t = . Thus: 

                                           ( )
( )

0

1
exp

t

i k

k

t
c t dt i k H i

i

  − 
 −  

 
                                       (15.21) 

Taking the time derivative of ( )
2

kc t we obtain that the rate of change of the probability of 

finding the system in the state k  is 

                                                     ( )
22

sin
2

ik

k

ik

t

d
c t k H i

dt





 
 
 = 


,                                   (15.22) 

where ik i k   = − . Now let us focus our attention on the following order of limits: First, 

we take the system size to infinity so that the mean spacing between energy levels , , 

(which is inversely proportional to the volume of the system) goes to zero,  and then take 

time to infinity, t → ,  such that t . In this limit, the energy spectrum forms a 

continuum, and the sinc function can be replaced by a  - function because 

                                                                     

sin
t

d



 




−

 
 
  =
 .                                                      (15.23) 

Thus, if we denote by fdV  an infinitesimal  volume element of the final states of the system, 

associated with energy f , then the rate of transition to the finial states within this volume 

is  

                                      ( ) ( )
22 2

f

i f k f i f

k dV

d
dW c t f H i dV

dt


  →



= =  − .             (15.24) 
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This form of Fermi’s golden rule will be used below. However, in the literature, one usually  

finds the formula obtained when setting ( )f f fdV d  = , where ( )f   is the density of 

the  final states of the system, and the integral over f  is carried out: 

                                            ( ) ( )
22

i f f f f iW d f H i


     → =  − .                      (15.25) 

 

15.2 The transition rate between electronic states 

 

We turn now to calculate the transition rate between electronic states due to electron-

phonon interaction. As we saw above, these can occur due to absorption or emission of a 

phonon, see Fig. 15-1. Here we calculate the transition rate associated with absorption. The 

transition rate associated with emission can be obtained by a straightforward generalization 

of the same calculation.  

Consider the process of absorption of a phonon with wavenumber q and polarization  :   

                                                    ( ) ( ), , 1i fn n ⎯⎯→ −k q k q ,                                                (15.26)     

where ik and fk  are the initial and the final wavenumber vectors of the electron, 

respectively. From Fermi’s golden rule, we obtain that the rate of this transition is:  

                                                   ( )
2

absorption 2
i f if f i fdW M dV


  → = − ,                                     (15.27) 

where fdV  is an infinitesimal volume element in the final state of the system (which we shall 

specify below) while  

                                                      ( ) ( )e-ph, 1 ,if f iM n H n = −k q k q                                         (15.28) 

is the transition matrix element between the initial and the final state of the system. Using. 

Eqs. (15.15) and (15.5) we obtain that this matrix element is given by 

                                              
( )

( ) ( ) ,
2 Vol f iif ij i jM i e q n







 


−= k k qq
q

.                                (15.29) 

The energy levels of the initial and the final states of the system are, respectively,  

                              ( ) ( ) ( )
i i n



  = + qk q    and    ( ) ( ) ( )( )1f f n


  = + −
q

k q ,            (15.30) 

thus 
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( )

( )
( ) ( ) ( ) ( )

2

absorption

,

2

Vol 2 f i

ij i jf

i f f i

e qdV
dW n



 
 


    


→ −

 = − −
  k k qq k k q

q
      (15.31) 

The infinitesimal volume element of the final state is associated with particular momentum 

states of the electron and the phonon; hence it is given by  

                                                          
( ) ( )

Vol Vol

2 2

d d

f fd d
dV d k d q

 
= .                                              (15.32) 

(Recall that ( )Vol 2
d

 is the density of states in the wavenumber space of a d  dimensional 

system.) However, in order to sum over the final states of the system with the help of an 

integral over fk  and q , we should replace the Kronecker delta function in Eq. (15.31) by its 

continuum counterpart. This is obtained by the rule: 

                                                          
( )

( ),

2

Volf i

d

f i


 − → − −k k q k k q .                                        (15.33) 

Thus 

                           ( ) ( )

( )
( )

( )
( )

( ) ( ) ( ) ( )
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                    .
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ij i jf

i f d d

f i f i

e qd k d q
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


 





 

    

+

→ =

  − − − −
 

 q
q

k k q k k q

                           (15.34) 

A similar calculation for the transition rate for a process where the phonon is emitted yields:  

                          ( ) ( )

( )
( )

( )
( )( )

( ) ( ) ( ) ( )

2
1

emission
2

1
22 2

                  

dd d
ij i jf

i f d d

f i f i

e qd k d q
dW n




 





 

    

+

→ = +

  − − +
 

 q
q

k k + q k k q

                        (15.35) 

In order to shorten the notations of the following discussion, it will be convenient to define 

the density of transition rate:  

               ( )
( )

( )
( ) ( ) ( ) ( ) ( )

2

1
, , 2

2

ij i j d

f i f i f i

e q
w



 




     



+
 = − − − −
 

k k q k k q k k q
q

    (15.36) 

so that 

                                       
( ) ( )

( ) ( )

( ) ( )
( ) ( )

absorption

emission

, ,
2 2

, , 1
2 2

d d
f

i f f id d

d d
f

i f i fd d

d k d q
dW w n

d k d q
dW w n

 


 


 

 

→

→

=

= +  





k k q q

k k q q

                          (15.37) 
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Observe that in deriving the above formulas, we considered a single electron. Thus, we did 

not consider the possibility that another electron may already occupy the final state of the 

scattered electron. In the next section, we present the kinetic equations for the electron and 

phonon distributions, which account for this information.  

 

15.3 The kinetic equations for distribution functions of the electrons and the 

phonons in a crystal 

 

Let ( )f k  be the electron distribution function, i.e., the probability to find an electron in a 

state defined by the wavenumber k  (for simplicity, we assume a single energy band and 

ignore spin). In the absence of coupling of the electrons to the lattice vibrations, this 

distribution is independent of time (assuming no other reasons for electron scattering, such 

as defects in the crystal structure or impurities). However, the electron-phonon interaction 

induces transitions of the electron from one state to another, and, using the results of the 

previous section, one may write down the rate of  change of ( )f k  due to collision with the 

lattice vibrations:  

     

( )

( ) ( )
( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )
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1 1
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                     + , , 1
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+
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d d

d d

d d

d d
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 
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 
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 
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 

 

 

 
= − −    
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k k q q k k

k k q q k k

k k q q k k

( ) ( )
( ) ( ) ( ) ( )1

1 1
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, , 1 1
2 2

d

d d

k d q
w n f f 

  





+ −      


 k k q q k k

(15.38) 

Let us explain this formula: The first two terms are associated with the absorption of a 

phonon. The first describes a process where an electron, at state k , is scattered into a state 

1k  by absorbing a phonon of wavenumber q . The factor ( ) ( )11f f−  k k  takes into account 

the requirement that the initial state of the system is occupied while the final state, into which 

the electron scatters, is unoccupied. The integral is over all possible final states of the 

scattered electron and the absorbed phonon. This contribution appears with a minus sign 

because it reduces the probability of finding the electron in the state k . However, there is 

also a process that enhances the probability of finding an electron in the state  k . It is given 

by the second term of Eq. (15.38). Here an electron at state 1k  is scattered into the state k , 

while absorbing a phonon. It appears with a positive sign, and the factor ( ) ( )1 1f f−  k k  

takes into account the probability of finding the states 1k   and k  occupied and unoccupied, 

respectively. The other two terms in Eq. (15.38)  describe similar processes but with an 



300  

 

 

emission of a phonon rather than absorption. Finally, in the above equation, ( )n q  

represents the average number of phonons with polarization   and wavenumber q   - this 

quantity is the phonon distribution function.   

The justification of Eq. (15.38) rests on several assumptions. First, it assumes no memory 

effects, namely, that an electron which leaves the state k  can be considered as never coming 

back. Second, the initial and final states of the electron and the number of phonons in the 

system are assumed to be uncorrelated. This property implies that the joint distribution 

function is reduced to a product of the distribution functions. Third, Eq. (15.38) neglects other 

scattering processes which involve emission and/or absorption of more than one phonon at 

a time.  

The kinetics equation  of the system may be written in the form 

                                                                   
( )

( )eSt
df

f
dt

=   
k

k ,                                                         (15.39) 

where  

                                                               ( )
( )

e

coll

St
df

f
dt

 
=    
 

k
k  .                                                  (15.40) 

This term is called the collision integral (and in German stoß). Rearranging the terms  in the 

collision integral yields:  

  

( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) 

e

1
1 1 1

1
1 1 1
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, , 1 1 1
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d d

d d

d d

f
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

  


 

 

=  

+ − − −          

− − + −          





k

k k q q k k q k k

k k q q k k q k k

(15.41) 

In a similar manner, one can obtain the kinetic equation for the phonons:  

                                                                  
( )

( )phSt
dn

n
dt



=   
q

q ,                                                 (15.42) 

where the collision integral for the phonons is:  

   

( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) 
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1
1 1 1

St

, , 1 1 1 .
2 2

d d

d d

n
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w n f f n f f



  
  

=  

+ − − −          

q

k k q q k k q k k
   (15.43) 

The collision integrals  satisfy several properties associated with conservation laws: 
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1.                                                     
( )

( )eSt 0
2

d

d

d k
f


=   k .                                               (15.44) 

This property follows from the conservation of the number of electrons in the system. 

Noticing that the integral of ( )f k over the wavenumbers in the Brillouin zone gives the 

electron density, we see that the integral of the left-hand side of Eq. (15.39) must vanish. 

Hence the integral of the right-hand side of the equation also vanishes, leading to (15.44).  

Notice, however, that phonons do not share this property because excluding some special 

situations (such as an equilibrium state), the phonon number is not conserved: 

                                                           
( )

( )phSt 0
2

d

d

d q
n

 
   q                                                 (15.45) 

2. Conservation of the total energy of the system implies:  

                
( )

( ) ( )
( )

( ) ( )e phSt St 0
2 2

d d

d d

d k d q
f n 



 
 

+ =       k k q q .               (15.46) 

The following steps yield the above equation: First, we multiply Eq. (15.39) by the 

electron energy ( ) k and integrate over k . This integral gives the time derivative of 

the total electronic energy of the system. Next, we multiply Eq. (15.42) by ( ) q , 

sum over the phonon polarization and integrate over q . The result is the time 

derivative of the total phonon energy of the system (which does not take into account 

the zero-point energy of the phonons). Finally, by summing these two equations, one 

obtains an equation that describes the change in the total energy of the system. 

Conservation of this energy implies that the collision integrals should satisfy Eq. 

(15.46).  

3. Similar considerations for the conservation of the total momentum give:  

                                       
( )

( )
( )

( )e ph St  St 0
2 2

d d

d d

d k d q
f n

 
+ =       k k q q .                 (15.47) 

  

15.4  Thermodynamic equilibrium 

 

In this section, we seek to find solutions of the kinetic equations (15.39) & (15.42) that 

describe a steady-state of the system. Namely, solutions that do not contain time dependence 

and hence should satisfy the condition that the collision integrals vanish: 

                                                            ( ) ( )ph ss e ssSt St 0n f= =      q k                                               (15.48) 
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Because of our expectation that these solutions should include the equilibrium distribution of 

electrons and phonons, it is instructive to represent them as follows:  

                                         ( )
( )

ss

1

1
f

A
=

+
k

k
    so that      ( )

( )

( )
ss1

1

A
f

A
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+

k
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k
,                     (15.49) 

and 

                                        ( )
( )

ss

1

1
n

B
=

−
q

q
    so that     ( )

( )

( )
ss1

1

B
n

B
+ =

−

q
q

q
,                      (15.50) 

where ( )A k   and ( )B q  are some general functions. Substituting the above formulas in Eq. 

(15.41) for ( )eSt ssf  k  , we obtain that the expression in the curly brackets of the first term 

is: 

                            

( ) ( ) ( ) ( ) ( ) ( ) 
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1 1
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q k k q k k

k
q k k

q k k

                   (15.51) 

To nullify this expression, one can employ the energy and the momentum conservation laws 

of the scattering process, which are enforced by the  -functions in Eq. (15.36). In particular, 

choosing: 

                                                      
( ) ( )( )

( ) ( )( )

exp

exp

FA

B 

  

 

= −  −  
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k k v k

q q v q
                                     (15.52) 

where the scalar   (having a dimension of inverse energy) and the vector v  (having 

dimensions of velocity) are arbitrary constants,  we obtain:  

                               
( ) ( ) ( )

( ) ( ) ( ) ( ) 

1

1

1 1

1

exp 1 0.

B A A

    

− −

= + − −  + − − =  

q k k

q k k v q k k
                 (15.53) 

One can quickly check that the second term in the collision integral ( )eSt ssf  k , as well as 

those in ( )phSt ssn  q , vanish for the same reason.    

Identifying   as the inverse temperature of the system (by calculating the average energy of 

a particle),  the steady-state solutions describe a system of fermions and bosons in 

equilibrium that moves at a constant velocity, v , with respect to the laboratory reference 

system. Such a solution is expected by the Galilean invariance of the system. When 0=v  we 

obtain the Fermi-Dirac and the Plank distributions: 

                                                        ( )
( ) 

eq

1

exp 1F

f 
  

=  
− +  

k
k

,                                (15.54) 

and  
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                                                            ( )
( )

eq

1

exp 1
n 

 
=   −  

q
q

,                                      (15.55) 

respectively. Here  1 Bk T =  and F  is the chemical potential (Fermi energy) of the electrons. 

Notice that the chemical potential of the phonon is zero. The following argument clarifies this 

property of the phonon system:  The chemical potential, defined as the energy needed to add 

a phonon to the system, is F N =    where F is the free energy while N is the number of 

phonons. Since there is no conservation law for the number of phonons,  the system 

minimizes the free energy by choosing some particular number. However, at this number,  

0F N  = , hence the chemical potential vanishes. 

The solution obtained here demonstrates that electron-phonon interaction drives the system 

into equilibrium distribution. Notice, however, that the system's thermalization may also be 

obtained by other types of interactions, for instance, electron-electron interactions.    

To find the rate at which the system decays to the equilibrium distribution, let us perturb the 

system such that the electrons move slightly from their equilibrium distribution:  

                                                          ( ) ( ) ( )eqf f f  = +      k k k ,                                      (15.56) 

but the phonon bath remains at equilibrium. Then expanding the collision integral to first 

order in ( )f k  yields: 

                                                      ( ) ( )
( )

e eq

e-ph

St
f

f f


 


 + = −   
k

k k ,                               (15.57) 

where e-ph  is the electron-phonon scattering time, which sets the relaxation time to 

equilibrium. One can identify its temperature dependence without calculation by taking into 

account that the relaxation rate is determined only by the phonons that contribute to the 

process. The electron-phonon scattering contains three factors: the volume element of the 

collision integral, the matrix element, and the constraint set by momentum conservation:    

                                       

3

2
3 3 3

3

e-ph integration volume

         matrix element   - fucntion 
of momentum

1 1 1
                        

d q

q
q q T

q q



 
    ,                  (15.58) 

where we took into account only acoustic phonons, hence 1q   as follows from the 

condition ( ) 1cq  =q . 

 

Example: Calculation of  e-ph  

Here we calculate the relaxation time due to the interaction of an electron with acoustic 

phonons. We shall consider a three-dimensional system, assume that phonons are at thermal 
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equilibrium, and,  for simplicity,  that the sound velocities of all-acoustic branches of the 

phonon spectrum are equal to c ,  i.e. ( ) q cq = =q . Then from Eqs.  (15.57) and (15.41)  

we obtain: 

        ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 

3 3

1

3 3

e-ph

1 eq 1 eq 1 eq eq 1

1

2 2

       , , , , 1q q
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

k k q k k q ,

       (15.59) 

where to shorten the notations we have defined ( )1 1 = k . The above equation is obtained 

by substituting ( ) ( )eqf f f = + k  in the collision integral (15.41) and expanding it to leading 

order in  ( )f k  in order to get Eq. (15.57). In principle,  there is an additional contribution 

coming from the expansion of ( ) ( ) ( )1 eq 1 1f f f = +k k . However, this contribution should 

be calculated at 1 =k k , i.e., 0=q  where ( )1, ,0 0w =k k , therefore, it vanishes.  

Performing the integral over 1k  we have  
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       (15.60) 

where to obtain the arguments of the distribution functions we have used conservation of 

energy in order to replace ( )1 = k q  by ( ) q k , and  defined 
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= q .                                               (15.61) 

To simplify the calculation, from now on, we assume that the electron-phonon coupling 

tensor is diagonal  ij ij = . With this assumption, we obtain: 

           
( )

( ) ( ) ( )
2

2 2 2 2 2

2 2 2 2 2 2

ij i j ij i j kl k l ij j kl l ik

q q q q

e q e q e q q qw q q

c

  

 

         

     
= = = = = 

q
.     (15.62) 

The third equality in the above formula follows from the completeness relation of the 
polarization vectors expressed in Eq. (11.46), while for the last equality, we substitute  

q cq = . 

Now to perform the integral (15.60) over q , notice that under our assumptions, the only 

angular dependence of this vector appears in the argument of the  -function that secures 
energy conservation in Eq. (15.60). Hence if we consider the typical situation in metals, where  

Fq k ,  we may use the approximation   
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                                            ( ) ( ) ( )q F cq   −   −k q k v q .                                       (15.63) 

Here we have neglected terms of order 2q  and for the first order expansion in q  used the 

approximation: 

                                                           
( ) ( )

F

F

 

=

 
=

 
k k

k k
v

k k
.                                               (15.64)                           

Namely, we approximate the velocity by its value at the Fermi energy. This approximation is 
justified by the fact that deviations from the equilibrium distribution function of the electrons 
usually take place only near the Fermi energy. 

With approximation (15.63), the angular integration over the energy  -functions in Eq. 
(15.60) yields 

                     ( )
2 1

0 0 1

2 2
sin cosF

F F F

c
d d v q cq dx x

v q v v q

 
 

    
−

 
 − = − =    

 
   ,           (15.65) 

where we took into account that the sound velocity is much smaller than the Fermi velocity,  

Fc v  (because electrons are light, and ions are heavy). Using this result for the integral 

(15.60) and rearranging the terms we obtain  

               
( )

( )
( ) ( ) ( ) 

2

eq eq eq2

e-ph

1
2 1

2
q q

F

wq dq
n f f

v q
   

 
   = + + + − −   

q
q k k .             (15.66) 

To approximate the expression in the curly brackets, we use the property that deviations from 

equilibrium are usually very close to the Fermi energy, thus, we may set ( ) F k . With this 

approximation, one can verify that 

                               

( ) ( ) ( )eq eq eq2 1

2 2
                         .

exp 1 exp 1

q q

q q

n f f   

   

   + + + − −   

+
   − +   

q k k

                               (15.67) 

Substituting this result and Eq. (15.62) in  (15.66), we obtain 

                               

( ) ( )

( ) ( )

( ) ( )

2 2

e-ph 0

2 2

4 4 3

0

32

4 4

1 1 1

2 exp 1 exp 1

1 1
      

2 exp 1 exp 1

7 3
      

4

F

F

B

F

q dq

v c cq cq

y dy

c v y y

k T

c v



    



 

 

 





 
= + 

− + 

 
= + 

− + 

=





,

                            (15.68) 

where  

                                                                       ( )
1

1
s

n

s
n




=

=                                                                     (15.69) 

is the Reimann zeta function, and in particular ( )3 1.202 .  
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15.5 The thermodynamic equilibrium  from entropy considerations 
 
Equations (15.48),  from which we deduced the equilibrium distribution of the system, are 

nonlinear integral equations. Being nonlinear, it is unclear whether (15.54) and (15.55) are 

indeed the correct solutions into which the system relaxes. To prove that, we shall employ 

entropy considerations.   

Let us define the entropy density (entropy per unit volume)  of the electrons and the phonons 

by: 

                              
( )

( ) ( ) ( ) ( ) e ln 1 ln 1
2

d

B d

d k
S k f f f f


= − + − −       k k k k ,                       (15.70) 

and  

                             
( )

( ) ( ) ( ) ( ) ph ln 1 ln 1
2

d

B d

d q
S k n n n n


= − − + +       q q q q ,                          (15.71) 

respectively. Using the kinetic equations (15.39) and (15.42), one can prove (see Ex. 1)  that  

these quantities  satisfy the inequality 

                                                                      
e ph 0

d
S S

dt
 +   .                                                          (15.72) 

This inequality is a generalization of Boltzmann’s H-theorem for electrons and phonons in a 

lattice. It implies that an equilibrium state is a state with maximal total entropy. Hence to 

identify this state, one should maximize the entropy density under the constraints of a fixed 

number of electrons, and fixed energy, namely:  

                                     
( ) ( )

( ) ( )e ph

1
0

2

d

Fd

d k
S S f

f T


 

 

   
+ − − =    

    
 k k

k
,                      (15.73) 

where T  and F are Lagrange multipliers that impose the constraints mentioned above. From 

this equation, we obtain:  

                                                     
( )

( )
( )

1
ln

1
F

B

f
k

f k T
 

 
= − −     − 

k

k
,                                              (15.74)  

which leads to formula (15.54). Similar considerations show that the equilibrium distribution 

of the phonons is given by Eq. (15.55).  

 

Example: Relation to Shannon’s entropy 

 
Although the above definitions for the entropy densities, (15.70) and (15.71) need no 

justification (because it is enough to prove that they satisfy the inequality (15.72)), it is 

instructive to show that they are consistent with the definition of the information entropy, 
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i.e., Shannon’s entropy (Shannon, 1948). The information entropy is defined as follows: Let iP  

be the probability to find the system in a state i , then the information entropy is  

                                                                       lni i

i

S P P= − .                                                            (15.75) 

In this example, we show that this definition is consistent with the electronic entropy density 

defined in Eq. (15.70). The case of phonon entropy is given as an exercise.  

Since we neglect electron-electron interaction in our treatment, the probability of finding a 

configuration with iN  electrons in state i  is independent of the occupation of other states of 

the system. Thus, the probability of finding 1N  electrons in state 1, 2N  in state 2, etc.  is given 

by a product of probabilities: 

                                                             ( ) ( ) ( )1 2 1 1 2 2,P N N P N P N=                                        (15.76) 

Now, let us assume that the probability of occupying the state j  by 0,1jN =  electrons is 

( ) jN

j j jP N q  where 0 1jq   is an unknown quantity (which depends, for instance, on the 

state that we have prepared the system). From the requirement of normalization of the 

probability, we obtain that: 

                                                                      ( )
1

1

jN

j j j

j

P N q
q

=
+

.                                                 (15.77) 

With this probability, the average occupation of the j -th  state is given by: 

                                                               
0,1 1 1

j

N

j j

j j

N j j

q q
f N

q q=

= =
+ +

 .                                            (15.78) 

Now let us substitute (15.76) and (15.77) in definition (15.75) and use (15.78): 

                                                      

( ) ( )

( ) ( ) ( )

1

1 1

1 2 1 2

0 0

1

0

, ln ,

ln
1 1

1 1
ln ln

1 1 1 1

ln 1 ln 1 .

j

j j

j

N N

N N

j j

j N j j

j j

j j j j j

j j j j

j

S P N N P N N

q q

q q

q q

q q q q

f f f f

= =



=





= −

 
= −  

+ +  

   
= − +   

+ + + +      

= − + − −

 







                       (15.79) 

Thus, apart from some physical constants, this formula is precisely the same as the electronic 

entropy density defined by Eq. (15.70). 
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15.6 Piezoelectric interaction 
 

As we have learned in chapters 13 & 14, deformations in piezoelectric crystals generate a 

polarization vector. The polarization, in turn, induces an electric field that acts on the 

electrons. This mechanism is the primary mechanism for electron-phonon interaction in 

piezoelectric crystals. The Hamiltonian describing this interaction (see Eq. (14.2)) is: 

                                             
( )3

e-ph,piezo ;

04

kl

i kl

r i

ue
H d r

r


 


=

 − 
r

r r
 .                                    (15.80) 

Substituting Eq. (15.7) for the strain tensor we obtain: 

 

( )
( ) ( ) ( ) ( ) ( )

e-ph,piezo

;3 †

,0

ˆ ˆexp exp
4 2 Vol

i lk

k l i

r

H

e
d r e q q a i a i



 
 



  

−
  =  + −  −


q

q q r' q q r
r r q

,
(15.81) 

where we have used that ;i lk   is symmetric to the interchange of the indices k and l . The 

integral over r  is the Fourier transform  of the Coulomb potential in three dimensions, hence 

       
( )

( )

( ) ( ) ( ) ( ); †

e-ph,piezo 2
, 0

ˆ ˆexp exp
2 Vol

i lk k l i

r

e e q q
H a i a i

q



 
 



  

−
 =  + −  

q

q q r q q r
q

. (15.82)  

Finally, calculating the matrix elements of this Hamiltonian between two Bloch’s wave 

functions, we obtain:  

                
( )

( )

( ) ( ); †

e-ph,piezo , ,2
, 0

ˆ ˆ
2 Vol

i lk k l i

r

e e q q
H a a

q



 

 


 

  



 − − −
 = − + kk

k k q k k q

q

q q
q

.       (15.83) 

Now, following the same steps that lead to formula (15.26) for the density of transition rate 

in the case of deformation potential, for piezoelectric interaction, we obtain  

     ( )
( )

( )

( )

( ) ( ) ( ) ( )

21

;

2

0

2
, ,

2

d

i lk k l i

f i f i f i

r

e e q q
w

q



 




    

  

+

 = − − − −
 

k k q k k q k k q
q

. (15.84) 

With this formula, one can deduce the temperature dependence of the relaxation rate using 

the same arguments that lead to Eq. (15.58). The only difference is that the matrix element  

is proportional to 1 q  rather than to q , and since  q T  one obtains  

                                                                               
piezo

e-ph

1
T


 .                                                        (15.85) 

This result applies for lightly doped semiconductors in which the density of charge carriers is 

small and dictated by the temperature (as will be discussed in Chapter 17), and screening 

effects are small. A more accurate approximation is obtained when replacing the Coulomb 
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interaction with screened Coulomb interaction (see Eq. (14.14)), i.e., by changing the 

denominator in Eq. (15.84)  according to ( )2 2 2

0 0r r Dq q q   → + , where  1 Dq  is Debye’s 

screening length. The latter is given by  

                                                                           
2

*

0

D

r B

e n
q

k T 
= ,                                                   (15.86) 

where *n  is the effective density of the charge carriers. This type of screening adds a 

logarithmic temperature dependence to Eq. (15.85), see Ex. 2. We will return to discuss 

Debye’s screening  (15.86) in chapter 17 (see Example on page 333).   

 

15.7 Fröhlich’s polaron  

Consider an electron moving in a polarizable material. The electron's electric field will polarize 

the medium by attracting the positive ions and repelling the negative ions, as illustrated in 

Fig. 15-2. This lattice deformation lowers the energy of the system. When the coupling 

between the electron and the lattice deformation is strong, one cannot decouple these two 

degrees of freedom. The excitation that mixes them is a particle called polaron. This section, 

first, presents the Fröhlich Hamiltonian (Fröhlich, 1950) that provides a simple model for such 

a system. Then, we use a variational approach to calculate the ground state energy of the 

polaron and estimate its size.   

 

                               

Figure 15-2 An electron in a polarizable material 
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Recall that deformations in a polarizable crystal generate  polarization vector: 

                                                                             P=P  ,                                                                    (15.87) 

where   represents a linear combination of the optical normal modes that create a local 

deformation of the lattice1. The polarization charge is minus the divergence of the 

polarization vector, −P , and this charge generates a Coulomb potential that acts on the 

electron. Thus, the Hamiltonian that describes the coupling between the electron and the 

optical phonons of a lattice is: 

                                                       ( )
( )

e-ph

04

Pd
e

H d r




 
=

−
r

r
r r


.                                              (15.88) 

The general expansion of ( )r , in terms of the optical modes of the system, takes the form: 

                                                 ( )
( )

( )exp
2Vol

Q i 
 

 = −  ,q

,q

r e q r
q

 ,                       (15.89) 

where   is the mass density of the lattice, ( ) q  is the frequency of the normal mode with 

polarization e  and wavenumber q , and  Q ,q  is the dimensionless amplitude of the normal 

mode. Notice, however, that the divergence operator leaves only the contribution from the 

longitudinal modes, ( ) 
   r q e .  To simplify this Hamiltonian, we  assume that all the 

longitudinal optical modes of the system have the same  frequency, 0 , independent of the 

wavelength (Einstein model), thus for our purpose,  

                                                     ( ) ( )
0

ˆ exp
2Vol

Q i


 = −  q

q

r q q r ,                                   (15.90) 

where q̂  is a unit vector in the direction of q . Substituting this equation in  (15.88) and 

integrating over r  yields (for a three-dimensional system): 

                                                    ( ) ( )e-ph 0

2 1
exp

Vol
H M Q i

q
= −  q

q

r q r ,                                 (15.91) 

where 

                                                                 
0

0 02

Pie
M



 

−
= .                                                      (15.92) 

The Fröhlich Hamiltonian describes a single electron in the environment of optical phonons. 

It contains three contributions: 

                                                           
1 Notice that   is different from the displacement vector u  because the latter refers to displacement of the 

whole lattice cell which do not produce polarization. 
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( ) ( )

e e-ph

2
* *0

0

2 1
   exp .

2 2 Vol

ph

q

H H H H

p
P P Q Q M Q i

m q



= + +

= + + + −  q q q q q

q

q r
              (15.93) 

The first term describes a parabolic dispersion of an electron near the bottom of a band with 

effective mass m . The second term is the contribution from the optical phonons of the 

system, which is expressed in terms of a sum over harmonic oscillators having an equal 

frequency, 0 . Here Pq
is the dimensionless momentum that is conjugated to Q

q , and 

satisfies the commutation relations:  

                                                                    ,;P Q i   = − q q q q .                                                           (15.94) 

Finally, the third term in Eq. (15.93) represents the electron coupling to the phonons. 

To find the approximate minimal energy of the above Hamiltonian, we use a variational 

principle calculation. We choose an electronic wave function describing a localized particle:  

                                                             ( )
3

2 22

3
4

exp
2

e

b b r




 
= − 

 
r ,                                                 (15.95) 

where b  is the variational parameter. Now, we project the Hamiltonian (15.93) on this family 

of wave functions (parametrized by b ) by calculating its expectation value: 

               ( ) ( )
2 2

* * * *03 1

4 2 2
e e q q

b
H H P P Q Q L Q L Q

m


 = = + + − + q q q q q q

q q

,       (15.96) 

where 

                                                          
2

0

2

2
exp

Vol 4
q

M q
L

q b

 
= − 

 
.                                                (15.97) 

The projected Hamiltonian is quadratic in the variables of the harmonic oscillators, and its 

minimum can be calculated exactly. The minimum is obtained at minQ Q=q q
which satisfies the 

condition: 

                                                          0

*

1
0

2 2
qH Q L

Q


= − =


q

q

.                                           (15.98) 

Thus 

                                                                           
min

0

qL
Q


=q .                                                             (15.99) 

Shifting the variables as 

                                                                  
min

0

qL
Q Q Q Q


→ − = −q q q q                                      (15.100) 

transforms the projected Hamiltonian to  
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                      ( )
2 2

2
* *0

0

3 1

4 2 2
e e q

b
H H P P Q Q L

m


 


= = + + − q q q q

q q

.         (15.101) 

The last term on the right-hand side of the equation is: 

                          

( ) ( )

2 2
2 0

2 2

0 0

2 23 2
0 0

3 32 2
2

0
0

1 1
exp

2 Vol 2

1
                    exp

22 2

q

M q
L

q b

M M bd q q

q b

 

   

 
= − 

 

 
= − = 

 

 



q q

,

                     (15.102) 

thus, the projected Hamiltonian takes the form  

                                  ( )

( )

1
3 22 2 2

* *0 03

2 4

E b

bb
H P P Q Q

m m

 




 
= + + −  

 
 q q q q

q

,                       (15.103) 

with 

                                                                    
( )

2

0

3
2

02

m M


 
= .                                                     (15.104) 

In formula (15.103), the first term represents the phonon energy of the system, which is now 

decoupled from the polaron energy, ( )E b . The minimization over the parameter b  can be 

straightforwardly calculated:  

                  
( )

1
32 2

0 0
min

3 2
0         

2 3

d H dE b mb
b

db db m m

 


 

 
= = − =  = 

 
 ,           (15.105) 

and substituting this result in ( )E b  yields an upper limit on the polaron’s ground state 

energy:  

                                                    ( )
2

2

0 min 0 00.106
3

E E b


  


 = − = − .                           (15.106) 

The exact asymptotic expansion of the ground state energy in the limit of strong coupling, 

 →  (Miyake, 1975),  is given by 

                                              ( ) 2

0 0 2

1
0.1085 2.836E O  



  
= − + +   

  
 .                             (15.107) 

Thus, the above variational calculation gives a rather accurate result. Finally, we can also 

deduce the size of the polaron, l .  It equals the inverse of minb  as can be seen from Eq. (15.95). 

Thus 
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min 0

1 3 42Å

2
l

b m



  
.                                                 (15.108) 

Here we have used a typical value of frequency of optical phonons, 0 0.03eV , and the 

mass of a free electron. Typically,  5 6   therefore the size of the polaron is of the order 

of Å10 .  

 

15.8 Exercises   

 
1. Prove Boltzmann’s H-theorem  for a system of interacting electron and phonons  

Advice: The total entropy of the system is  

               ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 

ln 1 ln 1
2

                             ln 1 ln 1

d

B d

d k
S k f f f f

n n n n


= − + − −      

+ − + +      

 k k k k

k k k k ,

                         (15.109) 

where ( )f k and ( )n k are the electrons and the phonons distribution functions, 

respectively. Take the time derivative of this entropy and use the kinetic equations (15.39) 

and (15.42) to show that 

     ( ) ( ) ( ) ( ) ( ) ( )1 1 1, , 1 1 1 lnd d d

B

S
k d kd k d qw f f n x x

t



= − + −        k k q k k q ,           (15.110) 

where 

                                               
( )

( )

( )

( )

( )

( )
1

1

1

1 1

f n f
x

f n f

−
=

− +

k k k

k k k
 .                                           (15.111) 

Finally, show that maximum entropy is obtained at 1x = , and this condition is satisfied by 

the equilibrium distribution functions of the electrons and the phonons.  

 

2. Calculate the relaxation rate of electrons due to piezoelectric interaction for the simplest 

case where only one parameter controls the interaction: 

                                                                              sym

;i jk ijk = ,                                                            (15.112) 

where   is a constant (in the literature, it is usually denoted by 14d ) and sym

ijk  is a symmetric 

tensor which equals one when all its indices are different and equal zero if any two of them 

are equal. Also, assume acoustic branches of the phonon spectrum can be approximated 

by the spherical approximation, namely the sound velocities are independent of the 
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propagation direction of the wave but only on its polarization: The velocities of the two 

transverse waves are degenerate and equal c⊥ while the velocity of the longitudinal wave 

is c . Go along  the following steps: 

(a) Show that  the relaxation rate is given by  

 
( )

( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )  ( ) ( )
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(15.113) 

with 

         ( )
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and    

                                ( )
( )

( )
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2

2 2
2; sym

2 2
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ijk i j k

e e q q e
w q q q
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= =q
q

                           (15.115) 

where q̂  is a unit vector in the direction of q ,  0 r   =  is the material’s dielectric constant, 

and, for the time being, we ignore screening effects.   

(b) Ignore the angular dependence of ( ) k  (because in what follows we shall assume 

( ) F k ), and use the same approximation as in  Eq. (15.63) in order to average the 

- function that ensures momentum conservation over the directions of the electron 

velocity, i.e., over Fv ,   Show that with this averaging Eq. (15.114) reduces to  

    
( )

( )
( ) ( ) ( ) 

3

eq eq eq3piezo

e-ph
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2 1
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v q
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q

q k k .   (15.116) 

(c) Integrate over the directions of q   and show that 
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where 

                               ( )
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(d) Assume that ( ) F k  in order to show that 

      
( ) ( )

2 2

piezo 2
,e-ph

1 1 1

exp 1 exp 1F

Be
dq

v c c q c q



   
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  ,                (15.119) 

         with 

                                                             
8

35
B⊥ = ,     and       

6

35
B = .                                                       (15.120) 

 

                                                                                  

The above integral diverges logarithmically at 0q = . In particular, its asymptotic 

behavior is:  

                     
( ) ( )min

min

0
min

1 1 2
lim ln

exp 1 exp 1y
y

dy
y y y



→

   
+ =   

− +   
 .                    (15.121) 

Now, take into account screening effects (with screening wavenumber Dq  given by 

(15.86)) in order to cut off this logarithmic divergence and show that   

                           
2 2

piezo 2 2 2 2

e-ph

2 2 21 4 3
ln ln

35

B B B

F D D

e k T k T k T

v c c q c c q


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                  (15.122) 

What is the temperature range where this formula applies? 

3. Prove that Eq. (15.71) for the entropy of phonons is obtained from Shannon’s entropy 

(15.75). 

4. Calculate the approximate energy of the first excited state of a polaron by choosing a 

variational wave function in the form of a 2 p  state:   

                                                          

5
2 22

3
4

2
exp

2

b b r
z



 
= − 

 
.                                            (15.123) 

What is the size of the polaron in this state? 
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16 Umklapp processes 
 
In the previous chapter, we consider electron-phonon interaction in which the momentum 

transfer from the lattice, either by acoustic or by optical phonons, is small, 0q → . This 

chapter focuses on the opposite limit, i.e., when the phonon momentum is large enough to 

transfer an electron between different Brillouin zones. As we have seen, see  Eq. (15.13),  

momentum conservation in the scattering process dictates that 

                                                                 − =  +k k q b .                                                                (16.1) 

Here k  and k  are, respectively, the wavenumbers of the electron before and after 

scattering, q  is the wavenumber of either absorbed or emitted phonon and b  is an arbitrary 

lattice vector of the reciprocal lattice. Scattering processes where 0=b  are called “normal”, 

while those with 0b  are called umklapp processes (derived from the German word 

umklappen – ‘to turn over’). In normal processes, the momentum transferred by the phonon 

is usually very small, while in umklapp scattering the momentum, b , is sufficiently large to 

transfer the electron from one Brillouin zone to another.    

In this chapter, we present the physics of umklapp processes using the example of graphene. 

In particular, we focus our attention on scattering processes that transfer an electron from 

the K -point to the K  -point (or vise versa), 

                                                    e, ph, e,K K K + ⎯⎯→k q k ,                                                 (16.2) 

as illustrated in Fig. 16-1.  

 

Figure 16-1 Umklapp scattering in graphene 

 

The left panel of the figure shows the Brillouin zones of the system. Here it can be seen that 

when an electron at K -point changes its momentum by Kk , it moves to the K  - point in the 
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adjacent Brillouin zone, namely it appears on the other side of the first Brillouin zone. The 

right panel shows the normal and the umklapp processes in energy space.  

To build a physical picture for the umklapp scattering in graphene, we begin with a qualitative 

explanation of the process based on the structure of the phonon's vibrational modes. Next, 

we employ group-theoretical considerations to construct the umklapp Hamiltonian. Finally,  

we rederive the result in the framework of the k p approximation for a tight-binding model 

where bond lengths (and hence hopping matrix elements) are modulated in space and time.    

    
 

 

 

 

 

 

 

 

 

 

Figure 16-2 The phonon spectrum of graphene and the vibrational modes at the K -point 
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16.1 Qualitative discussion 
 
In understanding the nature of electron-phonon interaction, one should keep in mind that 

electrons are light and fast while ions are heavy and slow. For instance,  the sound velocity of 

acoustic phonons is 312.9 10 m s  for transverse waves and 319.9 10 m s  for longitudinal 

waves, while the Fermi velocity of the electrons is larger by more than two orders of 

magnitude, 63 10Fv m s .  It means that one may consider the lattice deformation due to 

phonon modes to be, essentially, stationary in time and study the scattering of electrons on 

a deformed lattice. In order to employ this approach, let us, first,  identify the phonon modes 

that induce the umklapp processes, i.e., phonons with momentum 
K k , that provide the 

momentum needed for the transfer of an electron between the K  and the K  -points.   

In Fig. 16-2, we depict the phonon spectrum of graphene (associated only with in-plane 

vibrations) and the structure of the vibrational modes at the K -point. The symbols used in 

this figure are ‘T’ and ‘L’ for transverse and longitudinal waves, respectively,  while ‘A’ and ‘O’ 

for acoustic and optical branches (although this classification is problematic at the K -point). 

Each normal mode is denoted by the irreducible representation of the 
6vC  group it belongs 

to. Notice, the phonon spectrum exhibits a degeneracy in the phonon frequency spectrum at 

the K -point, similar to the electronic spectrum.  

As we are interested in scattering process that mixes the K  and the K  -points, the suitable 

group is the extended group,   

                                                          ( )2

6 6v vC C E t t =    ,                                                      (16.3) 

where 
1

t T=
a  and 

2

2t T= a are the translation operations in the primitive lattice vectors of the 

system. As we saw in Chapter 6, these translation vectors form the cyclic group 3C . The 

vibrational modes at the K  -point,  being basis functions for the irreducible representation 

of 6vC ,  should exhibit this 3C  property of the translation group. Namely,  translation by one 

lattice constant rotates the displacement vectors associated with the vibrational modes by 
0120  where the sign depends on the sublattice. Indeed, the normal modes that are shown 

in Fig. 15-4 exhibit this property.  

To be concrete, let ( )A Au r  and ( )B Bu r be the displacement vectors on the points Ar and Br  

located on sublattice A  and B , respectively. Then the phonons normal modes (belonging to 

1A  and 2A irreducible representations) can be written in the form: 

                                  ( ) ( )
Re Re

,        
Im Im

K A K B

K A K B

i i

A B

A A B Bi i

A B

u e u e

u e u e

−  

−  

   
= =   
   

k r k r

k r k r
u r u r ,                             (16.4) 
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where the upper and lower components of these vectors are the x  and the y  components 

of the displacement vector, while 
Au  and 

Bu are complex numbers associated with each one 

of the modes. In particular, choosing 
1AA Bu u i= − = , where 

1A  is real,  gives the so-called 

Kekulé1 vibrational mode associated with the irreducible identity representation 1A , while 

2AA Bu u = − = ,  with real 
2A , describes the vibrational mode that belongs to the 

2A

irreducible representation. A similar description applies to the 2E  vibrational modes (see 

Ex.1). More generally 
Au  and 

Bu  are slowly changing functions in space (and time), i.e. over 

distances that are much larger than the lattice constant. 

The important property of the vibrational modes at the K -point is that they triple the unit 

cell’s size (i.e., its area). It is most easily observed in the Kekulé vibrational mode. In the left 

panel of Fig. 16-3, we present the unit cell of an undeformed honeycomb lattice. The unit cell 

contains two atoms belonging to the different sublattices of the system. On the right panel, 

we illustrate an instantaneous state of the deformed lattice due to Kekulé’s vibrational mode. 

The different colors highlight the fact that there are three different types of cells in the 

deformed lattice; hence the new unit cell contains three cells (one from each color), i.e., six 

lattice points. The shaded parallelogram represents this unit cell. Notice that its side is larger 

by a factor of 3 compared to the original unit cell, and it is also rotated by 030 .   

                            

Figure 16-3 The rhombic unit cells of undeformed (left) and deformed  (right) lattices of graphene 

 

The increased size of the unit cell of the deformed lattice, by a linear factor of 3  compared 

to that of the original lattice, implies that the same factor reduces the Brillouin zone of the 

deformed lattice. The rotation of the unit cell induces a similar rotation of the Brillouin zone, 

as illustrated in Fig.  16-4. As we know, the energy spectrum in the new Brillouin zone is 

                                                           
1 August Kekulé (1829-1896) was a  German theoretical chemists. His famous for discovery is  the structure of 
benzene molecule, 

6 6C H ,  allegedly,  after having a day-dream of a snake seizing its own tail. 
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obtained by folding the spectrum of the original (undeformed) system. This folding shows 

that both K  and K   points move into the   point, as indicated by the arrows in Fig. 16-4. 

                                              

Figure 16-4 The Brillouin zones of the lattices shown in Fig. 16-3 

 

The same result applies to the other phonon modes shown in Fig. 16-2. All these modes bring 

together the K  and the K   points such that for a sufficiently long time, compared to the 

typical time scale of the electron scattering, they are essentially the same. In this way, the 

phonon induces the umklapp transition.  

 

16.2 The umklapp Hamiltonian: Group theory approach 

 

The umklapp Hamiltonian, umklappH ,  mixes the K  and the K  -point; therefore, ignoring spin 

effects,  it acts on an electronic wave function having four components as presented in Eq. 

(6.17). This form of the wave function implies that the Hamiltonian should be expressed in 

terms of direct products of Pauli matrices, KK AB

i j 

  where in general, , , ,i j x y z= . However,  

the Pauli matrix KK

z
 does not describe a transition between the K  and the K  -points, thus 

we are left with the matrices: KK

x
  , KK

y

 and the three Pauli matrices that act on the 

sublattice space, AB

j  with , ,j x y z= .   The matrix AB

z  is associated with electronic transitions 

between sites on the same sublattice. If we are interested in the largest contribution to 

umklappH , it should be also be left aside because the transition between nearest neighbors 

sites, (i.e. different sublattices) is usually much stronger. Thus umklappH  is constructed from 

products of the form KK AB

i j 

  with , ,i j x y= . It should also be linear in the phonon's 

normal modes and invariant under all symmetry operations of the system.   

All elements of the point group of the problem can be generated from 3, ,x dc    and 2c . The 

reflection operation through the horizontal axis, x , replaces A and B  sublattices but does 

not affect the K  and the K points; hence it is given by: 
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                                                      ( )
0
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AB

KK AB x

x x AB

x

I


 


  
 =  =  

 
.                                                        (16.5) 

The rotation by 0180  interchanges both A and B  sublattices as well as the K  and K points; 

hence it is described by  

                                                           ( )2

0

0

AB

KK AB x
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x

c


 


  
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 
.                                                           (16.6) 

Reflection d through a line that connects two opposite lattice points does not interchange 

the A and B  sublattices but interchanges the  K  and K points; thus it is represented by 

                                                      ( )
0

0

AB

KK AB

d x AB

I
I

I
 

  
 =  =  

 
.                                              (16.7) 

Finally,  as we  show in chapter 5 (see Eq.  5.5) , the 3c  rotation operation on the wave function 

associated with K -point is given by ( )exp 2 3AB

zi − , and one can check that the 

corresponding operation on the K  - point  is obtained by the complex conjugate operator; 

hence: 

                                           ( )3

2
exp 0

3

2
0 exp

3

AB

z

AB

z

i

c

i






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   =

  
  

  

.                                  (16.8) 

Now, let us construct the contribution to the umklapp Hamiltonian. Since the Hamiltonian 

belongs to the 
1A  irreducible representation, we need to identify the product KK AB

i j 

  (with 

, ,i j x y= ) which is a singlet. One can check that all these matrices are invariant with respect 

to the 3c  operation, but only KK AB

x x 

  and KK AB

y x 

  are invariant under reflection, x .  

Out of these only KK AB

x x 

  is invariant to both 2c  and v  operations. Thus, the umklapp 

Hamiltonian is  

                                                           
1umklapp A

KK AB

x xH   


=  ,                                                      (16.9) 

where  is a constant that depends on the details of the model.   

 

16.3 The umklapp Hamiltonian from the modulated hopping approach 

 

In this section, we rederive Eq. (16.9)  from a tight-binding model in which the hopping lengths 

between nearest neighbors sites change due to spatial modulation of the bond length 

according to  Kekulé’s vibrational mode,  as illustrated in the right panel of Fig. 16-3. Our 

strategy is in line with the k p  approximation. Namely, we start from an electronic  wave 

function in the form  
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,                                                   (16.10) 

where 
( )
( ) ( )K K

A B



r is the exact Bloch wave function on sublattice ( )A B at the ( )K K  point, and 

( )
( ) ( )K K

A B
c


r  are functions that change slowly in space, and then construct the effective 

Hamiltonian acting on the coefficients 
( )
( ) ( )K K

A B
c


r . This construction is obtained by calculating 

the matrix elements of the full Hamiltonian of the system, H , and averaging over the fast 

degrees of freedom, treating 
( )
( ) ( )K K

A B
c


r  as constants. This averaging results in the following 

expression: 
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 .   (16.11) 

The 4 4  matrix on the right-hand side of this equation is the Hamiltonian in the generalized 

k p approximation, which includes umklapp transitions between the K  and K  -points. In 

what follows, we shall calculate its matrix elements, but to keep the calculation simple, we 

consider only hopping between nearest neighbors sites and set all onsite energies to be zero 

so that  0 umklappk pH H H = +  with 
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.      (16.12) 

To illustrate the averaging procedure, let us start by calculating the term 

                                 ( ) ( ) ( ) ( ) ( ) ( )
fast

K KK K K K K K

A AB B A A B Bc H c c H c =r r r r r r .                     (16.13) 

For this purpose, we represent the Bloch wave function as a sum over the Wannier functions, 

( )
( )

A B
wr r ,  i.e. 

                                         ( )
( ) ( ) ( ) ( )( )

( )

( )
( )

1
exp

A B

A B

K K

A B K K A B
i w

N





=  r

r

r k r r ,                                (16.13) 

where the sum runs over all points ( )A B
r of sublattice A ( )B and N is the number of unit cells. 

Substituting the expansion in  (16.13) we obtain: 
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     (16.14) 

The second line of the equation is obtained under the 

assumption that the Hamiltonian allows only hopping 

between nearest neighbors sites, namely that 

B A i= +r r a  where 
ia  ( )1,2,3i =  are  the vectors 

shown in Fig. 16-4. These are given by 

     

1 2

3

1 1 1
0,       ,

23 2 3

1 1
            ,

2 2 3
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a

, ,

,

           (16.15)   

where a  is the lattice constant. 

Also observe that the argument of ( )K

Bc r  is replaced 

by ( )K

B ic r + a  because the reference point of the expansion is Ar  and although ( )K

Bc r  

changes slowly in space, as we shall see below, this small shift yields the leading order 

contribution. The third line of Eq. (16.14) is obtained by treating 
( ) ( )K

A B
c r  as constants 

compared to the Wannier functions, which change over the scale of a lattice constant. 

Defining  the hopping matrix element to be  

                                                             ( ) ( )*

A A i
w H w t+ = −r r ar r ,                                                  (16.16) 

we obtain 

                                ( ) ( ) ( ) ( ) ( )*exp
i

K KK K K K

A AB B K i A B ic H c t i c c= − 
a

r r k a r r + a .                    (16.17) 

Now, the assumption that ( )K

B ic r + a changes slowly in space allows one to expand it as 

                                                        ( ) ( ) ( )K K K

B i B i Bc c c= +  +r + a r a r                                       (16.18)   

Substituting this expansion in Eq. (16.17), we see that the leading term vanishes because  

( )exp 0
i

K ii  =
a

k a , however, the next to the leading term gives  the familiar Dirac 

Hamiltonian:  

 

Figure 16-4 Definition of the vectors 
ia . The 

displacement vectors show the modulation 

due to Kekulé vibrational. mode 
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                                                          ( )
3

2

KK

AB

a
H t i i

x y

  
= − − 

  
 .                                           (16.19) 

From the above derivation, it is clear  that *K K KK

AB ABH H
 
= and Hermiticity of the Hamiltonian 

implies  

                                             
( )

( )0 *

03

02

AB

AB

ia
H t

i

  − 
=    −  



−
 .                                 (16.20) 

We turn now to calculate the terms that couple the two valleys. Ignoring the modulation of 

the hopping matrix elements due to phonons we have: 

      

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

fast

* *

fast
,

* *

fast
,

*

,

1
exp exp

1
exp exp

1
exp

A B

A B

A A i

A i

A

K KK K K K K K

A AB B A A B B

K K

A K A B K B

K K

A K A B K A i

K K

A B i K A i K A

c H c c H c

c i w Hw c i
N

c i w Hw c i
N

tc c i i
N

 
  







 +





=

= −  

= −   +  

= −  + −   





r r

r r

r r a

r a

r a

r r r r r r

r k r r r r k r

r k r r r r k r a

r r + a k r a k r 0.
i

=

        (16.21) 

Notice that this term vanishes due to the sum over all lattice points, Ar . Since  
K K = −k k  this 

sum is a sum over a rapidly oscillating function that averages out to zero when the system is 

large enough: 

                                                            ( )
1

exp 2 0
A

K A N
i

N →
 ⎯⎯⎯→

r

k r .                                     (16.22) 

Now let us take into account the modulation in the hopping matrix elements due to a phonon 

mode that displaces the atoms from their sites, as shown in Fig. 16-2. The distance between 

two neighboring atoms  is   

                                             ( ) ( )0
ˆ

AB i B A i A Al l= +  + −  a u r a u r ,                                                   (16.23) 

where 
0l  is the equilibrium bond length, ˆ

ia is a unit vector in the direction that connects the 

neighboring sites, while  ( )A Au r  and ( )B A i+u r a  are the displacement vectors at these sites. 

Since the hopping matrix element depends on the distance between the atoms, assuming the 

displacement to be very small, we can expand the hopping matrix element in the form: 

                                        ( ) ( ) ( ) ( )0
ˆ

AB i B A i A A

dt
t l t l

dl
+  + −  a u r a u r                                       (16.24) 

The second term on the right-hand side of this equation, hereinafter denoted by t , is 

responsible for the umklapp processes. Using Eqs.  (16.4) it can be represented in the form: 
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                                                                     ˆ
i

dt
t

dl
 = a u                                                           (16.25) 

where ( ),x yu u u =  and  using (6.4), the components of this vector are given by 

                                     

( ) ( )

( ) ( )

* *

* *

1

2

1

2

K A i K A i K A K A

K A i K A i K A K A

i i i i

x B B A A

i i i i

y B B A A

u u e u e u e u e

u u e u e u e u e
i

 + −  + −  

 + −  + −  

  = + − −
 

  = − − +
 

k r a k r a k r k r

k r a k r a k r k r

                 (16.26) 

Now let us use the above expansion to calculate the matrix element (16.21) where the 

hopping matrix element, t ,  is now replaced by t , i.e. 

      ( ) ( ) ( ) ( ) ( )*

,

1
 exp

A i

K K K K K K

A AB B A B i K A i K Ac H c t c c i i
N


  

= −  + −   
r a

r r r r + a k r a k r .   (16.27) 

Recall that when we calculated this matrix element without modulation, it vanished due to 

the sum of the oscillating function, ( )exp 2 K Ai k r , over the lattice points 
Ar , see Eq. (6.22). 

However,  now, t  contributes an additional oscillating factor. In particular, the exponents 

that multiply 
Au  and  *

Bu  contain the term ( )exp K Ai k r  that gives a sum of the form 

( )exp 3
A

K Ai r
k r . This sum does not vanish. To why, we substitute ( )4 3 ,0K a=k , and 

notice that the x  component of the lattice point positions, Ar  are multiples of  half the lattice 

constant, 2a , see Fig. 16-4. Hence 3 2K A j =k r , where j  is an integer. Thus, taking the 

factor 1 N in Eq. (16.27), the sum of these terms over Ar  gives one. One can quickly check 

that the other terms in (16.26) do not have this property and vanish when summing over the 

lattice points.  

Thus substituting Eq. (16.25)  with (16.26) in (16.27), we obtain  

                    

( ) ( )

( ) ( )

( )

*

,

*

,

*

1
ˆ exp 2 exp  

2

1
ˆ                        + exp 2 exp  

2

3
       

2

i

i

KK

AB i x B K i A K i

i y B K i A K i

B A

dt
H a u i u i

dl

a u i u i
i

i dt
u u

dl

 
 = −  −   




  +   



= +





a

a

k a k a

k a k a                    (16.28) 

For the  Kekulé vibrational mode, 
1AA Bu u i= − = , with real 

1A  one obtains: 

                                                                
1A3KK

AB

dt
H

dl



= ,                                                            (16.29) 
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while for the 
2A  mode  

2AA Bu u = − = with real 
2A  hence  0KK

ABH

= . The contribution form 

the 
2E  vibrational modes also vanishes (see Ex. 1); thus 

1A  vibrational mode is the only one 

that contributes to the umklapp Hamiltonian. Employing time-reversal and inversion 

symmetries, one deduces that KK K K KK K K

AB AB BA BAH H H H
   
= = = , hence 

                                                   
1umklapp A3 KK AB

x x

dt
H

dl
  


=  .                                                    (16.30) 

This formula is the same one obtained in Eq. (16.9) from symmetry considerations.  

Finally, we comment that diagonalization of the Hamiltonian 0 umklappH H H= + , with 
0H  and 

umklappH  given by (16.20) and (16.31) respectively, give: 

                                                    ( ) ( )
1

2
2

A

3 2

2

dt
t ka

t dl
   

 
=  +  

 
k .                                     (16.31) 

Thus, the umklapp process opens a gap in the spectrum of graphene.  

 

16.4  Exercises 

 

1. Show that the 2E  vibrational modes do not contribute to the umklapp Hamiltonian 

within the framework of the modulated hopping to nearest neighbors' sites.  

First, verify that these modes are described by formulas that are similar to (16.4) except 

for different signs in the exponents: 

                              ( ) ( )
Re Re

,        
Im Im

K A K B

K A K B

i i

A B

A A B Bi i

A B

u e u e

u e u e

 − 

 − 

   
= =   
   

k r k r

k r k r
u r u r .                            (16.32) 

Next, repeat the calculation presented in Sec.  16.3  to show that their contribution 

vanishes.   
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17 Semiconductors and disordered crystals 
 
Until now, except for a short discussion on dislocations, we assumed our crystals to be 

perfect. This assumption is far from reality. In realistic systems, there is always some disorder 

that comes, for example, from domain walls between regions where the crystal structure is 

in different orientation, dislocation, disclinations, vacancies, interstitials, and impurities. 

Much of the advances in understanding the role of disorder in crystals came with the 

technological development of semiconductors that are extensively used for electronic 

devices. In these crystals, doping by different types of atoms is achieved in a controlled 

manner. This doping is a source of disorder and, at the same time, the way of introducing 

charge carriers  (electrons or holes) into the system. In this chapter, we present a few models 

for disordered crystals based on semiconductors. Then we discuss scattering from impurities 

and the kinetic equations that describe the dynamics of electrons in such systems.  

 

17.1 Impurities and defects in crystals 

In order to describe how impurities are combined into a semiconductor, let us first recall the 

basic physics of chemical bonding. A chemical bond between two identical atoms can be 

understood as coupling between two potential wells, as illustrated in Fig. 17-1. Each potential 

well represents the potential seen by an electron due to the atom’s nucleus and the other 

electrons of the atom. When the atoms are far away from each other, the potential wells are 

decoupled, and the system’s ground state is fourfold degenerate (twice due to the two wells 

and another factor of two due to spin), as illustrated on the left panel of Fig. 17-1. When the 

two atoms become close to each other, the potential wells are coupled by tunneling, and the 

two degenerate levels split into upper and lower levels, as illustrated in the right panel of the 

figure. Occupying the lower energy level by two electrons with opposite spins lowers the 

system’s total energy and creates chemical bonding. 

 
  

      
 

Figure 17-1 An illustration of chemical bonding as coupling between potential wells. 
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In the limit of weak coupling between the potential wells, the ground state wave function is 

approximately given by the singlet: 

                                                    ( )singlet

1

2
  + −

 +  − 
 

 ,                                           (17.1) 

where    are the ground state wave functions of the uncoupled wells. The orbital part of this 

wave function is symmetric so that the spin part secures the antisymmetric property of the 

fermionic wave function. This wavefunction is associated with chemical bonding.  

The excited state of the system is an anti-bonding state described by the triplet : 

             ( )triplet

1 1

2 2
  + −

 



 −  +   

 


           (17.2) 

When the atoms are weakly coupled, their electronic orbitals 

can approximate the wave functions   . For instance, for the 

hydrogen molecule, 2H , these orbitals are the 1s  states of 

each atom. However, there can be more complicated 

situations like the methane molecule, 4CH , shown in Fig. 17-

2. In this molecule, the carbon creates four symmetric 
bonding with the hydrogen atoms resulting in a  tetrahedral 
shape. However, this structure is puzzling because the electronic configuration of a carbon 

atom, 2 2 21 2 2s s p , apparently, allows for only two electronic orbitals to form chemical bonds,  

say 2 xp  and 2 yp , as shown in the left panel of Fig. 17-3. Thus, naively one would expect 

carbon and hydrogen atoms to form a 2CH  molecule similar to a water molecule. However, 

it is not what one finds in nature.  
 
 

                                          

Figure 17-3 Promotion of an electron from 2s  to 2 p  energy level to form four bonding orbitals 

 

The explanation is as follows: To obtain four orbitals available for chemical bonding, we 

promote an electron from the 2s  orbital  to 2 p  orbital, as shown in the right panel of Fig. 

17-3. This cost some energy, however,  it will be compensated, and much more, by sharing 

 

Figure 17-2 Methane molecule 
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these electrons with the hydrogen orbitals. The molecular orbitals that create the strong 

covalent bonding with the four hydrogen atoms are presented in Fig. 17-4.   These molecular 

orbitals are classified by the irreducible representation of the tetrahedral group dT . The upper 

orbital is associated with the 1A  irreducible representation emerging from the 2s  orbital, 

while the lower orbitals are three degenerate molecular orbitals  associated with the 
2F  

irreducible representation that emerge from the 2 p  orbitals. 

 
 

 
 

   

 

 

                                 

Figure 17-4 The molecular orbitals of Methane. The surfaces represent a constant value of 

the wave function where blue and red represent opposite signs. 

 

Comment: In the valence bond theory approach to covalent bonding (initiated by Linus 

Pauling), the four orbitals, 2s , 2 xp , 2 yp and 2 zp  are assumed to hybridize together to form 

new equivalent four orbitals denoted by 3sp . These are and given by 

                                                         

( )

( )

( )

( )

1
1 2 2 2 2

2

1
2 2 2 2 2

2

1
3 2 2 2 2

2

1
4 2 2 2 2 .

2

x y z

x y z

x y z

x y z

s p p p

s p p p

s p p p

s p p p

= + + +

= − − +

= + − −

= − + −

,

,

,

                                           (17.3) 

One can check that the wave functions associated with these orbitals are indeed oriented 

toward the four corners of a regular tetrahedron. However, this approach is inaccurate. For 

instance, measurements of the absorption of an electromagnetic field in methane molecule 

show that there are two different absorption lines associated with energy levels of 1A  and 

2F  irreducible representations. This finding contradicts the single absorption line predicted 

by the valance bond approach.  

 

1A  

1A

2F  
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In a silicon crystal, the situation is similar. Silicon has 

14 electrons; hence its orbital configuration is 
2 2 6 2 21 2 2 3 3s s p s p , namely, there are only two 

electrons in the 3p  level. However, promoting one 

electron from 3s  to  3p  enables the formation of four 

covalent bonds with four neighboring silicon atoms 

creating the crystal shown in Fig. 17-5.   

Consider now a situation in which the silicon crystal is 

lightly doped with phosphorus atoms, P , that 

substitute some silicon atoms. Let us also assume that 

the phosphorous atoms are sufficiently far apart so 

that we may ignore interactions between them and focus on a single site. The atomic number 

of a phosphorus atom is 15. Namely, it has an additional electron compared to the silicon 

atom. Four of its electrons create four covalent bonds with the neighboring silicon atoms, 

leaving one electron weakly tight to the positive phosphorous ion. Thus, the additional 

electron behaves as a hydrogen-like atom system. The relative dielectric constant of the 

silicon crystal is 11.7, and the effective mass of the electron is half that of the bare electron. 

Hence if we use the familiar formulas for the grand state energy and Bohr radius of hydrogen  

atom:  

                                                     
4

0 2 2

0

 
32

em e
E

 
= − ,        

2

0

2

4
B

e

a
m e


= ,                                       (17.4) 

and substitute 0 011.7 →  and 2e em m→ , we obtain that the ground state energy of the 

electron is 0 0.045eVdE → = − (the subscript d  stands for ‘donors’ because the phosphorus 

atoms donate electrons to the system), while the effective Bohr radius is about 20 times 

larger than the radius of hydrogen atom (this large radius justifies tearing the crystal as an 

isotropic material).  

 

Figure 17-6 Band diagram of n-type semiconductor 

 

         
Figure 17-5 A silicon crystal 
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The ground state energy of the electron is approximately (minus) the ionization energy. Since 

ionization means that the electron moves into the conduction band, the energy level of the 

additional electron of the phosphorous is 0.045eV below the conduction band, as illustrated 

in Fig. 17-6. In temperature units, bonding energy of 0.045eV  corresponds to 0450 K , 

therefore, at room temperature, many of the phosphorus electrons move into the conduction 

band. A semiconductor in which the charge carriers are electrons is called an n-type 

semiconductor. 

The density of charge carriers in the system depends on the doping level and the temperature. 

In particular, it depends on the probability that a given phosphorus atom is ionized. To 

calculate this probability, let DN  be the density of phosphorous atoms (assumed to be 

uniform in space), and denote by DN +  and 0

DN  the densities of the ionized and the neutral 

phosphorous atoms, respectively. In equilibrium, these are given by: 

                                               ( )1D D dN bN f + = −        and     ( )0

D D dN bgN f =                           (17.5) 

where ( )df   is the Fermi-Dirac distribution function at the binding energy d , and g  is the 

degeneracy of the occupied state. Here 2g =  due to the spin degeneracy of the occupied 

state. The unoccupied state, on the other hand, is non-degenerate. The normalization 

constant b  is determined by the condition 0 .D D DN N N += +  This normalization is required 

because the number of states does not equal the number of impurities. From these 

considerations, one concludes that the probability that a randomly chosen phosphorus atom 

is neutral is given by: 

                                                   
0 0

0

1

1
1 exp

2

D D
D

D D D d

B

N N
P

N N N

k T

 
+

= = =
+  −

+  
 

                                  (17.6) 

Notice, this is not Fermi-Dirac distribution because the spin degeneracy of the occupied state 

increases its probability. 

Now consider a situation where the silicon crystal is lightly doped with aluminum (atomic 

number 13), i.e., when some silicon atoms are substituted by aluminum. Now there are only 

3 electrons available for covalent bonds with the neighboring silicon atoms; namely, there is 

a deficit of one electron,  or in other words, a hole. In a binding state of the hole,  one of the 

four covalent bonds of the aluminum is missing; therefore, this state is fourfold degenerate 

(here, we assume that temperature is sufficiently high such that one can neglect the energy 

difference between the 1A  and the 2F  binding orbitals). In an ionized state, an electron from 

one of the other covalent bonds takes this place, i.e., the hole moves to some other location 

in the crystal. Such semiconductor is called p-type, and its band diagram is presented in Fig. 

17-7, where a  is the binding energy of a hole (the subscript a  stands for acceptor).  



332  

 

                                 

Figure 17-7 Band diagram of p-type semiconductor 

 

Repeating the same arguments presented above, one finds that the probability of finding an 

aluminum atom in a neutral state is: 

                                                                
1

1
1 exp

4

A

a

B

P

k T

 
=

 −
+  

 

,                                                    (17.7) 

where a   is the chemical potential set to ensure that the number of ionized acceptors 

plus the number of neutral ones equals the total number of acceptors.  

Finally, compensated semiconductors are obtained when doping is with both donors and 

acceptors. In this case, some of the electrons occupy some of the hole states, as illustrated in 

Fig. 17-8. This recombination generates local electric dipoles oriented in random directions. 

These dipoles create a random-like potential acting on the uncompensated charge carriers 

(obtained, e.g., when the number of phosphorous atoms is larger than that of the aluminum 

atoms). In this way, one can control the amount of disorder in the system. 
 

                               

Figure 17-8 Compensated semiconductors 
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Additional common sources of disorder in crystals are associated with vacancies and 

interstitials. In many cases, there are correlations between two such defects. For instance, 

the Schottky defect in ionic crystals, such as sodium chloride salt, is realized when vacancies 

of the negative and the positive ions are located close to each other to reduce the Coulomb 

energy (see left panel of Fig. 17-9). Another example is the Frenkel defect (also in ionic 

crystals) realized when an ion moves from its lattice position into a nearby point not on the 

lattice, as illustrated on the right panel of Fig. 17-9. Here, Coulomb attraction also results in a 

tendency of the vacancy to be near the interstitial.   
 

         
Figure 17-9 An illustration of Schottky (left)  and Frenkel (right) defects in a lattice 

 

 
Example: The law of mass action in semiconductors 
 
According to the law of mass action, the geometric mean of the hole and the electron 

concentrations in a semiconductor at equilibrium is a constant independent of the doping 

level. To derive this property, let C  be the lowest energy of the conduction band in the 

semiconductor, and C   the density of state in the conduction band assumed to be constant 

for simplicity. Then the density of electrons is given by: 

                                            
1

exp

1 expC

C
e C C B

B

B

n d k T
k T

k T


 
  

 


 −

= − 
 −  +  
 

 ,                     (17.8) 

where   is the chemical potential (that depends on the doping level). To obtain this result 

we assumed that C Bk T −  , hence Boltzmann’s distribution could approximate the Fermi-

Dirac distribution. We also assume the width of the conduction band to be sufficiently large 

so that one may replace the upper limit of the integral by infinity.   

A similar calculation gives the  density of holes:  
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1

exp

1 exp

V

V
h V V B

B

B

n d k T
k T

k T



 
  

 
−

 −
= − 

 −  +  
 

                            (17.9) 

where V  is the density of state in the valance band,  while V  is the highest energy of the 

valance band. From the above equations, we obtain: 

                                                                            2

h e in n n                                                                (17.10) 

with 

                                                          ( )
2 gap2 expi C V B

B

n k T
k T


 

 
− 
 

.                                             (17.11) 

Here gap C V  = −  is the gap energy between the conduction and the valance band of the 

intrinsic superconductors. This result implies that in  is independent of the chemical potential 

and consequently independent of the type of doping and its concentration. Hence, in  is called 

the intrinsic density of the charge carriers in the semiconductor.  

 
Example: Debye’s screening length is semiconductors 
 
As explained above, in a semiconductor, the density of the charge carriers depends on the 

temperature. Therefore,  the screening length in lightly doped semiconductors is expected to 

be temperature-dependent. Namely, it is not described by the Thomas-Fermi theory 

(presented in section 14.2). This example is devoted to the calculation of the screening length 

in semiconductors. To be concrete, we consider the case of a semiconductor doped only by 

donors, but the result is more general and applies to semiconductors doped by acceptors.  

Let DN  denote the density of donors in the semiconductor, which is assumed to be 

homogenous throughout the system. The effective density of charge carriers (see Eq. (17.5)) 

is given by 

                                                                ( )* 1D dn N f = −   ,                                                         (17.12) 

where ( )f   is the Fermi-Dirac distribution. An external charge density,  ( )ext r , introduced 

to the system creates an electric potential ( ) r  seen by the electrons. Here we assume this 

potential to change slowly over a distance of the order of the typical electron wavelength to 

employ a semiclassical approach for its calculation. Namely, we use Gauss law, 

                                                   ( ) ( )2

0 extr     + −−  = + +r r ,                                                        (17.13) 

where  r  is the relative dielectric constant of the crystal, *en+ =  is the positive charge 

density due to the ions in the system, and  
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                                                            ( ) 1D deN f e  − = − − +  r                                               (17.14) 

is the charge density of the electrons in the presence of the external charge, which shifts the 

ground state energy of the donors. Expanding this function to linear order in  , assuming 

Be k T ,  and using the formula 

                                                         
( )

( ) ( )
1

1
B

df
f f

d k T


 


= −                                                        (17.15) 

give: 

                                                                ( )*
*

B

n e
n e b

k T
 − = − − r ,                                                          (17.16) 

where ( )db f = . In the high-temperature regime, B dk T  − , b  is approximately one-

half, while in the opposite limit, B dk T  −  it is approximately one. Therefore, this constant 

does not play an important role, and from now on, we assume 1b . These considerations 

imply that Eq. (17.13) can be approximated by     

                                                   ( ) ( )
( )2

ext2 *

0 0r B r

n e

k T


 

   
− = − +

r
r r .                                               (17.17) 

This equation has the same structure as the equation obtained from the Thomas-Fermi 

approximation of metals, see Eq. (14.14). Hence, by similar considerations, one can identify 

the screening wavenumber as 

                                                                          
2

*

0

D

r B

n e
q

k T 
=  .                                                        (17.18) 

This quantity is the inverse of Debye’s screening length. 

  

 

17.2 The Jahn-Teller effect of an impurity in a crystal 

 

Occasionally, crystal defects are accompanied by local lattice deformations – i.e., local 

phonons. These appear when the impurity’s electrons occupy degenerate energy levels. The 

bound state of an electron on such impurity is characterized by one of the irreducible 

representations of the lattice. However,  a local deformation may change the symmetry and 

open a gap in the degenerate electronic levels associated with the impurity. In this event,  the 

electron will occupy the lower energy and reduce the system’s total energy. This effect is 

called the Jahn-Teller effect (1937). 

Let i  denote the coordinates that represent a local deformation of the lattice. The local 

Hamiltonian that describes the deformation and its coupling to the electronic spectrum is: 
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                                                                     21

2
i i i i

i

H K   = + ,                                                  (17.19) 

where i iK   represents the restoring force due to the deformation while i  characterizes  the 

coupling between the deformation and the electronic energy levels. As the change in the 

electron energy levels is linear in  , while the deformation is quadratic in  , there will be a 

spontaneous symmetry breaking with a new minimum at non zero value of   ,  as illustrated 

in Fig.  17-10.  

   

                      

 

Figure 17-10 An illustration of the Jahn-Teller effect 

 

The above picture rests on the assumption that 0i  . To clarify the conditions for this 

assumption, let us expand the Hamiltonian of the impurity in the normal coordinates of the 

local deformation:  

                                                     ( ) ( )
( )

0

,
, ,0 k

k

H
H H 


=


+







r
r r ,                                              (17.20) 

where r is the electron coordinate on the impurity, and  ( ),0H r  is its Hamiltonian in the 

absence of deformation. We shall assume that the electron energy levels are degenerate and 

described by the wave function ( )
j


  , which belongs to an irreducible representation   

whose dimension is   .   

The corrections to the energy of the electron due to the local deformation is given by 

degenerate perturbation theory; namely, one should diagonalize the matrix  ;k k ijV , where 

                                                               ( ) ( ) ( )
;

0

,
k ij i j

k

H
V

 
 


=


=




r
.                                         (17.21) 

If one of the elements of this tensor is nonzero, then the correction to the energy levels will 

be linear in at least one of the components of  . Then assuming a single electron occupies 



337 

 

these energy levels, the system becomes unstable to local deformation since   can be chosen 

in such a way that the electron energy reduces.  

Consider, for example, an impurity in a lattice with tetrahedral symmetry and that the 

electronic state belongs to either to 1F  or to 
2F  irreducible representations. The 

representation obtained from a product of two wave functions, ( ) ( )F * F

i j  , belonging to this 

irreducible representation (which we denote by F ) is 1 1 2F F A E F F = + + + . On the other 

hand, the operator ( ),H   r  has the same symmetry as  , hence ( ),H   r  

generically contains at least one component that belongs to one of the irreducible 

representations in the product F F  (the only irreducible representation of 
dT  that does not 

appear in this product is 2A ). From here it follows that ;k k ijV has a singlet. Thus,  the coupling 

constant, i , is generically nonzero. 

 

Example: 2+
Cr  impurities in a CdSe crystal 

Cadmium selenide crystal is a wurtzite hexagonal 

crystal where each cadmium atom is surrounded by 

four selenium atoms (and vise versa), forming a regular 

tetrahedral shape. When doped with chromium, ions of  
2+Cr replace some of the cadmium atoms, as 

demonstrated in Fig. 17-11.   

Let us first identify the atomic term of 2+Cr . Chromium 

contains 24 electrons; therefore, the electronic 

configuration of 2+Cr  is 2 2 6 2 6 41 2 2 3 3 3s s p s p d . 

According to Hund’s rules the electrons occupy  4 of the 

d-orbitals such that all spins are parallel and the total 

orbital angular momentum is maximal. For instance, 

the electrons may occupy the states with 2,1,0, 1.lm = −  

Thus, the total orbital angular momentum is 2L =  , and the total spin is also 2S = . As we 

are dealing with less than a half-filled state, the total angular momentum is 0J L S= − =  

Thus, the term of the ground state of free  2+Cr  is 1

4D , and the orbital momentum is fivefold 

degenerate.  

However, when the chromium ion is placed in a crystal, the crystal field breaks the full 

rotational symmetry of the system and reduces the degeneracy of the ground state. In 

exercises 6 and 7 of chapter 4 it was shown that in a crystal with tetrahedral symmetry, dT ,  

the 2L =  states split into 2E F  irreducible representations. It turns out that the ground 

state is associated with the triplet 2F , while the excited state is associated with the doublet 

E . 

 

Figure 17-11 Cadmium selenide doped 

by chromium 
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Now let us identify the possible deformations of the tetrahedron surrounding a 2+Cr  ion. As 

we are not interested in rotations or translations of this tetrahedron (which do not change 

the crystal field around the ion), all possible deformations are described by the normal modes 

of a single tetrahedron. Since this system has  15 degrees of freedom, it has nine vibrational 

modes. In exercise 4 of Chapter 4, we saw that the composition of the normal modes of a 

methane molecule (that has the same structure) is 1 2 2A E F F   . The corresponding 

normal modes are shown in Fig. 17-12 below.   

 

                                                                            

                                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17-12 Local deformation of the octahedron sounding the chromium impurity 

 

From this figure, it is clear that the symmetric stretch is a basis function of the identity 

irreducible representation; therefore, it shifts all three levels of the 2F electronic levels in the 

same amount. The symmetric bend, on the other hand, has the symmetry of 2dD  group 

whose largest irreducible representation is two-dimensional and therefore opens a gap in the 

electronic spectrum, as illustrated in Fig. 17-10. The asymmetric stretch has 3vC  symmetry 

 

 

2F ,  Asymmetric Stretch 

 

 

 

 

1A ,  Symmetric Stretch 

 

E ,  Symmetric Bend 

 

 

2F ,  Asymmetric Bend 
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implying that it also opens a gap in the spectrum. Finally, the asymmetric bend mode has the 

lowest symmetry: 2vC . This group has only one-dimensional irreducible representations; 

therefore, such deformation will split the 2F  degenerate electronic levels into three different 

levels. These considerations show that some of the coefficients 
i  in Eq. (17.19) are nonzero.  

Consider now the quadratic term in Eq. (17.19), which accounts for the elastic energy of the 

local deformation. Each one of the normal modes shown in Fig. 17-12 can be associated with 

a deformation of a cube defined by the tetrahedron, as shown in the figure. This local 

deformation serves as a boundary condition for the local phonon mode obtained by solving 

the elasticity problem. In what follows, we will illustrate the calculation of this mode and its 

energy for the symmetric stretch. For simplicity, we assume that the elastic modulus tensor 

can be approximated by its spherically symmetric component (see Eq. (11.48)), i.e.    

                                                         ( );ij kl ij kl ik jl il jk       = + + ,                                       (17.22) 

where    and   are the  Lamé parameters. The corresponding elastic energy is given by  

                                                     ( )
23

elastic

1
2

2
ii ij jiE d r u u u  = +

  ,                                      (17.23) 

where iju is the strain tensor. We shall also assume that the boundary conditions set by  local 

deformation of the symmetric stretch mode can be approximated by setting the value of the 

displacement vector on a small sphere of radius a   to be radial and constant: 

                                                                            ˆ
r a


=
=u r .                                                           (17.24) 

Here   measures for the amount of deformation while a  is of the order of the size of the 

cube shown in the upper left panel of Fig. 17-12. 

The equilibrium condition of an elastic system is given by the equation 

                                                                             0kl

kr


=


                                                                (17.25) 

where                           

                                                           ; 2kl ij kl ij ii kl klu u u   =  = +                                               (17.26) 

is the strain tensor,  see Eqs. (11.37) and (11.38). Expressing the strain tensor as derivative of 

the displacement vector (see Eq. (11.26)), we obtain that  

                                                 2kl
l

k l l

u
r r r


 

  
=  +  + 

   
u u .                                         (17.27) 

Hence the equilibrium condition (17.25) is: 

                                                            ( ) ( ) 2 0  +   + u u = .                                              (17.28) 
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Now, using the identity ( ) ( )2 =  − u u u  and taking the divergence of the resulting 

equation, one concludes that 

                                                                              ( )2 0 u = .                                                         (17.29) 

Thus, the divergence of the displacement vector satisfies the Laplace equation. Finally, 

operating with the Laplacian on Eq. (17.28) and using (17.29) we obtain that the displacement 

vector satisfies the biharmonic equation: 

                                                                                2 2 0  =u .                                                                    (17.30)  

The spherical symmetry of the problem implies that we should seek for a solution of the form 

( ) ˆf r=u r . From here we obtain the equation       

                                               
3 4

2 2

2 2 3 4

1 1 4
0

f d f d f
r r

r r r r r r r dr dr

    
= + = 

    
                             (17.31) 

whose general solution is  

                                                               ( ) 21
2 3 4

b
f r b b r b r

r
= + + + ,                                                    (17.32) 

where ib  are constants. However, being interested in a local deformation that decays far from 

the origin, the only relevant term in this solution is the first one. Imposing the boundary 

conditions (17.24), we obtain: 

                                                                 ( ) ˆ
a

r
r


=u r ,   for   r a .                                                      (17.33) 

Thus, the displacement vector decays slowly as 1 r . The corresponding strain tensor contains 

only one component: 

                                                                   
2rr

a
u

r


= − ,     for    r a .                                                         (17.34)   

Substituting it in Eq. (17.23) we obtain the energy of the local deformation: 

                                            ( )
3

2 2 2

elastic 4

1
4 2

2 2
r a

d r
E a a

r


     



 
= + = + 
   .                            (17.35) 

Comparing this energy with the second term in  Eq. (17.19), one can identify the constant iK  

as ( )4 2 a  + . 

Notice that although the displacement vector decays slowly, the energy density behaves as 
41 r , namely, it is concentrated within a region near the impurity. Deformations that are 

volume-preserving behave as quadrupoles rather than monopoles and result in a much faster 

decay of the local phonon mode, 31 ru , hence the energy density decays as 81 r . 
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17.3 Elastic scattering  and the optical theorem 

 

To describe the basic ideas of elastic scattering (i.e., scattering which preserves the particle’s 

energy), we begin with the scattering of a free electron from a single impurity. The impurity 

is represented by a scattering potential localized within a small domain in space, as illustrated 

in Fig. 17-13. 

                            
Figure 17-13 Scattering of a plane wave from a finite range  potential 

 

Far from the impurity, the electron satisfies the free-particle Schrödinger equation: 

                                                                        
2 2

2m
 


− = ,                                                       (17.36) 

where m  is the particle’s (effective) mass and  is its energy. Thus, far from the scatterer, the 

wave function is of the form:   

                                                    ( ) ( )
( )

( )
ˆ ˆ,

exp exp
a

i ikr
r




=  +
n n

r k r .                                  (17.37) 

Here we assume that the scatterer is located at the origin, k  is the wavenumber of the 

incoming wave, and ( )ˆ ˆ,a n n  is the scattering amplitude in which 

                                                           ˆ
k

n =
k

,     and        ˆ
r

n =
r

                                                   (17.38) 

are unit vectors in the directions of the incoming and outgoing waves, respectively. The 

scattering amplitude is obtained from the solution of the Schrödinger equation in the 

presence of the scattering potential. If this potential is spherically symmetric,  ( )ˆ ˆ,a n n  

depends only on the angle between  n̂  and ˆn . 

 

The generalization of Eq. (17.33) to a particle in a lattice, in the framework of the k p  

approximation,  is obtained by taking the envelope of  Bloch’s wave function to be 
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                                     ( ) ( )
( )

( )

( )
( )

ˆ ˆ ˆ,
exp exp

ˆ

a
i ikr

r



=  +



n n n
r k r

n

v

v
,                                         (17.39) 

where ( )n̂v  is the velocity of a particle moving in direction n̂ . This formula is valid when 

assuming the dynamics to take place within a single band. A generalization for several bands 

is obtained when replacing the scattering amplitude ( )ˆ ˆ,a n n  with a matrix in the band space. 

In what follows, we shall consider only the simple case described by Eq. (17.37).  

The current density obtained from the wave function (17.37) is  

                       

( )
( )

( ) ( )

* *

2 *

2

2

ˆ ˆˆ
ˆ ˆ ˆ ˆ ˆ, exp , . .

2

mi

a i ikr a c c
r r

    =  −  

+ 
  = +  − +  

 

j

n nn
n+ n n k r n n ,

v
v

            (17.40) 

where k m=v . To obtain this result, we kept only leading order terms in 1 kr , as we are 

interested in the limit where r  is much larger than the particle wavelength. In particular,  we 

have neglected the gradient of the preexponential factor in Eq. (17.33) but kept gradients of 

the exponential term.    

Let us now calculate the total current passing through a distant spherical shell surrounding 

the scatterer:   

                           
( )

( ) ( ) ( )

22 2

*

ˆ ˆ ˆˆ ,

ˆ ˆ ˆ ˆ ˆ                 exp , . .
2

r d d n a

r
d i ikr a c c

   =

   +  +  − + 

 



n j n n

n n n k r n n ,

v

v              (17.41) 

where 2 ˆ ˆˆd n d= n n is an infinitesimal element of the solid angle. The first contribution to the 

integral,  

                                                                ( )
22

1
ˆ ˆˆ ,J d n a =  n nv ,                                                 (17.42) 

is manifestly independent of the position of the spherical shell. However, apparently, the 

second contribution to the total current (given by the second line in Eq. (17.41)) contains r  

dependence. On the other hand, since the total current passing through the spherical shell 

must vanish, there should be no such dependence when r → .  

To calculate the second contribution to the total current, it is convenient to express the 

argument of the exponential function in (17.41) in the form ( )ˆ ˆ 1kr kr − =  −k r n n so that 

                           ( ) ( ) ( ) *

2
ˆ ˆ ˆ ˆ ˆ ˆ ˆexp 1 , . .

2

r
J d ikr a c c   =  + − −  +   n n n n n n n
v

.                     (17.43)    

In the limit r → , the integrand is a rapidly oscillating function that can be calculated by the 

stationary phase approximation.   The stationary phase points are ˆ ˆ = n n . It is easy to derive 
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this result by writing the phase in terms of the angle,  ,  between  n̂  and ˆn . In this form, 

the stationary phase condition, 

                                                      ( )1 cos sin 0
d

kr kr
d

 


− = = ,                                              (17.44) 

yields  0, =  which imply that ˆ ˆ = n n . The contribution from the stationary point  ˆ ˆ = −n n

can be neglected due to the preexponential factor ( )ˆ ˆ+n n . To calculate the contribution 

from the second stationary point, ˆ ˆ =n n , let us define ˆn  to be the deviation from the 

stationary point, i.e.  

                                                                  ˆ ˆ ˆ = +n n n .                                                                    (17.45) 

The normalization condition of this unit vector imposes the constraint  

                                                              2ˆ2 0  =n n+ n                                                               (17.46) 

Substituting (17.45) in (17.43) using Eq. (17.46) shows that within the stationary phase 

approximation (in which the pre-exponential factor is approximated by its value at the 

stationary point): 

                                        

( )

( ) ( )

2 2 *

2

*

ˆ ˆexp , . .
2

2 4
ˆ ˆ ˆ ˆ    , . . Im , .

kr
J r d n i a c c

a c c a
ik k

 

 

  
 +  

  

= + = −

 n n n

n n n n

= v

v v
                                (17.47) 

This formula becomes exact in the limit .r →  Now, conservation of the total number of 

particles dictates that 1 2 0J J+ = , hence 

                                                       ( ) ( )
22ˆ ˆ ˆ ˆˆIm , ,

4

k
a d n a


 = n n n n  .                                       (17.48) 

 

           

Figure 17-14 The angular dependence of the scattered particle current          
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This relation is known as the “optical theorem” of scattering theory. Its physical interpretation 

is that the total scattered particle current in directions that are different from the incoming 

wave, n̂ ,  must come from a reduction in the particle current moving in the original direction. 

In other words, if  = −j j nv  is the scattered current, its integral over all directions vanishes, 

and the manner by which the positive and negative contributions add up to give zero is 

demonstrated schematically in Fig. 17-14.   

 

Example: Scattering from a spherical potential 

The large-distance asymptotic form of a wave function describing scattering from a finite 

range potential with spherical symmetry (located at the origin)  is:   

                                                      ( ) ( )
( )exp

exp
ikr

ikz a
r

 = +  .                                              (17.49) 

Here ( )exp ikz  is the incoming waves describing a plane wave moving in the z direction,  and 

( )a   is the scattering amplitude that depends only on the angle between the direction 

scattered wave and the z axis.   This function is a particular form of the general wave function 

of a free particle having a cylindrical symmetry: 

                                  ( ) ( ) ( ) ( ) ( )1 22

,0

0

4 2 1 lil

l l l l

l

l i Y A h kr e h kr
  



=

 = + +
  .                          (17.50) 

Here ( ),0lY   are the spherical harmonic functions, while ( ) ( )1

lh x  and ( ) ( )2

lh x  are the spherical 

Hankel functions  which have the following asymptotic behavior at large argument: 

                                                   

( ) ( )

( ) ( )

1

2

exp
1 2

exp
1 2

.

l x

l x

ix i l

h x
i x

ix i l

h x
i x





→

→

 
− 

 ⎯⎯⎯→

 
− + 
 ⎯⎯⎯→−

,

                                               (17.51) 

Thus, the functions ( ) ( )1

lh x are associated with radially outgoing waves, while ( ) ( )2

lh x  

describe the incoming waves. The parameters l  are called the scattering phase shift. These 

parameters must be real in order to ensure the conservation of probability. Namely, that the 

flux of the incoming wave, with a given angular momentum, equals that of the outgoing wave 

with the same angular momentum. Finally, the coefficients lA  are arbitrary.   

To identify the relation between ( )a   and the scattering phase shifts, we use the expansion 

of the plane wave in terms of the spherical Hankel functions: 

                                ( ) ( )
( ) ( ) ( ) ( )1 2

,0

0

exp 4 2 1
2

l ll

l

l

h kr h kr
ikz l i Y 



=

+
= + .                             (17.52)       
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Equating the general solution (17.50) to (17.49) using (17.52) and substituting the asymptotic 

form of the Hankel functions (17.51), we have             
 

                         

( )

( ) ( )
( )

2 2
2
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0

2 2

,0
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4 1
2 1

2
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 
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

 ,

                 (17.53) 

where we choose 1 2kA =  to ensure that the incoming component of the wave function, on 

both sides of the equation, are equal. Solving for ( )a   we obtain: 

                                      

( ) ( ) ( )

( )
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,0
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2 1 1
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                                       (17.54) 

Now we see that 
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           (17.55) 

and using the property 

                                                                        ( ),0

2 1
0

4
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+
=                                                      (17.56) 

we obtain 
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       (17.57) 

From Eqs. (17.55) and (17.57) follows  the optical theorem: 

                                                                ( ) ( )
2

Im 0
4

k
a d a 


=  .                                                     (17.58) 

 

 



346  

 

Example: Scattering from a “hard” (i.e., impenetrable) sphere  

Consider the case in which the scatterer is an impenetrable sphere of radius R . The wave 

function,  , in this case, satisfies Dirichlet boundary conditions on the surface of the sphere:  

                                                                         ( ) 0
r R


=
=r .                                                         (17.59) 

Imposing this condition on the wave function (17.50) yields the equations,  

                                                             ( ) ( ) ( ) ( )1 22
0li

l lh kR e h kR

+ = ,                                             (17.60) 

that determine the phase shifts to be     

                                                                    
( ) ( )
( ) ( )

1

2

2

li l

l

h kR
e

h kR

−
= −                                                        (17.61) 

Notice the absolute value of the ratio on the right-hand side of this equation is one because  
( ) ( ) ( ) ( )2 1 *

l lh z h z=  for real z . The latter condition follows from the fact that the incoming and 

outgoing waves are related by time-reversal symmetry; hence one component is the complex 

conjugate of the other.   

 It is convenient to express the spherical Hankel functions in terms of the spherical Bessel and 

Neuman functions: 

                                                         

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2
.

l l l

l l l

h x j x in x

h x j x in x

= +

= −

,
                                                      (17.62) 

With these definition, 

                                        
( ) ( )

( ) ( )

( ) ( )

( ) ( )
2 li l l l l

l l l l

j kR in kR n kR ij kR
e

j kR in kR n kR ij kR

− + −
= − =

− +
,                                  (17.63)                

hence  

                                                                
( )

( )
tan

l

l

l

j kR

n kR
 = ,                                                            (17.64) 

and 

                                                
( )

( ) ( )

22
2

2 2 2

tan
sin

1 tan

ll
l

l l l

j kR

j kR n kR





= =

+ +
.                                        (17.65) 

We shall use this formula to calculate the total scattering cross-section in the limits where the 

sphere’s radius is much smaller ( 1kR ) or much larger ( 1kR ) than the particle 

wavelength.  

Recall that the scattering cross-section is defined as the number of scattered particles per unit 

time divided by the incoming particles’ flux (number of particles per unit time per unit area). 
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In our calculation, we choose the amplitude of the incoming wave to be one; hence the cross-

section is: 

                                           ( ) ( )
2

2

scat 2

0

4
2 1 sin l

l

d a l
k


  



=

=  = +                                      (17.66) 

To calculate this sum, we need the asymptotic behavior of the spherical Bessel and Neuman 

functions: 

                   ( )
( )

2 !
0

2 1 !

1
sin

2

l
l

l

l
x x

l
j x

x l x l
x




→

+


  −    

            ( )

( )
1

2 ! 1
0

2 !

1
cos

2

l l

l

l
x

l x
n x

x l x l
x



+


− →




 − −    

    (17.67) 

Consider first the limit 1kR . Using Eqs. (17.65)  and (17.67) we obtain 

                                 
( )

( )

( )

( ) ( )
( )

2

2
2

4 22

2
0

1

2 !

2 1 ! 4 !
lim sin

2 1 ! 2 !2 ! 1

2 !

l
l

l
l

l
kR

l l

x kR

l
x

l l
kR

l ll

l x


+

→

+

=

 
 

 + = =  
 +   

 
 

.                   (17.68) 

From here, it follows that the main contribution comes from 0l = , where ( )
22

0sin kR = . 

Substituting this result in (17.66), we obtain: 

                                                               2

scat 4 ,R =   for        1kR .                                      (17.69) 

Notice that this scattering cross-section equals the full surface of the sphere rather than its 

cross-section area, 2R .  This is not surprising because this result applies to the ultra-

quantum limit, where the size of the sphere is much smaller than the particle wavelength.  

Consider now the opposite limit,  1kR . Using Eqs. (17.65) and (17.67) give  that for kR l  

                 ( ) ( ) ( )2 2 1 1
sin sin 1 cos 2 1 1 cos 2

2 2 2

l

l kR l kR l kR


 
   − = − − = − −       

         (17.70) 

Substituting this result in Eq. (17.66) and taking into account that the contribution from the 

second term in (17.70) is negligible because of the alternating signs, and that sum over l  

extends up to kR  where the asymptotic formula (17.67) for large argument applies  (at higher 

values l  decays exponentially with l ), we obtain: 

                                          ( ) 2

scat 2

0

4 1
2 1 2

2

kR

l

l R
k


 

=

= + = ,   for 1kR .                                  (17.71) 

Thus, we obtain a cross-section that is precisely twice the classical value (the area of the 

sphere cross-section). This result is surprising because, from the correspondence principle, 

we expect that when the wavelength approaches zero, one should recover the classical result. 
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This discrepancy between the classical value of the cross-section and its quantum value in the 

classical limit is called the extinction paradox.  

The reason for paradoxes is usually rooted in some hidden assumptions. Here it is associated 

with the orders of limit in which the cross-section is calculated. To reveal this assumption, let 

us recall the problem of diffraction from a slit whose width, w , is much larger than the 

wavelength  . In this problem, one identifies two regimes that depend on the distance, r ,  

of the detector from the slit. In the near-field regime,  r w  , diffraction effects due 

to the edges of the slit are small so that rays move, essentially, along the classical trajectories. 

On the other hand, in the far-field regime, r w , essentially all rays detract and generate 

the distinctive Fraunhofer interference pattern. This example shows that although one may 

assume   to be the smallest length scale in the problem in both cases , the order of limits,  

0 →  and   r → ,  is important. The classical result is obtained when first 0 →  and only 

then r → , while strong diffraction is revealed in the opposite order, first  r →  and only 

then 0 → . 

The calculation that led to Eq. (17.71) has been performed in the orders of limits where 

quantum diffractions effects are always significant (i.e., first r →  and then 0 → ). To 

understand the reason for the factor of two between the quantum and the classical result, let 

us consider the problem of diffraction from a thin circular mirror of area A , as illustrated in 

Fig.  17-15. Clearly, all rays that hit the mirror will be reflected and contribute an area A   to 

the total cross-section. However, diffraction takes place also for rays that do not hit the 

mirror, as illustrated in the figure. 

                        

Figure 17-15 Diffraction from a thin circular mirror 

To find the contribution of these rays to the total cross-section, we use Babinet’s principle 

according to which, in the far-field regime,  the diffraction pattern from an impenetrable 

screen is the same as from a slit with the same shape (in any direction which is different from 

that of the incoming plane wave). This principle implies that the effective area of the 

diffractive rays (which do not hit the mirror directly)  is also  A , hence the total cross-section 

is 2A .  
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17.4 The kinetic (Boltzmann) equation for elastic scattering 

 

Impurities and lattice defects scatter the electrons from one Bloch state to another. In this 

section, we construct the kinetic equations that describe this process. This description is 

semiclassical in nature: It constitutes an equation for the probability density, ( ), ,f tr p , of 

finding a particle at a point ( ),r p  in phase space at a time t . It is based on the assumption 

that the elastic mean free path, that characterizes the distance between successive scattering 

events, is much larger than the particle’s wavelength and neglects interference effects. 

Solution of the kinetic equation allows one to calculate the particle’s density, 

                                                                  ( )3 , ,d p f t =  r p ,                                                              (17.72) 

and the  current density: 

                                                                 ( )3 , ,d p f t
m

= 
p

j r p .                                                         (17.73) 

If there is no scattering, the electron distribution function satisfies the Liouville equation, 

which in the absence of external forces reduces to  

                                                                           0
f f

t

 
+  =

 r
v ,                                                    (17.74) 

where m= pv is the particle’s velocity. A solution of this equation, analogous to a plane 

wave solution of the Schrödinger equation of a free particle,  is: 

                                                                 ( ) ( )0, ,f t = −r p p p ,                                                       (17.75) 

where   is the density, which is constant and homogeneous in space, while  
0p   is the initial 

momentum. The particle current obtained from this distribution function is   

                                                                               0

m
=

p
j .                                                           (17.76) 

Since elastic scattering conserves energy, it is convenient to express the conservation of 

momentum, as conservation of its absolute value and direction, ˆ p=n p .  For parabolic 

energy spectrum, conservation of the absolute value of the momentum is equivalent to 

conservation of the energy, 2

0 0 2p m = , hence representing the probability density function 

in the form ( ) ( )ˆ, , ,f t f =r p n , the solution (17.71) may be written in the form: 

                                                ( ) ( ) ( )0 0
ˆ ˆ ˆ,

8
f

m


    

 
= − −n n n

v
,                                            (17.77) 

where 0 0 0
ˆ p=n p is the initial direction of the particle’s momentum. From now on, we shall 

suppress the energy dependence of the distribution function because it is conserved. 
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To take into account scattering by disorder, one has to add to the right-hand side of the 

Liouville equation (17.70) a term that describes the change of the distribution in time due to 

scattering:  

                                             
( ) ( )

( )el

ˆ ˆ, , , ,
ˆSt , ,

f t f t
f t

t

 
+  =    

n r n r
n r

r
v ,                                       (17.78) 

with the collision integral 

                 ( ) ( ) ( ) ( ) ( )
2 22

el
ˆ ˆ ˆ ˆ ˆ ˆˆSt , , , , , ,i

i

f d n a f t a f t     = − −
  r R n n n r n n n rv .        (17.79) 

Here, for simplicity, we assume that the lattice disorder comprises identical scatterers located 

at points  iR , with a differential cross-section of each scatterer given by ( )
2

ˆ ˆ,a n n (for 

scattering from direction n  to n ). The first term of Eq. (17.79)  describes the increase in the 

probability density to find a particle in direction n , due to scattering of a particle from a 

different direction n into n . The second term represents the decrease in the probability 

distribution as a result of scattering from  n  to n . 

Notice that except for the scattering amplitude, which may take into account quantum 

properties of the system, the above equation is essentially classical. Expressed only in terms 

of the probability for scattering from individual scatterers, it neglects possible interference 

effects. To explain this point, consider two trajectories of a particle passing from point A  to 

point B , via several scattering events,  as illustrated in Fig. 17-16. Denoting by 1w  and 2w the 

probabilities of passing through the upper and lower trajectories, respectively,  the classical 

probability of passing from point A  to point B , is given by the sum 1 2w w w= + .  

 

 

Figure 17-16 A particle passing from point A  to point B   experiencing several  scattering events   

 

On the other hand, when treating the problem quantum mechanically, one should sum 

probability amplitudes rather than probabilities. The probability amplitudes are given by 
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( )expi iw i , where 1  and 
2  are the phases accumulated along the upper and lower 

trajectories, respectively. Thus, the probability of transition  is 

                             ( ) ( ) ( )1 1 2 2 1 2 1 2 1 2exp exp 2 cosw w i w i w w w w   = + = + + −           (17.80) 

The last term on the right-hand side of this equation is the interference contribution. This 

term is not taken into account by the kinetic equation (17.73). Interference might become an 

important factor leading to various physical phenomena such as localization, weak 

localization, and mesoscopic fluctuations. These subjects are beyond the scope of this course. 

The interference effects can be neglected when scattering is sufficiently weak or in the 

presence of processes that destroy phase coherence (such as electron-electron interaction at 

sufficiently high temperature).  

Usually (even when taking interference effects into account), the microscopic description of 

elastic scattering from individual scatterers contains too much information, which is not 

required to characterize the behavior of a large system. Instead, one may characterize the 

scattering process by the transition rate between different momentum states (or momentum 

directions). To obtain such a description, we define the density of scatterers as  

                                                              ( )imp i

i

N = − r R ,                                                   (17.81) 

where  represents a statistical average over the positions of the scatterers. Here we 

assume that the density of scatterers is uniform in space. In this case, the collision integral 

(17.75) reduces to  

                                              
( )

( )

( )

( )

2

el

ˆ ˆ, , , ,ˆ
St

ˆ ˆ ˆ ˆ4 , ,

f t f td n
f

  

 
= − 

  


n r n r

n n n n
                                         (17.82) 

where 

                                                         
( )

( )
2

imp

1
ˆ ˆ4 ,

ˆ ˆ,
N a


=


n n

n n
v                                                  (17.83)          

is the scattering rate from a state where the particle moves in direction   ˆn  to a state where 

it moves in direction n̂ . In the absence of a magnetic field, time-reversal symmetry implies 

that 

                                                                  ( ) ( )ˆ ˆ ˆ ˆ, ,  = − −n n n n .                                                    (17.84) 

On the other hand, in general, one cannot replace the roles of the incoming and outgoing  

momenta during the scattering events, namely  

                                                                    ( ) ( )ˆ ˆ ˆ ˆ, ,  n n n n .                                                        (17.85) 

This feature is explained in Fig. 17-17. Nevertheless, when the scattering potential is weak, 

and the transition rate can be calculated perturbatively (by Fermi’s golden rule), one obtains 
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that ( ) ( )ˆ ˆ ˆ ˆ, ,  =n n n n , see Ex. 1. This equality is called the “principle of microscopic 

reversibility”. Assuming this property, the kinetic equation (17.78) reduces to: 

                                         
( )

( ) ( )
2 ˆ 1

ˆ ˆ, , , ,
ˆ ˆ4 ,

f f d n
f t f t

t  

 
+  = −     n r n r

r n n
v .                       (17.86) 

Finally, we comment that elastic scattering does not take the system into an equilibrium state 

because the particle energy remains intact. On the other hand, the momentum relaxes and 

leads to diffusive behavior, as discussed in the following chapter. 

 

 

 

 

Figure 17-17 Scattering from an impenetrable triangle illustrating the inequality (17.80). 

 
 

 

 

 

 

17.5 Exercises  

 

1. Prove the principle of microscopic reversibility with the framework of Fermi’s golden 

rule.  

2. For an electron in a two-dimensional system, calculate the total cross-section from an 

impenetrable circular potential in the following limits: 

(a) When the circle radius is much smaller than the electron’s wavelength. Here, show 

that the cross-section is determined mainly by the electron wavelength rather 

than the size of the scatterer.   

(b) When the wavelength is much smaller than the circle radius. Show that the cross-

section obtained in this limit is twice the classical one.  
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Advice: Use the solution of the two dimensional Schrödinger equation of a free 

particle in polar coordinates ( ),r  : 

                              ( ) ( ) ( ) ( ) ( )2 12
exp nin

n n n

n

i in A H kr e H kr
 



=−

 = +
                          (17.87) 

where 

                                                        

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

n n n

n n n

H x J x iN x

H x J x iN x

= +

= −
                                       (17.88) 

are the Hankel functions of the first and the second kind  expressed in terms of the 

Bessel and the Neuman functions which have the following asymptotic behavior:  

                                                ( )

1
0

! 2

2
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2 4
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x
x

n
J x

x n x n
x

 



  
→  

  


 
− −   

                                 (17.89) 

                                          ( )
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N x x n
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x l x n
x





 




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
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                             (17.90) 

              Use also the expansion: 

                                         ( ) ( ) ( ) ( )exp exp cos expn

n

n

ikx ikr i J kr in 


=−

= = .                           (17.91) 
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18 Transport coefficients & thermoelectric effects 
 
In the final chapter of this course, we consider the nonequilibrium behavior of electrons in 

disordered crystals in response to spatial changes in the electron’s density,  , the 

temperature gradient, T , and the application of an external electric field, E . We focus our 

attention on the regime of linear response where the electric current is given by  

                                                                 D T  = − −j E   ,                                                      (18.1)        

and discuss the coefficients that characterize the response and the relations among them. 

These are the conductivity tensor  , the diffusion constant, D , and the thermopower 

coefficient,  .  We conclude by presenting thermoelectric effects - the Seebeck, Peltier, and 

the Thomson effects - and the relations among the thermoelectric coefficients associated 

with them.    

 

18.1 Diffusion 

 

Diffusion is a dynamical process by which a particle scatters and changes its direction rapidly, 

but, similar to random walk, its position changes slowly in space such that the square of the 

distance from the origin is proportional to time:   

                                                                           2 2r Dt= ,                                                                 (18.2) 

where D  is the diffusion constant.  Here we derive this equation and identify the diffusion 

constant by solving the kinetic (Boltzmann) equation (17.74) with the collision integral (17.78) 

for which we assume the principle of microscopic reversibility, ( ) ( )ˆ ˆ ˆ ˆ, ,  =n n n n , i.e.,   

                                    
( )

( ) ( )
2 ˆ 1

ˆ ˆ ˆ, , , ,
ˆ ˆ4 ,

f f d n
f t f t

t  

 
+  = −    n n r n r

r n n
v .                       (18.3) 

We also assume the absolute value of the velocity to be approximately constant and express 

it in the form  ˆ= nvv , where n̂  is a unit vector.  
 

 Averaging Eq. (18.3) over the directions of n̂  yields the continuity equation: 
 

                                                           ˆ 0
f

f
t


+  =


nv ,                                                               (18.4) 

where 

                                                                ( )
2 ˆ

4

d n


=  .                                                             (18.5) 
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It is clear that Eq. (18.3) is satisfied by a constant function. Such a solution is expected to be 

reached after a long time when momentum relaxes and the particle probability density 

spreads uniformly in space. This property suggests looking for a solution in the form of a 

gradient expansion,   

                               ( ) ( ) ( ) ( )0 1 2
ˆ ˆ ˆ ˆ, , , , ,i j

i j

f t f t f t n n f t
r r

 
= +  + +

 
n r r n r r ,                      (18.6) 

where ( ),if tr changes slowly in space and time, i.e., over distance (and time) that is much 

larger than the typical distance (or time)  between successive scattering events. In what 

follows, we consider only the first two terms of the above expansion.  Substituting (18.6) in  

the continuity equation  (18.4),  

                                          ( )0 1 0 1
ˆ ˆ ˆ 0f f f f

t


+  +  +  =


n n nv                                          (18.7) 

 we obtain 

                                                           
( )

( )0 2

1

,
, 0

f t
f t

t d


+  =



r
r

v
.                                                           (18.8) 

The terms linear in n̂   vanish upon averaging, while those quadratic in n̂  are calculated as  
follows: 

                                             0 1 1
ˆ ˆ ˆ ˆ ˆ

i j

i j

f f f n n f
r r

 
 =  +  =

 
n n nv v v   .                          (18.9) 

Now, it is clear that for i j ˆ ˆ 0i jn n = , while for i j=  the average , 2ˆ
in , is, by symmetry, 

independent of i ;  hence 

                                                  
3

2 2

1

1 1
ˆ ˆ ˆ ˆ

3 3
i j ij i i ij ij

i

n n n n  
=

= = = .                                             (18.10) 

Notice that in this equation, we do not sum over repeated indices. Substituting this equation 

in (18.9) gives the second term in (18.8).  

To obtain an additional relation between 
0f  and 

1f ,  we substitute the expansion (18.6) in 

(18.3), multiply by n̂ ,  and average over the directions of n̂ . Keeping those terms that do not 

vanish upon averaging, the resulting equation takes the form: 

          ( )
( )

( )
( )

2 2
0 1

1

, ˆ ˆ 1
ˆ ˆ ˆˆ ˆ ˆ ˆ,

ˆ ˆ4 4 ,
i i i i

i i i

f t fd n d n
n f t n n n

t r r r  

   
+ = −

    
r

n r n n
n n

v .               (18.11) 

From now on, we assume that the scattering time depends only on the angle between the 

incoming and outgoing rays,  , i.e. ˆ ˆ cos =n n , and denote ( ) ( )ˆ ˆ,   =n n . With this 

assumption, the double integral on the right-hand side of Eq. (18.11) reduces to a single 

integral over the angle  . Thus, 
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( )

( )
2 2

1
1

ˆ ˆ 1 1
ˆ ˆ ˆ

ˆ ˆ4 4 ,
i i

i tr

fd n d n
n n f

r   

 
 − = −

   n
n n

 ,                                (18.12) 

with  

                                                         
( )

( )
tr 0

1 1 1
sin 1 cos

2
d



  
  

= − .                                                  (18.13) 

The time 
tr  is called the transport mean free time. It is the typical time when the particle 

loses memory of its initial direction.  When scattering is by small angles (i.e., when ( )   is 

peaked at 0 = ), the transport mean free time can be much larger than the elastic mean free 

time, 

                                                                           
( )0

1 1 1
sin

2
d



 
  
=  ,                                                  (18.14) 

because many scattering events are required to reverse the particle’s direction.  

Using Eq. (18.10) in order to evaluate the left-hand side of Eq. (18.11), and  the Eq.(18.12) for 

the right-hand side,  we obtain  

                                                ( ) ( ) ( )1 0 1

tr

1 1 1
, , ,

3 3 3
f t f t f t

t 


 +  = − 


r r rv .                                 (18.15) 

However, the first term on the left-hand side of the equation is negligible because time 

derivative is equivalent to higher spatial derivative  (as follows from Eq. (18.8)), hence  

                                                              ( ) ( )1 tr 0, ,f t f t= −r rv .                                                           (18.16) 

Substituting (18.16) in (18.8), we obtain the diffusion equation:  

                                                             ( ) ( )0 0, ,f t D f t
t


=    

r r ,                                                  (18.17) 

where  

                                                                        
2

tr

3
D


=
v

                                                              (18.18) 

is the diffusion constant.  The above result is derived for a three-dimensional system. In a d -

dimensional system, a similar calculation gives Eq. (18.17) with the diffusion constant, 
2

trD d= v .  

Assuming D  to be uniform in space, the solution of the diffusion equation (18.17)  (assuming 

initial conditions where the particle is located at the origin) is: 

                                                         ( )
( )

2

0

2

1
, exp

4
4

d

r
f r t

Dt
Dt

 
= − 

 
.                                       (18.19) 

Using this solution to calculate the expectation value of 2r  leads to Eq. (18.2).  
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To summarize, the above results imply that the diffusion equation (for charged particles) is 

obtained from the continuity equation  

                                                                            0
t


+ =


j ,                                                     (18.20) 

where  and j  are the charge density and the current density, respectively. Fick’s law 

determines the latter, 

                                                                               D − j = .                                                           (18.21) 

This diffusion current is only one of the contributions to the total current. Additional 

contributions may come from the temperature gradient and the electric field, see Eq. (18.1). 

 

18.2  The electric conductivity and Einstein’s relation 

 
Consider a system of electrons in thermal equilibrium without a magnetic field.  The electric 

current in the system,   

                                                            
( )

( ), ,
2

d

d

d p
e f t


= − j r pv ,                                                    (18.22) 

vanishes due to time-reversal symmetry.  Mathematically it can be verified by taking into 

account that the equilibrium distribution function is only a function of the energy  

( ) ( ), ,f t f =r p  (so that its Poisson bracket with the Hamiltonian vanishs). Then 

representing the distribution function in the form f F =   , and taking into account that 

the velocity is the derivative of the energy with respect to the momentum, ( )=  p pv , 

the current can be expressed as an integral over a  full derivative and therefore vanishes: 

                                     
( )

( )
( )

0
2 2

d d

d d

d p d p F
e f e




 

 
= − = − =

  j
p p

.                                        (18.23) 

Now consider an isolated system subjected to an electric field, E , but in an equilibrium state 

so that there is no electric current flowing in the system.  For simplicity, we assume that the 

system is isotropic and homogeneous; hence the conductivity tensor can be replaced by a 

scalar,  .  In this situation, the electric current due to the electric field must be compensated 

by the diffusion current due to the gradient of the charge density,  , i.e., 

                                                                     0D = − =j E  .                                                     (18.24)    

This equation suggests that the conductivity and the diffusion constant are related. To identify 

this relation,  let  ( ) r  be the electric scalar potential that determines the electric field,    
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                                                                              ( )−E = r .                                                           (18.25) 

The Hamiltonian of the system is then given by  

                                                                  ( ) ( )0H e = −p r ,                                                          (18.26) 

where ( )0 p  is the electronic spectrum of the system in the absence of an electric field.  To 

proceed, we adopted a semiclassical approximation where the Fermi wavelength is much 

smaller than any other length scale in the problem.  In particular, the electric field is assumed 

to be sufficiently weak so that ( ) r  changes very slowly over a distance of the order of the 

Fermi wavelength. With this assumption, the equilibrium electronic distribution function can 

be approximated by  

                                               ( ) ( ) ( ) ( )eq 0, F Ff H e     − = + −  r p r p                          (18.27) 

where we assumed the Fermi energy, F ,  to be much larger than the temperature, 

B Fk T  , therefore the Fermi distribution function can be replaced by a unit step function 

(this is the typical situation in good metals). Within this semiclassical approach, each electron 

occupies a volume of  ( )2
d

  in phase space; hence the charge density is obtained by the 

following integral over the momentum:    

                                                     
( )

( ) ( )0

2

d

Fd

d p
e e    


= − + −   r p .                               (18.29) 

It follows that to the leading order in ( ) Fe r , 

                                                                        ( ) 
2e   −  r ,                                                    (18.30) 

where 

                                                                
( )

( )0

2

d

Fd

d p
   


= −   p                                            (18.31) 

is the density of states at the Fermi energy.  Substituting  (18.30) and (18.25) in the equilibrium 

condition (18.24) yields Einstein’s relation, 

                                                                                  2e D = ,                                                          (18.32) 

that relates the conductivity to the diffusion constant.  

 

Example: PN junction (a diode) 

 

A PN-junction is obtained when a p -type semiconductor is brought to contact with n -type 

semiconductor. Near the interface, electrons from the n -type semiconductor diffuse into the 

p -type semiconductor and compensate the acceptors, creating a depletion layer with a low 
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concentration of free charges, as illustrated in the upper panel of Fig. 18-1. At an equilibrium 

state, the diffusion current, due to the gradient of consecrations of holes and electrons, is 

compensated by the electric current induced by the electric field.  This electric field is created 

by the charge carriers that have passed from one side of the junction to its other side.   

An electric field’s buildup is required to equate chemical potential on both sides of the 

junction. It leads to a voltage drop, V , as illustrated in the lower panel of  Fig. 18-1.  

 

 

 
 

         
 

Figure 18-1  A PN junction (diode) at equilibrium.  Upper panel:  The depletion layer 

and the buildup of an electric field. Lower panel: The band structure of electrons. 

 

 

To calculate the potential drop across the PN junction,  we consider, for simplicity, the case 

in which the intrinsic semiconductors on both sides of the junction are identical and construct 

the equation for a zero current flow, analogous to (18.24). Here, however, one has to take 

into account that the electric field and the density of carriers are not uniform in space.  

Focusing on the current due to holes, and assuming one-dimensional geometry, we have 

 

                                               ( ) ( ) ( ) 0x h h h hj e n x E x D n x
x


 

= − =  
,                                    (18.33) 
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where ( )hn x  is the density of holes at point x ,  
trh he m =  is the mobility of the holes (see 

definition below Eq.(1.3)) in which 
hm  is the effective mass of the hole, and 

hD  is the hole 

diffusion constant.  Notice that in the case of lightly dope semiconductors, one cannot use 

relation (18.32) that was derived for a metal. Instead, assuming a temperature range where 

the Boltzmann distribution approximates the hole distribution function, one can calculate the 

diffusion constant using the equipartition law: 

                                            
2 2

tr tr tr tr2 23

3 2 3 2 3

h BB
h

h h h

v m v k Tk T
D

m m m

   
= = = = .                                      (18.34) 

This result may also be written in the form 
h B hD k T e= , which constitutes the Einstein 

relation for a Brownian particle.  Using this result,  Eq. (18.33) reduces to: 

                                             
( )

( )
( )

( )1 h h

h h B

n x xe
E x

n x x D k T x

 
= = −

 
,                                   (18.35) 

where ( )x  is the electric potential. Integrating the above equation across the depletion 

layer from a point located deep in the p -type semiconductor  to a point located deep in the  

n -type semiconductor, we obtain: 

                                                                   
type

type
ln

n

h

p

h B

n e
V

n k T

−

−

 
= −  

 
,                                                   (18.36) 

where  V  is the voltage across the junction (i.e. the difference between the voltage in the 

n -type side of the junction, NV , and the voltage on the p -type side, pV ), while, typep

hn −  and 

typen

hn −  are the densities of the holes at the p -type and at the n -type regions of the junction, 

respectively.  In particular, the density of holes in the p -type semiconductor can be 

approximated by the density of acceptors, typep

h An N− , and using the law of mass action 

(17.10), we deduce that the density of holes in the n -type semiconductor is type 2n

h i Dn n N− ,

where in is the intrinsic density of charge carriers in the semiconductor, while DN  is the 

density of donors  (which approximates the density of electrons). From here, we  conclude 

that  

                                                                    
2

lnB A D

i

k T N N
V

e n

 
 =  

 
.                                                          (18.37) 

 

 

18.3  The second law of thermodynamics in electronic systems 

 

Consider the Boltzmann (kinetic) equation for the distribution function of electrons subjected 

to an external electric field, 
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                                                           St
f f f

e f
t

   
+  −  =

   
E

p r p
,                                           (18.38) 

where the collision integral accounts, both for the scattering of the electrons by impurities 

and the collisions among electrons1. These conditions imply that the scattering processes 

conserve the number of particles and energy.  Thus, multiplication of Eq. (18.38) by e−  and 

integration over the momentum yields the conservation law of electrical current (18.20), 

where the charge density and the current density  are given by 

                                                           
( )

( )
2

d

d

e
d p

f
e






− 
   =    −    

 p
j

p

 .                                          (18.39) 

Notice that this equation follows from two properties: (a) the conservation of the number of 

particles by collisions, and (b) that the integral over the force term in the Boltzmann equation 

(18.38), e f−  E p , vanish because it is a full derivative.  

Similarly, one can construct the dynamical equation for the energy flow in the system,  

                                                                     
t





+  


 j = j E ,                                                   (18.40) 

where  is the energy density, and j   is the energy current,  defined by the integrals: 

                                                          
( )

( )
2

d

d

d p
f











 
   =    
    

 p
j

p

.                                             (18.41) 

Here, the contribution from collision integral vanishes; however, the force term on the left-

hand side of the Boltzmann equation (18.38) gives a finite contribution to the energy balance 

equation (18.40). This contribution can be calculated using integration by parts:  

                                              
( ) ( )2 2

d d

d d

d p f d p
e e f




 

 
−  =  = − 

  E E j E
p p

.                           (18.42) 

It is called Joule heating. It describes the property that a moving electron changes its energy 

due to the work performed against the electric field. The above equations can be 

straightforwardly generalized to include the magnetic field, and the Lorentz force that acts on 

the charge carriers.  

                                                           
1 Similar to collision with phonons, the collision of electrons among themselves bring the system into Fermi-
Dirac distribution (in the absence of external forces). At low temperature, this is the dominant mechanism 

because the electron-electron collision rate is proportional to T (in three dimensions), while the electron-

phonon rate is proportional to 
3T . 
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There is, however, an additional type of forces called thermodynamic forces. These forces 

originate from spatial or temporal changes in the temperature, ( ),T tr  and/or in the chemical 

potential ( ), t r . To identify these forces, let us represent the electron distribution function 

as a sum of two contributions: 

                                                     ( ) ( )eq , ; ,f f T t t f = +  r r ,                                                (18.43) 

where the first contribution, 

                                       ( ) ( )
( ) ( )

( )

eq

1
, ; ,

,
1 exp

,B

f T t t
t

k T t


 

=  
 −

+  
 

r r
p r

r

,                                       (18.44) 

is a distribution function describing local equilibrium (assuming the temperature and the 

chemical potential to change slowly in space and time), while the second contribution, f , 

represents deviations from local equilibrium. Substituting Eq. (18.43) in Boltzmann’s equation 

(18.38) and linearizing with respect to f  (focusing for simplicity on a steady-state solution), 

we obtain the equation: 

                                      ( )
( )

( )
( )eqˆ

f
L f e T

T

 
 



  −  
=  +  
    

r
E + r r

p r
,                                      (18.45) 

where L̂  is a linear operator representing the action of the linearized Boltzmann equation 

(including the collision term) on f .  The right-hand side of this equation accounts for the 

external forces (here, the electric field) and the thermodynamic forces (gradients of the 

temperature and the chemical potential)  acting on the system.   To  derive these forces, let 

us first consider the action of the spatial derivative (the second term on the left-hand side of 

Boltzmann’s equation (18.38)) on ( ) ( )eq ;f T   r r : 

                          

( ) ( ) ( )
( )

( )

( )
( )

( )
( )

eq

eq

eq

;

              .

B

B

f
f T k T

k T

f
T

T

  




 




  −   
 =             

  −  
=  − −  
    

r
r r r

p r p r r

r
r r

p r

                                (18.46) 

Next, we make use of the fact that the dependence of ( ) ( )eq ;f T   r r  on the momentum is 

only through the energy dependence, ( ) = p , hence the force term in the Boltzmann 

equation (the third term on the left-hand side of (18.38)) is given by: 

                                           ( ) ( ) eq

eq ;
f

e f T e





 
−  = −     

E r r E
p p

.                                   (18.47) 
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The sum of these two contributions gives the inhomogeneous term on the right-hand side of 

Eq. (18.45). 

To weave the connection to the second law of thermodynamics, first, notice that the 

contribution to the change in the entropy density from the distribution function (18.43) 

comes only from f  because  the local equilibrium distribution, ( ) ( )eq ;f T   r r , already 

maximizes the entropy. Hence Eq. (18.45) suggest that the entropy density, s , satisfies an 

equation of the form: 

                                                                      
Q

s

t


+ = 


j J F ,                                                   (18.48) 

where Qj  is the heat (or entropy) current density. In the right hand side of this equation, F  

represents the external and thermodynamic forces acting on the system, while J  stands for 

the current densities that couple to these forces.  The left-hand side of the above equation 

follows from the left-hand side of Eq. (18.45).  It describes reversible processes in which the 

entropy is conserved.  The entropy change comes from the right-hand side of the equation 

and has the same form of Joule heating.   

To identify the current J , we begin from the thermodynamic relation,  

                                                                    TdS dU dN= − ,                                                         (18.49) 

where  S  is the total entropy, U is the total energy, and N is the number of particles. Passing 

from these extensive quantities to their intensive counterparts (i.e. densities) and focusing 

our attention on their time dependence, we obtain  

                                                                 
1s

t T t eT t

   
= −

  
,                                                         (18.50) 

where we replaced the particle density with the charge density (divided by e ). Now, let us 

substitute Eqs. (18.20) and (18.40)  for the time derivative of the energy and the charge 

densities. Rearranging the terms in the resulting equation gives  
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1 1
    

1 1
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  
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 

     
= − +  − + − −    

    

j j E j

j E
j j j j

j j E j j ,

                        (18.51) 

where the heat current is given by   

                                                                    
1

Q
T e



 
= − 

 
j j j .                                                       (18.52) 
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This equation has the same structure as Eq. (18.48).  It may be written in a form that allows 

one to identify the forces and the currents that couple to them:  

                                                        
( )1 Q

Q

s
e

t T
T

 
−  + = 

   − 

j j E
j .                                             (18.53) 

The condition set by the second law of thermodynamics is that the right-hand side of Eq. 

(18.53) is non-negative.  This condition implies that within linear response theory,  the matrix 

that relates the currents to the forces, 

                                                              
ˆˆ

ˆˆQ

e

T


 

 

    − =           − 

j E

j
                                                         (18.54) 

is non-negative.  The following Onsager relations set this condition: 

                                                                        

( ) ( )

( ) ( )

( ) ( )

ˆ ˆ ,

ˆ ˆ ,

ˆ ˆ .

T

T

T

 

 

 

= −

= −

= −

B B

B B

B B

                                                     (18.55) 

These relations are written here for the case where the system is subjected to a magnetic 

field, B .  

 

Example: The I-V characteristic of a diode and Onsager’s relations 

In their simplest form, Onsager’s relations imply that in the linear response regime of a 

passive system and in the absence of a magnetic field, the conductivity is independent of the 

current direction.  This property seems to contradict the behavior of a diode that allows an 

electric current to flow only in one direction.  In this example, we calculate the I-V 

characteristic of a diode and show that the magnitude of the current flowing through a PN 

junction is indeed independent of the direction of voltage bias, provided it is small enough.  

The main assumption that we shall need to calculate the I-V curve of a diode is that the 

injected current is sufficiently small. Notice, at equilibrium, the current in any part of the 

diode vanishes because the currents of charge carriers moving in opposite directions cancel 

out. The typical current associated with one of these components is of the order of one 

ampere, while the current flow through a biased diode is typically a few milliamperes.  Small 

injected current implies a slight voltage bias that has only a small effect on the depletion layer. 

Hence we may also assume that the depletion layer is free of charge carriers. In addition,  we 

assume that the resistivity of the depletion layer is much higher than that in the other parts 

of the diode; hence the voltage drop occurs, essentially, only on the depletion layer.  
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To calculate the current in the diode, we focus our attention on the minority charge carriers 

in each side of the PN junction.  When the diode is forward biased by a voltage V , the 

equilibrium drop voltage is lowered from V , to  V V − and holes are injected into the n -

type region of the diode at the point 
nW , see Fig. 18-2.  The holes in this region diffuse and 

recombine with electrons, thereby generating a current flow.  

      

Figure 18-2 The geometry of the PN junction used for calculating the I-V characteristic of a diode 

 

To be specific, let ( )hn x  be the deviation of the hole density from its equilibrium value in 

the n -type region.  The time evolution, describing diffusion and recombination process,  is 

given by the equation: 

                                                   
( ) ( ) ( )2

2

h h h

h

e h

n x n x n x
D

t x

  

 −

 
− = −

 
,                                         (18.56) 

where 
hD   is the hole diffusion constant, and the right-hand side of the equation accounts for 

recombination at rate 1 .e h −  This equation implies that the hole may diffuse only a distance 

of order h e h e hl D − −=   until it recombines with an electron. Assuming the length of the n -

type region to be much larger than this distance, n n h eL W l −− , a steady-state solution  of 

Eq. (18.56) is: 

                                     ( ) ( )exp n
h h n

h e

x W
n x n W

l
 

−

 −
= − 

 
,    for  n nL x W  .                                         (18.57) 

Here ( )h nn W  is the deviation of the hole density from its equilibrium value at the edge of 

the depletion region, nx W= , where holes are injected (see Fig. 18-2).  Thus, the electric 

current density coming from the holes is the diffusion current (recall we assume there is no 

electric field within the diode apart from the depletion region): 

                                                         
( )

( )
n

h h
h h h n

h ex W

n x D
j D n W

x l




−=


= − =


                                       (18.58) 

A similar process takes place for electrons in the p -type region and the total current is the 

sum of both contributions.  
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Our goal now is to find the voltage dependence of the nonequilibrium density of the holes, 

( )h nn W . For this purpose, we integrate Eq. (18.35) across the depletion  layer, from pW  to 

nW , taking into account that the total voltage change is V V − , thus 

                                                            
( )

( )
( )

exp
h n

Bh p

n W e V V

k Tn W

 − 
= − 

 
.                                                    (18.56) 

Taking the hole density at the edge of the p -type region, ( )h pn W , to be approximately the 

density of acceptors, 
AN , and using the equilibrium relation (18.37), we obtain: 

                                                             ( )
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D B

n eV
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N k T

 
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 
.                                                   (18.57) 

Subtracting the equilibrium hole density  (i.e., the value of ( )h nn W  at 0V = ) we obtain  

                                                    ( )
2

exp 1i
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D B

n eV
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N k T


  
= −  

  
.                                            (18.58) 

Substituting this result in Eq. (18.58) yields the contribution of the holes to the current 

density: 
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h

h e D B

D n eV
j

l N k T−

  
= −  
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.                                                        (18.59) 

A similar calculation gives the electronic contribution to the current density:  

                                                             
2

exp 1e i
e

e h A B

D n eV
j

l N k T−

  
= −  

  
,                                                    (18.60) 

where 
eD  is the electron diffusion constant and e hl −  is the recombination length for electrons 

in the p -type region of the diode.  

Finally, summing the two contributions (18.59) and (18.60) and multiplying by the area of the 

diode cross-section,  we find that the total current flowing through the diode satisfies the 

equation: 

                                                                       exp 1s

B

eV
I I

k T

  
= −  

  
 ,                                                (18.61) 

where sI  is the saturation current when the diode is reversely biased.  In particular, close to 

equilibrium, BeV k T , this equation reduces to the familiar Ohm’s law describing linear 

response: 
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                                                                                 s

B

eI
I V

k T
= .                                                        (18.62) 

This behavior manifestly satisfies Onsager’s relation. 

 

18.4  Thermoelectric effects 
 

Thermoelectric effects involve the conversion of temperature gradients to electric current or 

voltage and vice versa (in metallic systems). In metals, the chemical potential is usually 

constant due to quasi-neutrality; hence, gradients of the chemical potential can be neglected. 

Furthermore,  the physical quantities that can be controlled in the experimental systems are 

the electric current and the temperature gradient; therefore a convenient way of 

representing Eq. (18.54) is  

                                                             

ˆˆ

ˆ ˆ
Q

Q

T
T T





 
    

=      −   
 

E j

j
,                                                (18.63) 

where 1ˆ ˆ  −=  is the resistivity tensor, 1ˆ ˆˆQ  −=  is Seebeck coefficient, 1ˆ ˆ ˆT − =  is Peltier 

coefficient, and ( )1ˆ ˆˆ ˆ ˆT   −= −  the heat conductivity coefficient. All these coefficients are, 

in general, tensors.   

The above equations allow us to explain several thermoelectric effects. For simplicity, we 

consider systems where  , Q ,  , and   are scalars rather than tensors.  

 

1. Seebeck effect (1821) 

Consider an open electric circuit made from two 

metals with different Seebeck coefficients.  Let us 

assume that the interface between the two metals 

is held at a temperature that is different from the 

temperature at the other edges of the metals, as 

illustrated in Fig. 18-3. Such a device is called a 

thermocouple.  As the circuit is opened, the 

current that flowing through the system vanishes, 

0=j , hence from Eq. (18.63), it follows that  

 

                               Q T=E                            (18.64) 

 

Figure 18-3 A thermocouple  
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Integrating this equation along a curve that starts at one edge of the thermocouple and 

ends at the other edge gives the voltage drop between these edges:   

                                  

( )

( )( )
1 2

2 1

1 2 1 2 1 2  

T T

T T

V d Q T d Q T dT

Q dT Q dT Q Q T T

=  =  =

= + = − −

  

 

E l l

                                      (18.65) 

Thus, the voltage is proportional to the temperature difference and to the difference 

between the Seebeck coefficient of the two metals.  

 

2. Peltier effect (1834) 

Peltier effect can be regarded as the inverse of 

the Seebeck effect.  When current flows through 

a thermocouple made of two metals with 

different Peltier coefficients, the junction can 

emit or absorb heat according to the current 

direction (see Fig. 18-4).   

Assuming the temperature is constant in the vicinity of the interface between the two 

metals, the heat current is proportional to the current,  Q T= j j  (see Eq. (18.63)).  Since 

the Peltier coefficient from both sides of the junction are different, the heat current 

entering (or emitted from) the junction is  

                                                                 ( )1 2

1
Q

T
 =  −j j .                                                   (18.66) 

Thus, the electric current may heat or cool the junction depending on its direction and the 

values of Peltier coefficients. The relation between the Seebeck and the Peltier effects is 

manifested by the relation between the coefficients that characterize these effects:  

                                                                            TQ = .                                                                (18.67) 

3. Thomson effect (1951) 

In general, thermoelectric coefficients are temperature dependent.  In particular, in the 

presence of a temperature gradient, the Seebeck coefficient may vary substantially in 

space. If, in addition, an electric current flows in the system (in the direction or in the 

opposite direction to the temperature gradient), a continuous variation of the Peltier 

effect is obtained – this is the Thomson effect.  To characterize it, let us write Eq. (18.53), 

assuming constant chemical potential, in the form 

 

Figure 18-4 A system demonstrating the 

Peltier effect 
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                                         ( )Q Q Q

s
T T T T

t


=  −  −   −


j E j j = j E j .                         (18.68) 

Substituting Eq. (18.63) we obtain 

                                              ( ) ( )2s
T Q T QT T

t
 


= +   − − 


j j j ,                                 (18.69) 

where we also used  Eq.(18.67). 

Next we assume that the Seebeck coefficient, Q , is temperature-dependent, and take 

into account charge conservation in a steady-state , 0 =j .  These conditions reduce 

Eq.  (18.69) to : 

                                                       2 2

T

s
T T T

t
  


= −  


j j + ,                                        (18.70) 

where 

                                                                      
T

dQ
T

dT
 =                                                           (18.71) 

is the Thomson coefficient. The first term on the right-hand side of Eq. (18.70) is 

independent of the current direction, but the second one does depend on the current 

direction and accordingly increases or decreases the entropy density in the system. 

Namely, this effect is manifested by heating or cooling of a current-carrying conductor in 

the presence of a temperature gradient.  
 

18.5  Relations between the kinetic coefficients 

 

There are relations among the kinetic coefficients presented in Eq.  (18.54). This section 

employs the Boltzmann equation to reveal these relations in simple metallic systems.  To 

begin with, we use Eqs. (18.39), (18.41), and (18.52) to write the electric current and the heat 

current as integrals over the distribution function of the electrons: 

                                                        
( )

( )
2

d

d
Q

e
d p

f

T


 



− 
    = −    

 


j

p
j p

.                                        (18.72) 

Next, we substitute a solution of the form (18.43) with (18.44), i.e. eqf f f= + , where eqf  

describes a local thermodynamic equilibrium (with chemical potential and temperature that 

change slowly in space), while f  describes deviations from local equilibrium.  When time-

reversal symmetry applies,  eqf , does not contribute to the currents in the above equation 

because these currents vanish at equilibrium. Thus ( )f p , in the above equation, should be 

replaced by f .  
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To simplify the problem, we assume that the electron dynamics is governed by elastic 

scattering; hence the operator L̂  in Eq. (18.45) is: 

                                                                  
tr

1
L̂ e



 
=  −  +

 
v E

r r
,                                                (18.73) 

where the collision integral is approximated by the relaxation time approximation. Moreover, 

we focus our attention on the limit where the transport mean free time is shorter than any 

other relevant time scale so that tr
ˆ 1L  .  With this assumption, the solution of (18.45) is 

                                                     ( )eq

tr

f
f e T

T

  
 



  − 
= − − 

   
E

p
,                                      (18.74) 

where we also assume the chemical potential to be constant in space.  Substitution (18.74) in 

(18.72) yields 

                          
( )

( )eq

2

d
i

jd j
Qi j i

e
j fd p

eE T
j p T p

T

   
 



− 
   −    = − −  −       

 

 ,                         (18.75) 

and by comparing with Eq.  (18.54) we can identify the kinetic coefficients as 

                            

2

eq

2 
4

ij ij

tr

ij ij i j

e e
f Td

d

e
T T

 

   
  

       

− 
−          =     

    − −      −  
  

  p p
.     (18.76) 

Here we have replaced the integral over momentum with an integral over the energy, where 

  is the density of states (see Eq. (18.31)), and d  is an infinitesimal element of the solid 

angle.  

To calculate the integrals (18.76) we assume, for simplicity, that the system is isotropic, 

namely that the particle velocity is independent of its direction. This assumption implies that 

all tensors on the left-hand side of the equation are proportional to the identity matrix.  

Furthermore, we assume that the temperature is sufficiently low so that Fermi-Dirac 

distribution can be approximated by a step function and leading order corrections due to the 

temperature. Namely,   

                                                 ( ) ( ) ( )
2 2 2

eq
6

Bk T
f


      = − − − + ,                             (18.77) 

so that 

                                                  
( )

( ) ( )
2 2 2

eq

6

B
f k T 

     



= − − − − +


.                        (18.78) 
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Consider, first, the conductivity. Observe that when substituting the expansion (18.78) in Eq. 

(18.76), the leading contribution comes from the delta function.  It yields 2e D =  with
2

trD d= v , where d  is the dimensionality of the system and  =  v p  the velocity at 

Fermi level. 

Let us now consider the integral of   where the integrand contains the term ( )
2

 − . Here 

it is clear that the contribution from the delta function in (18.78) vanishes, but the second 

term in this expansion gives a finite contribution. Substituting the second term of (17.78)  in 

(18.76) and integrating twice by parts gives (see Ex. 1): 

                                                                           
2 2

23

Bk

e


 = .                                                          (18.79) 

In both calculations, for  and  , we have neglected the energy dependence of the density 

of states.  On the other hand, if we use the same assumption for calculating   and  , we 

would get that these quantities vanish. Hence, in this approximation, the heat conductivity 

( )1T   −= −  (see paragraph below Eq. (18.63)) is  T . Thus, the heat conductivity and 

the electric conductivity are proportional and satisfy the relation: 

                                                                             
2 2

23

Bk

T e




= .                                                        (18.80) 

This equation is called Wiedemann-Franz law (1853), and the constant on the right-hand side 

of this equation is the Lorenz number. 

To calculate the constant   (which equals   in isotropic and time-reversal symmetric 

systems), we observe that the following term 

                                                             
( )

24
tr

i j

d

e

  




     
=   

    
 p p

,                                               (18.81) 

which appears in the integral (18.76), is the conductivity at energy   divided by the square of 

the electron charge. Expanding the conductivity to linear order in the deviation from the 

chemical potential energy, 

                                                                  ( ) ( )0


    




− −


                                              (18.82) 

and substituting this expansion for the term (18.81) in the integral (18.76),  we see that the 

leading contribution comes from the second term in (18.78) (similar to the calculation of  ).  

Thus, integrating twice by parts (see Ex. 1) gives 

                                                                     
2 2

3

Bk T d

e d

 



=                                                               (18.83) 
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Finally, using the relation 1Q  −=  (see text below Eq. (18.63)) gives the Seebeck coefficient: 

                                                                    
2 2 ln

3

Bk T d
Q

e d

 


= .                                                         (18.84) 

This relation between the conductivity and Seebeck coefficient is called the Mott-Cutler 

formula (1969). 

= 

18.6  Exercises  
 

1. Prove formulas  (18.79) and (18.84). 
 


