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1 Introduction

The matter around us appears in three main phases, gas, liquid, and solid. When the
temperature is sufficiently low, atoms in solids may rearrange themselves in a crystal
characterized by periodic spatial structure. This course aims at understanding how this
periodic structure manifests itself in the behavior of the electrons and the phonons in the
system. We shall see how this periodicity dictates the structure of the energy spectrum of
the electrons in the crystal, its optical properties, and the amount of electrical current
induced by an electric field or temperature gradient. The scope of this course is limited to
cases where the interactions among electrons do not play an important role.

The precise periodic structure of a crystal depends on the type of atoms from which it is
composed and the type of chemical bonding among them. In general, there are 230
different possible periodic structures in three dimensions that are characterized by
different sets of symmetry operations. However, here we shall consider only simple
periodic structures (with an emphasis on two-dimensional crystals that constitutes the
state-of-the-art systems in current research), but the ideas that will be developed along the
course provide the basis for understanding more complicated structures.

In this introductory chapter, | will present the Drude model for conductivity which, as we

shall see, motivates the study of systems with periodic structures. Following, | will discuss
several basic ideas of the field: Bloch’s theorem (in one dimension), Fermi surfaces,
effective mass, and charge carriers, i.e. electrons and holes.

1.1 The conductivity of metals — the Drude model

The Drude model for conductivity assumes that electrons may be treated as free particles
scattered from impurities. This scattering results in relaxation of the electron momentum,
p, thus Newton’s second law takes the form:

M:—EE—Q, (1.2)

dt T

where E is the electric field, —e is the electron charge, and 7 is the typical relaxation time

of the momentum. The angular brackets, < . > , denote thermodynamic averaging over the

ensemble of electrons. Notice that the relaxation of momentum is generally due to a
change of the momentum direction rather than a reduction of its absolute value.

The steady-state solution of the above equation yields:

(p)=-teE, (1.2)



and if one assumes that, in the absence of collisions and external fields, electrons behave
as free particles with the Hamiltonian, H = p2/2m , Where mis the electron mass, then the

average velocity of the electron - also known as the drift velocity - is:

(v>:%:—%E. (1.3)

The absolute value of the ratio of the drift velocity to the electric field, ¢ =ezr/m, is called
electron mobility. From the solution (1.3), it follows that the electric current density is given

by

j=—en(v)= m:nr E, (1.4)

where nis the electron density. Thus, we obtain the Drude conductivity as the ratio of the

current density to the electric field,

ner (1.5)

Since the electron density, its charge, and mass can be measured independently, knowing
the conductivity of the sample allows one to deduce the value of the momentum relaxation
time, 7. This empirical value can be compared to the theoretical prediction for 7, which

we turn to estimate now.
Let us assume that an electron can scatter from any ion in the lattice and that in each

scattering event, the electron completely loses memory about its initial direction. In other
words, the scattering time is also the momentum relaxation time.

eGe cQeoece

Fig. 1-1 Classical scattering of electrons in a periodic lattice

Now, consider a cylinder of length vz and basis area .4 as demonstrated in Fig. 1-1. Let
N, be the density of ions in the cylinder and o, the scattering cross-section of each ion.

An electron that enters the cylinder will be scattered with a probability of order one if the



sum of scattering cross-sections of all atoms is of the order of the area, 4, of the cylinder
basis, i.e., when A4vrn_o.. ~ A4, thus

ion ™" scat

r~#. (1.6)
vn, o,

ion ™ scat

Let a be the spatial period of the lattice, known as the lattice constant, then n, ~1/a°.

Assuming also that the typical electron wavelength, A., equals a, then o, ~ a’, and

therefore 1/z~v/a~vp./h~e&/h, where & is the Fermi energy. To obtain this

estimation, the relation between the momentum and the wavelength of the electron,
¢ ~h/A- ~h/a, has been used. However, the scattering rate measured in experiments

that were conducted during the 20t century, was ]/r ~ (10’4 +10’5)gF /h,i.e. smaller by 4

to 5 orders of magnitude compared to that predicted by Drude theory.

This discrepancy between the theoretical prediction and the empirical results has been
resolved by Sommerfeld and Bloch (1928). They showed that an electron moving in a
perfect periodic lattice does not scatter from ions at all! Qualitatively, this result can be
understood by the Huygens-Fresnel principle: Imagine an electron entering the lattice with
a wave function in the form of a plane wave. Each ion scatters this plane wave and behaves
as a point source of circular waves. By the Huygens-Fresnel principle, we know that the
constructive interference from all these circular waves reconstructs the plane wave (albeit
with a different wave velocity — similar to the change of the speed of light moving in
dielectric materials), meaning that the electron does not scatter.

The Huygens-Fresnel principle applies in free space where the point sources on a wavefront
can be arbitrarily close to each other. When the distances between nearest neighbors'
point sources are finite and fixed, constructive interference occurs only for particular values
of wavelengths. These values dictate the electron momentum and form bands of allowed
energies. The scattering rate of an electron moving in a perfect lattice, with energy situated
in one of these bands, is infinite 7 =o0.

-:-:-:':::' .: Ssssss
ﬁ;ﬁg _;,..ll. :

1'Ill- illl. |-Il|ii

'38:"“ ' ' E.-” i

Figure 1-2 An illustration of lattice defects

At finite temperature, vibrations destroy the perfect periodicity of the lattice and lead to
the scattering of the electron. Similarly, the existence of various defects in the lattice such



10

as interstitials, substitutional atoms, vacancies, dislocations, and disclinations, see
illustration in Fig. 1-2, also destroy the periodic structure and generate scattering. This
scattering produces a finite conductivity even at zero temperature.

1.2 Bloch’s theorem

How does the periodicity of a potential manifest itself in the wave functions and energy
spectrum of a particle moving in a lattice? This issue is one of the central questions that
will be discussed in this course, and as we shall see, it has many interesting aspects. Here,
as part of the introduction, we discuss the simple case of a particle moving in a one-
dimensional periodic potential and prove Bloch’s theorem stating that all wave functions
of the particle can be written in the form:

w (x)=exp(ikx) g, (x), (1.7)
where Kk is a real number called Bloch's wavenumber, while ¢, (X)is a periodic function
with the periodicity of the potential.

To prove Bloch’s theorem, consider the following Hamiltonian:
H(x)=———=+u(x). (1.8)
Here Xis the particle position, mis its mass, and u(x) is a periodic potential with the

periodicity of the lattice constant, a, i.e.

u(x+a)=u(x) (1.9)
for any value of X. The (time-independent) Schrodinger equation of this system is

H(X)y (x)=¢ep(x), (1.10)
and symmetry to translation by the lattice constant implies that

H(x+a)y(x+a)=ey(x+a). (1.11)

But H(x+a)=H(x), therefore y(x+a) is also a solution of the Schrédinger equation

(1.10) with the same energy. Moreover, translation operation does not reverse the
direction of the momentum, and since the energy spectrum in a one-dimensional system

is nondegenerate (we'll prove it later), y (X+a) should be the same as y(X) up to a phase
factor, namely y (x+a) = Ay (x) with |A|=1. In particular, one can set the constant A to

be exp(ika), where ks a real free parameter, thus
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w(x+a)=exp(ika)y (x). (1.12)

We turn to show that a function that satisfies this condition for any x should have the
structure of a Bloch wave function (1.7). Multiplying Eq. (1.12) by exp[—ik(x+a)] we

obtain

exp| —ik (x+a) |y (x+a) =exp(-ikx)y (x). (1.13)

This equation completes our proof because it implies that ¢ (x)=exp(-ikx)y (x) is a

periodic function of X with period a.

Example: The Kronig-Penney model (1931)

The Kronig-Penney model describes a particle that moves in a one-dimensional periodic
potential made from square well potentials of width b, depth —u,, and distance a

between neighboring wells. It is shown in the following figure:

Au(x)
a—lb
- X
LU U
a

Figure 1-3 The potential of the Kronig-Penney model

This potential is piecewise constant. In each interval where the potential is constant, the
wave function is a superposition of exponential functions (either real or imaginary)
describing particle that moves in opposite directions. Thus, the wave function in the unit

cell, -b<x<a-b, takes the form:

( ):{Aexp(iaX)+A'eXP(—iaX) O<x<a-b (1.14)

vix Bexp(iBx)+B'exp(-ifx) -b<x<0’

where A, A',B, B’, «,and [ are constants that should be calculated. Substituting l//(X)

in Schrodinger equation (1.10) shows that the energy ¢ satisfies the following relations:
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(1.15)

Thus, the value of o determines that of £ and vice versa. Notice that if £<0, the
constant « is purely imaginary.

The continuity of the wave function (1.14) and its derivative at X =0 yields the following
conditions:

A+ A =B+B/,

ia(A-A)=iB(B-B'). (1.16)

To obtain two additional conditions, we use Bloch's theorem, implying that

¢ (X) =exp(—ikx)y (x)
_{Aexp[i(a—k)x}rA'exp[—i(a+k)x] O<x<a-b (1.17)
- Bexp[i(B—k)x]+B'exp[-i(B+k)x] -b<x<0

is a periodic function of X with period a. The periodicity of this function and its derivative,
¢ (-b)=¢, (a—b) and ¢ (-b) =4 (a—b), (1.18)
leads to the following equations:

Bexp[—i(B—k)b]+B'exp[i(B+k)b]

= Aexp[i(a—k)(a=b)]+A'exp[-i(a+k)(a=b)], (1.19)

and

i(f-k)Bexp[-i(B-k)b]-i(B+k)B'exp[i(B+k)b]

=i(a—k)Aexp[i(a—k)(a=b)]|-i(a+k)Aexp[-i(a+k)(a=h)]. (1.20)

The four equations that we obtained for the constants A, A’,B, and B’, can be written
as a matrix equation:

1 1 -1 -1 A
a —a -p p A

i(a—k)(a-b) -i(a+k)(a-b) ~i(p-k)b i(B+k)b =0.(1.21)
e e —€ —€ B

(C( _ k)ei(a—k)(a—b) _(a + k)efi(wrk)(a—b) _(ﬁ _ k)efi(ﬁ—k)b (ﬂ + k)ei(ﬁ+k)b B’
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A nontrivial solution of this equation exists only if the determinant of the above matrix
vanishes. This condition yields (see Ex. 1) an equation that determines the possible values
of Bloch’s wavenumber, k, and their relations to the constant « :

a2+ﬁ

203

cos(ka) = cos(Sb)cos[ a(a-b)]- 2 sin(Bb)sin[a(a-b)].  (1.22)

To simplify this equation, we focus our attention on the limit of very deep and narrow wells,
U, > and b — 0, keeping the product u,b constant. From the second relation of Eq.
(1.15) it follows that in this limit, f — o, but ﬂzb is a constant, hence pb — 0. Thus Eq.
(1.22) reduces to

_ ~ sin(ca)
cos(ka)=cos(ca) p— (1.23)
with
_ p’ba
u== (1.24)

as a free dimensionless parameter that characterizes the potential strength. In particular,

if £4=0,then a=kand &=1%"k?/(2m) as expected for a free particle.
If 1#0 one should consider two cases: One is when « is real, and the second is when
it is purely imaginary. The first case is associated with positive energy ¢ = hzaz/(Zm) and

describes solutions in which the particle moves above the potential barriers that separate
the wells. A graphical solution of equation (1.23) for real « is depicted in Fig. 1-4.

cos(@ a) - usin(a a)

@ a

cos(ka)

I —pu

Figure 1-4 A graphical solution of Eq. (1.23) for real &
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Here the right-hand side of Eq. (1.23) is drawn by solid black line as a function of aa,
while the left-hand side of the equation, which is a constant, Cos(ka), is drawn by the red
line. As this constant resides within the interval between —1 and 1 (depending on k),

there are values of aa for which there is no solution to the secular equation (1.23). The
gray regions in the figure designate these values. Recalling that the energy is given by

g:hzaz/(Zm), this behavior of the solution implies that the energy spectrum of the
system, g(k), consists of a set of separated “energy bands”.

Consider now the second case where « is purely imaginary. Substituting o =ia’ (where
a'is real) in Eg. (1.23) we obtain

sinh(a'a)

, (1.25)
aa

cos(ka) = cosh(a'a)— u
The graphical solution of this equation is shown in Fig. 1-5.

o
cosh(a'a) — p I @) (@ a)

ada

cos(ka)

Figure 1-5 The graphical solution of Eq. (1.25)

Now there is only a single domain of «a'a for which there is a solution of the equation.

The particle energy associated with this solution is negative, ¢ = —hza’z/(Zm) , therefore,

it forms the lowest energy band of the system. To obtain an approximate analytic
expression for this band, consider the limit #>>1. In this case one expects «'a to be close

to u, therefore both functions, cosh(a'a) and sinh(a'a), can be approximated by
exp(a'a)/2 . With this approximation, linearization of Eq. (25) in the vicinity of a'a= u
gives

sinh(a'a) exp(u)
aa  2u

cos(ka) =cosh(a'a)— u (a'a—u), (1.26)

and the lowest energy band (which we denote by the subscript 0) is given by the
approximate formula:
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2 12 2 2
_Fa” h'uz[1+4exp(—y)cos(ka)]. (1.27)

k)= -
(k) 2m 2ma

These negative energy states are associated with the tunneling of the particle from one
well to the other. On the other hand, the solutions of Eq. (1.23) for real values of « yield

a set of positive energy bands, ¢, (k), associated with states where the particle travels

above the energy barriers between the wells. A diagram of the energy levels obtained
from a numerical solution of Eq. (1.23) is shown in Fig. 1-6 below.

k)

/ \2 \

k

I T

Figure 1-6 The energy levels of the Kronig-Penney model

The main conclusions drawn from the above discussion are:

(a) The energy spectrum of a particle moving in a (one-dimensional) periodic potential
comprises a set of allowed energy bands described by some functions, ¢, (k) Thus, a
state of the particle is characterized by two numbers: the band index, n, and Bloch’s

wave number, K.
(b) The energy spectrum, as a function of Bloch's wavenumber, K, is periodic with a period

2r/a. This is because the energy levels are functions of cos(ka) (see Eg. (1.22)).
Therefore, to avoid double counting of the energy levels, the domain of allowed values
of k should be restricted to one period. It is customary to choose this restricted
domain to be —z/a<k<z/a. This domain is called the first Brillouin zone and is

displayed by the white stripe in Fig. 1-6.



16

1.3 Effective mass, electrons, and holes.

Unlike free particles, the energy spectrum of a particle moving in a periodic lattice is no
longer a parabolic function of the wavenumber. To appreciate the importance of this
property, consider an electron moving in a one-dimensional periodic potential and
subjected to a weak electric field E (a comprehensive discussion of this issue will be given
in Chapter 9). Furthermore, let us adopt a semiclassical approach according to which
Hamilton's equations can describe the dynamics of the electron using the Hamiltonian:

H =¢(p)+eEx, (1.28)

where g( p) is the energy spectrum of the electron in the lattice which is some function of

the momentum, p, and —e is the electron charge. Hamilton’s equations, in this case, take

the form:
dx _ ., _2(p)
at o (1.29)
d_p — _@ =—eE
dt OX

For a free electron, 5( p) = pz/(Zm), the first equation implies that the electron velocity

is v=p/m. Taking the derivative of the latter equation and using the second equation of
(1.29) we obtain Newton’s second law for the acceleration of the electron:

dv. —e

—=— (1.30)

d m
Now consider the case of an electron near the bottom of the lowest energy band (see, for
example, Fig. 1-6). In this region, the spectrum can be approximated by parabolic
spectrum, which may be presented in the form

pZ
e(p)= ) (1.31)
2M ¢

where we assume that the momentum satisfies the relation p =7k, with k as Bloch's
wavenumber (the justification of this assumption is deferred to Chapter 9). Repeating the
calculation that leads to formula (1.30) yields the same expression but with m replaced by
M . Thus, the electron behaves as a free particle, albeit with a mass determined by the
lattice properties that may be very different from that of a free electron. This mass is
known as the effective mass of the electron.

We turn to discuss a situation where the electron is still in the lowest energy band but
close to the edge of the Brillouin zone, k ~k, =7z/a. Now &(p) is near a maximum and

can be approximated by inverted parabola:
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2
(p—7iky)
& =g, ———. 1.32
(p)=¢ o (1.32)
Substituting this formula in Hamilton’s equations (1.29) we obtain:
V= @S(D) —_ p_hko
op 2mq (1.33)
d_p — _ﬁ — _eE,
dt OX

and once again, taking the time derivative of the first equation and substituting it in the
second one, we obtain a formula for the acceleration like Eq. (1.30) but with a different
sign and different mass:
dv_ +e
dt o mg,

(1.34)

A possible interpretation of the above result is that the electron has a negative mass.
However, in reality, we do not measure the mass directly but only as a response to force;
hence an alternative interpretation of the above result is that an electron near the upper
edge of the band behaves like a particle with a positive charge. Such a particle is called a
"hole".

To clarify the reason for this nomenclature, we consider two cases. In the first, we look at
a single electron (near the bottom of the band) that moves on a lattice where all sites are
unoccupied, as demonstrated below:

N
O 0o o o o O e OO O O O O

E

Figure 1-7 An electron in a lattice near the bottom of the lowest band

Here the electric field, E, induces transitions of the electron from one lattice site to
another unoccupied site.

Consider, now, the second case where all lattice sites are occupied except for one as
illustrated in Fig. 1-8 on the next page. Ignoring the spin degree of freedom (assuming,
e.g., that all spins of the electrons point in the same direction), all electrons are frozen at
their position due to Pauli's exclusion principle, except for the electrons near the vacant
lattice point. The application of an electric field induces the transition of the electron on
the right side of the vacant lattice point to move to the left. However, this process is
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equivalent to a right jump of the vacant lattice point —i.e. the hole — as illustrated in Fig.
1-8.

N
e 6 6 ¢ ¢ ¢ O o o o o o o
A

E

Figure 1-8 Electrons in a lattice near at the top of the lowest band

While the above picture motivates the notion of a “hole” as a particle, it may be
misleading. The behavior manifested in Eq. (1.34) refers to a single particle near the edge
of the Brillouin zone without reference to the occupation of states by other electrons. The
electron’s acceleration changes sign because of constructive interference of the reflected
waves from the atoms, which becomes stronger as the electron’s energy increases. This
is, essentially, Bragg’s reflection phenomenon: Near the edge of the Brillouin zone, the
electron’s wavelength is close to being twice the lattice constant; hence the waves

reflected from neighboring lattice cells interfere constructively.

1.4 Fermi surfaces, metals, and insulators

At sufficiently low temperatures, electronic systems become degenerate. The electrons
(which are Fermions) essentially occupy all states up to energy, &-, known as the Fermi
energy, excluding a narrow band near the Fermi level - whose width is determined by the
temperature. In this band, the occupation is partial. The Fermi-Dirac distribution of the
electrons accounts for this property:

1

o =y

KT

(1.35)

Here T is the temperature, and k; is Boltzmann’s constant. Only those electrons with

energies located within the narrow stripe near the Fermi level react to weak external
perturbations because electrons with energies deep below the Fermi level are frozen due
to Pauli's exclusion principle. Therefore, properties of the system, such as the heat
capacitance or the electric conductivity, are determined only by electrons near the Fermi
level. Hence, the characterization of the physical properties of crystals requires
information about the position and structure of the Fermi level in Kk space.
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The Fermi surface is a surface in the wavenumber space, k, that is obtained from the
solution of the equation:

e(k)=¢e;. (1.36)

In one-dimensional systems, the Fermi surface is a set of points. In two dimensions, Fermi
surfaces are curves, while in three dimensions, they are surfaces in k space.

In general, a crystal becomes a metal or an insulator depending on the location of the
Fermi level. When the latter is within a band, the electrons fill all the states below the
Fermi level, while those above the Fermi level remain empty. An electric field applied to
the system induces transitions of electrons from the occupied states to vacant energy
states with an energy difference that can be as small as we wish (assuming the system is
large enough). These transitions of the electrons can produce electric current; hence, the
system is metallic. Such metals, known as band metals, are obtained in two primary
manners as illustrated in the following figure (for one-dimensional systems):

(k)

]

IS

Figure 1-9 An electron-like (left) and a hole-like (right) Fermi surfaces

The real space illustrations of one-dimensional systems with electron-like and hole-like
Fermi surfaces are shown in Figs. 1-7 and 1-8, respectively.

In contrast, when the Fermi level is located between two bands, the electrons fill all the
states of the lower band, and the only possibility to change the occupation is by moving an
electron to a higher band. However, usually, this process requires a large amount of energy
that a weak electric field cannot provide. In this case, the system is an insulator because
the electrons do not have close energy levels into which they can move in order to produce
an electric current. This type of insulator is called a band insulator. It is illustrated in Fig.
1-10. (There are also different kinds of insulators called Anderson insulators. The
mechanism that suppresses the electric current in these insulators is interference. We shall
not discuss Anderson insulators in this course.)
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Figure 1-10 A band insulator

The question that remains is what determines whether the Fermi level is within a band or
between two bands. To answer this question, we should first show how to count the
number of states in a band. For a one dimensional system, assuming its length is L (with,
say, periodic boundary conditions), each state occupies a range Ak =27z/L in k space;

therefore, the number of states in the band is:

Ldk _,L _oN
27 a

e |y

Npang =2 (1.37)

uc /

(SN

where the factor 2 is due to the spin degree of freedom, a is the lattice constant, and N,

is the number of unit cells in a system of length L.

These states are occupied by electrons that come from the atoms in each unit cell. Now,
there are two possibilities: The first is when the number of electrons coming from the
atoms, in a single unit cell, is an even number, and the second possibility is that this
number is odd. In the first case, the electrons fill all the states in the bands and we obtain
an insulator. In the second case, the last band will be only half-filled because it contains
N, electrons, whereas the band contains 2N states. In this case, the lattice is a metal.

The above argument is independent of the dimensionality of the system. However, there
are, of course, exceptions. But before presenting examples of these exceptions, let us
discuss the typical structures of Fermi surfaces in systems of higher dimensions. For
simplicity, we consider two-dimensional systems for which the Fermi surfaces are curves
in the first Brillouin zone of K space.

An electron-like Femi surface is illustrated in Fig. 1-11 on the next page. Here the shadowed
region represents a region of occupied states in the first Brillouin zone in k space.
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Figure 1-11 An electron-like Fermi surface in a two-dimensional system

A hole-like Femi surface is illustrated in Fig. 1-12. Choosing to describe the systems using
holes instead of electrons, the Fermi surface of the holes is depicted in Fig. 1-13. Notice
that, in this case, the Fermi surface of the holes is approximately circular because there
are periodic boundary conditions on the Brillouin zone. (Alternatively, one may shift the
Brillouin zone to a position such that the hole Fermi surface is at the center. This is justified
because there is an arbitrariness in choosing the location of the first Brillouin zone.).

/ \ 4 <

Qi

w0 < 0
e 0 e 0 :
k.Y k\'
Figure 1-12 A hole-like Fermi surface Figure 1-13 The Fermi surface of holes for the

system shown in Fig. 11-12

Another classification of Fermi surfaces refers to closed and open surfaces. All Fermi
surfaces described above are closed Fermi surfaces because, by proper choice of the
Brillouin zone, closed curves describe them. An example of an open Fermi surface is shown
in the left panel of Fig. 1-14. Here the Fermi surface does not form a closed curve for any
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choice of the Brillouin zone. In such cases, however, the distinction between the type of
charge carriers is meaningless, as demonstrated in the right panel of Fig. 1-14.

i
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Figure 1-14 An example of an open Fermi surface in a two-dimensional system. Lefts panel for electrons
and right panel for holes.

More complicated Fermi surfaces may simultaneously contain both pockets of electrons
and pockets of holes, as illustrated in the figure below.

electron pocket

QR

&(k)

hole pocket

Figure 1-14 An illustration of the Fermi surface in semi-metals

The left panel of this figure shows a diagonal cross-section of the spectrum in the first
Brillouin zone depicted on the right panel. Systems of this type are called semi-metals.
They contain an even number of electrons in each unit cell and, as such, should be
insulators. However, the spatial structure of the energy bands in k space, where the
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minimum of one band is below the maximum of the lower band, creates pockets of charge
carriers, making the system conducive.

Another possibility of having a conductive system, although each unit cell contributes an
even number of electrons, is when having band-touching points. In this case, the valance
band is wholly filled by electrons, but the energy gap to the conductive band is zero. This
type of degeneracy points results from symmetries of the lattice, as we shall discuss later
in this course.

1.5 Exercises

1. Prove Eqgs. (1.22) and (1.23).

2. Consider the Kronig-Penny model with potential made from a periodic set of ¢ -barriers:

u(x)=u, > 5(x—na), (1.38)

where a is the lattice constant, and U, >0. To solve this model, assume that between
each neighboring pair of o -barriers the wave function is a linear combination of

Cos(ax) and sin (ax) , and construct the secular equation for the coefficients of these

functions. Draw a graphical solution of the equation that you obtained.

3. Show that the energy gaps between neighboring bands in the Kronig-Penney model
approach a constant value in the limit £ > .

4. Show that the ground state energy of the Kronig-Penney model, obtained in Eq. (1.27)
in the limit © — oo, is that of a particle in a delta potential:

H=-——-——L6 . 1.39
2m ox?>  ma (x) (1.39)
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2 Lattices and spatial symmetries

Spatial periodic structures are associated with symmetry operations such as translations
in certain directions, reflections, and rotations in specific angles. The set of symmetry
operations that characterizes a crystal is of paramount importance. As we shall see in the
coming chapters, it dictates the band structure of the energy levels of the electrons as well
as the crystal vibrational properties. In this chapter, we present the basic concepts and
terminology of this issue.

2.1 Translation vectors

Let u(r) be the periodic potential that acts on an electron moving in a lattice (without

impurities or other defects). In a one-dimensional system, the periodicity of the potential
implies that

u(x+a)=u(x) forany x, (2.1)

where a is the lattice constant as illustrated in Fig. 2-1. Clearly, the potential is also

periodic in any multiple of the lattice constant, aij) = ja, where | is an integer.

Figure 2-1 A one-dimensional lattice with lattice constant a

In two spatial dimensions, a periodic potential satisfies the condition:

u(r+a)=u(r) with the translation vector a= ja, + j,a,, (2.2)

where j and j, are integers, while &, and a, are two linearly independent vectors that
represent the lattice’s shortest translation vectors, as illustrated in Fig. 2-2. The vectors a,
and a, are called the primitive basis of the translation vectors or the primitive lattice
vectors.

Figure 2-2 A two-dimensional lattice with primitive lattice vectors &; and a,
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The natural generalization of the translation vectors to three-dimensional lattices is
a=jia+ J,8, + jsa,, (2.3)

where j; (i=12,3)are integers, while a,, a,, and a,are three independent (three

dimensional) vectors. Finally, we comment that each dot in the above figures represents a
whole unit cell of the potential, which may have a complicated internal structure.

2.2 The translation group

The spatial periodicity of the potential u (r) is a manifestation of symmetry of the system:

Translation of the (infinite) system by any linear combination of the primitive basis victors,
with integer coefficients, leaves the system unchanged.The mathematical framework for
treating symmetries is group theory, and here we introduce it by using the simple example
of the translation group in crystals.

Let us define T, to be the operator that translates any function, f (r) by the vector a,

i.e.:

T.f(r)=f(r+a). (2.4)

a

Operating on this formula with an additional translation operator, T.., yields
TT.f(r)=T,f(r+a)=f(r+a+a’). (2.5)
Thus, the translation operators satisfy the following property:

(a) T.T, =T,

a''a a+a' "’

(2.6)

l.e., the “multiplication” of any two translation operators is also a translation operator.
This property is called “closure”. In addition, choosing a' = —a implies that

(b) T,.T,=E, (2.7)

where E is the identity operator whose action on any function leaves it intact,
Ef (r)= f (r). The identity operator also satisfies the property

(c) TE=ET, =T,. (2.8)
Finally, it is easy to see that the translation operators also satisfy associative property:

(d) (Ta"Ta, )Ta =T, (Ta,Ta ) . (2.9)
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A set of operations (or operators) that meet properties (a-d), namely, closure, the
existence of the identity operation, the presence of an inverse operator for any operator,
and associativity of multiplication of operators, is called group. In the example discussed
above, the set of translation operators constitute the group of translations.

A group is called abelian if the order of operations can be changed, namely

T.T, =TT, (2.10)

for any pair of operators in the group. The translation group is abelian.

2.3 Bravais Lattices

Bravais Lattice is a lattice of points obtained by acting on a single point by the whole set of
translation operators. This lattice is the simplest one that describes the system because
each point represents a unit cell whose internal (possibly complicated) structure is ignored.
In this lattice, the “view” seen from any lattice point is precisely the same.

In one dimension, the Bravais lattice is the set of an infinite number of points on a straight
line, such that the distance between any neighboring points is fixed, as illustrated in Fig.
2-1.

In two dimensions, a general Bravais lattice looks as in Fig.2-2. However, it is instructive to
classify these lattices according to their symmetry level (with respect to symmetry
operations such as rotations and reflections). The primitive basis vectors a, and a,

determine this symmetry level. The least symmetric two-dimensional lattice is the oblique

lattice, for which |a,| #|a,| and the angle between these two vectors is different from 90°

as shown in Fig. 2-3. The only symmetry operation of this lattice (apart from translations)

is a rotation by 180%around any lattice point.

lay| #|a,|, ©#90°

Figure 2-3 Oblique lattice
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A rectangular Bravais lattice can be realized in two manners, as demonstrated in Fig. 2-4.
The lattice shown on the left panel is the primitive rectangular lattice, while that on the
right panel is the centered rectangular lattice. Both versions of the rectangular lattice are

symmetric for rotation in 180°, and reflections through horizontal and vertical axes.

Primitive rectangular lattice Centered rectangular lattice

[ [ ] [ [ [ ] [ J P ® ® °
[ ° [ ®

[ ] [ ] [ ] [ ] [ ] [ ] Y ® ® ®
a; [ ] ] [ ]

° . ° ° . 8 @ ° [ ]
“ az ° ° °

o ° ° ° ° [ ] ° ° [ ]

L]
lay| #[a,|, #=90° la,|=|a,|, 6#60°90°

Figure 2-4 Rectangular Bravais lattices

The next Bravais lattice is the square lattice with even higher symmetry (i.e. with a larger
set of symmetry operations other than translations). It is obtained when the primitive basis

vectors have the same length, and the angle between them is 90° as shown in Fig. 2-5. This

lattice possesses symmetry to rotations in 90°, 180° and 270°as well as reflections
through 4 axes: horizontal, vertical, and two diagonals.

la,|=a,|, 6=90°

az
90°

ay

Figure 2-5 Square lattice

Finally, the Bravais lattice with the highest symmetry in two dimensions is the hexagonal
(or triangular) lattice, obtained when the primitive basis vectors are of the same length,

2] =[,
operations of this lattice include five rotations in multiples of 60°, and six reflections

through 6 axes that can be obtained by 0°, 60° and 120° rotations of the horizontal and
the vertical axes (see also Fig. 2-11 below).

, while the angle between them is 60°, as shown in Fig. 2-6. The symmetry
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o ® [ ] [ ] ® [ ]
o o o ® ® [ ]
|a1|=|a2|, 0 =60° ° . ° ° ° °
° . e o o o
60"

Figure 2-6 Hexagonal lattice

2.4 Point groups

As we have seen, lattices are characterized by a set of symmetry operations, such as
rotations and reflections, in addition to the translation operations. These symmetry
elements form a group which is called “point group”. This name reflects the property that
(at least) one point in space is unaffected by all symmetry operations of the group. Point
groups play a central role in the characterization of lattices in two and three dimensions.
Here, as a preliminary exposition of the subject, we discuss point groups in the context of
two-dimensional lattices. A more rigorous discussion is given in chapter 4.

Consider the shape:

Figure 2-7 A shape symmetric for180° rotation

Rotation by 180° around an axis that perpendicular pierces the page at the central point
leaves this shape unchanged. Therefore this rotation is a symmetry of the system. We

denote such a rotation by C,. More generally, C, represents a rotation by 3600/n, where

n is an integer.

The symmetry operation, C,, together with the identity operation, E, form a group.

Operating twice with C, yields a 360° rotation, which is the identity operator, CZ2 =E.

Hence, these two operations satisfy the four conditions that define a group: closure, the
presence of the identity operation, the existence of an inverse operator for any operator
(which here is the operator itself), and associativity.
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Take a look now at the following shape:

Figure 2-8 A shape symmetric to reflection

It does not have any rotation symmetry (in angle different from 360°), but it is symmetric
to reflection through the dashed line. The symbol for reflection operation is o. It is
customary to add a subscript in order to define the axis of reflection - e.g., o, is a reflection

through the Yy -axis). Asinthe previous example, o and E form a group because operating

twice with o yields the identity operator, o° = E .

Next, consider the shape:

Figure 2-9 A shape symmetric to two reflections and rotation in 180°

It is symmetric with respect to the following operations: C,- rotation in 180°; o, -
reflection through the horizontal axis; and o,- reflection through the vertical axis. If we
locate the origin of the coordinate system at the center of the shape, then o, transforms
the point (X,y) to (x,—y); o, takes (X,y) to (=X, y); and c, transforms (X,y) to
(=x,=y). From these relations it follows that c,0, =0,C, =0,, and that the set of
operation, E, ¢,,0, and o, forms a group. This group is denoted by C,,, anditis an

abelian group. The multiplication table of its elements is presented on the next page.
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The multiplication table of C,,

C,, E c, o, o,
= = C, o, o,
C, C, E o, o,
o, o, o, E C,
o, o, o, C, E

Comment: The group C,, is abelian; therefore, the order of operations is not important.

However, in what follows, we shall also consider non-abelian groups, where the order of
operations is important. The convention we use in these cases is that the element ab in a
specific cell of the table is obtained from the product (from the left) of the element a, that
appears on the leftmost cell of the same row, by the element b that appears on the top
cell of the same column.

Consider now the symmetry group of a square. The square is symmetric to reflections

through 4 axes: o,, Oy, Oy, and Oy »

rotations by 90°, 180° and 270° denoted by c,, C,, and C;, respectively.

as illustrated in Fig. 2-10. It is also symmetric to

Txy (,T.‘:y
Id

AT oy

Figure 2-10 the reflection axes of a square

When placing the origin of the coordinate system at the center of the square, it is easy to

verify that the symmetry operations acting on some arbitrary point (X, y) satisfy:

LF MG G
GHG) CHG) = GHE) o
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Using these equations, one can construct the multiplication table of the group (see table
below) and verify that it is not abelian. This symmetry group is C,, .

The multiplication table of C,,

C, E C, | C | ¢ | o | o | oy oy
E Elec |¢c || o o, | oy | o4
c, | ¢, |c |c]E oy | 05 | O, | O
¢, | ¢, | 2| E ¢ o, | o | oy | Oy
C;:’ Cf E C, C, | oy | O | Ox o,
o, Oy, | 05 | Oy | Oy E C, Cf C,
o, O, | Oy | Ox | Oy | & = C, Cj’
oy loy | ooy |o, | C | C E |
Oy | O | Oy | Ox | Ox Cf C, C, E

We conclude this section by presenting the symmetry group of a regular hexagon, Cy, .
This point group contains 12 symmetry operations: The identity operationE, five
rotations C;, C,, Cz,ci, and Cg; and six reflections, o,, o,, o;, o;, 05, and oy, as

demonstrated in Fig. 2-11.

Figure 2-11 The reflection axes of a regular hexagon
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2.5 Space groups

Combining the operations of the translation group with all other symmetry operations of
the lattice, such as rotations and reflections (as well other symmetry operations that will
be described later), gives the complete symmetry group of the lattice, called space group.
For instance, the space group of one-dimensional Bravais lattice is the collection of all
operations obtained from the multiplication of the elements in the point group C,

(identity and rotation by 180°) by the elements of the translation group T :
C,®T ={T,;,T,} . (2.13)

To see that this space group is not abelian, notice that in one dimension, ¢,X =—X where

X denotes a lattice point. Therefore
,C,T,Cx=C,T, (-x)=c,(a—x)=x-a=T_xX. (2.14)

From here it follows that c,T.c,=T _, or c,T, =T ,c, which is different from T_,, in

a

general. Thus, these symmetry operations are not commutative.

Similar considerations apply to Bravais lattices in two dimensions. In the table below, we
summarize the space group of each lattice.

Space groups of Bravais lattices in two dimensions

oblique lattice C,®T
(centered) rectangular lattice C, ®T
square lattice C,®T
hexagonal lattice C,, ®T

Space groups obtained from the multiplication of translation group by a point group are
called symmorphic groups. There are, however, lattices whose space groups are not
symmorphic. In the next section, we present an example of such a lattice.
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2.6 Decorated lattices

Each point in a Bravais lattice represents a unit cell of the lattice. The latter may have a
structure that affects the symmetry of the lattice. Consider, for instance, a one-
dimensional lattice made of two types of atoms that form two sublattices, A and B as
demonstrated in the following figure:

AB AB AB AB AB AB AB AB
©0 00 00 OO0 OO ©O0O0O OO 00

Figure 2-12 A lattice made of two types of atoms that form two sublattices.

In this figure, the row of black points below the colored lattice points represents the
corresponding Bravais lattice. As explained above, the space group of Bravais lattice in
one dimension is C, ® T . However, it is evident that the lattice shown in the figure does

not have the symmetry of C, ; therefore, its symmetry is reduced.

A similar way of reducing the symmetry of a lattice is by decoration. Here each lattice cell
has a structure that may reduce the symmetry, as shown in the following figure:

-4 -4 -4 -4--4-<4-4-<-

Figure 2-13 Decorated Bravais lattice in one dimension

As in the previous example, the above lattice decoration breaks the C, symmetry of the

corresponding Bravais lattice.

A more interesting example is the one-dimensional lattice shown in the following figure:
al2
-

v A A A A A

- -

a a

Figure 2-14 Decorated Bravais lattice with two sublattices

Here each unit cell contains two triangles pointing in opposite directions. The distance
between two adjacent triangles is half the lattice constant. The C, symmetry of the lattice

is preserved, but there is an additional symmetry operation called glide reflection. It is
obtained by reflection through the horizontal axis flowed by translation along the same
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axis by half the lattice constant. (In three dimensions, the analogous operation is reflection
through some plane followed by translation along the same plane.) This glide reflection

2
operation is denoted by {O‘X | %} ,and it is easy to see that {ax | %} =T,.The symmetry

group of this lattice is obtained from all translations, glide translations, and rotations by

180°. This group is non-symmorphic because it is not a product of a point group by
translation group.

In two dimensions, it is possible to construct 17 different lattices (which are not necessarily
Bravais lattices) such that each one of them has a different space group. An example of
such a lattice (that we will discuss extensively in this course) is graphene. It is a two-
dimensional lattice of carbon atoms in a honeycomb structure, as shown in Fig 2-15. Here,
each atom is bonded to three other atoms such that the angle between any two bonds is

120°. One can view graphene as built from two hexagonal sublattices, A and B, such that
the nearest neighbors of an atom in sublattice A are only atoms in sublattice B, and vice
versa.

Figure 2-15 Graphene

Thus, a unit cell of graphene contains two atoms (one from each sublattice), and the
corresponding Bravais lattice is hexagonal, as illustrated by the green hexagons in Fig.
2-16. Notice, however, that there is an arbitrariness in the way we choose the unit cell.
One may also choose it to contain 1/3 of an atom from 6 different atoms, as shown by the

red hexagon in Fig. 2-16. The point group of graphene is C, .

Another lattice having a similar structure is the two-dimensional lattice of boron nitride,
BN. From a symmetry viewpoint, this lattice has the same honeycomb structure but with
sublattices made from two different atoms (namely, the red and the blue disks in Fig. 2-15
represent two types of atoms). The point group symmetry of this lattice is C,, . It contains

rotations by £120°, and reflections through three axes defined by the lines connecting an
atom with its nearest neighbors. It will be discussed extensively in Chapter 5.
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O

Figure 2-16 Unit cells in graphene

2.7 The Wigner-Seitz cell

The choice of a primitive unit cell in Bravais lattice is not unique. Choosing it arbitrarily may
conceal the symmetry of the lattice. To avoid this problem, one constructs the unit cell
according to the accepted procedure proposed by Wigner and Seitz. The Wigner-Seitz cell
is unique and contains a single lattice point. The cell is constructed in the following
manner: First, we choose a lattice point and connect it by segments to all its neighboring
lattice points. Next, the segments are bisected by perpendicular lines. The smallest convex
region enclosed by these lines is the Wigner-Seitz cell. This construction is demonstrated
in Fig. 2-17.

Figure 2-17 The construction Wigner-Seitz cells for various two-dimensional lattices.

2.8 Three-dimensional Bravais lattices

There are 14 different Bravais lattices in three dimensions. Each one of them is uniquely
defined by the three primitive basis vectors, a,,a, and a,. The relation between their

lengths and the angles between them determine the type of lattice and its symmetry. To
construct the Bravais lattices in three dimensions, we shall use the two-dimensional
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lattices described above as a basis on which we add lattice points in the third dimension.
Usually (although not always), we choose the primitive basis vectors a and a, to be in the

Xy plane, and then add a third vector, a,, that hasa component in the z direction.

1. The lowest symmetry lattice is the triclinic lattice. It is
constructed by taking an oblique lattice in the Xy plane

(with |a1| # |a2| and the angle between them & = 90°) and
adding a non-perpendicular basis vector, a,, whose length

is different from the two other vectors |a,|#a,| #|a,|, as

illustrated in Fig. 2-18. The only symmetry operation the
triclinic lattice possesses (apart from translations) is
inversion, C,. When setting the origin of a coordinate Figure 2-18 Triclinic lattice

system at one of the lattice points, the action of the
inversion operator, on a general vector, is:

X
ClYy|=—|Y]|- (2.15)
z

Thus, the point group associated with this lattice contains only two elements, the

identity operator, E, and the inversion operator that satisfies the relation Ci2 =E . This

point group is denoted by C, .

2. Next is the primitive monoclinic lattice. Here we also start
from the two-dimensional oblique lattice, but now the third
vector, a,, is set to be perpendicular to the Xyplane, as
shown in Fig. 2-19. This lattice has the following symmetry
elements: c, rotation around the z axis, inversion ¢, and 0
reflection through the Xyplane. The latter operation is

denoted by o, , and its action on a general vector is Figure 2-19 Primitive
monoclinic lattice

X
ol Y|=| Y | (2.16)
YA —Z

One can quickly check that ¢, = 0, C; and that the four symmetry operations, E, c,, C,
and o, formagroup. This group is denoted by C,, (an explanation about the symbols

that designate the point groups can be found in Chapter 4).
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3.

Another Bravais lattice characterized by the
symmetry group C,, is the base-centered
monoclinic lattice shown in Fig. 2-20. Starting
from a centered rectangular lattice in the Xy
plane (with primitive basis vectors satisfying
|a,| =[a,| and angle between them @ 90°), this

lattice is obtained by adding a third primitive

vector @, in the plane defined by the z axis and
Figure 2-20 Base centered monoclinic
the vector a, +a,, such that the angle it creates lattice

with the xy plane is y#90°, see figure.
Assuming a, +a, is parallel to the X axis, the reflection symmetry is through the xz
plane, while the c,rotation is around they axis. This lattice is also invariant to

inversion.

Consider now a lattice whose base is the primitive
rectangle lattice (in the Xy plane), and a third primitive

vector, a,, isinthe z direction. When the lengths of all

primitive basis vectors are different,

8| # [a,| = a,

, the

resulting lattice is the primitive orthorhombic lattice
shown in Fig. 2-21. Apart from translations, it is invariant
under the following symmetry operations: three
rotations by 180° around the axes X, y and z; three
reflections through the planes that are perpendicular to

Figure 2-21 Primitive
these axes; inversion; and the identity operation. For orthorhombic lattice
instance, the rotation around the X axis, ng), and the

reflection through the plane which is perpendicular to the same axis, o,, actingon a

general vector in space, give:

x) [ x x) (-x
cyl=|-y| and o|y|=|y]. (2.17)
z) |-z z) |z

The point group that describes the symmetry of the primitive orthorhombic lattice is
denoted by D,,,.



5. Similarly, starting from a basis of centered rectangular

lattice in a plane, and choosing a, to be perpendicular
to that plane, we obtain the base centered
orthorhombic lattice shown in Fig. 2-22. The point
group associated with this lattice is the same as that of
the primitive orthorhombic lattice, D, .

Figure 2-22 Base centered
orthorhombic lattice

An additional lattice that belongs to the orthorhombic

system (i.e., characterized by the same point group as

the two previous lattices) is the body-centered
orthorhombic lattice depicted in Fig. 2-23. Here, at the
center of each cuboid, there is an additional lattice
point. The lattice points on each diagonal plane that
passes through opposite edges is a centered rectangular
lattice. Notice that in Fig. 2-23 none of the primitive

basis vectors lie in the Xy plane.

Finally, the last lattice that belongs to the orthorhombic Figure 2-23 Body-centered
system is the face-centered orthorhombic lattice orthorhombic lattice

presented in Fig. 2-24. Here at the center of each
cuboid’s face, there is an additional lattice point.
Choosing our coordinate system to coincide with the
edges of the cuboid, and the lengths of these edges to
be a, b, and c, the primitive basis vectors are given by:

a, :%(a,b,o), a, =%(a,0,c),

1
and a, = E(O’b’c) (2.18)
so that Figure 2-24 Face-centered
ax = a +a,—a, orthorhombic lattice
by=a —a,+a, , (2.19)

bz=-a +a,+a,

38

where X, ¥, and Z are unit vectors in the directions of the axes of the coordinate

system. One can verify that this choice of primitive basis vectors indeed gives the

lattice.
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8.

The next lattice system is the tetragonal system. Here the
starting point is a two-dimensional square lattice in the Xy

plane, with square sides of length a. The simplest lattice
of this system is obtained by choosing the vector a,to be
inthe z direction, and |a,| # a . The resulting lattice, called

the primitive tetragonal lattice, is presented in Fig. 2-25.

Its point group contains 16 symmetry operations: the

identity E; inversion ¢, ; rotations in multiples of 90°
around the z axis ¢,, C,, and Cf; three reflections through
planes that are perpendicular to the axes o,, 0,,and o,;
two reflections through diagonal planes that contain the z
axis and pass through opposite vertices of the square o, ,

and o,;; four rotations in 180°around axes that are
perpendicular to the z axis and either the parallel to the

diagonals of the square or parallel to its sides ng), ng),
¢ and ¢!¥); and two additional symmetry operations,

S,and Sf called improper rotations.

An improper rotation, S, is a rotation by 360°/n degrees

followed by reflection through the plane, which is
perpendicular to the rotation axis. In our case S, =o,C,,

and its action on a vector in space is:

X -y
S,y |=| x| (2.20)
z -z

Figure 2-25 Primitive
tetragonal lattice

e

Figure 2-26 A shape with an

improper rotation symmetry, 84

An illustration of a shape that possesses an improper rotation symmetry, S,, but does

not have C, symmetry or inversion symmetry is shown in Fig. 2-26. The operation Sf

is a rotation by 270° degrees followed by reflection. Notice thatS, =C,and S; =c,.

The point group of the tetragonal lattice is denoted by D, .



9. The body-centered tetragonal lattice is the primitive tetragonal
lattice with an extra lattice point at the center of each cuboid,
see Fig. 2-27. This lattice can also be viewed as a face-centered
tetragonal lattice. It is seen by choosing the vertical sides of the
cuboid as the planes containing the Z axis and running parallel
to the diagonals of the square lattice (in the Xy plane).

10. The repeating element of the rhombohedral lattice is obtained
by deforming a cube along its diagonal, keeping all the length
of its sides intact, see Fig. 2-28. In this figure, we have colored
the lattice points with different colors to highlight the lattice
symmetry to rotations by +120° degrees around the principal
symmetry axis. The latter passes through the two gray points
shown in the figure. This symmetry is easier to perceive from the
“top view” of the lattice depicted in Fig. 2-29.

The point group associated with the rhombohedral lattice
contains 12 symmetry operations: The identity E; inversion C;;
two rotations by +120° degrees, C, and c’; three reflections
through planes defined by three lattice points of different colors
and contain the principal axis, o;, 0,, and o;; three rotations
by 180° degrees around axes perpendicular to the principal axis,
), ¢ and c'?; and finally two improper rotations by +60°
degrees around the principal axis, Sy and S¢ (notice that S is

the inversion while Sgand Sé are simple rotations by +120°).

This point group is denoted by C,;.

A possible choice of the primitive basis vector for this lattice is:

31=+§—LE a:Oig (2.21)
72 2y3'3) 7 TB'3) '

where aand ¢ are arbitrary. One can check that these basis
vectors have equal lengths,

2 CZ

2| =] = o = | = + = (2.22)
2 3 3 9 ’

and that the angle between any pair of them is

2c® —3a°

_ -1
* =0 2(c2 +3a2)

(2.23)

40

Figure 2-27 Body centered
tetragonal lattice

|a1| = |a2| = |a3|

Figure 2-28
Rhombohedral lattice

/Q )

\

Figure 2-29
“Top view” of the

rhombohedral lattice
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11. Nextisthe hexagonal lattice shown in Fig. 2-30. It is obtained
by setting a two-dimensional hexagonal lattice as a basis in the

xy plane and choosing the third basis vector, a;, to be in the
Z direction. The point group associated with this lattice is
C,,- It contains 24 elements: the identity; inversion; five
rotations around the principal symmetry ( Z ) axis in multiples
of 60°; reflection through the Xy plane; six reflections through

planes perpendicular to the Xy plane; six rotations by 180°
around axes perpendicular to the principal axis; and four Figure 2-30

improper rotations, S, S,, Sg’, and S,C,. Hexagonal lattice

e

inversion; reflections through three planes; eight rotations by 0\0
120° (two around each diagonal of the cube); eight improper

rotations by 60°(around the same axes mentioned above);

12. The last lattice system is the cubic system. The simplest one
is the primitive cubic lattice shown in Fig. 2-31. The point

group of this lattice, denoted by O, , is the group symmetry

of a cube. It contains 48 symmetry operations: the identity;

Figure 2-31
six rotations by 90°; six improper rotations by 90°; nine Primitive cubic lattice
rotations by 180°(three around the axes that pierce the
centers of opposite faces and six that bisect opposite sides of
the cube); and six reflections through planes that contain two

opposite sides of the cube.

13. The body-centered cubic lattice, shown in Fig. 2-32, belongs
to the same lattice system. The primitive basis vectors of this
lattice can be selected to be:

a=2(-111), a8, =2(1,-11), a, = 2(11,-1),  (2.24)
2 2 2
and the volume of the primitive unit cell is a°/2.

14. Finally, the face-centered cubic lattice shown in Fig. 3-23 is
obtained (for example) from the following basis vectors:

aizg(o,l,l), a, :%(1,0,1), a3=%(1,1,0). (2.25)

The volume of its unit cell is a3/4 (recall that a unit cell Figure 2-33 Face-centered

contains a single lattice point). cubic {fec) lattice
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Altogether we have listed 14 different Bravais lattices (in three dimensions) classified by
seven lattice systems: triclinic, monoclinic, orthorhombic, tetragonal, rhombohedral, and
cubic. Adding sublattices and decorations, one obtains lattices described by 230 different
space groups. Seventy-three of them are symmorphic groups. The rest are non-
symmorphic groups characterized by symmetry operations such as glide reflection
{a|ai/2} (explained above), and screw displacement (also called screw operation or

rotary displacement), {c,|a/2}.The latter is a rotation by 360°/n degrees followed by a

translation along the rotation axis by half the lattice constant.

2.9 Directions and planes in a crystal (Miller indices)

The primitive basis vectors of a lattice, 8, (1=1,2,3), can a;
be used to define lattice directions (i.e., the directions of

vectors connecting pairs of lattice points) by ha1 + ka2 + Ia3,

where h K and | are coprime numbers, namely integers
whose common factor is only one. The Miller index
denoting such a direction is [h,k,I]. It is customary to

replace negative values of these integers with an overbar,
e.g., instead of writing [1,2,-3] we use [1, 2,§] )

Similarly, planes in the lattice are defined by three points,

a,/h, a,/k and a,/1, see Fig. 2-34, and using Miller indices 1

denoted by (h,k,1). This symbol refers to the whole family h ]
of planes that are parallel to each other. Notice that the Figure 2-34 Definition of lattice
direction [h,k,l] is generally not perpendicular to the planes using Miller indices

plane (h, k,I) unless we are dealing with a cubic lattice.

The above definition of the lattice planes ensures that the lattice points of a three-
dimensional Bravais lattice that reside on such a plane form a two-dimensional Bravais
lattice. For example, for a primitive cubic lattice, the lattice points on the (1,0,0) plane
form a square lattice; those of the (1,1,0) plane are ordered in a simple rectangular lattice;

while the points on the (1,1,1) plane create a hexagonal lattice.
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2.10 The reciprocal lattice and Brillouin zones

The reciprocal lattice of a Bravais lattice whose lattice points are a = j,a, + J,a, + J,8, (with

a, as the primitive basis vectors and J; integers) is the set of points b that satisfy the

condition:
b-a=2zm, (2.26)

where m is an integer. The reciprocal lattice is a Bravais lattice by itself, and as such, its
lattice points are given by a linear combination of primitive basis vectors,

b=nb +n,b, +n,b,, (2.27)

where N are integers. In two dimensions, the primitive basis vectors of the reciprocal

lattice are given by

and b, =27 % (2.28)

b =27 2x3, )
|a1><a2|

! |a1xa2|

Here we assume the lattice to reside in the Xy plane, and  is a unit vector perpendicular

a, xa,

lattice (notice that the vector product of two-dimensional vectors is a scalar).

to that plane. The denominator in these formulas, , is the area of a unit cell of the

In three dimensions

a,xa,

b =2rx , b, = 27zai/ﬂ, and b, =27z%, (2.29)

uc uc uc
where
V. =28,-(a,xa,) (2.30)

is the volume of a unit cell (one can always choose the order of these primitive vectors
such that this volume is positive). The proof of these formulas is given as an exercise.

Comment: The symmetries of a lattice and its reciprocal are the same. Namely, both
belong to the same lattice system. However, the reciprocal lattice is not necessarily the
same as the original one. For example, the reciprocal lattice of fccis bcc and vice versa (the
proof of this property is given as an exercise).

To gain a better understanding of the meaning of the reciprocal lattice, consider the
problem of an electron moving in a periodic potential,

u(r+a)=u(r). (2.31)
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From Fourier theory, we know that any periodic function can be represented as a Fourier

series,

u(r)=> u,exp(ib-r), (2.32)
b

where U, are the Fourier expansion coefficients. The periodicity of the potential implies

that
u(r+a):zb:ub exp[ib-(r+a)}=zblub exp(ib-r+ib-a)

) (2.33)
=u(r)=> u,exp(ib-r).
b
Therefore b-a must be an integer multiple of 27 . Thus the vectors b satisfy Eq. (2.26)
and therefore belong to the reciprocal lattice. Hence, the reciprocal lattice represents the
momentum space of the problem. Thus, using Wigner-Seitz procedure for the reciprocal
lattice yields the Brillouin zone of the system.

Example — The Brillouin zone of a two-dimensional hexagonal lattice.

In this example, we identify the Brillouin zone of a

system whose Bravais lattice is a two-dimensional * b * d ® *
hexagonal lattice. It will be obtained by constructing
the Wigner-Seitz cell of the reciprocal lattice. First,
we choose the primitive basis vectors of the
hexagonal lattice to be ® ® e o °

aiza(l,O) and azzg(l,\/é), (2.34) a . . ° °

Figure 2-35 The primitive basis vectors of
as illustrated in Fig. 2-35. With this choice, we obtain hexagonal lattice

that the area of the lattice unit cell s
a,xa, =a’ \/§/2 , and from formulas (2.28) for the primitive basis vectors of the reciprocal

lattice we obtain:

a
b =27 233, 2”2(_\@’1)2_7[[_1 ij
axal " B al B
2 (2.35)

7 1
b, = 27 I8 _, a(0, )_27[(0’ 2}

= 7[ P — JR—
|a1><a2| azﬁ a V3
2
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These primitive lattice vectors define the reciprocal lattice points, b=nb, +n,b,, as shown

in Fig. 2-36. It is evident that the reciprocal lattice is also hexagonal, yet it is rotated by 90°
degrees with respect to the original lattice. The Wigner-Seitz cell of the reciprocal lattice
is constructed as described in section2.7 and is shown in Fig. 2-37.

k,
A
[ ]
[ ] ]
@ * °
o™ M, M,
] [ ]
K L K
[ ] ® X
® ® ® M, M,
[} L ]
Figure 2-36 The primitive basis vectors *
of reciprocal lattice Figure 2-37 The Brillouin zone of hexagonal

lattice

It is customary to give names to the special symmetry points of the Brillouin zone. The zero

momentum point, k = (O, O) ,is the T"-point; the vertices of the hexagonal of the Brillouin

zone are the K points; and the central points on each side of the hexagon are the M -
points. Taking into account the periodic structure of the reciprocal lattice, one sees that
the three K pointsin Fig. 2-37 are, in fact, the same point, and so are the three K’ points.
Also, since opposite sides of the hexagonal are identical, there are only three inequivalent

M -points. These are denoted by M;, M,, and M, in the figure.

To conclude this chapter, we present the Brillouin zones of bcc and fcc lattices obtained
by the same procedure described in the example:

r \ —
7}
) ) o>
[
| VB >
/ ‘
| ’
|
]
@e—/
]

Figure 2-38 The Brillouin zones of fcc (left panel) and bcc (right panel) lattices.
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2.11 Exercises

1. Prove that the only possible rotation symmetry operations, C,, in a Bravais lattice is

with n=1,2,3,4and 6.

Hint: Consider two rotations in angles

= 360°/n around two adjacent lattice points, &’ 4
A and B as illustrated in Fig. 2-39. Find a ¢ ¢

simple condition ensuring that the two rotated y B

points, A’ and B’, are located on the same Figure 2-39

Bravais lattice. Notice that the segments A'B’
and AB are parallel.

2. Identify the symmetry operations of the group C,, (the symmetry group of an

equilateral triangle) and construct the multiplication table of the group.

3. Identify all 24 symmetry operations of the point
group, T,, of a regular tetrahedron. A regular

tetrahedron, also known as a triangular pyramid, is a
polyhedron composed of four equilateral triangular

faces. It has four equivalent vertex corners, as shown
in Fig. 2-40. Figure 2-40 A regular tetrahedron

4. Identify the two-dimensional Bravais lattices on the (1,1,1) and (1,1,i) planes of a

bcc lattice.

5. Check that the primitive translation vectors of a lattice and its reciprocal satisfy the

condition @, -b; =276, and show that the reciprocal lattice of bcc is fcc and vice

versa.

6. Identify the reciprocal lattices of the flowing lattices: primitive orthorhombic, base-
centered orthorhombic, face-centered orthorhombic, and body-centered
orthorhombic.

7. Verify that formulas (2.28-2.30) satisfy Eq. (2.26).



Time is the most unknown of all unknown things
47 Aristotle 384 BC- 322 BC

3 Time-reversal symmetry

In the previous chapter, we have presented various lattices and identified their spatial
symmetries. The next step is to harness tools from group theory to understand the
implications of these symmetries on various physical aspects of the system, such as the
electron energy spectrum and the phonon vibrations. However, before turning to this task,
let us consider an important and simpler symmetry — the time-reversal symmetry:

t——t. (3.1)

This symmetry applies to the fundamental laws of nature and describes the microscopic
behavior of matter (in the absence of an external magnetic field). Namely, there is nothing
in the fundamental physical laws that distinguishes the direction of time. In other words,
if we could make a film of the microscopic movements of all particles in a closed system,
we would not be able to say whether the film is running forward or backward. Of course,
in the macroscopic world, this symmetry is broken (for example, we can see that when a
glass of water falls, it breaks into small pieces, but we never see the reverse process).
However, this subject is for a different course. Here we focus on understanding the
implication of the time-reversal symmetry (3.1) on the spectrum of electrons in a lattice.
We start by discussing systems where the spin degree of freedom can be ignored. Next, we
define the time-reversal operator for spin % particles, and explain the implication of time-
reversal symmetry for such systems.

3.1 Implications of time-reversal symmetry on the electronic spectrum

In the systems that we shall consider, time-reversal symmetry implies invariance to
reversing the momentum direction, k — —k . To find out the significance of this symmetry
on the electronic spectrum,

e(k)=¢(-k), (3.2)

it is instructive to analyze a specific example: Consider a system of an electron moving in
a two-dimensional hexagonal lattice. The Brillouin zone of this system is depicted in Fig. 2-
37. Our goal is to understand what can we learn from time-reversal symmetry (3.2) about
the local behavior of the spectrum in the vicinity of the special points of the Brillouin zone,
I', K,and M.

To begin with, let us take a look at the Taylor expansion of g(k) near the I' point (k = 0).

Time reversal symmetry (3.2) implies that the linear term of this expansion must vanish,
therefore
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2
g(k):Zka%kﬂ+O(k4), (3.3)
af af

where m,_, is the effective mass tensor. Thus, time-reversal symmetry dictates that the

spectrum near this point is quadratic. In a cubic lattice (or a square lattice in two
dimensions), similar considerations lead to the same result, but one can also show that
spatial symmetry is sufficiently high to ensure that ]/maﬂ = aﬁ/meﬁ , hence

(k)= kaﬁ +0(k*), (3.4)

where m is the effective mass of the electrons near k=0.

Consider now the energy spectrum near one of the M points of the Brillouin zone, and let
ok be the deviation of the wavenumber vector from that point. l.e., K =k,, + 0k, where

k,, is the value of the wavenumber at the M point. With this definition, time-reversal
symmetry yields

e(ky *+0k)=e(-ky —ok)=¢e(k, —k), (3.5)

where second equality follows from the fact that opposite M points on the Brillouin zone
are, in fact, the same point due to the periodicity Brillouin zone in k space. The above
equation implies that the energy spectrum near the M points is quadratic.

Finally, consider the behavior near the K point of the Brillouin zone. As before, we present
the wavenumber in terms of its deviation from that point, k =k, + Jk . In this case, we

have
(kg +0k)=¢e(-k( —ok)=¢e(k¢ — k). (3.6)

Here we took into account that time-reversal symmetry exchanges between the K and
the K’ points of the Brillouin zone, i.e. -k, =k, ( see Fig. 2-37). However, these points
are inequivalent; hence one cannot assume that the linear term of the Taylor expansion of

€(k) in 0k vanishes. The only information obtained from time-reversal symmetry, in this

case, is a relation between the slopes of the spectrum (in the same band) at the K and
the K’ points:

(3.7)
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3.2 The time-reversal operator for spin % systems

Ignoring the electron’s spin is justified when there is no coupling between the electron
trajectory in space and its spin direction. In that case, the spin only implies a double
degeneracy of the electron energy at each value of k. However, in the presence of spin
orbit-interaction, the situation becomes more interesting. Our goal here is to study the
main manifestations of time-reversal symmetry in such cases. To this end, we must first
formulate the operation of time reversal on spin % particles.

Let ® denote the time-reversal operator. The basic properties one expects from this
operator are:

®[r)=|r), ©p)=|-p) and ©|L)=|-L), 3.8)

where L =rx p is the angular momentum. An alternative way to present these equations

is in the form of operator equations:
Ofe=Ff, @'pO=-p, and O'LO=-L. (3.9)

These relations are proved, e.g., by calculating the matrix elements of the operators on

both sides of the equations in a complete set of eigenstates. Since the spin operator, S,
behaves similar to angular momentum, time-reversal implies

0'Se=-S. (3.10)

Consider now the action of time-reversal operation on wave functions. To begin with, let
us focus our attention on a spinless particle. The action of time-reversal symmetry on the
wave function gives its complex conjugate (as follows from the Schrodinger equation).

Thus, for an arbitrary pair of wave functions, |,) and |y, ), we have

<®W1|®W2>:<‘//1|V/2>*:<W2|l//1>- (3.11)

This relation implies that time-reversal operation does not preserve the inner product as
a unitary operator. Instead, it gives the complex conjugation of the inner product. Such
operator is called anti-unitary, and a mathematical theorem that we present here without
a proof states that any anti-unitary operator may be represented as a product of a unitary
operator, U, by an operator, K, that we shall call the “complex conjugation operator”,

®=UK. (3.12)

This decomposition of the time-reversal operator also applies to spinful particles, i.e.,
when the wavefunctions are spinors.



50

The easiest way to define the action of the K operator on a wave function,

), is by using

4 :an/ln|n>’

a complete set of states,

n). Expanding the wave function in this basis,

the action of K is defined by

K|w>:Zy/:|n>. (3.13)

Thus K acts only on the expansion coefficients, while the basis states,

ny, are left intact.

This definition is, clearly, basis-dependent. If we choose a different basis, we may get
another K. However, this is not a problem because one can always choose the unitary
transformation U to account for the transformation from one basis to another. Thus there
are many ways to define the operators U and K, depending on the choice of the basis.

n).

It remains to figure out how to defineU for some particular set of basis functions,

Since the action of the time-reversal operator gives

®|1//>=UK|w>=Zt//:U|n>, (3.14)

n

we should understand how U acts on |n).

In the spinless case, and for real-space basis functions, the time-reversal operation gives
the complex conjugate wave function, therefore we should choose U =1.

For spin % particles, the wave function is a spinor containing two components. From Eq.

(3.10) we expect that ®‘T>=U‘T> gives a state that is parallel to ‘¢> Similarly,

®‘¢> =U H«> should be parallel to ‘T> Taking the spinor components in the z direction,

an operation that reverses the spin direction is a 7 -rotation around the y axis. Since the

spin, as the angular momentum, is the generator of rotations in the spin space,

S, y (0 -
U=exp —I?ﬂ' =exp _IETV =—lr, = K (3.15)

where 7 is the Pauli matrix (see Eq. (3.22) below). Thus

®:—iryK. (3.16)
From here we see that

s (e
s

(3.17)
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and therefore ®*|S)=—|S). The conclusion from this discussion is that for spin 1/2

particles
% |ly)=—|y). (3.18)

This property implies that |y/) and ®|y/) are orthogonal, because from the above relation

and Eq. (3.11) it follows that (@ |y)=(0%|0y) =(Oy|0%)=—(Ow|y), and this

can be satisfied only if
(Oy|w)=0. (3.19)
This result is valid for any particle with a non-integer spin.

Equipped with knowledge about the action of the time-reversal operator on spin %
particles, we turn to study the implication of this symmetry in systems with spin-orbit
interactions.

3.3 Spin-orbit interaction and Kramer’s degeneracy

On a qualitative level, spin-orbit interaction can be viewed as the interaction of the
electron’s magnetic moment with the magnetic field, B, seen from the electron’s moving
reference frame, due to the presence electric field, E, in the laboratory frame. Assuming
no magnetic field in the system, the magnetic field in the reference frame attached to an
electron moving with velocity Vv is

1 1
B=——VxE=—vxVu(r), 3.20
C2 eCZ ( ) ( )

where to obtain the second equality, we expressed the electric field as a gradient of the

electric potential u (r)/e. The electron’s magnetic dipole moment (due to spin) is

1
=20k, (3.21)

where ¢ is the g-factor, which is approximately 2 (more precisely 2.002319...),
Uz =eh/2m is the Bohr magneton (m being the free electron mass), and 7/2 is the

dimensionless spin operator expressed in terms of Pauli matrices, 7 = (rx,ry,rz)with

01 0 —i 1 0
T, = , T, = . ,and 7, = . (3.22)
10 Vi o0 0 -1

The spin-orbit Hamiltonian comes from the interaction of the magnetic dipole moment
(3.21) with the magnetic field (3.20):
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h
HSOZ—ﬂ'B—)mT'[pXVU(r)]. (323)

To obtain this formula, we replaced the velocity with the momentum divided by the mass
and added a factor 1/2. This 1/2 factor is due to another relativistic effect called Thomas

precession which we do not discuss here.

Taking into account spin-orbit interaction, the Schrodinger equation of an electron moving
in a periodic lattice is:

o, h _ . .
{—%V +u(r)+mr-[Vu(r)x|hV}}w£” (r)=¢; (k)l/ll((J) (r), (3.24)

where 1//&” (r) is a spinor containing two components associated with the spin direction:

w9 (r) ZLWEj E:;J (3.25)

Here, the index j refers to the energy band and K is Bloch’s wave number.

Notice that Bloch’s theorem also holds in the presence of spin-orbit interaction because
the Hamiltonian (3.23) has the same spatial periodicity as the potential energy u(r).

Moreover, as discussed earlier, time-reversal symmetry dictates the relation:
g (k)=¢,(-k). (3.26)
We show, now, that the time-reversal symmetry in fermionic systems,
®'HO=H, (3.27)

implies that energy levels are degenerate. Multiplying the above equation, from the right,

by ) (r), and from the left by © yields
HOw (r)=0Hy/ (r)=¢ (k)oy,(r). (3.28)

Thus, if z//ﬁ”(r) is an eigenstate of the Hamiltonian with energy &,(k), then

G)z/flij) (r) = —irywl((j)* (r) is also an eigenstate with the same energy. Moreover, we have
proved that O y” (r) is orthogonal to l//|((j)(l’) (see Eq. (3.19)); hence energy levels are,

at least, doubly degenerate. This degeneracy is called Kramer’s degeneracy. The two
degenerate eigenstates have opposite momenta and opposite spins.

When transitions between bands can be neglected, the Hamiltonian that takes into
account the spin-orbit interaction of an electron moving in a periodic lattice (and restricted
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to the lowest band) can be approximated by
H(k)=¢g(k)I +7-w(k), (3.29)

where go(k) is the spectrum in the absence of spin-orbit interaction, | is the identity

‘//1(<0)>' 1//&0) being the Bloch wave

matrix in the spinor space, and W(k):<w,£°)‘Hso

function when spin-orbit interaction is absent. Time reversal symmetry, @ '"HO®=H,
implies:

&(k)=¢&(-k), and w(k)=-w(-k). (3.30)
The second relation follows from 7z-w(k)=0"7-w(k)®=0"70-w(-k)=-7-w(-k).

Thus, in particular, w(0)=0. Diagonalization of the Hamiltonian (3.29) gives

g(k):‘go(k)i‘w(k)

; hence the energy at k =0 is (at least) doubly degenerate.

3.4 The Rashba term

In many situations, the periodic potential of the lattice is too weak to contribute effectively
to the spin-orbit interaction. However, the situation may be different near the system's
boundary because the potential energy changes rapidly in space. Near the system’s edge,
the potential energy gradient is large, and the contribution to the spin-orbit interaction
can be significant - see Eq. (2.23). In this section, we calculate the spectrum of electrons
moving near the surface of a crystal, taking into account this effect.

For simplicity, we consider the surface of a cubic lattice, say the (0, 0,1) plane, and denote

by f a unit vector perpendicular to the surface and pointing outwards. The approximate
Hamiltonian that describes an electron moving on the surface is:

2k2

H =T e (1K), (331)

eff
where m,, is the effective mass of the electron. The second term of the Hamiltonian (3.31)
is due to spin-orbit interaction. It is called Rashba term. Here, o isthe Rashba parameter

that characterizes the strength of the spin-orbit interaction. The structure of Rashba term
can be deduced from the following argument: The system contains only three vectors -
the normal to the surface A, the electron’s momentum 7k , and the electron’s spin h‘r/2.
The only scalar that can be constructed from these vectors, which is the lowest order in k
and have the property (3.30), is 7-(fixk)=k-(zxA)=1-(kxz). Therefore, at low

enough energy, one can describe the system by the Hamiltonian (3.31).
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Now, let us choose the surface on which the electron moves to be the xy plane. The

normal to the surface is A =7, so that the Rashba term is:

X y z
t-(2xk)=|0 0 1|=kz, —kr7,. (3.32)
k. k,

Assuming that the electrons move only parallel to the plane, the Hamiltonian (3.31)

reduces to:
hz 2 2 -
o (K2 +kZ)  —aq(k, +ik,)
H=| ) (3.33)
H 2 2
—atg (K, —ik, ) o (k2 +K;)
Diagonalization of this Hamiltonian gives the energy spectrum of the system:
m 2
hz(k s Mot |j
21,2 2 R 2
()= sk f Mer T (3.34)
B 2M, ¢ 2m, 2h

Figure 3-1 The energy spectrum described by Eq. (3.34)

On the left panel of the figure, the orange and blue surfaces represent the spectrum’s two
branches, ¢_(k) and ¢, (k), respectively. These branches touch at a single point, k =0.
The primary influence of the weak spin-orbit interaction is near this point, where the
dispersion becomes linear. The right panel of Fig. 3-1 shows a cross-section of the
spectrum in the direction of the k, -axis. Along this line (and any other axis that passes
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through the origin), the spectrum looks like two parabolas shifted away from each other.
This illustration highlights the time-reversal symmetry property of the system because,

here, it is clear that the two branches of the spectrum satisfy the relation &, (k) =¢,(-k).

We turn now to discuss the spin configuration of the wave functions in the problem. The
eigenfunctions of the Hamiltonian (3.33) (see Exercise 2) are

_ 1 L i 5 — kx
W*ELsign(aR)exp(ié)] i ¢_arctan[k—yj. 53

These functions are particular cases of the general spinor wave function,

COS(Q) =
d)- 2

(3.36)
sin(gj exp(ig)

that describes a spin pointing in the direction
d = (sin @ cosg,sin Gsin g, cos9). (3.37)

Here & and ¢ are the polar angles defined in Fig. 3-2. From
the comparison of Egs. (3.35) and (3.36), it follows that the
spin is perpendicular to k and lies in the xy plane. Thus,

the electron momentum, the electron spin, and the normal

to the surface are perpendicular to each other.
Figure 3-2 The polar angles of the
In Fig. 3-3 we present the Fermi surfaces of the system near spinor ‘d>

the band touching point with arrows showing the spin’s
direction for any momentum. The arrows change direction when «; changes sign. Here

they are plotted for o, >0, and assuming that k, ky ,and z form a right-handed triple.

~ \s:(k)

Figure 3-3 The spin direction on the Fermi surface of the spectrum shown in Fig. 3-1
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3.5 Exercises

1. Diagonalize the Hamiltonian (3.33) and prove Egs. (3.34) and (3.35).

2. Prove that the spinor function in Eq. (3.36) represents a spin that points in the direction
of the vector (3.37). Namely, show that

d > (3.38)
3. Calculate the energy spectrum of Luttinger Hamiltonian:
) \2 A

H = Ak +B(k-L) +A.8-L, (3.39)

where A, B, and A  are constants, L is the orbital angular momentum with 1 =1,

and § is the spin operator. The last term in this Hamiltonian represents the spin-orbit
interaction. To shorten the formulas, assume 2 =1.

Advice: Choose the 7 axis in the direction of the wave number vector, and rewrite the

Hamiltonian using J =L +§ and L, . Notice that L, commutes with J, but not with

A

J?. Now consider the flowing cases J, =13/2 (where the Hamiltonian is diagonal),
and J, =+1/2 where for each sign, the Hamiltonian is a 2x2 matrix. Show that the

spectrum you got is doubly degenerate.
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4 Group theory: Basic concepts

From time immemorial, scientists used symmetry considerations to analyze physical
systems. However, with time, symmetry evolved from being only a tool to the stage that
constitutes the theory's cornerstone. In many situations, one can deduce the structure of
the energy spectrum, or the system's response to some external perturbations, solely from
symmetry considerations even without knowing the precise form of the Hamiltonian. We
shall encounter a few such examples in the coming chapters.

The mathematical framework for the study of symmetry is group theory, and in this
chapter, we shall present the main ideas and tools needed to analyze crystals. We focus
our attention on point groups that are sufficient for our purposes. We skip the
mathematical proofs of the theorems as they can be easily found in the literature. This
chapter is meant to be self-contained and therefore has some overlap with chapter 2.

4.1 Definitions

A set of elements G ={a,b,c,d,.....} is called a group if there exists an operation - we call

“multiplication”- between any pair of elements that satisfies the following requirements:
(a) Closure: The multiplication of any pair of elements is an element of the group.

(b) The existence of the identity operation: One of the set elements, denoted by E, is the

identity element that satisfies the condition aE = Ea=a forany a.

(c) The presence of inverse elements: To each element, a, there is an inverse element,

a*, (in the group) that satisfies the condition aa* =a'a=E.
(d) Associativity: a(bc)=(ab)c.
Examples

e The simplest group is a group the contains a single element {E} .

e The only group that contains two elements is C, = {E,a} where a is the inverse of
itself, a? =E .

e There is also only one group that contains three elements C, = {E, a,b} . The

multiplication table of this group is presented on the next page. This group can also be

represented in the form C, :{E,a, az} where a° =E .
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p| E| © o | c

c,| E| a| b E ol o |ec
El E a b c| o E| ¢ |o
al al bl E olo| ¢ o
bl bl E| 2 ¢, |c,| o| o|E

o All three examples presented above are particular examples of the cyclic group
C,={E,aa’--a"";a" =E|, generated by repeated multiplication of a single element.

e Only two groups contain four elements: The cyclic
group C,, and the dihedral group D, (which is the

simplest non-cyclic group). The latter is the
symmetry group of a rectangle, see Fig. 4-1. Its

symmetry elements are: rotation in 180°, c,;

reflection through the vertical axis, o ; reflection

through the horizontal axis o'; and the identity Figure 4-1 The dihedral group D, as
operator, E . The multiplication table of this group is the symmetry group of a rectangle
shown above.

Definition: A group is called abelian if the multiplication of any pair of elements in the
group is commutative ab=ba.

All groups that have been presented so far are abelian. This
property is manifested by a symmetric matrix structure of
the multiplication table. o

L — — —

N

Definition: The group order is the number of elements in
the group.

e The simplest non-abelian group (i.e., the non-abelian -

group of lowest order) contains six elements. It is the

3

group associated with the symmetry of an equilateral

. . . . Figure 4-2 The equilateral triangle
triangle, see Fig. 4-2. Its elements are: the identity E; € d &
whose symmetry group is C3v

two rotations by +120°, ¢, and ¢ ; and three reflections
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o, o'and o" through the axes shown in the figure. This group is denoted by C;, , and

its multiplication table is given below?.

E o O_I O_” 2
C3V CS C3

1 n
ol o E c, | ¢ 32 o | o
!/ ! "
o o c ; E c, o o
" " '
o' | o ¢, | ¢ ; E c| o
n !/
o o | o 2 E
C3 C3 C3

This table is not symmetric; hence some of the products are not commutative. An
example of a non-commutative product is illustrated in Fig. 4-3.

3 3 1 3
AUAU,A A
—_— L — =
1:22 1 2 3 1 2
3 2 2 3
AU’AGA QA
- —_— =C3
| 2 ]:3 3 ] ] 2

Figure 4-3 An illustration of a non-commutative product of reflections in the group C3v

The group C; has the same multiplication table as the dihedral group D,. The latter is

obtained when replacing the reflection axes in Fig 4-2 by rotations axes in 180°. Two point
groups are said to be isomorphic if their multiplication tables are identical (up to reordering
of rows or columns).

The rearrangement theorem: Each row and each column in the group multiplication table
lists each of the group elements once and only once.

! The product order convention for group multiplication tables is that the element, ab, which appearsin a
given cell, is the prododuct (from the left) of the element @ that appears on the leftmost cell of the same

row, by the element D that appears on the top cell of the same column.
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Point groups are groups whose symmetry operations (acting on a set of points) do not affect

(at least) one point. The set of symmetry operations and their symbols are listed below:

E - the identity operation that leaves the system unchanged.
C, - rotation in 360°/n around symmetry axis.

I - inversion, the operation r — —r .

o, - reflection through a plane perpendicular to the principal symmetry axis (of rotation).

o, - reflection through a plane that contains the principal symmetry axis.

o, - reflection through a diagonal plane that contains the principal symmetry axis. This

plane also contains the bisector between two secondary rotation axes, C,, which is

perpendicular to the principal axis (see Fig. 4-8 below).

S, - improper rotation. Rotation in 360°/n around the principal

symmetry axis followed by reflection through a plane
perpendicular to this axis (see Fig. 2-26 and the explanation on
the same page).

4.3 Schoenflies notation of point groups

Point groups are denoted by letters and subscripts. Below we list the
main notations of point groups.

C, - (The cyclic group) describes systems with a single symmetry
axis around which the system is symmetric to rotations in

360°/n as shown in Fig. 4-4. This group contains N elements.

C,, - This group contains the following elements: n-fold rotation

around a single axis (as in the cyclic group), and n reflections
through planes that contain this axis. The angle between nearby

planes is 180°/n as demonstrated in Fig. 4-5 for C,,. This group

includes 2n elements.

360

Figure 4-4 The rotation axis
associated with cyclic groups

Gy A _180°

o’y

Figure 4-5 The symmetry

operations of C,,
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C,, - This group’s elements are obtained from n-fold rotations and reflection through a

plane perpendicular to the rotation axis - see Fig. 4-6. The group has 2n elements.

D,- (The dihedral group) The symmetry associated with this group is that of n-fold

rotation around the principle symmetry axis and additional n twofold rotations
around secondary axes perpendicular to the principal axis. The angle between

nearby secondary axes is 180°/n. This group contains 2n elements. An illustration

showing the symmetry operations of D, is depicted in Fig. 4-7.

0
p, 4 {180

J

Ca,

360°

)n

144

Oh

Figure 4-6 The symmetry operations of C Figure 4-7 The symmetry operations of D,

D,y - This group contains all symmetry operations of D, plus reflections through n planes

that contain the principal symmetry axis and one of the bisectors between nearby
secondary axes. An illustration of these symmetry operations for D,, is shown in

Fig. 4-8 (on the next page). The group contains 4n elements.

D, - This group contains all symmetry operations of D, plus reflection through a plane

perpendicular to the principal symmetry axis. This reflection symmetry implies there
must be additional n reflection planes. These planes contain the principal
symmetry axis and one of the secondary axes, as illustrated in Fig. 4-9 (on the next
page) for D,,. The group has 4n elements.

T, - The tetrahedral group is the symmetry group of a regular tetrahedron, see Fig. 2-40.

It contains 24 symmetry operations: the identity operator; eight rotations in 120°;

three rotations in 180°; six improper rotations S,; and six reflections.

O, - The octahedral group is the symmetry group of a cube (as well as an octahedron). It
contains 48 elements that include the identity; eight rotations in 120°; six rotations
in90°; nine rotations in 180°; inversion; six improper rotations S,; eight improper

rotations S;; and nine reflections.
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0
D4 180

Figure 4-8 The symmetry operations of D2d Figure 4-9 The symmetry operations of D2h

Example

Let us identify the point groups that describe the symmetry of the flowing molecules:

Cl,Pt Br,

Figure 4-10 The symmetry operations of a few molecules

Consider, first, the molecule Cl,PtBr, that appears on the left panel of the figure. It has

two-fold rotation symmetry around an axis perpendicular to the molecule’s plane and two
additional twofold rotations around axes that pass through identical atoms. It also has
three reflection symmetries through the planes shown in the figure. The group associated

with these symmetry operations is, therefore, D,, (see Fig. 4-9).

Let’s Look, now, at the molecule CCI,H shown in the middle panel of the figure. Here

there is an axis of three-fold rotations and three reflection planes that contain the principal
symmetry axis and one of the chlorine atoms. The point group is, therefore, C,,.
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Finally, consider the molecule B,Cl, shown on the right panel of the figure. Here, one can

quickly identify the two-fold rotation symmetry around the principal axis passing through
the Boron atoms. Two reflection planes contain the principal axis and pairs of chlorine
atoms. Finally, it is a bit more challenging to see the two additional two-fold rotations.
These rotations are around axes perpendicular to the principal symmetry axis and parallel
to the bisectors of the reflection planes. Thus, the point group associated with B,Cl, is

D

2d -

4.4 Conjugate elements and conjugacy classes

Definition: An element b € G is said to be conjugate to a € G, if there is an element p in

the group such that:
b=pap™ (4.1)

Conjugacy relation between two elements, a, and b, is customarily denoted by a~b. It
is easy to prove the following properties:

e Each element is conjugate to itself, a~a.
e Ifa~b,thenb~a.
e If a~bandb~c,thena~c.

Definition: All the elements of a group that are conjugate to each other form a conjugacy
class of the group.

It is easy to prove that:
e Each element of the group belongs to one and only one conjugacy class.

e The identity operation has its own conjugacy class (that contains a single element).

From a physical viewpoint, conjugate elements are associated with similar symmetry
operations. For instance, in a system with four-fold rotation symmetry around the z axis,
reflections through the yz plane and the Xz plane are of the same nature. It is because
reflection through the yz plane can be obtained by rotating the system by -90%around
the z axis, reflecting through the xz plane, and finally rotating back by 90° around the
same axis. This set of operations is precisely that of Eq. (4.1), where p is the rotation

operation, while aand b are the two reflections.
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Example: The conjugacy classes of C,,

This point group (see group multiplication table on
page 30) is abelian; therefore, each element creates its

own conjugacy class, because X = yxy' where y can

be any element of the group. Looking at Fig. 4-5, it is
clear that all symmetry operations are of different

nature (there is no 90° rotation that allows conjugation
of the two reflection symmetries). A diagram of the g6 4-11 The conjugacy classes

conjugacy classes of this group is shown in Fig. 4-11. of C,,

Example: The conjugacy classes of C,,

This is a nonabelian group. Here one may expect the
conjugacy classes to contain more than one element. In
particular, the three reflection operations are of the
same nature because the rotation operation conjugates
them; see the middle panel of Fig. 4-10. For instance,
from the multiplication table presented on page 59, one

sees that o' =c,oc; . Similarly, the rotation operations .
Figure 4-12 The conjugacy classes

are conjugated by reflections, ¢, = o¢io . The conjugacy of C,,

classes of this group are shown in Fig. 4-12.

Example: The conjugacy classes of D, cy

A
The dihedral group D, contains eight symmetry Dy D)

operations: The identity, four-fold rotations, and four
two-fold rotations around axes perpendicular to the
principal axis, as illustrated in Fig. 4-13. From this figure, M

one quickly sees that ¢, and C, are conjugated by 90°

m

rotation, and so are C, and C, . However, these two Co

conjugacy classes are different because there is no 45° Co '

rotation to conjugate them. c, and c, are also

conjugated because ¢ =c,c,C,. On the other hand, c;

conjugates only to itself, becausec’ = p'cip, where Figure 4-13 The symmetry

. operations of D,

p=C,C;,C;or C; . Thus, there are four conjugacy classes,

as shown in Fig. 4-14 on the next page.
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Figure 4-14 The conjugacy classes of D4

4.5 Representations of groups

A group representation is a group of mathematical objects that describe the symmetry
operations of the group. Here we shall confine our discussion only to those cases where
these mathematical objects are square invertible matrices, and multiplication of group
operations corresponds to matrix multiplication. Thus, the group element a, will be

represented by a matrix F(a), such that for any two elements of the group:
I'(a)T'(b)=T(ab). (4.2)

The size of the matrix is called the dimension of the representation.

Example: C,
A one-dimensional representation of this group can be, for example, c E a
I'(E)=T(a)=1, because it trivially satisfies the group multiplication |_"2

E] E

table that appears on the right. Another one-dimensional

representation is F(E)=1 and F(a)=—1. As one can easily see, it al a

satisfies the multiplication table.

A two-dimensional representation of the group can be constructed from these one-
dimensional representations. For example:

]“(E):[é 2], and F(a)z(; fzj (4.3)

One can also complicate this representation by rotating the matrices. The identity matrix
is left unchanged by rotation:

cosd sin@\(1l 0)\/cos@ -sind 10
r(E)=| . _ = , (4.4)
—sind cos@)\0 1)\sind cosé 0 1
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but the matrix associated with the a element takes a different form:

cos@® sin@d\(1 0\ cos@ -sin@ cos’ @ —sin’0 —2sindcosb
r(a): 0 = . (4.5)

—-sin@ coséd sin@ cosé@ —2sin@cosd sin*@—cos? 6

It is clear, by construction, that the above matrices satisfy the group multiplication table.

This example shows that there is an infinite number of representations for any group with
more than one element (in the above example, the rotation angle, @, can be arbitrary).

Definition: Two group representations, I' and I', are said to be equivalent
representations if they are related by similarity transformation:

['=Srs™, (4.6)

where S is some matrix (but the same one for all group elements).

Definition: A group representation is faithful if each group element is represented by a
different matrix.

Example: C,

Let us construct representations of the cyclic group C, = {E,a,az,ag} with a* = E . Atrivial
representation is the identity representation where all elements are represented by 1,
I'(e)=T(a)= F(az) = F(a3) =1. Another possibility for one-dimensional representation

is:

F(a”): exp(i%nj, were we define a’ =E. (4.7)

More generally, we can choose representation in the form F(a”): exp(i 27rmn/4) with

m=0,1,2,3 (larger values of m give the same representations). The identity

representation is associated with m=0. This representation, as well as the m=2
representation, are not faithful. The other two are faithful representations.

Example: C,,

The symmetry operations of this group are illustrated in Fig. 4-5. One way of constructing
representation is to identify the symmetry operation with the matrices that transform a
general vector in space:

r=lyjl. (4.8)
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Choosing o to be a reflection through the Xz plane; o' to be a reflection through the yz

plane; and c, a rotation around the z axis, we obtain the following matrices:

The identity operator: (4.9)
1 0 O
AR reflection through xz plane: I'(c)=|0 -1 0], (4.10)
0 0 1
-1 00
A reflection through yz plane: I'(c')=] 0 1 0], (4.11)
0 1
-1 0 0
A Rotation in 180° around the z axis: I'(c,)=[0 -1 (4.12)
0O 0 1
More generally, one can construct group

representations using matrices that act on a set of
coordinates, such as the coordinates of the atoms
in a molecule with the corresponding symmetry. In
the case of C,, point group, such a molecule is, for

example, the water molecule shown in Fig. 4-15.

Here, reflection through the plane perpendicular to
the molecule’s plane (the reflection operation, ¢')
transforms the coordinates of the atoms in the
following manner:

X, ==X, X, =2 =X, X3 > —X,,

(4.13)

Yo <2 Y,;, 2, & 2,

Figure 4-15 The coordinates of the atoms of
water molecule as a basis for representation

of the C,, group

while y, and z, are left unchanged. This transformation can be expressed as a matrix

9% 9 multiplying the vector built from the coordinates of the atoms:
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-1 00 X —X
0 10 0 0 Y. Y,
0 01 Z, z
-1 0 0| x, —X,

0 0 0 1 Of|y,|=|VYs | - (4.14)
0 0 1§z Z,
-1 00 X —X,
0 0 10 0 A Y,
0 01 Z, z,

The above matrix represents the reflection operation o'. Similar matrices can be
constructed for the other symmetry elements of the group. The set of these matrices is a
representation of the group.

It is evident that one can build representations with dimensions as high as desired.
However, in general, it will be possible to decompose them into smaller representations

using similarity transform, I = STS™, that brings each matrix into a block diagonal form.
Representations for which such a process can be executed are called reducible
representations since each block in the matrix constitutes a representation by itself.

Definition: Group representations of the lowest possible dimension, i.e. representations
that cannot be further reduced into block diagonal form, are called irreducible
representations.

The great orthogonality theorem of irreducible representations

Let anan) (g) be the matrix element of an irreducible representation, « , corresponding to
the group element g. We shall denote the dimension of this representation by /_, and
the order of the group (i.e. the number of elements in the group) by |G| The great
orthogonality theorem of irreducible representations states that

« G
Z F(”f;‘) (g )Fgﬂﬂ'fz' (g) = |f_|5aﬁ5mm’6nn’ ’ (415)

geG a

where the sum is over all the elements in the group G . The interpretation of this equation
is that the matrix elements of irreducible representations behave like orthogonal vectors

in a |G| dimensional space.
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Corollary: From the orthogonality theorem of irreducible representations it follows that

the number of irreducible representations of a group cannot exceed |G| It is simply

because in N dimensional space there are, at most, N orthogonal vectors.

Example: C,

On page 65, we have presented two one-dimensional irreducible representations of the
group C,. Since the group order is 2, these representations are the only possible

irreducible representations of the group:

r(e)=r(a)=1 and T?(E)=1, I'?(a)=-1. (4.16)

Let us illustrate the orthogonality theorem using this example. For the same
representations (a = £ in Eq. (4.15)) we obtain:

" (E)T“ (E)+ T ()1 (a)=2 for @ =122, (4.17)
while for different representations, « # [, we see that
™ (e)yr'®(e)+r* (a)r”(a)=1-1+1.(-1)=0. (4.18)

Example: C,,

The irreducible representations of C,, (the symmetry group of an equilateral triangle) are

listed in the following table:

' "
C3v E o o o C3 C??
o 1 1 1 1 1 1
@ 1 1 1 1 1 1

1—*(3) 1 0 -1 0
0 1 0 1

From here, we see that the group has three irreducible representations, two one-
dimensional representations, and one representation that is two-dimensional. To illustrate
the orthogonality theorem, we rewrite this table such that elements in each row
correspond to one of the matrix elements of the representations:
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C3v E o (7’ 6” C3 c 3?
n 1 1 1 1 1 1
@ 1 1 1 1 1 1
e 1 1 % % % %
11
o 0 0 B &/ B ¥/
r 0 0 ¥/ ¥/ ¥ ¥/
o 1 1 % % % %
22

Each row in this table is a six-dimensional vector. According to the great orthogonality
theorem of the irreducible representations, these vectors are orthogonal. For example,
the five lower rows are orthogonal to the first one because the sum of their elements
vanishes. Another example of the orthogonality property is of the second and third rows:

e . @ :1.1+(_1).(_1)+1.(_1)%.(-1)-—.1—5-1:o. (4.19)

Similarly, one can check that all vectors are orthogonal to each other. The norms of the
one-dimensional representations also satisfy the condition set by the theorem:

%

1—‘(1)* ,1—‘(1) — 1—‘(2) TW_6= |G

) (4.19)

and so are the norms of the vectors of the two-dimensional representation:

* % * * 6 G
M rg -y org 3= S8
3

The examples that we brought here illustrate the following theorem:

Theorem: The sum of squares of the dimensions of the irreducible representations equals
the group order:

D2 =|G]. (4.21)

In many situations, this equation is sufficient for determining the dimensions of the
irreducible representations of a group. We illustrate this with two examples.
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Example: The dimensions of the irreducible representations of D,

The dihedral group, D,, contains four elements. Since any group has the identity

representation (where all elements are represented by one) , Eq. (4.21) reduces to

1+Y'02 =4, (4.22)

where X' denotes a sum over the irreducible representations that do not include the
identity representation. The only way to satisfy the above equation is by choosing all

representations to be one-dimensional, so that 1 +1* +1? +1? = 4.

Example: The dimensions of the irreducible representations of D,

The dihedral group D, contains six elements. In this case, Eq. (4.21) reads

1+ =6. (4.23)

This equation has two solutions. One is when all irreducible representations are one-
dimensional. However, the only group of order six that has six one-dimensional
representations is the cyclic group C,. This group is not isomorphic to D,; hence one
should look for another solution of (4.23). There is only one additional solution which is
1 +1°+2?=6. Thus D, has two one-dimensional representations and one irreducible

representation, which is two-dimensional.

4.6 Characters of irreducible representations

As we have seen, there is an arbitrariness in the choice of irreducible representation having
a dimension larger than one. Any two representations related by a similarity

transformation, I = ST'S™, are equivalent. It is desirable to develop tools that are free of
this problem. The most natural candidate is the trace of the matrix associated with the
representation because traces are invariant under similarity transform:

Tr(I")=Tr(SIS™)=Tr(S7'ST)=Tr(T). (4.24)

Accordingly, the character of an irreducible representation, o, of the group element g

is defined to be:
2(9)=Tr[ T (g)|=>>T6 (9)- (4.25)

From this definition it follows that all the elements in the same conjugacy class have the

same character. It is because if a ~b, then b = pap™and the representations of a and b
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are related by the similarity transformation, I'(b)=T'(p)I'(a)l"*(p); hence
TrT(b)=TrI(a).

Let us show that the characters of the irreducible representations behave like orthogonal
vectors:

> 7 (9)x" (9)=|6|s,,. (4.26)

geG

This property follows directly from the orthogonality theorem of irreducible
representations because from Eq. (4.15) we have

Y3 G
ST (@ (0)=1T5,0,.. (327
geG a
and summing over m’ gives
3 G
> o (9)7(9) =|ﬁ—|5aﬁ- (4.28)
geG a

Finally, summing over m leads to Eq. (4.26).

Eqg. (4.26) can be rewritten as a sum over conjugacy classes because characters of elements
in the same conjugacy class are equal. Thus
> N (977 (9.)=(66., (4.29)
ke classes
where N, is the number of elements in the k-th conjugacy class, and g, is a

representative element of that class. This equation implies that the characters of
irreducible representations from an orthogonal set of vectors in the space of conjugacy
classes. Therefore, the number of irreducible representations must be smaller or equal to
the number of conjugacy classes. One can prove that it precisely equals the number of
conjugacy classes, but we skip this proof.

The conclusion from this discussion is that the irreducible representations of a group
satisfy the following properties:

(a) The number of irreducible representations equals the number of conjugacy classes.

(b) > % =|G|.

In many cases, these properties allow us to uniquely determine the dimensions of the
irreducible representations of the group.
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Example: The dimensions of the irreducible representations of D,

We have seen that the dihedral group D, contains eight elements and five conjugacy

classes, see Fig. 4-14. This information, together with the properties mentioned above,
implies that

P+ 02+ 05+ 05+05=8, (4.30)

where we took into account that any group has the one-dimensional identity
representation. From this equation it is evident that D, cannot have a three-dimensional

irreducible representation. One can neither choose all its representations to be one-
dimensional. The only possible way of satisfying Eq. (4.30) is by:

P +1°+1° +1° + 2* =8 (4.31)

Hence, D, has a single two-dimensional irreducible representation and four one-

dimensional representations.

4.7 Character tables

One of the main tools for implementing group theory in physics is the character tables. A
character table is a list of all characters associated with the irreducible representations of
a group. An example of such a table, for the C;, group, is shown here:

c, | BE| 30 | 2,
NEE 1
all] 1] 2
E|l2] o | -1

In this table, the columns and the rows classify the group’s conjugacy classes and
irreducible representations, respectively. The top row lists the conjugacy classes (with the
number of elements in each class), while the leftmost column lists the Mulliken symbols
(to be explained later) of the irreducible representations. The number in each cell is the
character associated with an element in the conjugacy class of the corresponding
irreducible representation. The table is a square matrix because the number of conjugacy
classes equals the number of irreducible representations.

The character tables of all point groups can be found in the literature (or the internet). Yet,
in many cases, they can be quickly constructed using the following rules (that follow from
the above discussion):



(1)
(2)

(3)
(4)

(5)
(6)

(7)
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The size of the table is the number of the conjugacy classes of the group.

The dimensions of the irreducible representations are constrained by »_ (% =[G|.

The rows of the table are orthogonal to each other.
The sum of squares of (the absolute value of) all characters in a row equals |G|

All character tables contain the identity representation.

An additional property that we present here without proof is that the columns of the
table are also orthogonal to each other; namely, they satisfy the equation:

> A (97 (90) =" S (4.32)

where N, is the number of elements in the k -th conjugacy class.

From Eq. (4.32), and the fact that the identity element of the group forms a conjugacy
class of its own, it follows that the sum of squares of the characters of the identity

operator equals the group order Z‘;((“)(E)r =|G|.

Example: Construction of the character table of D,

As we already know, D, has five conjugacy classes and five irreducible representations:

one two-dimensional representation and the rest are one-dimensional. The first row of

the table corresponds to the identity representation where all entries are one. The first

column of the table, corresponding to the identity operation, is also easy to fill because

the identity operation is represented by identity matrices, whose traces equal the

representation’s dimension. Thus the first row and the first column of the table are known.

O
~
m
N
o
~
O
LNV
N
(g
N
N
O
N~

> | >

[EEN
[EEN
[EEN
|

[
I

[REN

N

99)
[EEN

|
[N
[EEN
[EEN

I
[REN

ity

o
|

[
[N
[EEN

[
[N
[EEN

N

m
N
o
o
o
o
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Let us now identify the entries of the cells in the red rectangle of the above table. These
are obtained from the orthogonality of the rows (recall that one should take into account
the number of elements in each conjugacy class). Here, the entries are either +1 or -1,
because it is the only possibility to satisfy the orthogonality condition given that ¢ and E
form conjugacy classes of their own, while all other conjugacy classes contain two
elements. Finally, to determine the characters of the two-dimensional representation (i.e.,
the last row of the above table), we use the property that all columns are orthogonal to
the first one, see Eq. (4.32).

4.8 Basis functions

Character tables are usually supplemented by additional columns that list functions
associated with each one of the irreducible representations. The functions are called basis
functions, and in this section, we explain their meaning and show how to construct them.

The basis functions associated with an irreducible representation a of dimension ( are

defined as the sets of functions, f*) = ( fl(“), fz(a),--- f((a“)), that satisfy the condition:

C(Z
gf “ =1 (g) £'), orin components gf“ =31l (g) . (4.33)

i=1
Namely, the behavior of these functions under the symmetry operations of the group
reflects the nature of the irreducible representations. It is instructive to start with a simple
example. Consider the group C,, whose all irreducible representations are one-

dimensional, and therefore characters are the representation matrices. The character
table of this group, together with the basis functions, is given below.

C, | E c, o, o,

A |1 1 1 1 z X2, y?,7°
A, |1 1 -1 -1 R, Xy
B,|11 -1 1 -1 X R, Xz

B, |1 -1 -1 1 Y,R, yz

Here, the rotation is around the z axis, while the reflections, o, and o, are through the

molecule’s plane ( Xz -plane) and the perpendicular plane ( yz - plane), respectively.

The second column from the right shows linear functions of the position vector. Observe
first the coordinate z. Itis not affected by any symmetry operation, and therefore reflects
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the nature of the identity representation, A,;. On the other hand, the coordinate X
changes sign under the action of ¢, and o, while unaffected by o, . It is associated with
the B, irreducible representation because the characters of both ¢, and o, are —1 while
that of o, is +1. Similarly, one can check that the y coordinate is a basis function of the

B, irreducible representation.

A rotation around the z axis, denoted by R, , is unaffected by rotation around the same
axis but reverses direction when reflected through any plane containing the z axis. Hence
R, transforms as the A, representation. Rotation around they axis, R , changes sign
when rotated around the z axis and by reflection through the yz plane. However, the
rotation direction is not reversed by reflection through the Xz plane, as demonstrated in

Fig.4-16. Thus R is a basis function of the B, representation. Similar considerations show

that R, is a basis function of B, .

op(Xx 2) -

Figure 4-16 The action of reflection through a plane on the rotation basis function

The quadratic basis functions of C,, are listed in the rightmost column of the character
table shown in the previous page. The basis function xy belongs tothe A, representation
because the c, rotation transforms X —-X and y — -y, and leaves their product

unchanged. On the other hand, reflections change the sign of only one of these
coordinates, hence reversing the sign of the product xy.

As a second example, consider the group C,, whose character table that includes the basis

function is given on the next page. Here, the rightmost column lists the cubic basis
functions. Notice, also, that each basis function of the two-dimensional representation
contains two components. This is because two-dimensional representations are 2x2
matrices that act on vectors (or spinors).
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Al 11 Z Xt +y?; 2° z*; Re(x+iy)3;z(x2+y2)
A, 1 1 -1 R, Im(x+iy)3

El2 -1 o0 |(xy) (xz—y2,2xy) (xzz,yzz);(nyz,zxz—zyz)
(RoR) | (xz.y2) (X +xy%, y* +yx)

How to construct basis functions of irreducible representations?

The idea is to project some general functions down to the subspace of functions that
belong to the irreducible representation. To execute this program, one should first identify
the projection operator associated with a given irreducible representation.

Starting from definition (4.33) of the basis function, we multiply this equation from the left

by F(kf)*(g) . Then summing over the group elements leads to:

;Fﬁf)*( ZZFM (9)r(g) £

oo (4.34)

[Dt
|§ §§f

G «
Zﬁ li "i |£ |5aﬁ5kj fl( )

i=1 a a

To obtain the second line in this equation, we employed the great orthogonality theorem
of irreducible representations (4.15). By defining the operator

N=3T (9)g, (4.35)
g

one may rewrite Eq. (4.34) in the form

S|

RVt =g 5 1 (4.36)

j
a

Finally, setting k =1 and summing over | gives:

a |G| @
p(#) fj( ) :7§aﬂ fl( ) ) (4.37)
where
_ Z}((ﬁ)*(g)g _ (4.38)
9

Equation (4.37) shows that when acting with P*”) on any function that does not belong to

the basis functions of the £ irreducible representation, the result is zero. Therefore, p#)
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is the projection operator on the functional space of the £ irreducible representation.
Thus if we start from some general function that has a component that belongs to the basis
functions of the g irreducible representation, then we can select this component by

application of P”) on the function. We turn to demonstrate this by example.

Example: Basis functions of C,,
ay
The point group C,, is the symmetry group of a o'a ; Ta

square. It contains the following operations: The
identity; rotations by +90°; rotation by 180°; two
reflections through axes that bisect the square at the
middle of opposite sides; and two additional

reflections through two diagonal axes that pass via

opposite corners of the square, see Fig. 4-17. The

character table of this group is given below. Notice

thatC,,is isomorphic to D,; therefore, it has the

same character table (listed on page 74). Figure 4-17 The symmetry operations of C,,

C,| E 2, ¢, 20, 20,

A | 1 1 1 1 1 Z 1y 2
Al 11 a0 4 R, -

B, 1 -1 1 1 -1 - x% — y2
B,| 1 -1 1 -1 1 - Xy

E 2 0 -2 0 0 (ny)!(Rx!Ry) (xz,yz)

Let us construct the projection operators on the various irreducible representation of the
group. Since all the characters of the identity representation are 1, from Eq. (4.38) it
follows that the projection operator on this irreducible representation is a simple sum
over all the group elements:

P —E ¢, +c+C,+0,+0. +0,+0) . (4.39)

The other projection operators are linear combinations of the group operations with
weights determined by the characters of the representations, thus

P*) —Etc,+c+c,~0,—0l—0, -0, (4.40)

P® =E—c,~c+c,+0,+0, 0, —0), (4.41)
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P(BZ):E—C4—Cf+cz—0'v—a\j+0d+6(',, (4.42)
P® = 2E -2c,. (4.43)

To construct the linear basis functions, we apply the above operators on each component
of the position vector, (X, Y,z), where X and y coordinates are shown in Fig. 4-17, while
the z coordinate is perpendicular to the plane of the square (and therefore invariant under

all group operations). Let us first list the action of the group elements on the position
vector:

X X X -y X y X —X
Ely|=|y|, clyl|=| x|, cily|=|-X|, c|y|=|-Y
Z YA YA Z YA Z Z Z
(4.44)
X —X X X X y X -y
oY=l Y|, olY|=|-Y], o4 YI|=|X|, oY |=]|—X
Z Z Z Z Z Z Z Z

Using the above formulas, it is easy to see that projection of the position vector on the
identity representation gives

0
pP™ly|=8[0], (4.45)
YA

therefore z is the basis function of the A, irreducible representation. Similarly, applying

the projection operator of the two-dimensional representation, E, gives

p() (4.46)

N < X
Il
o

o < X

Hence the pair (X, y) is a basis function of the E irreducible representation. One can

check that all other projection operators nullify the vector (X, Y, Z) because we already

have all the linear basis functions, and there cannot be additional ones.

To construct quadratic basis functions, let us define a matrix whose components include
all possible combinations of products of pairs of coordinates. It is obtained from the
external product of the position vector by itself:

2

J(x y z) (X xy xz
Q=|y =lxy ¥ vz (4.47)
z
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Using Eq. (4.44) we deduce the action of the group elements on this matrix:

2 2 2

X Xy xz y>  —yx -—yz y>  —yx yz
EQ=|xy y* vyz|, ¢,Q=|-yx x* xz |, cQ=|-yx x* -xz|,
Xz yz 17° -yz  xz 7° yz —xz 17°
x> Xy —xz x> Xy —Xz x> —xy xz
Q= xy y° -yz|, oQ=|-xy ¥y yz| oQ=|-xy y* -yz|, (4.48)
Xz -yz 17° -xz yz 7° xz -yz 17°
y: xy yz y: xy -yz
o,Q=|xy xX* xz|, oQ=| xy x* -—xz|.
yz xz 17° -yz —xz 7°

With the help of these formulas, we can calculate the projection of Q on irreducible

representations. In particular, projection on the identity representation gives:

PAMQ=4/ 0 x*+y* 0 |, (4.49)

0
P(BI)Q =4 0 X% — y2 01, (4.50)
0

hence x° —y? is the quadratic basis function of the B, representation. Projection on B,

gives
0 xy O
PE)Q=8/xy 0 O, (4.51)
0O 0 O

thus xy is the corresponding basis function. Finally,

0 0 xz
p(E)Q =4/ 0 0 vyz|, (4.52)
xz yz 0
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Hence (zx,zy)=z(X,y) is the quadratic basis function of the two-dimensional irreducible

representation E. One can also check that P(AZ)Q =0; therefore, the A, irreducible

representation does not have quadratic basis functions.

4.9 Mulliken symbols of irreducible representations

The symbols on the leftmost column of a character table denote the irreducible
representations of the group. These symbols are called Mulliken symbols, and now we turn
to explain them.

1. The dimensionality of the representation is denoted by a capital letter in the
following manner:

Dimension of the irreducible Mulliken symbol
representation
1 AorB
2 E
3 ForT
4 G
5 H

2. Choosing between the A and the B letters (of the one-dimensional
representations) depends on the sign of the character of the n-fold rotation, c_,

around the principal axis:

Z(Cn) Mulliken symbol
+1
-1 B

3. Lower indices of the Mulliken symbols represent classification according to a
possible sign change of the basis functions of the irreducible representation, v,

under the following symmetry operations: If there is a C, axis perpendicular to the

principal axis or a reflection through a plane that contains the principal axis, then
the lower index is determined by the following rule:
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14 Index
No sign change 1
A sign change 2

4. An additional classification is provided when the symmetry group contains an
inversion symmetry. Depending on the character of the inversion operation, the
Mulliken symbol is supplemented by a lower index:

Z(') Index
+1 g
-1 u

5. Prime or double prime are added to the Mulliken symbol depending on the
character of the reflection operator through a plane perpendicular to the principal
rotation axis, o, :

z (O'h ) Primes

+1 '

-1 "

4.10 Molecular vibrations

Irreducible representations and basis functions are valuable tools for the analysis of
physical systems. To begin understanding their importance, we demonstrate how to use
them to identify and calculate the normal vibrational modes of simple molecules. As we
shall see, these normal modes are, in fact, basis functions of the irreducible
representations of the symmetry group of the molecule.

Moreover, recall that the normal modes of a molecule account for all possible shape
deformations from its symmetric (ground state) configuration. Thus, the irreducible
representations classify all possible channels by which a molecule (and more generally a
system) moves from its symmetric state.
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Identification of the normal vibrational modes of a molecule can be obtained in the
following steps: First, find the irreducible representations associated with the vibrational
modes of the molecule. Next, construct the projection operators associated with these
representations. Finally, choose coordinates that describe a general deformation of the
molecule and apply the projection operators on these coordinates.

Let us demonstrate this procedure with the example of a water molecule H,O (see Fig. 4-
15), whose symmetry is expressed by the point group C,,. This group has four symmetry
elements and four irreducible representations (all one-dimensional). The character table

of the group can be found on page 75.

The water molecule has three atoms and nine degrees of freedom (3 for each atom).
However, six of them describe translations of the center of mass and rotations. Only three
degrees of freedom account for the vibrations of the molecule. Our first task is to find the
irreducible representations associated with them.

Consider the reducible representation obtained from the matrices that operate on a 9-
component vector made from the coordinates of all three atoms as in Eq. (4.14). This
representation is called the translation vectors representation and is denoted by I

trans.vec *
It includes the irreducible representations of the nine degrees of freedom of the molecule:
translations, rotations, and vibrational modes.

We wish to decompose I into its irreducible representations:

trans.vec

r —@n . (4.53)

trans.vec

The symbol @ (called “direct sum”) on the right-hand side of this equation should be

understood as the collection of the irreducible representations that appear in the block

diagonal form of the translation vector representation. n, is the number of times that the

irreducible representation a appears in this collection.

From (4.53) it follows that any symmetry operation, ¢, satisfies the relation:

Famswee (9)= 20,27 (9), (4.54)

where 7. (9) is the character of the translation vector representation, while ;((“)(g)

is the character of the « irreducible representation.

Multiplying Eq. (4.54) by ;((ﬁ)*(g) and summing over the group elements, we obtain:

> 27 (9)2(9) =202 2" (9) £ (9)=2.n,[6|6,, =n,[G

, (4.55)
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where |G| is the group order. To obtain this result, we employed the orthogonality of the

characters of irreducible representations expressed by Eq. (4.26). Solving the above
equation for n, we get the number of times that £ irreducible representation appears in

r

trans.vec *
1 "
nﬂ :ﬁzl(ﬂ) (g)Ztrans.vec(g) . (456)
g

Thus to identify the decomposition (4.53) of the translation vector representation, we
should first calculate the characters, ... (9). For this purpose, we do not need the full
matrix structure associated with the symmetry element g. It is sufficient to identify only
its diagonal elements because they determine the trace. Hence, the character of ¢ is

determined only by those atoms that stay in their positions after applying this symmetry
operation. Each component of the vector of such an atom contributes +1 depending on
whether it reversed its direction or not. The character is then the sum of these numbers.
In particular, for the water molecule shown in Fig. 4-15, the rotation ¢, leaves only the

oxygen atom in its place with z, —>z, X —>-X, and Yy,—>-Y,, hence
;((Cz) =1-1-1=-1. Reflection through the molecular plane ( Xz plane) leaves all atoms

at their positions. One component of their translation vectors reverses direction while the

other two remain intact. Therefore y(o,)=3(1+1-1)=3. Reflection through the yz
plane leaves only one atom at its position and reverses a single component of its
translation vector, thus, ;((0'\;) =1. Finally, the character of the identity operation equals
the number of degrees of freedom, ;((E) =9. These characters are summarized in the

following table:

r

trans.vec

Now, using Eq. (4.56) with this result and the characters of the irreducible representations
of C,,, that appears on page 75, we obtain that the number of times that the identity

representation appearsin I', . .. is

1 . 1
n, = Zzl(m (9) Zeasree (9) = Z(1-9+1-(—1)+1-3+1-1) =3. (4.57)
g

Similarly, for the other irreducible representations, we have:



85

1 AV 1
nA2 :ZZZ( 2 (g)ztrans.vec(g):Z(l'g+1.(_l)+(_1)'3+(_1)'1) l' (458)

n51 = %ZZ(BI)*(Q)Ztrans.vec (g) = %(19+(_1)(_1)+13+(_1)1) 3' (459)

and

1 - 1
N, :ZZZ( 2) (g);(translvec(g)=2(1'9+(—1)~(—1)+(—1)~3+1~1)=2. (4.60)
g

Thus the translation vectors representation includes three A, representations, one A,

representation, three B, representations, and twice the B, representation:

Tyuiue =3A, @A, ®3B, @ 2B, . (4.61)

trans.vec

Altogether we have nine (one-dimensional) irreducible representations that account for
all nine degrees of freedom of the molecule. From the character table of C,, , (on page 75)

we see that translations of the molecules, described by the linear basis functions, X, vy,
and z, are associated with the, B;,B,, and A, irreducible representations, respectively.
Similarly, rotations of the molecule, corresponding to the basis functions, R, R, and R,
, are associated with the B,, B, and A, representations, respectively. Subtracting these

irreducible representations fromI” we are left with a representation that includes

trans.vec

only the vibrational modes of the molecule:
I, =2A,®B,. (4.62)

Thus, two normal mods of the molecule are basis functions of the identity representation,
A, while the third is a basis function of the B, representation.

To reveal the spatial structure of the molecule’s normal modes, it is convenient to use the
internal coordinates representation. The internal coordinates of a molecule are the bonds
lengths and the angles between bonds. These coordinates account only for the
deformations of the molecule because they are
unaffected by translations and rotations. Thus
their number equals the number of the normal
modes of the molecule. Clearly, there is some
arbitrariness in their choice. For the water
molecule, it is convenient to choose them to be

the bond lengths between the oxygen and the
hydrogen atoms, and the angle between these Figure 4-18 The internal coordinates of a

bonds, as shown in Fig. 4-18. water molecule H,0

The action of the symmetry operations on these coordinates is:
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r-R rR rR rL rR rR rR r-L
Elr (=l (=R, ol |=|1|,ando)| 1 |=|1k], (4.63)
0 0 0 0 0 0 0 0

hence the characters of this representation are: y(E)=3, Z(Cz):L Z(Gv):?" and

Z(a’):l. From here, it is easy to check that the internal coordinate representation

\

decomposes into the three irreducible representations, as expressed in Eq. (4.62).

Our goal now is to construct the linear basis functions for each of the irreducible
representations of the molecule H,O using its internal coordinates. Since the normal

vibrational modes represent small deviations from the equilibrium state, they are given by
these linear basis functions.

To this end, we apply the projection operators, defined in Eq. (4.38), on each one of the
internal coordinates. Consider first the application of the projection, associated with the
identity representation, on the coordinate r,. Using Egs. (4.63), and the fact that all

characters of the identity representation equal one, we have

P = 7% (B)E+ 2™ (c,)c, + 2™ (0,) 0, + 1™ (0)) o |1,

=[E+C,+0,+0) |l =l + 1+ +1 =2(r;+1,)

(4.64)

and
P™r =2(r, +1,), while P™g=146. (4.65)

Similarly, projections on the B, representation (obtained with the help of the character

table on page 75) give:

pE)r :[;((31)(E)E + 7% (c,)c, + 4™ (o), +Z(Bl)(0v')0v']ﬁz

=[E-c,+0, -0, =t =1+l =1, =2(r;—1_),

(4.66)

and
P&y = 2(r.-1.), PEY=0. (4.67)

Thus 1y +1, and @ are two basis functions of the A, irreducible representation, while

I, —r_ is the basis function of the B, representation.

These linear basis functions are the normal coordinates associated with the vibrational
modes of the molecule shown in Fig. 4-19 on the next page. The normal coordinates
change sinusoidally in time with the frequency of the corresponding vibrational mode.
Thus the periodic change in time of the basis function, Iy +I_, associated with the A,
irreducible representation, describes the stretch and compression mode shown in the left
panel of Fig. 4-19. The second normal mode of the same irreducible representation is
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described by a sinusoidal change, in time, of the angle @. This is the bending mode shown
in the middle panel of the figure. Finally, the vibrational mode associated with the B,
representation is obtained when I —I changes periodically in time. This mode describes

vibrations in which one bond stretches while the other compresses and vice versa. It is
illustrated in the right panel of the figure.

B,

Figure 4-19 The normal modes of a water molecule

Notice that the normal modes shown in the above figure are drawn for the case where the
molecule's center of mass stays put. This condition implies that, in general, all atoms move
from their equilibrium position. The internal coordinates, however, behave as described
above.

4.10 Irreducible representations in quantum mechanics

In this section, we show that the energy levels of a quantum system can be classified
according to the irreducible representations of the symmetry group?. In particular, the
energy-levels degeneracy is determined by the dimension of the irreducible
representation, and the corresponding wave functions are basis functions of the
representation.

Let G :{gi} be the group of symmetry operations that leave the Hamiltonian, H,
invariant, i.e. [H,g,]=0 or H = g;'Hg; for any g; €G. Consider the time-independent

Schrodinger equation,
Hy =ecy. (4.68)
Applying one of the symmetry operations on this equation gives
9;Hy=¢e9,v, (4.69)

and since the Hamiltonian commutes with g;, Hg; = &0,y . Thus g,y is a solution of the

Schrédinger equation with the same energy ¢. If we know that the energy level is not

2Similar considerarions apply to the eigenfrequencies of the molecular vibrational modes, discussed above.
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degenerate, then g,y can be different from y, at most, by a phase factor,
o= exp(igoj )l//. Applying an additional symmetry operation gives
9.9,w :exp(igoj)gi(// :exp(i(pj)exp(igoi)y/. However, g,g; is also a symmetry element
of G, therefore g,9,y = exp(igpij )l// .Thus exp(iqoij ) =exp(ig, )eXp(iqoj); hence the phase
factors constitute a one-dimensional irreducible representation of the group.

Consider now a different situation where the application of some symmetry operator on
' generates a linear combination of { orthogonal wave functions of the Hamiltonian. In

this case, the energy level & must be degenerate, at least, ( times. We call this
degeneracy a normal degeneracy if there are no other wave functions with the same
energy. A situation where there are other wave functions with the same energy that
cannot be obtained by applying one of the symmetry elements on i is called an accidental

degeneracy. The reason for accidental degeneracies is not symmetry. Usually, they are
associated with fine-tuning the Hamiltonian’s parameters; therefore, accidental
degeneracies are not generic.

In what follows, we focus our attention on the case of a normal degeneracy. We denote
by v,, where n=12,.--,(, the orthogonal set of wavefunctions associated with the

degenerate energy subspace:
Hy, =¢y, . (4.70)

Application of a symmetry element on one of these wave functions, generally, yields a
linear combination of all wave functions of the subspace. It is convenient to define a vector

of the wave functions ¥ = (y,,,,---,)’ so that

gw=r(g;)v, (4.69)

where F(g.

J) isa (x{ matrix. From here we obtain

0, (9,w)=T(9,9;)w =T(9,)[T(9;)¥ |=T(9,)T(g;)w- (4.70)

Thus, the set of matrices {F(gj)} constitutes a representation of the symmetry group

with dimension (:
r(g9;)=r(g:)r(g;)- (4.71)

Take note that one can always choose the set of wave functions, {1//n}, to be an

orthonormal set, and for this choice, F(gj ) , are unitary matrices.
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We turn now to show that this representation is irreducible. For this purpose, we first

consider a change of basis in the subspace of degenerate wave functions, {wn} . A unitary

transformation, U, describes the transition from one basis to another:
v’ =Uy. (4.72)

Multiplying this equation by U ™, from the left, and applying the symmetry operation, g

we obtain
gUy =gy =T(g,)y=T(g,)U " (4.73)

However, U and g; acton two different spaces: U acts on the wave functions space while

g; acts on the coordinate space, therefore

gUy'=U"g¥’, (4.74)
and from the last two equations, we conclude that
9w’ =Ur(g; Uy (4.75)
Thus, a change of basis is nothing but a similarity transformation:
r(g;)>Ur(g;u. (4.76)

Now suppose that the representation, I', is reducible. Then there must be a basis in which

all matrices F(gj ) are block diagonal. But this property implies that there are at least two

different groups of wave functions that are not mixed by any symmetry operation.
However, this contradicts our assumption of normal degeneracy because it is the case of
accidental degeneracy. Thus, the representation is irreducible, and the eigenfunctions are
basis functions of this representation.

To conclude:

e To each eigenenergy of H corresponds one irreducible representation of the
symmetry group of the Hamiltonian. The eigenstates associated with this energy
are basis functions of the representation.

e The degeneracy of the eigenenergies is the dimension of the irreducible
representation.

e Group theory provides “good quantum numbers”: it associates an irreducible
representation to each eigenenergy of the Hamiltonian.
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4.11 Exercises

1.

Identify the conjugacy classes of the point group C,, and the dimensions of its

irreducible representations. Build the character table of the group.

Hint: Notice that Cg, is a direct product of C,, ({E,2c,,30}) by C,({E,c,}). By direct

product, we mean the multiplication of each element in one group by the elements of
the other group.

Prove the convolution theorem of irreducible representations:

a

o G )
>y (xg )Ty )(9)=|ﬁ—|5aﬁ5,-kfh (%), (4.77)
g

where Xand gare elements of the same group and (_is the dimension of the

irreducible representation « .

In continuation to exercise 2 of Chapter 2,
identify the conjugacy classes of T,, and the

dimensions of its irreducible representations.

Identify the irreducible representations of the
vibrational modes of Methane, CH,. This

molecule has the shape of a tetrahedron, as

illustrated in Fig. 4-20. Its symmetry groupis T, ,

and its character table is given below.
Figure 4-20 The shape of Methane

molecule
T, | E 8 3¢, 6S, 6o,
A |1 1 1 1 1 - X +y%+2°
Al 1l 1 1 -1 -1 - -
El2 -1 2 0 0 - (222_X2_y2,\/§xz_\/§y2)
F|13 0 -1 1 -1 |(R.R.R) -
{3 0o -1 -1 1 (x..2) (yz,xz,%y)
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5. Find the vibrational modes of a molecule having the shape

of an equilateral triangle, as shown in Fig. 4-21.

Point groups are subgroups of the orthogonal group in

three dimensions, 0(3). The latter contains rotations (at

any angle) and reflections through any plane containing the

Figure 4-21 A molecule with the
shape of equilateral triangle

origin. The irreducible representations of the rotation

group SO(3) (a subgroup of O(3)) are the angular

momentum states. For angular momentum J, the dimension of the representation is

2J +1. If we choose @ to be the rotation angle aroun
of this rotation operation is described by the diagonal

d the z axis, the representation
matrix:

' (6)=(3,M|exp(iL,0)| J,M") = 5, exp(iOM ), (4.78)

where —J <M < J is the projection of the angular momentum on the z axis, and L,

isthe Zz component of the angular momentum operator. Taking the trace of this matrix,

we obtain the character of the rotation operation:

oo
of;

Clearly this character is independent of the direction

27(0)= (4.79)

of the rotation axis.

Consider the octahedral group, O, consisting of (only)
rotations of an octahedron - an object built from 8
equilateral triangles, as shown in Fig. 4-22. The
character table of this group is given below?.

Figure 4-22 Octahedron

2

O |E 8, 6c, 6c, 3c=c
T, |E 8, 60, 6S, 3c
All 1 1 1 1
Al 1 1 1
El2 -1 0 0 2
F |3 -1 1 -1
F |3 1 -1 -1

3 This group is isomorphic to the tetrahedral group, Td , as shown by the character table.
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Taking into account that the symmetry operations of the octahedral group are only
rotations, use considerations of character orthogonality to identify the composition of
the J-th representation of the rotation group in terms of the irreducible
representations of the octahedral group. In particular, prove the following table:

J Composition of O representations
0 A,

1 R

2 E®F,

3 A,©F@F,

7. Use the results of the previous exercise to build the basis functions of second order for

the E andthe F, irreducible representations of the group O.

Advice: The basis functions of the rotation group SO(3)are the spherical harmonic

functions Y," (6, ¢). For J =2 they are given by

Y, (0,0) :% /% sin @ exp(2ig),

Y,2(0,0)= % ‘ /% sin® Gexp(-2ip),

Y21(9,¢)=—%‘/£Sin Ocosbexp(ip), (4.80)
Y, (6,9)= % \ /% sin@cos fexp(—ip),
Y2 (6,0)= %\E(scos2 0-1).

From the table above, we deduce that these five wave functions should compose the
basis functions of the F, representation (a 3-component vector) and of theE

representation (a 2-component vector). From the above wave functions, construct five
real functions normalized to unity (notice that the spherical harmonic functions in Eq.

(4-80) are also normalized to unity), multiply them by r?, and rewrite the result in
terms of the coordinates x=rsindcose, y=rsindsing, and z=rcosd. Now

identify the basis functions that belong to each one of the irreducible representations.

8. Prove the statement of the footnote on page 87.
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5 Graphene and Dichalcogenides

In this chapter, we show how to employ symmetry considerations exclusively to deduce
the structure of the energy bands of graphene and dichalcogenides (i.e., without knowing
what the Hamiltonians that describe these systems are.)

5.1 The graphene lattice

Graphene is a monolayer of carbon atoms arranged in a honeycomb lattice. Each atom is
connected to three neighboring atoms by o - bonds and contributes one electron to the
conduction band. In the graphene lattice, one can identify two hexagonal sublattices, A
and B as demonstrated in Fig. 5-1

k,
° ° ° ° ° o )
° ° ° ° ° K
o ®
[ ] [ ] [ ]
° ° ° ° K k
r X
A
[ ] [ [ [ ]
[ J ([ J
[ ] [ [ ]
B M KI
° ° o ° ° ®
[ ] [ [ [ ] [ ]
Figure 5-2 The reciprocal lattice and
Figure 5-1 The two sublattices of graphene the first Brillouin zone of graphene

The Bravais lattice of graphene is a two-dimensional hexagonal lattice, and each unit cell
contains two atoms — one of each sublattice. If we denote by a the distance between
nearest neighbors sites on the same sublattice (say the red sublattice), then one can
choose the two primitive basis vectors of the Bravais lattice to be:

a,=a(L0) and azzg(l,\@), (5.1)
as shown in Fig. 5-1. The primitive basis vectors of the reciprocal lattice (see Eq. 2.28) are,
therefore:

27 1 Az

=—"|-1—1|, and b =——(0,1). (5.2)
n=251 5], am b0y

The reciprocal lattice and the first Brillouin zone with its special points are displayed in Fig.
5-2.
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5.2 The “little group” and the graphene spectrum near the K - point

The graphene point group is C,,. By choosing the origin of the coordinates to be at the

center of one of the lattice’s hexagons, it is easy to see that the system has a six-fold
rotation symmetry and a reflection symmetry through six planes similar to those shown in
Fig. 2-11 for the hexagonal lattice. The character table of the C,, group is presented

below. This table shows that the graphene’s symmetry group contains two-dimensional
irreducible representations. The C,, symmetry of the reciprocal lattice, suggests that the

graphene’s spectrum is characterized by degeneracy points in Kk -space.

The character table of C,,

Co | E 2¢, 2¢, ¢, 30, 30,
A1l 1 1 1 1 1 - X2 +y?
Al 1 1 1 -1 -1 R, -
BB[1 -1 1 -1 1 -1 - -
B,|]1 -1 1 -1 -1 1 - -
E|l2 1 -1 -2 0 O (X,Y),(RX,Ry) -
E,{2 -1 -1 2 0 0 - (XZ _ y2,2xy)

The degeneracy points that we seek to describe here are points where two bands meet.
Naturally, one expects them to be the high symmetry points in the Brillouin zone, such as
the special points, I', K and M (see Fig. 5-2). To analyze the spectrum in the vicinity of
these points, we need to introduce the notion of a “little group”. The little group is a
subgroup of the crystal symmetry group that acts on Bloch vectors. It is the group of
symmetry operations that returns a Bloch wave vector to itself (up to a reciprocal lattice
vector). Clearly, this group depends on the choice of the wave vector, K ; therefore, special
symmetry points of the Brillouin zone play an important role. Consider, for example, the

! The full symmetry group of graphene point is, in fact, D,, Where in addition to the elements of C_, there

are six C,-rotations around axes that are perpendicular to the principle axis, and an additional reflection

through the horizontal plane where the atoms reside. However, being interested only in the two-dimensional
properties of the system, it is sufficient to consider only those symmetry operations that do not involve the
third dimension of the problem. These symmetry operations constitute the subgroup C, of D, .
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I' point. This point is of the highest symmetry in the Brillouin zone because any symmetry
operation of C, returnsit toitself. The K -point, on the other hand, has a lower symmetry.
It is invariant only to rotations in £120° (recall that K and K’ are inequivalent), and to
reflections through three lines: One is the horizontal axis and two other lines obtained
from its rotations by +120°. Thus, the little group of the K -point is C,,. The character

table of this group is listed below (for the moment, ignore the basis functions — they are
presented here for future use).

C, | E 2¢ 3o,
1 1 1 1 z X2 +y°%,7° I
11 4 o
El2 -1 o0 (X+ iyJ (x=iy)*) | (=® +iz)®
X—iy (x+iy)’ 7 —ie®

How does this property of the K -point manifest itself ?

In the previous chapter, we have learned that the wave functions of the system must
belong to one of the irreducible representations of the symmetry group of the system.
Now we consider only those wave functions that belong to the K -point, and have lower
symmetry described by the C;, group. Nevertheless, the character table shows that C,,

contains a two-dimensional representation. Hence the K -point might be a degenerate
energy point at which two bands touch. In other words, the energy spectrum of wave
functions associated with this irreducible representation feature band crossing at the K -
point, as illustrated schematically in Fig. 5-3.

ek)

k

A K

Figure 5-3 An illustration of the behavior of the energy levels along the line connecting " and K points of
the Brillouin zone (Time reversal symmetry implies that near I the spectrum is quadratic — see Chap 3.)
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Our goal is to construct the local Hamiltonian near the K -point from pure symmetry
considerations. But before we turn to this task, let us identify the irreducible

representations of the C,, group. Knowing that the wave functions of the problem are the

basis functions of the irreducible representations and that these also include a two-
dimensional representation, we look for representations that act on a two-component
wave function, i.e., a pseudospinor. In graphene, the natural choice for this pseudospinor

v =(W’*), (5.3)
Vs

where y, and y are the wave functions on sublattices A and B, respectively.

as

First, Let’s identify the representations of the

symmetry operations (of the little group) associated L] o L ® L
with this function. Consider, first, reflection through ° ° e p o °
the (horizontal) X -axis. From Fig 5-4, we see that this - _’_ o _' _____ ‘_ o :‘_ o
reflection swaps the two sublattices; therefore, the e ° ° °
matrix representation of this operation is: d ° ° 4 o ¢
[ ] [ (] [ ] [ ]

L W e v B

Figure 5-4 Reflection o, in graphene
where 7/°denotes a Pauli matrix that acts on the

sublattice space.

The character of this operation, ;((0) =0, may be associated with two options: One is
that the matrix 7,° belongs to the two-dimensional representation, E, of C,, . The second
option is that TXAB belongs to a reducible representation containing a pair of one-

dimensional representations, A, ® A,, whose characters +1 sum up is zero (see character

table above)

To distinguish between the two possibilities, consider the representation of the c,
rotation. This rotation does not mix the two sublattices. Therefore, let us look, first, at its
effect on one of the two sublattices - say, sublattice A. The group which describes
rotations on this sublattice is the cyclic group C,. All representations of this group are one-

dimensional. Choosing the identity representation implies that F(Cg)WA =y ,.But c, does

not mix the sublattices; hence its representation must be a diagonal matrix. The only
sensible choice for the action of this matrix on the second component of the wave function

is T'(C;)w, =W, which implies that y(c,)=2. Therefore, this choice corresponds to the

reducible representation A, @ A,.
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Consider now a faithful representation of the C, group 2ix
that describes the rotation on the A - sublattice. Let us
denote the points on this sublattice by 1, exp(i 27z/3) RN

, and exp(i47z/3)=exp(—i27/3) as shown in Fig. 5-5. ® . @
A clockwise rotation of this sublattice amounts for / ‘\
multiplication of the lattice points by exp(—iZ2z/3), ‘ y

thus T(c,)w, = exp(-i 27/3)y,. 1 e

Let us now deduce the form of the 2x2diagonal
matrix that acts on the vector wave function (5.3). The Figure 5-5 Representation of C,
only option that complies with the character table on

page 95 is I'(C;)ys =exp(i27/3)y,. With this

rotation on sublattice A

choice, the matrix that describes the action of ¢, rotation on the spinor is:

.27
exp[—l—j 0
r(c,) Vi - 3 Va = exp —iz—ﬁrz“B Va , (5.5)
2 3
Vs exp(i—ﬂj Vs Ve
3

0

and the corresponding character is y(c,)=2cos(27/3)=—-1. Alternatively, one may

deduce this result by demanding that each unit cell be assigned with the same phase as
demonstrated in Fig. 5-6. This condition implies that a clockwise rotation of the sublattice

B is represented by exp(i27z/3) multiplication, i.e. T'(c;)w, =exp(i27/3)y,.

Q@ !
n ’ v
\ ’ A} Il
N vy
¢ v
N ’N
T VA
’ \ / A
7
@ @ o
\ ’ 3
1 \\ ’ (4
@ o ..
1 e 3

Figure 5-6 Representation of C; rotation on sublattice B
One can verify that the matrix representing the C§ rotation is F*(Cs) and that reflections
through the two other axes can be obtained by rotating F(O'X) appropriately, i.e.,
F(CS)F(GX)F(CQ?) and F(ng)l"(ax)l"(cg) . Together with the identity operation, these

matrices constitute the two-dimensional irreducible representation of C,, point group.
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We turn now to construct the local Hamiltonian near the K -point. For this purpose, it is
convenient to define 5k to be a wavenumber vector measured from the K -point of the
Brillouin zone. Then the most general form of a 2x2 Hamiltonian is

£(6k)=Ry (k)1 +R(5k)-7*%, (5.6)
where | is the identity matrix, 7"° :(ffB,er,rzAB) are Pauli matrices acting on the

sublattice space. The functions R;(Sk) and R(5k)= (RX (6k),R,(6k),R, (5k)) are, for

the time being, arbitrary functions of ok . Without loss of generality, we set the energy at

the K-point to be zero, é(O):O; hence these functions vanish at ok =0, i.e,
Ry, (0)=0.

0,x,y,2

The time-independent Schrodinger equation is

é(ék)[Z’;] - E[Z:j (5.7)

Application of the symmetry operation g on both sides of this equation yields

é(ggk)r(g)["“]:gr(g)['“j, ie. F‘l(g)é(g5k)r(g)(mj:g(%) (5.8)

Ve Vg Ve Ve

Notice that gacts on ok, but in the sublattice space is represented by F(g). The wave

functions are also functions of ok, but to avoid cumbersome formulas, we suppressed
this dependence.

It follows that invariance of the local Hamiltonian under all symmetry operations of the
little group dictates the relations:

é(ok)=T"(g)é(gsk)I'(g) forany geC,,. (5.9)

This equation imposes constraints on the form of the Hamiltonian (5.6). Consider, for

instance, the matrix 7/°. Itis invariant under rotation:
-1 AB 27 a8 | _nB 27 _pp AB
I™(c;)7,°T'(c;)=exp i jrexp| Hiet =, (5.10)

but changes sign under reflection,

F’l(G)TZABF(O'):—rAB. (5.11)

z

Therefore, it cannot be part of the two-dimensional representation associated with band
touching (i.e. degeneracy) at the K -point. Compering the sign changes under these
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operations, with those of the character table on page 95, shows that rZAB is a basis function

of the A, representation.

Consider now the other Pauli matrices. Guided by our expectation that they belong to the

two-dimensional irreducible representation of C, , it makes sense to define the following

3v/

linear combinations of these matrices, 7.° = (TXAB +ir,® )/2 For these matrices, we have:

r (O')Z'iABF(O') =7, =%, (5.12)

while

I(c)7®r(c,) = exp(i %TTZAB j ® exp[—i Z?ETZABJ = exp (ii 2?”] . (5.13)

(The last formula can be quickly proved using the matrix form of I'(c,) shown in Eq. (5.5).)

A similar calculation gives
r (02 )Z’ABF(CZ) = exp(—i Z—ETABjrAB exp(i 2—”1”*) = exp(+i Z—HJTAB (5.14)
3 + 3 3 z + 3 z - 3 +

AB _AB
+ T

From here it follows that the vector of matrices, (r ) is a basis function of the two-

dimensional representation of C,,. This basis function is listed in the rightmost column of
the character table on page 95. The other columns show the linear and quadratic basis
functions of the group.

The basis functions of the two-dimensional representations are not invariant under the
group operation. For instance, a clockwise rotation of the linear basis functions,
5k, +isk, gives a phase factor?, (5kX + ié‘ky)exp(ﬂ 27/3), similar to the rotation of 7/*,

see Eq. (5.13). Nevertheless, one may construct combinations of these basis functions that
are invariant under all group operations, as required by Eq. (5.9). Consider, for example,

the product (§kX —i§ky)(rXAB +irfB). The two factors in this product collect opposite

phases; therefore the product is invariant under C; rotation. However, it is not invariant
under reflection through the X axis. To see why, notice that this reflection transforms

5k, —i5k, to its complex conjugate, while 7,° +iz,® is transforms to 7, —iz,°, see Eq.
(5.12). Thus (5kX —iéky)(rxAB +i2'yAB)—>(§kX +i5ky)(rXAB —ir?B). However, one can see
that the combination (5kX —i5ky)(rXAB + iz';*'3)+(§kX + i5ky)(rXAB —irfB) is invariant under

both symmetry operations and, in fact, under all group elements of C,,. Similar

2 This can be proved directly checked by rotating the vector (5kx, 5ky) in 120° clockwise and calculating

the phase factor that multiplies the complex vector kX + iky as a result of this rotation.
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considerations show that (§kX +iok, )2 (rXAB +ir;\B)+(5kx —isk, )2 (TXAB —irfB) is also
invariant under all symmetry operations of C,,. Thus, up to quadratic order in 5k, the

local form of the Hamiltonian near the K -point is
(o) = 2 [ (o, ~ik, ) (522 +ir,®) e

—%[((wx ok, ) (7° +ir/®)+ h.c} (5.15)

2
+

T (oK? +0Kk2)1

where h.C. stands for Hermitian conjugate. Here, v, h,, and m, are system-dependent

constants that cannot be deduced from symmetry considerations. The third term in the
above equation comes from the identity representation (see table on page 95).

Simplifying and rearranging the terms in formula (5.15) result in the concise form:

h2ok?
2M ¢

&(oK) = hvsk - [ (5k? -5k} ) 21° — 20k, 5k, 7)° |+ l. (5.16)

The first term is the leading contribution that describes a Dirac-point spectrum (in two

dimensions). Its diagonalization gives & = +hvok , where 6k = |5k| . This linear spectrum is

particle-hole symmetric. The last term of the Hamiltonian breaks this symmetry; however,
empirically, it is found to be negligible. The second term in Eq. (5.16) breaks the rotational
symmetry of the Dirac spectrum. It deforms the Dirac cone toward a triangular shape - a
property called triangular wrapping. A contour plot obtained from diagonalization of
Hamiltonian (5.16) (without the third term) is shown in Fig. 5-7. The left panel presents the

local behavior of the energy surface as a function of the distance vector (5kx,5ky) from

the K - point. The right panel shows a global picture of the energy surface obtained from
the 6-fold rotation symmetry of the system.

Ty
N

Z
==

5k, k.

0k,
ky,

Figure 5-7 A contour plot of the energy surface of graphene obtained from symmetry considerations
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We conclude this section with several comments:

(a) When the Fermi level is low enough, the Fermi surface near the Dirac-point becomes
circular and possesses an approximate symmetry o6k — —ok. This feature is called
“artificial time-reversal symmetry” or “pseudo-time-reversal symmetry”.

(b) Theconstants v, h,, and my in formula (5.16) cannot be determined from symmetry
considerations. Moreover, it is possible that some of the energy levels at the K -point
are associated with one-dimensional representations of the C,, group A, and A, (the

basis functions of the latter are cubic in the components 6k ). In this case, the energy
levels are not degenerate.

(c) In chapter 3, we saw that time-reversal symmetry excludes the possibility of having a
Dirac spectrum at the I" point. On the other hand, the little group of this point, C,,,
contains two-dimensional representations; therefore, energy level may be degenerate,
albeit in a quadratic manner. This behavior is demonstrated in Fig. 5-8, which presents
the energy levels of graphene obtained by numerical diagonalization of a microscopic
model of graphene. The plot shows the energy levels along straight lines connecting
the special points in the Brillouin zone.

15

10 4

ot

Energy (eV)

Figure 5-8 The energy levels of graphene
(taken from the paper E. Kogan and V.U. Nazarov, PRB 85, 115418 (2012))

5.3 Schur’s lemma and multiplication of irreducible representations

The local Hamiltonian (5.16) has been constructed by an educated guess (based on
properties of the basis functions) rather than an orderly procedure. In this section, we
present the mathematical tools which facilitate this construction. These are based on
Schur’s lemma that we give here without proof.
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The (first) lemma of Schur
Let F(G) be an irreducible representation of the group G acting on a vector space
YV, and C some linear operator defined on the same vector space. If [F(g ) , é] =0

forany g € G, then Cis proportional to the identity matrix.

The meaning of this lemma is that if C is the Hamiltonian acting on the Hilbert space, V7,
the requirement that the Hamiltonian is invariant under all symmetry operations (namely
commutes with all of them) implies that it belongs to the identity representation A,

(sometimes called “singlet”).

Consider now the general expansion of the local Hamiltonian,

H= ,;Z _ h, 55 KK, oK '//a><l//ﬂ‘ (5.17)
a,pih I
where ha,ﬁ,,-l.‘.jn are constants. The constituents of this expansion might belong to different

irreducible representations of the symmetry group. For instance, the vector kK may
constitute a basis function of the two-dimensional representation E (as in graphene),

while the wave functions,

l//a> and <1//ﬁ.‘might be basis functions of any irreducible
representation of the symmetry group.

Thus, the above Hamiltonian can be viewed as a sum of products with factors that belong

to various irreducible representations of the symmetry group. The constants ha,ﬁ,il---Jn

should be chosen such that the resulting Hamiltonian is a singlet. However, in general, the
product of basis functions belonging to different irreducible representations is not
necessarily a basis function of the identity representation, A,. Our goal is to identify the

condition for which this is indeed the case.

Definition: Direct products of irreducible representations

Let Fi(j“) and Fff) be the matrix elements of two irreducible representations of the group
G with dimensions ( ,and fﬂ , respectively. The direct product of these representations is

the (generally) reducible representation of dimension (_( , defined by the matrix:
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ng)r(ﬁ) Fg‘)r(/)’) I‘*gj‘)l—*(ﬂ)
1"(0‘) ®r(ﬁ) — F(ﬁ)r(ﬁ)
r‘(ﬂj)ll"(ﬁ) L F({jza r(ﬁ)

(5.18)

where each term in this matrix is by itself a matrix L"ﬂ xﬂﬂ . In general, this representation

is reducible; hence we want to obtain its decomposition into irreducible representations.

This can be achieved using the character’s orthogonality property, as we saw when we

discussed the normal modes of molecules in section 4.9.

From Eq. (5.18) it follows that the character is a product of two irreducible representations

is the product of their characters:

z[F(“)(g)C@F“’)(g)}=ZF§?)(9)§F£@(g)=z‘“)(g)z(ﬁ)(g)-

(5.19)

With the help of this result, one can calculate the number of times that each irreducible

representation, ¥, appears in the product r'“ er? by the formula:

1 * a
n, = 2,27 (9) 7 (9) 2" (9)-
G| 5=

Example: The direct product E®E of the group C,,

From the character table of C,,on page 95 and Eq. (5.19) we obtain that:
P (E)=4, 758 (c;)=1and 4E°8) (o)=0.
Then using (5.20), we see that

n, =éZz(Al)*(g)z(m)(g)=%(1'4+1'2'1+1'3'0)=1'

geG

N, =iZZ(AZ)*(g)Z(E®E)(9)=1(1'4+1'2'1+(_1)'3'0)=1'
|G geG 6
and
Ne =iz;((E>*(g)Z(E®E)(g)=1(2~4+(—1)-2-1+o.3~o)=1.
|G geG 6
Thus

EQRE=A A, DE.

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)
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Notice that the direct product E® E contains the identity representation A,. It means

that one can find combinations of products of basis functions of the E representation that
form a singlet.

Example for the realization of Eq. (5.25)

, in which the wave functions are pseudo-spinors with two

Consider the product |l//a><l/lﬂ

components (say, the components associated with the graphene’s sublattices). One can

choose a basis in the pseudo-spinor space to be, (y,|=(10), and (y,|=(0,1). Assuming
the wave functions belong to the E representation, the product |!//a><l//ﬁ‘ is a basis
function of the direct product on the left-hand side of Eq. (5.25). This product, with
a=A,B and f = A,B, defines four independent matrices. These can be combined to
form a different set of independent matrices: The identity matrix |, the Pauli marix 7%,

and 7% =7;° +i7,° . Aswe have seen (see character table on page 95), the identity matrix

AB
z

is a basis function of A;; 7 is a basis function of A,, while the pair (rfB,r_AB) form a

basis function of the E representation. These are the basis functions for the irreducible
representations that appear on the right-hand side of Eq. (5.25).

Example: The local Hamiltonian of graphene near the K -point

Let us return to the problem of finding the local Hamiltonian of graphene near the K -point
and suppose we look for a linear term in K (where K is measured from the K -point. Thus
we focus our attention on a term of the form k|l//> <1,//| in the expansion of the Hamiltonian
(5.17). Now, being a vector, the irreducible representation of K is E. If ¥ is the irreducible
representation of the wave function |!//> , then the term k|l//><t//| comes from the direct
product E®y® y. The only way of obtaining a singlet out of this product is by choosing
y=E: As we have seen in the previous example, the product E®E contains the
irreducible representation, E, therefore E® ¥ ® ¥ includes the identity representation,
A, . This argument shows that the local Hamiltonian of graphene may have a term linear

in the wavenumber vector

Example: The local Hamiltonian of graphene near the M -point

In this example, we construct the local Hamiltonian of graphene near the M - point from
symmetry considerations (time-reversal symmetry showed that it must be quadratic but
did not tell anything about degeneracy). First, let us identify the little group associated
with the M - point . Since opposite M - points of the Brillouin zone are identical (see Fig.

2-37), the little group is C,,. The character table of the group (on page 75) shows that all
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irreducible representations of the group are one-dimensional; hence energy levels are not
degenerate. The basis functions associated with these representations are listed below.

Irreducible Basis
representation functions
Al X2, y2
A, Xy
B, X
B, y

We did not include basis functions that depend on the Z coordinate because they are
irrelevant to our purpose.

Since the product of any one-dimensional irreducible representation by itself yields the
identity representation, one cannot construct a singlet from a product of the form
B,, ® y®y. Therefore, the local Hamiltonian does not contain linear in K terms.

Consequently, the Hamiltonian must be a sum of even powers of the wavenumber
components:
H =hk’ +h2kj +hk? + h4k;‘ + hskfkj +-e, (5.26)

i

Figure 5-9 The structure of dichalcogenides: Side view (left panel) and top view (right panel)

where h; are constants.

5.4 Dichalcogenides

Dichalcogenides are a family of two-dimensional semiconductors with a chemical
composition MX,. Here M represents a transition metal, while X is a chalcogen (i.e., an
element from the same column of the Oxygen in the periodic table - such as Sulfur S,
Selenium Se, and Tellurium Te). The transition metal atoms are arranged in a two-
dimensional hexagonal lattice. On each side of this layer, there is a hexagonal lattice of
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chalcogen atoms (with the same lattice constant); see left panel of Fig. 5-9. Here we

consider the case where the two lattices of chalcogen atoms transform to each other by

simple reflection symmetry. (Another option, which we shall not discuss here, is that an

improper rotation, S, relates them.) Thus from a top view, the system looks like a

honeycomb lattice composed of two sublattices of different atoms; see right panel of Fig.

5-9.

The Bravais lattice of dichalcogenides is hexagonal as in
graphene, and so is the Brillouin zone. However, the
point group of the system is C,, rather than C,,.

Namely, it contains only two rotations in £120° and
three reflections through the planes denoted by the
dashed lines in Fig. 5-10.

Consider the local spectrum near the K - point of the
Brillouin zone. Unlike graphene, the little group, in this
case, is the cyclic group C,. It is not C,, because the
atoms on the two sublattices are different; hence the
system lacks the symmetry for reflections through the

Figure 5-10 Planes of Reflection
symmetry in dichalcogenides

horizontal axis and the two other axes obtained by +120° rotations. However, we know

that all irreducible representations of cyclic groups are one-dimensional; therefore,

energy levels at the K -point are not degenerate.

The character table of C, is listed below:

c, |[E c;

A, 1 1 1 X2+ y? (x+iy)3 ,(x—iy)3 7"
1 iz 2 i

A2 e 3 e 3 X+|y (X—ly)z
1 - 27 i

A, e 3 g3 X—ly (x+iy)2

We turn to construct the local Hamiltonian of dichalcogenides near the K - point. First,

notice that the lack of symmetry between the two sublattices implies no combination of

the matrices 7/® can form a basis function, because these matrices mix the two

AB
z

sublattices. On the other hand, 7

basis function of the identity representation.

commutes with rotations (see Eqg. 5.10); hence it is a
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Given that all irreducible representations of the little group are one dimensional, the only
way of constructing the local spectrum near the K point is by combinations of the basis
functions of the identity representation, thus

K2 ok?
2m

§(5K)={A+

eff

+h, Re[e”f (0K, +iok, )S}}rz’*B, (5.27)

where 5K is measured from the K -point, while A, M, h, , and, apparently, also ¢, are

arbitrary constants that cannot be determined from symmetry considerations. In the
above formula, we neglected terms that break the symmetry between electrons and holes
(i.e., terms proportional to the identity matrix | ).

For an arbitrary value of ¢ the Fermi surface near each one of the K -points, rotates as
demonstrated in Fig. 5-11. In principle, this structure is allowed by time-reversal symmetry
H (kK +§kx,5ky) =H (—kK —5kx,—5ky), as shown by the arrow in Gig. 5-11 below.

—

time reversal symmetry

Figure 5-11 Fermi surface near K and K’ points for an arbitrary value of ¢

However, one should take into account that in addition to time-reversal symmetry, the
system is also symmetric for reflection through they -axis; see Fig. 5-10. Thus the

Hamiltonian satisfies the property
H (ky +k,, 0k, ) = H (—k, —k,, ok, ) = H (k. = 5k,, 5k, ). (5.28)

This constraint is not taken into account by our local analysis near the K -point. Moreover,
as demonstrated in the left panel of Fig. 5-12, this constraint forces ¢ to be an integer

multiple of 7. Substituting ¢ = in Eq. (5.27), we obtain that the local behavior of the

energy spectrum near K -point is:

h2ok?
2M,

£, (0K, 0k, ) =% A+ —h, (ok? -35k,5k?) | . (5.29)
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Illustrations of the Fermi surface and the energy bands obtained from Eq. (5.29) are
depicted in Fig. 5-12 below.

g(kxa 0)

time reversal symmetry

\ V V kx

reflection symmetry

Figure 5-12 The Fermi surface (left panel) and the qualitative behavior of dichalcogenides
band structure (right panel).
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5.5 Exercises

(a)

(b)

The Brillouin zone of a two-dimensional
square lattice, and its special points, I", X,
and W, are depicted in Fig. 5-13. W

Use time-reversal symmetry to characterize
the spectrum of electrons moving in this . .

lattice near the special points of the Brillouin

zone.

Use spatial symmetry considerations to

construct the local near the special points.
Identify the possible degeneracy of the Figure 5-13 The Brillouin zone of a two-

energy levels at each one of these points. dimensional square lattice

Show that the local spectrum of graphene near the I'- point cannot be a Dirac
spectrum.

Advice:

(a) First, notice that the little group of the I"- point is C;, whose character table

appears on page 94.

AB

(b) Next, show that (TXAB +ir® 7! ITXAB) is a basis function of the E, irreducible

representation. Use the following direct products of the irreducible

representations of Cg, :

E,®E, =E,®E,=A ®A,DE, ( )
5.30
E,®E,=B,®B,®E,
(c) From the above results, deduce that one cannot obtain a singlet for a term that
is linearin K .

Fig. 5-14 below shows a side view and a top view of a double layer of graphene. The
sublattices in each layer are colored differently to ease the identification of the
system symmetry. Find the group symmetry of the system and the little group
associated with the K -point. Construct the local Hamiltonian near that point. Take
into account the experimental evidence showing that the contribution of Dirac point
to the spectrum is negligible.
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Figure 5-14 A side view and a top view of a double-layer graphene

. For double-layer graphene, explain why applying an electric field perpendicular to
layers opens a gap between the bands.

. Explain the following rules for the subscripts in Mulliken symbols of products of
irreducible representations:

g®g=g¢
u®u=g (5.31)
u®g=u

and for the subscript of A or B irreducible representations:

1®1=1
2®2=1 (5.32)
1®2=2
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6 Extended groups and double groups

The analysis of the spectrum of dichalcogenides near the K -point (presented in the last
section of the previous chapter) demonstrated the limitation of local analysis based on the
properties of the little group. As we have seen, this analysis left the phase ¢ in Eq. (5.27)
undetermined, and we had to employ some global symmetry considerations, that also
involved the behavior near the K'-point to set its value. This drawback raises the question
of whether one can develop a group theory formalism that treats both K and K’ points
on equal footing. Noticing that K’ point is the time-reversal counterpart of the K point
(and vice versa), this generalization amounts to incorporating time-reversal symmetry into
the group theoretical approach.

This chapter develops the main tools that incorporate time-reversal symmetry into group
theory: extended groups in systems where the spin degree of freedom can be ignored and
double groups for systems with spin-orbit interactions. Next, we use these tools to analyze
the effect of spin-orbit interaction on graphene and to present a family of materials called
topological insulators.

6.1 Extended groups

This section presents the group theoretical framework that treats the K and the K’ points
on equal footing. For simplicity, we begin with the example of dichalcogenides. Let us
choose the primitive basis vectors of the Bravais lattice to be

a,=a(10) and a,=>(1V3), (6.1)

where a is the lattice constant. The corresponding primitive basis vectors of the reciprocal
lattice are

b, \/_a( \/_1) and b2=%(0,1)

and one can quickly check that the wavenumber vector at the K point (the one along the

(6.2)

k, axis) is
4

k
K" 33

(1,0). (6.3)

The wave function of the system at this point can be decomposed according to Bloch’s
theorem:

we (r)=d(r)g(r), (6.4)

where
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d(r)=exp(ikg 1), (6.5)

while ¢(r) is a periodic function with a periodicity of the unit cell. This componenet of

the wave function does not play an essential role in the following discussion and will be
suppressed from now on.

Time reversal symmetry gives
Ve (1)=vi (1)=0"(0)¢ (1) (56)
with
d™(r)=exp(-ik, -r)=exp(ik, -r), (6.7)
where we have used the relation k., =—K .

Let us define a vector wave function whose components are the wave function at the K -
point and its time-reversed counterpart, i.e., the wave function at the K'-point:

Y(r)= (j*((rr))} (6.8)

The action of the time-reversal operator, ®, on this function is to swap K and K’ points,
i.e.

oY =7 v, (6.9)

where er' is the Pauli matrix that acts in the “valleys space” of Kand K’ points. It
follows that ® = | ; hence ¥ is a pseudospinor and not a spinor (for which ®* =—1, see
Eq. (3.18)).

We turn now to identify the action of symmetry operations on the wave function V.
Starting with reflection through the vertical axis, o, (see Fig. 5-10), we notice that this

reflection X <> —x implies that k, -r <> -k, -r =k, -r, thus
d(oyr d"(r ,
oW = (o) =£ ()]:rKK‘P. (6.10)

Next, using arguments similar to those presented in the previous chapter for graphene,
the rotation operation is described by:

(d(er)) 27
calP_(d*(Csr)J_exp(—l?rz j‘P (6.11)
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Now, let us consider the action of translation by one of the primitive basis vectors. First,
notice that

Tald(r):d(Talr):exp(i%[jd(r) (6.12)
because
d(T,r)=exp(ik -T,r)=exp[ik,-(r+a,)]

: . A4z (6.13)
=exp(iky -a,)exp(ik, -r) = exp(l?jd (r),

where the last equality follows from Egs. (6.1) and (6.3). Repeating the same procedure
for d”(r) and using, exp(i47/3)=exp(-i27/3), we obtain

.2 :
T,¥= exp(—l ?ETZKK j\}f (6.14)
A similar calculation for translation by the second primitive basis vector, a,, yields
2T ke
Taz‘P =exp |?rz Y. (6.15)

From the last two equations, we see that T,T, =E. It implies that the translation
operators acting on Bloch wave functions, with wavenumbers k. and k.., form a group

isomorphic to the cyclic group C;. In other words, if we set t =Tal , then t? =Taz and t* = E.
The group obtained from the product of the elements of C,, by these translations,
C;, =C,, ®{Et,t*}, (6.16)

is called the extended group of C,,. It contains 18 elements (obtained from the
multiplication of the six elements of C,, by the three translation operators), and six
conjugacy classes. The group has two one-dimensional irreducible representations and
four two-dimensional irreducible representations, such that 2-1° + 4-2* =18. To see why
it is indeed so, notice that any extended group has the representations of the original
group because one can always choose the identity representation for the translation
operations. Therefore, knowing we have six conjugacy classes and three irreducible
representations of the original group, we should have three additional irreducible
representations whose sum of the square of their dimensions is 12. The only possible way
of achieving that is 3-2% =12. The character table of the extended group is listed on the
next page.
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cr|E tt* 2c, cicit® cicr’ 3o,30t,30t?
All 1 1 1 1 1
Al 1001 1 1 -1
El2 2 -1 - -1 0

Ef ]2 -1 2 -1 -1 0
Ebl2 -1 -1 2 -1 0

E; 2 -1 -1 -1 2 0

To identify which

one of these irreducible representations is associated with the

pseudospinor V¥, let us calculate the characters of the extended group operations:
2(0)=x(ot)=x(ot’)=0, x(c;)=x(c5)=x(t)=x(t*)=x(cst)= x(c}t’)=-1, and

Z(E):;{(Cit):;((%tz):& These characters are those of the two-dimensional

irreducible representation denoted by E; in the character table. It implies that the energy

levels at the points of K and K’ are degenerate, as illustrated in Fig. 6-1.

&(ky, 0)

Figure 6-1 An illustration of the energy level degeneracy at the K and K’ points

We now briefly repeat this procedure for graphene. Here, the wave function should

include four components: two to describe the sublattices and two for the valleys. It is

convenient to present the wave function in the form:

A

d
N s S A (6.17)

d

d

W * > * @
A
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where the subscript A and B refer to the sublattices of the graphene. For this choice,
the time-reversal operation is described by:

W o+ > *
>

Y=Y = = @17y, (6.18)

>

o O O o
o —» O O
O O O
o O O -
o O~ O
o O O o

B
*
A
*
B

where 1"® is the 2x2 identity matrix acting within the sublattice space. Repeating the

procedure described above, we obtain the extended group:

cr :C6V®{E,t,t2}. (6.19)

It contains 36 elements and nine conjugacy cIasses:E,{t,tz},{Cz,czt,cztz},{c3,cg},
{et.c3t?}, {ct? it} {2¢;, 2¢t, 2¢,t%} {30, 30,1, 30,7}, and {30,,30,t,30,t%} . Thus, the

extended group includes the following irreducible representations: four one-dimensional,

four two-dimensional, and one four-dimensional so that 4-1% + 4-2% +1-4% = 36. The four-
dimensional irreducible representation is the one that describes the fourfold degeneracy
of the energy levels at the K and K’ points.

6.2 Double groups

In the previous section, we showed that additional features of the system, such as time-
reversal symmetry, can be taken into account by extending the symmetry group of the
system. In this section, we adopt a similar approach in order to describe systems with spin
% particles. The generalized groups, in this case, are called double groups.

The wave function that describes a particle of spin % is a spinor,

\P(r):[%(r)} (6.20)

(1)

where the subscript s =Tl denotes the projection of the spin state on some arbitrary
direction (say the z axis). Up to now, we have considered the action of symmetry elements
only on the spatial coordinate r; however, for a spin % particle, one should also take into
account that these symmetry operations also act on the spin. In particular, that rotation
of a spin by 360° returns the wave function (6.20) to itself with a minus sign. Thus, to
construct a representation of the symmetry of a spinor, one should add a symmetry

element, Q, that describes the rotation of the spin in 360° around some arbitrary axis.

This element satisfies the condition Q? = E , and its relation to the rotation operations are:
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c'=Q and c’"=E. (6.21)

Inversion commutes with any rotation, therefore i = E . On the other hand, inversion can
also be represented as a product of rotation in 180° followed by reflection through the
plane perpendicular to the rotation axis, i = oC, . This relation together with i =E implies
that

6°=Q and o' =E (6.22)
The double group of G dented by G' is obtained from the direct product G ®{E,Q} .

The rules for building the character tables of double groups are the following:

1. Ifthe setof elements in the original group, {g;}, formsa conjugacy class, then {g;}
and {Qgi} are two separate conjugacy classes of the double group, with two
exceptions listed below.

2. The first exception refers to the case of c, rotation for which there is another c,
rotation around a perpendicular axis or a reflection plane containing the c,
rotation axis. In this case ¢, , and Qc, are in the same conjugacy class (see Ex. 1).

3. The second exception to rule No. 1 is for a reflection o when there is another
perpendicular reflection plane or a C, rotation axis within the reflection plane. Also
in this case o and Qo belong to the same conjugacy class (see Ex. 1)

4. Any irreducible representation of the original group is also an irreducible
representation of the double group with the same characters.

5. Apart from the irreducible representations mentioned in the previous rule, there
are additional irreducible representations such that the total number of irreducible
representations is the number of conjugacy classes. For the spin % irreducible
representations of the group, the character of the element Qg is ;((Qg) = —;((g).
When rules No. 2 and 3 apply, gand Qg are in the same conjugacy class; hence

their characters should vanish because x(g)=x(Qg)=-x(9).

Example: The character table of the double group D,

The dihedral group D, contains three C,-rotations around three perpendicular axes (see
Figure 4-7 and the character table below). For this group, rule No. 2 applies, and the
conjugacy classes of the double group are: {E},{Q}, {c,,Qc,}, {c;,Qc;}, and {c;,Qc;}.
Thus, there are five conjugacy classes and eight elements in the double group. Since all
the one-dimensional irreducible representations of D, appear in the double group, the
additional irreducible representation of the double group must be two-dimensional to

ensure that 1°+1°+1*+1°+2*=8. This irreducible representation is simply the
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representation of spin % particle (T,J«). The character table, listed below, is easily

constructed using rule No. 5.

The appearance of a two-dimensional irreducible representation in the double group
manifests the Kramer degeneracy of spin % systems with time-reversal symmetry.

D|E ¢ ¢ D;|E Q {&Qc} {c.Qq} {c.Qc)
Al 1 1 1 All 1 1 1 1
Bl1 1 -1 -1 B,|1 1 1 -1 1
B,[1 -1 1 -1 |1 1 -1 1 -1
B,f1 -1 -1 1 B, 11 1 -1 -1 1
E |2 -2 0 0 0

Example: The character table of the double group C;,

The C,, contains six symmetry elements; therefore, the double group has 12 elements:
E; 00,036, ¢5:Q;Qa;;Qa,; Qay; Qs Qs (6.23)

Neither rule No. 2 nor rule No. 3 apply; hence the conjugacy classes are: {E},{3a},

{2c,}, {Q},{3Qc}, and {2Qc,}. Since the double group must contain the irreducible

representations of the original group (by choosing the identity representation for {E,Q}

), C,, must contain three additional irreducible representations, one two-dimensional and

two one-dimensional representations. The character table, in this case, takes the form:

Ci, | E 2¢, 30 Q 2Qc, 3Qo
Al 1 1 1 1 1
Al 1 1 1 1 -1
E 2 -1 O 2 -1 0
= 2 1 0 -2 -1 0
A’ 1 -1 i -1 1 —i
A"l -1 i -1 1 i

The first three irreducible representations in this table describe a spin-zero particle, while
the other three describe a spin % particle. Here, the characters of the additional pair of
one-dimensional representations are identified using the property that characters of one-

dimensional representations are representations by themselves and the relationo® =Q.
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Thus }((O’)=F(U)=1/F(GZ)=JF(Q)=‘_|‘\/—71. The other entries of the table are

obtained from the orthogonality condition of the rows. The pair of the one-dimensional

irreducible (complex) representations of the spin are usually grouped together, A’@ A",
and considered as a two-dimensional representation (called separably-degenerate
representation). It is because, by Kramer’s theorem, this pair of one-dimensional
representations must be associated with degenerate states.

6.3 Spin-orbit interaction in graphene — the Kane Mele term

This section aims to show that spin-orbit interaction in graphene opens a gap at the K -
points. For this purpose, we should extend our description of graphene in two manners:
(a) Include time-reversal symmetry by doubling the number of components of the wave
function to take into account the valley space (see Eq. (6.17)); (b) Double the number of
components, once again, in order to take in to account the spin degree of freedom. Thus,
the wave function contains eight components classified by the sublattices Aand B, the
valleys K and K', and the spin states s =T\ .

Now let us try to identify the largest possible degeneracy of the energy levels of graphene
in the presence of spin-orbit interaction. The group C,, contains C, rotation, and all the
reflection planes contain the corresponding axis of this rotation; therefore, the conjugacy
classes of the double group Cg, are: E,Q, 2¢;,2Qc;, 2¢;,2Qc;,, {c,,Qc,}, {30,,3Q0, }, and
{30d ,3Qad}.AItogether we have nine conjugacy classes and 24 elements. Six out of the
nine irreducible representations are of the original group; therefore, the additional three
irreducible representations must satisfy the condition I> +17 +12 =12 , which means that
all spin % representations are two-dimensional. The extended group obtained from this

double group contains 15 conjugacy classes which can be deduced from those of Cgv:
E,Q.{t,t*},{Qt,Qt*} {c,,Qc, ¢t Qc,t, C,t, Qc,t*}, {2¢, 2¢.t, 2¢,t}, {2Qc,, 2Qct, 2Qc |
{30,,30,1,30,1%,3Q0,,3Q0,1,3Q0,t*}, {30,,30,t,30,t*,3Q0,,3Q0,t,3Qa,t* |, {cy.Ci},
{Qc,.Qcr}. (et it} {Qet, Qcit’}  {et it} and {Qeit”,Qcst}. This extended double
group contains 72 elements and 15 irreducible representations. Nine of these irreducible
representations are associated with the original double group, and six more should satisfy
the condition: 12 +12+12 +1% +12 +1; =48. The only way of satisfying this equation
(according to Kramer’s degeneracy) is with L, =1, =1, =1,=2 and |, =1, =4.Thus, the

largest irreducible representation of the extended double group (describing graphene with
spin-orbit interactions and time-reversal symmetry) is four-dimensional. However,
noticing that time-reversal symmetry implies degeneracy of K — —K with s — —s, while
the inversion symmetry of graphene implies degeneracy of K — —K with s —s we see
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that fourfold degeneracy already accounts for Kramer’s degeneracy and the valley
degeneracy. Therefore, there is no possibility of having Dirac points in the spectrum as
these would imply an 8-fold degeneracy of the energy levels. In other words, if we were
able to tune up the strength of the spin-orbit interaction in graphene, we would have seen
that it opens a gap in the Dirac spectrum.

Kane and Mele showed that the constant matrix,

H, =4, @ ®c"®, (6.24)

so ~ ‘0%z

describes spin-orbit interaction in graphene, where / is a constant that determines the

strength of the interaction. This Hamiltonian is called the Kane-Mele term. It does not
break any spatial symmetry, and one can check that it is invariant under all required
symmetry operations:

(a) Time reversal symmetry: Taking into account that the time-reversal operator in
the spin space is given by Eq. (3.16), while in the valleys and sublattices spaces by
Eq. (6.18), we have ®:—iTySK ®TXKK, ® 1" (where Kis the complex conjugate

operator), and one can check that
H,=0"H,0O. (6.25)

(b) Inversion symmetry: This symmetry exchanges the sublattices A and B, and takes
K point into K’ point and vice versa. Inversion does not influence the spin; thus,

the inversion operator is | =1°®7“ ®7®. One can check that the spin-orbit

Hamiltonian is invariant under this symmetry operation.
(6.26)

The proof of Egs. (6.25) and (6.26) is given as an exercise.

(c) Finally, since the spin-orbit Hamiltonian (6.24) is independent of K , reflections and
rotation of the C,, group (i.e., those operations that do not mix the sublattices),
also leave the Hamiltonian invariant. All other symmetry operations are obtained

from those of C,, and inversion.

A derivation of the Kane-Mele term is given as an exercise (No. 4) in the next chapter.
Before discussing its implication, we comment that there are, of course, additional
contributions to the spin-orbit interaction which are K dependent. However, since these
depend on the deviation, 0k, from the K point (or the K'point) their contribution is
expected to be small compared to the Kane-Mele term.
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When employing symmetry considerations to deduce the form of the Hamiltonian, the
“rules of the game” are that if there is no symmetry that forbids the existence of some
term in the Hamiltonian, then it generically exists. Therefore, the local Hamiltonian of
graphene near the K -point should have the form

E(ok)=mvl° ®sk -7 + A, 1; ®7)°. (6.27)
This approximation holds only close enough to the K -point so that higher-order terms in

0K can be neglected. Also, notice that the Kane-Mele term is diagonal in the spin space;
therefore, spin is conserved.

Diagonalization of the above Hamiltonian gives
g, 1, (0K)=£y(hv) k> + A2 . (6.28)

From here, we see that spin-orbit interaction opens a gap in the spectrum, as shown in Fig.
6-2. This gap, in principle, turns the graphene into a band insulator. However, in reality,
A

., is very small - in units of Kelvin degrees, it is smaller than 1°mK . For this reason, no

gap has ever been observed in graphene.

&(6k,, 0) &(dk,, 0)

/

2% ok

Aso=0
O

Figure 6-2 The opening of a gap in the energy spectrum of graphene due to spin-orbit interaction.

6.4 Topological insulators

Viewing graphene as a band insulator due to spin-orbit coupling (and when Fermi energy
is in the middle of the gap), is to a large extent, just an academic issue. Nevertheless, it
constitutes a simple example by which we can introduce the idea of topological insulators.

The analysis presented in the previous section holds for an infinite system. In a finite
system, translation symmetry breaks - it does not apply in the direction perpendicular to
the system edge - hence our result does not necessarily apply. Moreover, as we already
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know, the Rashba term associated spin-orbit interaction near the system's boundary results
in a Dirac point at zero energy (see Fig. 3-1). This degeneracy point is protected by time-
reversal symmetry, and it is always there no matter how small the spin-orbit interaction is.
The wave function associated with this Dirac point describes a particle that moves along
the boundary. Its spin is perpendicular to both the particle velocity and the normal to the
boundary.

How can we reconcile the behavior of the bands within the bulk with that near the
boundary? In Fig. 6-3 we present a schematic picture of the energy levels in a semi-infinite
graphene layer with a boundary parallel to the x axis (where the normal to the boundary
is in y direction). The solid black line represents the energy level of the bulk spectrum

associated with ky =0. Above this line, there are additional levels (not drawn) that
correspond to ky # 0. The red and blue lines represent the surface states of the system

that describe a particle that moves along the boundary. The red curve is associated with a
right-moving particle (V, =0dg/0hkK, ) with spin pointing in the Z direction, while the blue

line corresponds to a left moving particle with spin pointing in the opposite direction.

In a stripe of graphene, particles moving in the same direction along the two stripe
boundaries have opposite spins. In a closed sample, the particles move along the boundary
in opposite directions and opposite spins (as required by time-reversal symmetry)

A topological insulator is a system where an electric current can flow only along the
system's boundary, while the bulk is a band insulator. The surface states are protected by
time-reversal symmetry; namely, they are not destroyed by defects or disorder. However,
in the presence of an external magnetic field (or magnetic impurities), the system is not
time-reversal symmetric anymore, a gap also opens in the surface states, and the system
becomes an insulator.

Figure 6-3 An illustration of the spectrum of a topological insulator with the boundary energy states
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6.5 Exercises

1. Prove rules Nos. 2&3 for the construction of double groups (on page 116).

2. Prove Egs. (6.25) and (6.26).

!

w, and Dj, (notice these

3. Construct the character tables for the double groups D;, C

are isomorphic groups)
4. Find the dimensions of the irreducible representations of the double group Or'].

Advice: To simplify the analysis, use the following property of the octahedral group,

O, =0®C,, where C, is the group that contains the identity and the inversion

elements, while O is the symmetry group of an octahedron (see Fig. 4-22, and
character table on the same page). Use the five rules on page 116 to identify the
conjugacy classes of the double group O, and with this information, deduce the
dimensions of its irreducible representations. Using these results, find the dimensions

of the irreducible representations of the double group Oy .

5. Rutile is a mineral made of titanium dioxide, TiO,. The

Bravais lattice of this crystal belongs to the tetragonal
system, and the structure of its unit cell is shown in Fig.
6-4, where oxygen atoms are marked in red. Find the
largest possible degeneracy of the energy levels at the
I" point, taking into account spin-orbit interaction.

Advice: Assume that the lattice is described by the D,

point group (see comment below). In order to identify

Figure 6-4 The unit cell of Rutile

possible degeneracy of the energy levels, you have to
find the dimensionality of the irreducible representations of the corresponding double

group. To simplify the calculation, use the property D, =D, ®C. which holds for even

n.ForD,, use the results of Ex. 3.

Comment: At first sight, the point group describing the symmetries of the unit cell of
Rutile is D,, (which contains eight elements). However, the space group of this crystal

is non-symmorphic. There are additional symmetry operations. In particular, a rotary
translation {c,|l} with |=(X+§)a/2+7c/2, and seven additional operations:

{Cj | I}, two {c; |1},{S, |1} ,{Sf | |}, and two {o, |1} . These operations and those of
D,, define a space group that is isomorphic to the direct product of the translation

group by D,; .
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7 Methods for calculating band structure

The strength of the symmetry approach that we have developed in the previous chapters is its
ability to provide a qualitative picture of the band structure even without detailed information
about the system. The main shortcomings of this approach are: (a) It does not account for the
global behavior of the energy bands in the Brillouin zone; (b) It cannot tell us the position of the
Fermi level which selects the relevant bands; and (c) It does not provide the constants that
characterize the spectrum, such as the velocity v, the triangular warping constant h, near the

K -point of graphene, and the value of the spin-orbit coupling, A, that opens the gap in the

"
spectrum. To get this information, one has to diagonalize the Hamiltonian of the system.
However, from the simple example of the Kronig Penney model (discussed in the first chapter),
we already know that obtaining exact analytical solutions for the energy bands of a system is a
difficult task. On the other hand, we usually do not need the band structure's complete
information - an approximate description is sufficient.

In this chapter, we discuss three approximation methods for calculating the band structure of a
system: The nearly free electron approximation, the tight-binding approximation, and the k- p
approximation. These methods are complementary in the sense that they describe the system
in different limits and under different physical assumptions.

7.1 The nearly free electron approximation

The nearly free electron approximation relies upon the assumption that the effect of the lattice
is perturbative. Itisinstructive to present this approximation, first, for one-dimensional systems.
Consider the problem of a particle moving in a one-dimensional periodic potential. The
Schrodinger equation that describes this system is:

h?* 0?
{—%eru(x)}yx(x)_gw(x), (7.1)
with the potential
u(x+a)=u(x)=> u,exp(ijbx). (7.2)
i

Here b =27/ais the reciprocal lattice constant, j is aninteger, and u; are the Fourier expansion

coefficients of the potential that satisfy the condition u_; :u? (to ensure that u(x) is a real

function).
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From Bloch’s theorem it follows that the solutions of this equation have the form
w (x)=exp(ikx) g, (x), where ¢, (x+a) =g, (x) is a periodic function with the same period of
the potential. Therefore, ¢, (X) can also be expanded in a similar Fourier series, and the wave

function may be presented in the form

w(x)=exp(ikx) > cl” exp(ijbx), (7.3)
j

where ¢\ are the expansion coefficients of ¢, (x). Substituting Egs. (7.2) and (7.3) in (7.1) and

using the convolution theorem, we obtain that, in Fourier’s space, the Schrodinger equation is:

. 21,2
p(kr b))+ Tl =e(k)cl), wit (k) =K (7.4)

This equation represents a set of an infinite number of
coupled equations (i.e., a matrix equation of infinite size).
Their solutions are equivalent to the exact diagonalization

of the problem. Yet, usually, the coefficients u; decay fast so(k+2b)

as a function of |j| (recall that the Fourier expansion
coefficients of analytic functions decay faster than any
power-law function), and it might be enough to take into
account only a few harmonics of the periodic potential. In
what follows, we set u, =0, without loss of generality,
because this coefficient only shifts all energy levels by a
constant. We also assume that the periodic potential is
sufficiently weak and can be treated perturbatively.

In the first (zeroth) approximation, we set u(x)=0, but

its periodicity is taken into account. In this limit, the band
structure is obtained by folding the spectrum of a free
particle into the first Brillouin zone, as demonstrated in

Fig. 7-1. Namely, the parabolic spectrum, & (k), is

duplicated an infinite number of times, and each copy is

shifted by the reciprocal lattice constant, &, (k + jb) . The

energy levels within the first Brillouin zone constitute the

T
zeroth approximation for the spectrum called the “empty a

lattice approximation”. This approximation is merely a Figure 7-1 The empty lattice approximation
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different way of counting the energy levels of a free particle.

Now let us include the effect of the potential. Assuming u (X) is sufficiently weak, one expects it

to open gaps at the degeneracy points of the energy levels obtained in the zeroth approximation,
see red disks on Fig. 7-1. Consider, for example, the lowest degeneracy point, at the edge of the
Brillouin zone, k =b/2 =7 /a, where the functions &, (k) and &, (k—b) intersect. Assuming that

the harmonics of the periodic potential decay fast, it is sufficient to consider only the coefficients
u, and neglect all the others. With this assumption, one can consider the subspace of

degenerate wave functions whose coefficients are (cl(f)),c,g_l)), hence Eq. (7.4) reduces to the

2 x 2 matrix equation:

) c© c®
a+hv5k*+,85k U T =ek)] (7.5)
u o —hvsk + fk? )| ¢ Y

with 6k =k —b/2, while

n’b® - hb

h2
o = ) V= ) = —_—
8m 2m

2m

and S (7.6)

Diagonalization of the above matrix gives the behavior of the energy levels near the lowest
degeneracy point close to the edge of the Brillouin zone:

£, (6K) = a+ ok + | + nAv2ok? . (7.7)

Thus, the gap that opens between the two lowest energy levels at the edge of the Brillouin zone,
(i.e. whenok=0) is 2|ul|.

Now, let us take a look at the intersection of the energy levels &, (k + b) at k =0. Considerations
similar to those presented above show that in the subspace of these degenerate levels, whose

coefficients are (Ci((l) , Ciﬁl) ) , the Schrédinger equation (7.4) reduces to

) c c®
4a+2h\ik+,3k U, T =e ()] (7.8)
u; 4o - 2hvk + k2 )| ¢ oY

k

and diagonalization gives

g, (K) =4+ B2 +/|u, | + 402K . (7.9)
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Hence, the second harmonic of the periodic potential determines the gap in the energy levels,
which is 2|u2|.

This result raises the following question: What happens if u, =07? Are the energy levels remain
degenerate? To answer this question, consider the Schrédinger equation in a larger subspace

containing three components (Cﬁ),ci ),Ck ) (but with u, =0):

&(k-b) o ¢ ¢
u, & (k) u, ¢ |=¢g(k)| ¢ |. (7.10)
0 u & (k + b) Cﬁ'l) cﬁ‘l)
Let us write the second row of this equation explicitly:
urct + & (k) +uct ™™ =g (k)c”. (7.11)

As we are interested in the vicinity of k =0, this equation may be simplified by the following
approximations: &,(k)=¢,(0)=0,and &(k)=¢&,(k+b)=¢,(b). In the second approximation,
we replaced g(k) by the unperturbed energy level at k =0. Solving the resulting approximate

(0)

equation for c,’ we obtain:

uc +u,cl™

(0) _
c’' = 7.12
K 2 ®) (7.12)
Substituting this formula in the first and the third rows of Eq. (9-10) yields
2
u | u?
(k _b)+ 7 —s @) 6
& b) $(b) [Ck ]Zg(k)(c(kl)J ] (7.13)
2 e
= & (k+b)+ | 1| ‘

Thus, up to a constant shift of the energy levels by |ul|2/g(b) , we have returned to the original

equation (7.8) albeit with u, replaced by uf/g(b). The conclusion drawn from this example is
that even if the periodic potential does not have a second harmonic, the second-order

perturbation theory lifts the degeneracy of the energy levels.

A generic one-dimensional system does not have any degenerate points in its spectrum, as
illustrated in Fig. 7-2. To have a degeneracy point requires fine-tuning of the functional form of
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the periodic potential. Nevertheless, since the Fourier
expansion coefficients of an analytic function usually decay
exponentially, the energy gaps also decay exponentially to
zero in the high energy limit, ¢ > 01,

From the viewpoint of group theory, a one-dimensional
periodic system can either have a reflection symmetry or
not. In both cases, all irreducible representations of the
little groups are one-dimensional. Therefore, one should
not expect to have a normal degeneracy of energy levels.
In other words, if there is such a degeneracy, it is
accidental, namely due to a very particular and non-generic
choice of the periodic potential.

In systems with higher dimensionality, the band structure
calculation in the nearly free electron approximation
follows a similar procedure. First, the zeroth-order (the
empty lattice) approximation is constructed by folding the
spectrum into the first Brillouin zone. It is obtained by
duplicating and shifting the free-electron spectrum to each
point of the reciprocal lattice. In Fig. 7-3, this construction
is demonstrated for a two-dimensional hexagonal lattice.
The dark hexagon in the figure represents the first Brillouin
zone into which the free-electron spectrum is folded.

When the dimension of the system is two or three, it is
customary to draw the energy levels along distinct lines
within the Brillouin zone - usually, lines that connect the
special points in k space. For hexagonal lattice, these are
the lines connecting the points, I', K, and M as shown in
the inset of Fig. 7-4. The figure shows the empty lattice
spectrum along these lines. For convenience, we have
indicated each energy level by a number associated with
the copy of the free particle spectrum shown in Fig 7-3. For
clarity, we also separated curves that fall one on top of the
other.

(k)

Figure 7-2 The typical spectrum of one
dimensional system in the nearly free

e(k)

Figure 7-3 Construction of the empty
lattice approximation of hexagonal
lattice

1In the Kronig-Penney model, discussed in the first chapter, the potential was non-analytic in the form of a periodic

O -function for which Fourier coefficients are constant. Hence the energy gaps remained constant also in the limit

& — O (see Ex. 3 on page 23).
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&(k)

Figure 7-4 The electron spectrum of hexagonal lattice in the empty lattice approximation

From the above figure, it follows that in the framework of the empty lattice approximation, the
energy spectrum has a six-fold degeneracy at the I"-point. However, as we know, the little group

at this point is C., , hence the largest possible (normal) degeneracy is two-fold. Indeed, this

6v /
degeneracy is lifted when we include the effect of the periodic potential in the nearly free
electron approximation - as shown in Fig. 7-5 .

e(k)

I

Figure 7-5 The electron spectrum of hexagonal lattice in the nearly free electron approximation
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7.2 The tight-binding approximation

The tight-binding approximation applies in the opposite limit of the nearly free electron
approximation. It assumes that, in the zeroth approximation, the electron’s wave function is
localized within one unit cell. The energy spectrum is now calculated by assuming that the
transition amplitude from one cell to the other is very small and can be treated perturbatively.

At first sight, one might assume that the localized states on z
each unit cell are the atomic orbitals of the electrons. For
instance, in the case of graphene, each carbon atom forms
three o -bonds with its neighbors, while the fourth orbital,
associated with the conduction band electrons, is a 2p
orbital perpendicular to the graphene sheet, as shown in Fig.
7-6.

However, the atomic orbitals of different unit cells are not

orthogonal, and in order to have a well-defined procedure Figure7-6 The 2P, orbitals of carbon
for calculating the electronic spectrum, one should define an atoms in one hexagon of graphene
orthogonal basis of localized wave functions. The functions

of this basis are called Wannier functions, which we turn to define now.

Let
w (r)=exp(ik-r)g (r) (7.14)

be the Bloch wave function of a particle in a lattice, where | is the band index, K is Bloch’s wave
number, and ¢” (r+a)= A (r)is a periodic function with the periodicity of the lattice. These

wave functions are orthonormal; namely, they satisfy the condition
[dm T (N (r) =646k, (7.15)

where d is the (effective) dimension of the system, and the integral is over the entire d -
dimensional space of the system. To be consistent with the limit, kK = k" one should demand that

i~ . 1
[ dorgl” (r)¢§”(r)=ﬁ5ﬂ, , (7.16)
uc
where the integral is over one unit cell and N is the number of unit cells in the lattice.

The Wannier functions are defined by

wi (r) :% > exp(-ik-a)yl (r), (7.17)

keBZ
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where a is the Bravais lattice vector that indicates the position of the unit cell on which the
Wannier function is localized, while the sum is over the wavenumber vectors in the first Brillouin
zone?.

The Wannier functions are orthogonal,

[dra” (r)wi (r) =60, (7.18)

= Ojj%uar
have the same shape in any unit cell, i.e. ng) (r)= Wéj) (r—a), and satisfy the closure relation:
S (! (r)y=s(r-r'). (7.19)
aj
Using Eq. (7.17), one can express the Bloch wave function as a sum over Wannier functions:
w(r) =%Zexp(ik-a)mé” (r). (7.20)
a

The proof of the last three equations is left as an exercise.

Let us now identify the Hamiltonian in K space using the basis of Wannier functions. This can be
obtained by calculating the matrix element of the Hamiltonian in the basis of Bloch’s wave
functions as follows:

éjj'(k):< éj)(r)‘H‘V/éj')(r»
_ %;M” (r)\wgn><wgi> H ;‘ngdxwg;') Mr) (r)> (7.21)
I A e[k (a-a)]

where we have used formula (7.20) and the closure relation (7.18). In the last line, we define

) _ <ng) ‘ H ‘W;;'>> _ (7.22)

a,a’

2 |n the continuum limit, i.e. when the system is large enough compared to the size of a unit cell, the sum over the
wave number vectors can be replaced by an integral,

A

k Y4

where Vol is the volume of the system. In this limit the Kronecker § -function in Eq. (7.15) should be replaced by a
O -function according to the rule:
(27)’

O —>
ok Vol

S(k-K).
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Diagonalization of &, (k) is equivalent to the exact solution of the problem; therefore, this form

of the Hamiltonian is still useless. To make progress, we shall use formula (7.21) in order to
construct an efficient approximation. The tight-binding approximation is built on two main
approximations: The first is to consider only those Wannier functions associated with the lowest
energy band and ignore all other bands. The second approximation assumes that the significant
matrix elements, given by Eq. (7.22), are only those with a = a’ and when a and a’ are nearest

neighbors sites, i.e., when |a - a’| is the smallest possible distance between different lattice sites.

The transition between sites separated by a larger distance is negligible because Wannier
functions are localized. With these assumptions, one can rearrange the double sum in (7.21) so
that one sum is over all lattice sites while the other over its nearest neighbors. The first sum gives
the total number of unit cells, N, that cancels out with the factor 1/N in Eq. (7.21). Thus the

Hamiltonian reduces to
g(k)=Y_H, exp|ik-(a'-a)], (7.23)

where the sum over a’includes the term a’'=a and the nearest neighbors of a. Here we have
suppressed the indices | and j', as we consider only the lowest energy band.

The advantage of the tight-binding model defined by the above Hamiltonian is that one needs
only a small number of parameters to characterize the system. For a given lattice, there are

essentially two parameters: the onsite energy H,, =<Wa|H |Wa>=80, and the hopping term

H,.= <Wa | H |Wa,> =—t, where a’ is the nearest neighbors of a. To calculate them, one needs

the precise structure of the Wannier functions; however, these matrix elements are usually
treated as phenomenological parameters.

Finally, notice that it is customary to present the tight-binding model of a system in real space
by Hamiltonian of the form

H :gOZéféi —t%:é}éi +he., (7.24)
i ij

where ¢' and €, are the creation and annihilation operators of a particle at site i, and <ij>denote

sum over nearest neighbors sites.

Example: the Wannier functions for the Kronig-Penney model

In this example, the Wannier functions of the Kronig-Penney model, for o -potential wells, are
calculated. Namely, we consider a particle moving in a one dimensional periodic potential of the
form:
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hu B
o Zn:§(x na) (7.25)

u(x)=-

where 1 is a dimensionless parameter that characterizes the potential strength (see Eq. (1.24),

m is the particle’s mass, and a is the lattice constant.

In order to have a reference point for comparison, let us first calculate the wave function that
describes the bound state of a particle in a single o -function well. This wave function is
analogous to the atomic orbitals mentioned at the beginning of this section. The Schrodinger
equation for this problem is

_hoe\X) nmu _
2m  ox° ma5(x)¢(x) £p(x). (7.26)

Thus, when X # 0 this equation reduces to that of a free particle. The solution associated with a
bound state, £ <0, is described by a decaying exponential function and takes the form

p(x)= Bexp(—%\/—2m5|x

j, (7.27)

where B is the normalization constant. Next, we integrate the Schrodinger equation (7.26) from
x=0"to x=0",

~£p(0)=0, (7.28)

substitute (7.27) and solve for ¢. The result is the energy of the bound state:

2. 2
g:—zm‘;z . (7.29)

Finally, calculating the normalization constant, B, we obtain the corresponding wave function:

¢0(X)=\/§ exp[—g le- (7.30)

Let us, now, calculate the Wannier functions of the system. The first step is to identify the Bloch
wave functions. For ¢ -function potential, the wave function in the range 0 < x<a, is a sum of
decaying exponents,

w(X) = Aexp(—a'x)+ A'exp(a'x), (7.31)

where Aand A’ are constant that we should find, and the energy
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hZaVZ

2m

&= (7.32)

sets the value of a'. By Bloch’s theorem w(X)=exp(ikx)¢ (x) where ¢ (X)=4¢, (x+a);

therefore, the periodic component of the Bloch wave function (in the range 0<x<a) is:
é (x)=[ Aexp(—a'x)+ A'exp(a'x) |exp(—ikx). (7.33)

From the periodicity of this function, ¢ (O)=¢k (a), and the jump in its derivative,
~¢,(0)+¢; (a)—(2x/a) ¢, (0) =0, we obtain two equations for Aand A’ that can be written as

a matrix equation:

1_ (@i 1 gle-ia

(OC’ + ik)(l_e(a'ﬂk)a)_z?,u —(0!’— Ik)(l— e(a’ik)a)_% (A’j =0. (7.34)

A non-trivial solution of this equation is obtained when the determinant of the above matrix
vanishes. This condition yields the equation

sinh(a'a)

cos(ka)=cosh(a'a)— u a
o

(7.35)
The solution of this transcendental equation gives a' as a function of Bloch’s wave number K.
There is no closed-form solution for the equation, but it can be easily solved numerically.

Eq. (7.34) also provides a relation between A and A’. Substituting it in Eq. (7.33), we obtain:

B!

x)=—| —(e" —e*®)exp(—a'x —ikx)+(e"* —e ) exp(a'x —ikx
8 00= 2= - o (can i (e oplanoik)]
= B’{sinh (a'x)explika]-sinh [a’(x—a)]}exp(—ikx)
where B'is the normalization constant that we choose to be real, so that
1 , sinh(a'a) ,
57 = cos(ka)cosh (« a)—1+7[cosh(a a)+cos(ka)]taN, (7.37)

The above formula for ¢, (X) holds only in the range 0 < x < a. In order to obtain a description
over the entire range, —-w<X<o, it should be extended periodically. Let

4" (x)=> ¢.(x-an), be this extended function, then the Bloch wave function is

v, (X)= A" (x)exp(ikx) . Substituting this function in Eq. (7.17) , and replacing the discrete sum
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over k by an integral (see footnote on page 130) we obtain that the Wannier function is
expressed as the following integral over the first Brillouin zone:

K

W, (x)=avN kp( )exp(ikx). (7.38)

w3
I\.l\o_

VA

Inthe limit 42>>1, &' — u/a (see Eq. (1.26)), B'— 2,/1/Naexp(—u), and Bloch function in the

range 0 < x < a/2 (of the unit cell centered at the origin) reduces to

& (X )exp(lkx)ez\/;exp( ){ smh[ax ,u}+smh(a jexp(ika)}. (7.39)

Substituting this function in (7.38) we obtain

W, (X )—>2\fexp( )sinh[,u—ﬁx}a\/zexp(—ﬁxj, (7.40)
a a a a

which is the same as the wave function of the bound state of a particle in a ¢ -potential, ¢, (X)

Thus, in the limit of deep potential wells, the difference between W, (X) and ¢, (X) is negligible

because the wave function decays to zero, essentially, within a distance of one unit cell. Thus,
the overlap of two wave functions located in neighboring lattice sites is negligible, implying that
they are approximately orthogonal.

o (X) wo(x)

Figure 7-7 The Wannier function for the Kronig Penney model with ¢ -potential wells (black line), and the solution

of the bound state of a particle in a single ¢ -potential well (red line)

However, when x is not large, the tails of the wave function (7.30) extend over a much larger

distance than that of one unit cell. The orthogonality condition of Wannier functions, in this limit,
forces them to change sign. An example of this behavior is shown in Fig. 7-7, where the Wannier
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function for =2 (obtained by numerical solution of the problem), is drawn by the solid black

line, while the red line represents the wave function ¢, (X) .

Example: The tight-binding model in one dimension

&k)

In one dimension, Eq. (7.23) reduces to

e(k)=¢,—texp(ika)—texp(—ika)

7.41
=¢,—2tcos(ka) . 7:43)

(The onsite energy, &,, and the hopping term, t, are

defined below Eq. (7.23).) This formula for the band
energy is depicted in Fig. 7-8. It constitutes a good

approximation when all other energy bands are -z 0 z
sufficiently far such that their influence is negligible.

Lk

Figure 7-8 The spectrum of the tight binding model

An example of a situation where this approximation in one dimension
isinvalid is shown in Fig. 7-2. Here the bands become
very close to each other at some particular point in k space, near the edge of the Brillouin zone,

for example.

Example: The tight-binding model for graphene

To calculate the band structure of graphene in the framework of the tight-binding approximation,
one has to take into account its two sublattices, which induce a pseudospinor structure of the
wave function. In particular, the hopping matrix element between neighboring sites is from one
sublattice to the other and vice versa. Therefore, in the basis of the Wannier functions, the
Hamiltonian isa 2x2 matrix of the form

0O H
H :( ABJ. (7.42)
H,, O

Here, without loss of generality, we set the onsite energy (i.e. the diagonal components in the

above matrix) to be zero, ¢, =0. The Hamiltonian in kK space (7.23) is therefore

(k) :(A*?k) A(Ok)] : (7.43)
where

A(k)=t exp(ik-aj) (7.44)

j:A—>B
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is the contribution of hopping from sublattice A to sublattice . .

B. Here a;are the vectors connecting a lattice point, of ‘h A’

sublattice A, to its three nearest neighbors on sublattice B as .A .
shown in Fig. 7-9. These vectors are: a

aiz[o,—ija, azz(l,—l ja, .B .
NE 223

L1 (745 @ O

Ty = a'l

[ 2 ZﬁJ

where ais the lattice constant. Substituting Eq. (7.45) in (7.44)

yields

S

Figure 7-9 The vectors a i

A(k)=t {exp(—i % kyaj +2c0s (% anJexp[i % kyaﬂ , (7.46)

and diagonalization of the Hamiltonian (7.43) gives the energy levels:

(7.47)

g, (K)==£|A(K)|=[t, [1+4cos’ Ly al+acos( 1k acos ﬁk a
- 2 2" 2 7

The energy surfaces described by this formula are depicted in Fig. 7-10. In the right panel of this

figure, we present only the lower energy surface, gf(k), to highlight the Dirac cone structure

near the K and the K’ degeneracy points in the Brillouin zone.

£:(k)

Figure 7-10 The energy surfaces of graphene obtained from the tight-binding model
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To find the position of the K and K'points along the k, axis, one should solve the equation

&, (k)‘kyzo =0, which is

1+4cos? (% kxaj+4cos(% kxaj =0. (7.48)

The solution is k, =+47/3a, hence

472 472
k 1,0) and k.. -1,0). 7.49

Now, let us expand the Hamiltonian é(k) in the vicinity of the K’ point. For this purpose, we

substitute kK =Kk, + 0K in Eq. (7.46) for A(k)and expand to second order in 5k . The result is

A(K)= J;t( K, ik, )+ 8(5kx+i5ky)2+-~- (7.50)
thus

A 0 A(k) \/§t e, L 2 2\ _AB AB
8(k)=(A*(k) 0 J=T5k-r +§[(5kx—5ky)rx ~26kskz® . (7.51)

Notice that this local approximation has the same structure as that we obtain in Eq. (5.16) from
pure symmetry arguments. Comparing the parameters obtained here with the ones found using

the group theory approach, we see that hv=\/§t/2 and h,=-t/8. Thus, the tight-binding

approximation provides the relation between these phenomenological parameters.

Example: Degenerate bands in a square lattice

The tight-binding approximation has been derived under the assumption that energy bands are
sufficiently far apart such that the effect of higher energy bands on the lower one is negligible.
Namely, when the energy gap between nearby bands is larger than the hopping energy t.
However, there are situations where one each lattice point, there are few degenerate orbitals.
Examples of such materials are iron pnictides. These materials consist of weakly coupled two-
dimensional layers. In each layer, the iron atoms form a square lattice. The states that contribute
the charge carriers to the system are the d,, and the dyZ degenerate orbitals of each iron atom.

These orbitals are illustrated schematically in Fig. 7-11 by red and green colors.
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The generalization of a tight-binding model for such a
system is obtained by defining two wave functions
(x

iy

associated with these orbitals, ¢;; and cl(y,)y . Here the

upper index refers to the type of the orbital (by
indicating its direction in space), and the lower indices
denote the position on the lattice.

There are two sorts of hopping matrix elements

between nearest neighbors orbitals: —t, associated

with o -bond and —t, associated with 7 - bonds. These

are represented, respectively, by the solid and the

black dashed lines in Fig. 7-11. Thus, assuming hopping

only to nearest neighbor sites, the tight-binding model . . .
Y g g g Figure 7-11 The orbitals dxZ and dyZ ina

is defined by the equations: square lattice

_tl (Ci(;)ny + Ci(:(—)l,iy ) - tz (CI(XXI)

-1 (Ci(xy,i)y+1 + Ci()Ti —1) - (Ci(::-)l,iy + C'(y)

xoly |x—1,|y

(x _
atG —1) = &G

y Loy

(7.52)

Here, as in the previous example, we set the onsite energy to be zero. Notice that the symmetry
of the orbitals implies no matrix element connecting X-type and Y - type orbitals within this

nearest neighbor approximation. Hence the energy levels obtained from the above equation
include two bands where each one corresponds to a different type of orbital:

£ (k) =-2t, cos(k,a)—2t, cos(k,a),

(7.53)
e (k) =-2t,cos(k,a)-2t, cos(k,a).

Here a is the lattice constant.

These energy bands are degenerate along the
k, =k, line, as shown in Fig. 7-12. Here the

e(k)

energy levels (7.53) are plotted along the
contour I'—>X —>W —TI in the Brillouin
zone (the special points in the Brillouin zone of

a square lattice are defined in Fig. 5-13), and

the line k, =k, is the one form I" pointto W - T X W

point. This degeneracy is lifted once hopping k
into the next nearest neighbors is taken into Figure 7-12 The energy bands of Egs. (7.53)
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account. The corresponding hopping matrix elements are denoted by £t; in Fig. 7-11. They

generate coupling between the two types of orbitals, and consequently between Egs. (7.53), see
Exercise 2.

7.3 The k- p approximation, Kane’s model, heavy holes and light holes

The K- p approximation is designed to treat situations where energy bands are close to each
other, at some points in the Brillouin zone, by providing a local description near these points.
Starting from the Schroédinger equation of a particle moving in the periodic potential u (r)

{_%V%u(r)}‘”éj)(r):%(k)%’/ij)(r)' (7.54)

we express the Bloch wave function of the j-th band in the form w!” (r)=¢" (r)exp(ik r),

where ¢’ (r) is an unknown periodic function. Then the left-hand side of the equation is
expanded as follows:

2

vt (1) =esa(ikor) v () (1)

2m

2

+ g (r){_%vz}exp(ik : r)—%v exp(ik-r)- Vgl (r) (7.55)

=exp(ik~r){—2}‘l—mv2 +u(r)+ hz:] }¢éj)(r)+%k~(—ihv)¢£”(r).

From (7.54) and (7.55), we obtain an equation for ¢|£j) (I’) :

o, PK? | h : ,- ,-
[—ﬂv +u(r)+ﬁ}¢,ﬁ)(r)+ak.(—|hv)¢é)(r)zgj(k)gzﬁé)(r). (7.56)

The second term on the left-hand side of this equation is the reason for the name of the
approximation that we are about to develop. Let us assume that the functions ¢§j)(r),
associated with k =0, and any J, are known from the solution of the equation

() @ ()5, O (1), (7.57)

2m
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These functions form a basis for all functions within one unit cell with periodic boundary
conditions. Here we choose them to satisfy the normalization condition:

[dird " ()@ (r) =05y, (7.58)

where the integral is over the volume of one unit cell of the lattice. Now we shall use this basis

in order to expand any other function ¢éj) (r) corresponding to a non-zero value of k ,
g (r)=>c, " (r), (7.59)
-

where C; are the expansion coefficients that we seek to find. Substituting Eq. (7.59) in (7.56),

multiplying the equation by ¢éj)*(r) and integrating over r in one unit cell we obtain (using Eq.

(7.58)):

h?k? h
{gj(k)—gj(o)— o }ci :—E;k-pjj,cj,, (7.60)
where
py = [ drg" (r)(=inv) g (r). (7.61)

Equation (7.60) is an infinite matrix equation that is still exact. Thus, its solution is equivalent to
an exact solution of the problem.

The approximation scheme that one can build using Eq. (7.60) is based on the property that
several energy levels might come close together near special points of the Brillouin zone. In this
situation, one can neglect all other energy levels of much higher (or lower) energy. Thus the
K- p approximation is obtained by truncating the infinite matrix , P, , to a small finite matrix.

The larger the dimension of this matrix is, the better is the approximation.

Another approximation, usually employed in this framework, is to replace ¢éj)(r) by the local

electronic orbitals. This approximation is valid when the orbitals are well localized within each
unit cell. Finally, we comment that although we have considered the expansion near the I" point,
a similar approximation can be constructed near any other special point of the Brillouin zone.

Example: Kane’s model

To demonstrate the K- p approximation, consider a lattice where each unit cell contains four

(relevant) orbitals with nearby energies: One orbital is associated with the conduction band,
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£,(0)=¢,/2, and three orbitals with degenerate energy &, (0)=¢,(0)=¢,(0)=-¢,/2 (ie.,
orbitals of holes) that create the valance bands. It is instructive to think about the first orbital as
D),

and | pz> orbitals. These four orbitals span the subspace of the K- p approximation. Selection

the |s> orbital of some atom while considering the other three as the degenerate | px>,

rules imply that all diagonal matrix elements of p; vanish and, similarly, p, =p,, =p, =0,
where  p, =(p;] p‘ pj>, and i,j=XY,z. The only nonzero matrix elements are
Pox = PX, Poy = PY, Py, = PZ, and their hermitian conjugates. Here py =(s|p|p;), while X,

¥,and Z are unit vectors in the direction of the axes. Symmetry implies that these nonzero
matrix elements have the same absolute value. From the above considerations, we get that Eq.
(7.60) can be approximated by:

21,2
%g thi; hvk, vk, vk,
21,2 C C
Wk, —%9 _ hz K 0 0 N N
m R CX = ¢(K) CX , (7.62)
Ak 0 -3 _ 0 Y Y
g 2 2m C, c,
21,2
Wk, 0 0 G MK
2 2m

where v=p/m, and for the three hole-orbitals, we have changed the sign of the mass. This

equation is the Kane model. In this form, it does not take into account spin-orbit interaction, but
this generalization can be obtained by doubling the matrix size.

To solve Kane’s model, it is convenient to define the vector ¢ = (CX,Cy,CZ ) With the help of this

vector, the above equation can be written in the form

A hvk- K2
S VNS )% |, with a=fe KT (7.63)
awk- —-AJlc c 2 2m

Now, one can identify two cases: The first is when Cis parallel to k while the other is when these

vectors are perpendicular to each other,

(%} [OJ
~ | and ) (7.64)
ck C,
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respectively. Here K is a unit vector in the direction of k and C, =C- K-c is perpendicular to K.

Notice that these two vectors are orthogonal as required by solutions of the Schrédinger
equation. For the first solution, Eq. (7.63) reduces to a 2x 2 matrix equation,

(hé‘k th@}‘gﬂ(k)[?) (7.65)

whose straightforward diagonalization vyields

g, (K) =t A2 + 22 V[ K2 . (7.66)

Expansion of these energy levels, up to second order in k, in the vicinity of k =0 gives:
gy [0 ),
gH,i(k):J_r?gi —+— k% (7.67)

Consider now the case where C is perpendicular to k. Now, Eq. (7.63) reduces to

—ACLZEL(k)CLWhiCh has two degenerates solutions (associated with the two possible

directions of the vectorc, ) describing the holes spectrum:

&, WK
gl(k)_—?g— o (7.68)
(k)
electrons
Aq
heavy holes k
F>
light holes

Figure 7-13 The energy levels of Kane’s model
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The spectrum that we obtained in Egs. (7.66) and (7.68) is presented in Fig. 7-13. To understand
its meaning, notice that the effective mass of the particle obtained from the first couple of
solutions in Eq. (7.67) depends on the energy gap &,. When this gap is small, the effective mass

is approximately

M., =t (7.69)
eff,+ - 2|V|2 . .

Namely, it can be very small depending on &, . In this case, the energy band with negative mass
describes particles known as “light holes”. The effective mass of the other solutions (7.68) is

My, =—M. These solutions are associated with particles called “heavy holes”.

As a concrete example, let us present the experimental data of two semiconductors: InSh
(indium antimonide) and GaAs (gallium arsenide). In GaAs, the energy gap is &, =1.42eV, and
the measured effective masses are m, =0.045m, for
electrons, m, =0.06m, for light holes, and m,, =0.4m, for
the heavy holes, where m, is the free electron mass. In InSb
the energy gap is much smaller, & =0.17eV, and the
effective masses are: m, =m, =0.014m,, and m,, =0.4m,.
Let us look at the problem, once again, from a group theory

perspective. The unit cell of both semiconductors
mentioned above is displayed in Fig. 7-14. Its symmetry is

the symmetry of a regular tetrahedron (see also Figs. 2-40
and 4-20). Therefore, its point group is the tetrahedral  Figure 7-14 The unit cell of InSh and
group T,, whose character table is listed on the next page. GaAs

The four energy levels of the Kane model, at k=0, are associated with the A, irreducible

representation and the F, three-dimensional irreducible representation, as denoted in Fig. 7-13.

Now consider the matrix element <1//i | P, 1//j>, where v, ; are selected from the four wave

functions associated with the aforementioned energy levels, while p, is a component of the

momentum vector. This matrix element is a scalar that must be invariant under all symmetry
operations of the group. Therefore, it should belong to the identity representation, A,.
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A 1 ] 1 | 1 - X2 +_}:2 +22 Xyz

E 2 -1 2 0 0 - [2:2 _xi_yzﬁ\/g(xz _yz):| -

K 3 0 -1 1 -1 (RJ_,RJ_,R:) - [.r(:zfy:)ﬂy(:z7x2).:(.\'27y:)]

F, 3 0 -1 -1 1 (x,,2) (vz.xz,xp) (_r‘,y’,z"), (x: )+ z:)(x, ¥,z)

From the character table of T,, we see that the momentum (being a vector) belongs to the F,

irreducible representation. Therefore, the matrix element of the momentum between two
wavefunctions that also belong to F, is nonzero if the direct product F, ® F, ® F, contains the

identity representation. Similarly, the matrix element between wave functions, where one
belongsto F,and the otherto A,, isnonzeroif F, ®F, ® A, contains the identity representation.

Finally, the momentum matrix element between wavefunctions where both belong to the
identity representation is non-zero only if A ®F, ® A, includes the singlet representation

(which is, clearly, not the case). These conditions set the selection rules for the matrix element
P, - Using the following products of irreducible representations,

E®F =F +F, E®F, =F+F,

7.70
FE®F=A+E+F +F FE®F =A+E+F+F F®F=A,+E+F+F v.70)

we see that the matrix element of the momentum between wave functions where one belongs
to the identity representation A, while the other to the F, representation are non-zero. Those

where both wave functions belong to A, vanish. On the other hand, the direct product
F, ®F, ®F, contains the singlet and, apparently, implies that the matrix element (y|p|y’)
where both y and ' belongto F, is non-zero. However, time reversal symmetry of the problem
implies that (y| p|y) = —(w| p|y’) because the wave dunctions belong the same representation
as p; hence under time reversal symmetry they change sign. Another way to get the result is by
noicing that the only way of obtaining a scaly from three vectors is by (y|- px|y’) which is not

the quantity we need. These group theory considerations prove the structure of Kane’s
Hamiltonian presented in Eq. (7.62).
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7.4

1.

2.

4.

Exercises

Prove Egs. (7.18) (7.19) and (7.20).

Solve the tight-binding model of a square lattice with two degenerate orbitals. Take into
account hopping to next nearest neighbors as illustrated by the dashed diagonal lines in Fig.
7-11. Plot the energy levels in the same way they are plotted in Fig. 7-12. Compare your
results with those of Exercise 1 in chapter 5.

Solve the tight-binding model for the Kagome

lattice shown in Fig. 7-15, assuming hopping 4\/ \/ \/ T,
only to nearest neighbors sites. The Bravais '
lattice of this system is Hexagonal, and each %\/\/\%
unit cell contains three sites. In other words,

the Kagoma lattice is made of three hexagonal

sublattices. These are indicated, in Fig. 7-15, X/\ \/¥
by different colors.

Denoting the primitive basis vectors of the %\
Bravais lattice by

a,=a(L0) and a,=2(143)  (771) A’ /\ /\ /\*

Figure 7-15 Kagome lattice

where ais the lattice constant (see Fig 7-15), the positions of the red, green, and blue points
of the Kagome lattice are, respectively, given by

5,=(0,0), s, =a—22 and s, =%. (7.72)

Calculate the energy levels of this model and plot them along the line I' > K - M —T in
the Brillouin zone.

The purpose of this exercise is to derive the Kane-Mele term from the tight-binding model of
graphene. The generalization of the tight-binding model for a system with spin-orbit
interaction requires doubling the number of components in the wave functions to account
for the two possible spin states. Hence the size of the matrix that describes the Hamiltonian
is also doubled. For graphene, assuming hopping is only to nearest neighbors sites, the
Hamiltonian that describes spin-orbit interaction is of the form:
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Hso(k)z( o 7 'd(k)J , (7.73)

7°-d" (k) 0

where 7° are Pauli matrices acting on the spin space, while d (k) are function determined

by spin-orbit interaction. The blocks of this matrix act in the space of sublattices of the
graphene.

(a) Use inversion symmetry, i.e. k <> —k, and the symmetry to exchange of sublattices

*

A <> Btoshow that d (k) =d" (k).

(b) Use time-reversal symmetry to show that d (k) =0.

From the above results it follows that to include spin-orbit interaction, one should go beyond
nearest neighbors hopping and include the next-nearest neighbors. In graphene, it implies
hopping between sites belonging to the same sublattice. Hence, assume that the spin-orbit
interaction associated with a transition from two sites of sublattice A is of the form

Ha ot (K)=—it, Y v, (27 )explik-(a'-a)]. (7.74)

a’(nnn)
Here t,is a constant that characterizes the

coupling, and the factor Vaa,(rzs):il is

determined according to the direction of the spin
and the path of the electrons between the points.
In Fig. 7-16, we show the sign of this factor for . -
one of the spin states (say spin up). The rule is the

following: vaa,(T):+1 if while passing from A

sublattice point to its neighboring point on the
same sublattice, a nearby point of sublattice B is

on the right side of the path, while v, (T) =-1if

the point is on the left side of the path. For a spin Figure 7-16 Extension of the tight binding model to
include next nearest neighbor hopping in order to

pointing down, these signs should be reversed. account for spin-orbit interaction

This choice respects the symmetries of spin-orbit
interaction (3.23).

(c) Calculate the term (7.74), expand it to the leading (zeroth) order in the distance from
the Kand K’ points, and show that it is identical to the Kane-Mele term given by Eq.
(6.24). Find the relation between the parameters A and t,.
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8 Topological metals

This course is centered around the role of symmetry in condensed matter physics. Among
other issues, its role in identifying degeneracy points in the Brillouin zone. However,
another aspect of degeneracy points also applies to cases where the degeneracy is
accidental - the aspect of topology. In a nutshell, topology is concerned with characterizing
geometric objects, such as the surfaces illustrated in Fig. 8-1, by numbers. In the examples
of Fig. 8-1, it is the number of holes in the surface. The left panel of the figure shows a
surface that can be continuously deformed into a sphere (with no tearing or gluing), and
therefore we say that it has the topology of a sphere. The object on the right panel of the
figure has the topology of a torus, which is characterized by a single hole (a mug with one
handle has the same topology). The number of holes in a closed surface is a topological
(integer) number called the genus of the surface.

Figure 8-1 Surface having the topology of a sphere (left panel) and a torus (right panel)

As we shall see in this chapter, in some cases, degeneracy points of electronic spectra can
also be associated with topological numbers. The importance of this characterization rests
on the fact that, in general, these degeneracy points are not affected by small
perturbations. Similar to smooth deformations of surfaces that do not change the genus
of the surface, degeneracy points associated with topological numbers preserve their
identity under perturbation like impurity scattering or application of some external forces.
It is simply because integer numbers cannot be changed continuously. In these situations,
we say that the degeneracy points are “protected by topology”.

To introduce the main ideas of this field, we begin this chapter with a qualitative discussion
of mercury telluride (HgTe), showing how to obtain accidental (but robust) degeneracy
points in the spectrum, called Weyl points. Next, we present some general ideas of
topology, such as parallel transport and curvature, to motivate the introduction of Berry’s
curvature in quantum mechanical systems. The latter allows us to calculate the topological
numbers associated with band touching points. Finally, we discuss the exotic behavior of
the surface states in materials with the Weyl points spectrum.
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8.1 Energy bands in mercury telluride — a qualitative discussion.

Mercury telluride has the structure of a zinc blende crystal. Thus, the symmetry group of
this crystal is that of the tetrahedral point group T,. This group is also the little group at
the 7" point where k=0. The point group T, has two irreducible representations of
dimension 3, one of dimension 2, and two additional one-dimensional representations.
Thus ignoring the spin degree of freedom, the spectrum near the 7~ point is expected to
contain the typical band structure of light and heavy holes with three-fold degeneracy
emerging from the three p -type orbitals of the Te atoms and the s-type orbital of the Hg
atoms, as demonstrated in the left panel of Fig. 8-2 (see also Fig. 7-13). In this figure, we
denote degenerate energy bands by thick lines.

Now let us take into account the spin degree of freedom. In the absence of spin-orbit
interaction, all energy bands become doubly degenerate. However, in the presence of
spin-orbit interaction, one expects some of the degeneracy to be lifted. To Identify the
dimensions of the irreducible representations of the double group T,, one can see from

the rules on page 116 that it has eight conjugacy classes: {E}, {Q},{8c,}, {8Qc,},
{3c,,3Qc,}, {6S,},{6QS,}, and {60,6Qc}. Hence it has eight irreducible
representations. Five of these must be those of the original group (without spin),
containing 24 symmetry elements. Therefore, the dimensions of the additional three
representations satisfy the condition (%+(%+(5=24. The only way to satisfy this

equation is by choosing the dimensions of 4, 2, and 2. Thus the highest possible normal
degeneracy is fourfold.

-
N

Figure 8-2 A schematic illustration of the energy levels in a zinc blende crystal near the /~ point. Twofold
degenerate levels are drawn by thick lines, whereas nondegenerate levels are drawn by thin lines. Left panel
is the band structure in the absence of spin. Middle panel shows the normal ordering of levels in CdTe with
spin-orbit interaction, and the right panel shows band inversion in HgTe that appears when spin-orbit
coupling is strong.

CdTe HgTe
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From the above analysis, one expects that the typical band structure in the presence of
spin-orbit interaction will be similar to that depicted in the middle panel of Fig. 8-2. This is
indeed the situation in cadmium telluride which has the same crystal structure of HgTe.
However, in mercury telluride, relativistic effects are much stronger (because the atomic
number of mercury is 80 while that of cadmium is only 48), and these push the s-type
band down such that it crosses the two p -type bands, as demonstrated in the right panel

of Fig. 8-2. This phenomenon is called band inversion.

Band inversion generates two accidental degeneracy
points along the [1,1,1] direction. They are accidental
because they are not located at any symmetry point
of the Brillouin zone. To understand why, recall that
Zinc blende crystals are made of two
interpenetrating fcc sublattices (see Fig. 7-14),
therefore, the Bravais lattice is fcc, and the reciprocal
lattice is bcc. The corresponding Brillouin zone with
its special points is presented in Fig. 8-3. The global

band structure of HgTe, obtained from ab initio
calculations, and its magnification near the I point,

Figure 8-3 The Brillouin zone of HgTe

is shown in Fig. 8-4. Notice the difference between
the energy scales of the two panels.

0.004 3.0
0.002 2.0f
0.001 1.0 ]
3 008 5 00 k \
-0.001 -1.0
-0.003 -2.0
-0.004 -3.0
T X T i W

Figure 8-4 The band structure of HgTe. The left panel shows the local behavior near the I~ point along the

(1,1,1) direction (i.e., the line passing through the 1~ and the L points in Fig. 8-3). The right panel shows the
global band structure along the red path presented in Fig. 8-3. Taken from Zaheer et al. Phys. Rev B 87 045202
(2013).

The fourfold degeneracy at the I point results from the high symmetry of the crystal. One
may lift this degeneracy by reducing the symmetry of the lattice, say by applying external
stress. A stress applied along the [1,1,1] direction can be either compressive or tensile. In
both cases, it reduces the tetrahedral symmetry to C,,, and lifts the degeneracy. However,

the degeneracy is lifted in two different manners, as demonstrated in Fig. 8-5. The
compressive stress opens a gap in the spectrum, while tensile stress leaves lift the
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degeneracy into two degenerate points below and above the Fermi level, as shown in the
magnified view of the region near the /" point shown in the lower panel of the figure.

compressive stress 5
tensile stress

o /
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N |/ N\ /
N — N /
% 0.0 % 0.0 N4
1.0 /x 1 -1.0
2.0 & 2.0
-3.0 3.0
X I L W X r L

0.050

7

0.025 ’l

1

I

s o —> ,‘
‘\

-0.025 .

g J, perturbation

~ -
il TS

-0.050

Figure 8-5 The band structure of HgTe under compressive (left) and tensile (right) stress along the [1,1,1]
direction of the crystal. The lower right panel shows the splitting into four degeneracy points due to addition

JZ perturbation. Adapted from Zaheer et al. Phys. Rev B 87045202 (2013).

Each of the points marked by the red circles in the lower panel of Fig. 8-5 is threefold
degenerate due to the mirror symmetry of the deformed crystal about the plane that
contains the [1,1,1] axis. However, this symmetry can be broken by adding a perturbation
proportional to J, - the component of the angular momentum of the p -type orbitals in

the z direction.
The four degeneracy points that we obtained here are Weyl! points or Weyl nodes, and a

system with a spectrum that comprises Weyl points is called Weyl semimetal. It should be
emphasized that these are accidental degeneracy points obtained by “fine-tuning” of
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parameters and not due to symmetry. However, once formed, they are robust to
perturbations; namely, they will not disappear due to additional system factors that
cannot be controlled, such as impurity scattering or application of weak external forces.

8.2 Weyl points

The distinctive feature of Weyl nodes is that their linear spectrum is in the vicinity of the
band touching point. A 2x 2 matrix describes the local spectrum near such a point (in the
k- p approximation) because only two energy levels are involved. Hence, the most general

form of the local Hamiltonian is
H(sk)=hY viokr, with dety, #0, (8.1)
i
where 6k is the wavenumber vector measured from the Weyl point, 7, are Pauli
matrices, V; are some system-dependent parameters (having the dimension of velocity),

and without loss of generality, we choose the energy at the degeneracy point to be zero.

The Hamiltonian H (5k) is robust to perturbations, i.e., there is nothing we can do to get

rid of the band touching point. The reason is that we have used all 3 Pauli matrices;
therefore, any perturbation (which is not a trivial constant shift of the energy levels) is of
the form u-7, where g is some general vector function of Sk. However, this
perturbation can only shift the position of the Weyl point to a different location in the
Brillouin zone or change the slopes of the dispersion by altering the parameters v .

Denoting by V(Fi) the eigenvalues of the matrix Vv;and redefining the directions of the

coordinate system according to the corresponding eigenvectors, we obtain that the energy
spectrum is

e=+ Z(v@éki )2. (8.2)

i
This spectrum is linear, similar to that obtained
at the K -point of graphene (in the absence of
spin-orbit interaction). An illustration of this &
spectrum along the line, 6k, =0, is shown in
Fig. 8-6.

In order to have a spectrum with Weyl points,
one must have two non-degenerate energy 5k,

bands at any value of k other than that of the

Weyl point. This condition, however, cannot be Figure 8-6 The spectrum near Weyl point
satisfied in a system with both time-reversal
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and inversion symmetry. The reason is that the time-reversal operator, ® , takes k — —k
and flips the direction of the spin, while the inversion operator, i, takes k — —k without
flipping the spin direction. Thus, applying the two operations, i®, on a wave function
yields another state with the same wave number vector but with a flipped spin. However,
if the system is symmetric to both operations, this new state must have the same energy
as the original one. In other words, the energy at each value of k is doubly degenerate.
From these considerations, it follows that either inversion symmetry or time-reversal
symmetry (or both) must be broken in a system with Weyl points spectrum.

Consider now the isotropic limit of Hamiltonian (8.1), where v; = +v.&;, and assume that

Weyl point is at the origin:
H, =fhv.Kk-7 (8.3)

One obtains the same spectrum, & = AV, |k , for either choice of sign in this Hamiltonian.

However, the wavefunctions corresponding to the same energy are different. Treating 7
similar to a spin degree of freedom (which we call pseudospin), the eigenstates of the
system can be divided into two categories: One, when the pseudospin is parallel to k
(right-handed chirality), and the second is when it is antiparallel (left-handed chirality). A
state with positive energy will have k parallel to = for H, while antiparallel for H_.
Accordingly, one can associate a number (chiral charge) +1 to Weyl points described by
H, . As we shall see below, this number is a topological number similar to the genus of a

surface.

Comment: When 7 is taken to be the real spin of a fermion and v, replaced by the speed

of light, Hamiltonian (8.3) becomes the Weyl Hamiltonian for massless relativistic fermions
- called Weyl fermions.

8.3 Curvature, parallel transport, and topological numbers

My goal now is to weave the relation between
Weyl points and topology. To this end, it will be
instructive to start by presenting some of the basic
ideas of topology with the help of two-
dimensional surfaces. These ideas will be
generalized to quantum mechanical systems in
the next section

One of the intrinsic properties of a smooth

surface is its Gaussian curvature. To define it,

consider a point, I, on the surface. The normal to  Figure 8-7 The normal vector to a surface, a
the surface at this point, N, is a vector normal plane and the corresponding normal

. ’ ’ section a surface (dashed line)
perpendicular to the tangent plane at the same
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point. Planes that contain the normal vector are called normal planes, and their
intersections with the surface are curves called normal sections, see Fig. 8-7. For each
normal section, one can define the osculating circle at the point, r. It is the circle residing
on the normal plane and touches the point r additional pair of points on the normal
section (one from each side of r) that are infinitesimally close to r, see Fig. 8-8.

osculating circle

Figure 8-8 the osculating circle at point I of a normal section

The normal curvature, x, associated with a normal plane is the inverse of the radius of
the osculating circle. In general, this curvature depends on the direction of the normal
plane. The maximal and minimal curvatures, x; and «,, are called the principal curvatures.

The Gaussian curvature of the surface at the point r is defined as the product K = xx,.

The sign of the Gaussian curvature is positive if both osculating circles, associated with the
principal curvatures, reside on the same side of the surface, while it is negative if they are
located on both sides of the surface, see Fig. 8-9.

K=k1k,>0 K=k1k,<0

Figure 8-9 Examples for points on a surface with positive (left) and negative (right) Gaussian curvatures
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The above definition of the Gaussian curvature utilizes the accommodation of the surface
in a three-dimensional space. But imagine the existence of intelligent two-dimensional
creatures living on a two-dimensional universe in the form of a surface - would they be
able to know and measure the Gaussian curvature of their world even though they cannot
move into the third dimension? The answer is yes! and it relies on an alternative definition
of the Gaussian curvature based on a procedure called “parallel transport”.

Parallel transport is a method for transporting geometrical objects (say vectors) along
curves on manifolds (say surfaces). Let C(t) denote a curve on a manifold parameterized
by t, and let V (t) be a vector field defined along the curve. In a flat space, we say that

V (t) is kept parallelon C(t) if dV (t)/dt =0. In other words, when the direction of V/ (t)

is independent of its position along the curve, as demonstrated in the left panel of Fig.

8-9. However, if the C(t) resides on a non-flat surface, the situation becomes more
complicated. We say that V (t) is parallel transported along the curve if the orthogonal

projection of dV (t)/dt =0 on the tangent plane to the surface at C(t) is zero, see right
panel of Fig. 8-10.

Figure 8-10 Parallel transport of vectors along a curve in a flat (left) and curved (right) surface

This definition ensures that the two-dimensional creatures walking along the curve C(t)

will see no change in the direction of the vector V (t) Notice that to characterize parallel

transport one needs only the curve and the tangent planes to the surface. Therefore,

parallel transport of a vector along a curve, C(t) , is the same for any two surfaces tangent

along C(t) . We shall use this property in the following example.

Example: Parallel transport along a latitude circle on a sphere.

Parallel transport along some general curves can be tricky to visualize. As an example, let
us consider the parallel transport along a latitude circle on a sphere, as illustrated in Fig.
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8-11. Here one can use the fact that the same parallel transport is obtained for a circle on
a conical surface that is tangent to the sphere, as shown in the figure. However, the
curvature of a conical surface is zero everywhere (except at the cone apex where it is not
defined); therefore, we may cut open the cone along the dashed line shown in the left
panel of the figure and flatten it onto a plane as demonstrated in the right panel. On a
plane, parallel transport becomes easy because one has to keep the vector in the same
direction as shown in the right panel of the figure. Gluing the cone back along the dashed
line gives the parallel transport of the vector on the sphere. Notice that, in general, the
parallel transport of a vector along a closed curve on a surface (which is not flat) results in
a finite angle 6 between the initial and final directions of the vector. Simple geometrical
calculation shows that for a latitude circle, with angle @, the angle 6 defined in the figure

is &=2r(1-cosf)*.

. 2m cos(6)
R

Figure 8-11 Parallel transport on a latitude circle on a sphere

Parallel transport becomes much easier on geodesics. A geodesic cure is defined as a curve
along which parallel transport keeps a fixed angle between the vector and the tangent to
the curve. It can also be shown that a geodesic going through nearby points is the shortest
possible trajectory between these points (when the points are far apart, a geodesic is a
stationary path, namely a path whose length is, essentially, not affected by small
deformations).

! The angle -2z cos@ is the precession angle of Foucault pendulum after 24 hours. Also, the contribution
of Thomas precession to spin-orbit interaction comes from a similar reason. It is due to curvature effect which

results in rotation of the spin by an angle —27 cosh (V/c) (where Vis the particle velocity and C is the speed
of light) upon completing a closed trajectory.
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Example: Parallel transport along geodesics on a sphere.

The geodesics on a sphere are great circles, i.e.
intersections of the sphere with planes passing
through its center. One can construct a closed-
loop from few geodesics, say by starting from the
north pole and descending along a longitude to
the equator; then follow the equator for some
distance, and come back to the north pole along
a different longitude, as shown in Fig. 8-12.
Starting from a vector parallel to the latitude we
see, that parallel transport along this closed path

results in a finite angle between the initial and

final vectors. Figure 8-12 Parallel transport along geodesics

Clearly, the curvature of the surface affects the value of the angle & obtained by parallel
transport because it is always zero in a flat plane. Moreover, it turns out that the Gaussian
curvature can be defined in terms of this angle as follows: To calculate the curvature at
some point, ', on the surface, we construct a closed-loop (on the surface) around that
point, call it C,, and calculate the mismatch angle, 5Cr' obtained by parallel transport

along that loop. If the area enclosed by the loop is A then the Gaussian curvature is
obtained from the limit where the loop length shrinks to zero by

I

K=Ilim —. (8.4)
G0 A

In the example of the parallel transport along the latitude, we obtained that
8=2r(1-cosd).On the other hand, the area enclosed by the loop s

A= R227r(l—COS¢9), where R is the sphere radius, hence the ratio 5/ A=1/R? (which is

independent of @ because we consider a simple case) is the curvature of the sphere.

Finally, the relation between the Gaussian curvature, K, and the genus, ¢, of a closed

surface, X, is given by the Gauss-Bonnet theorem (which we present without proof):

1
—_— dsK =1—q. 8.5
4ﬂ<j§j’> g (8.5)

Here the integral is over the whole surface and ds is an infinitesimal area element on this
surface. The Gauss-Bonnet theorem shows that the topological number g (the number of
holes in the surface) can be obtained from an integral of the curvature over the surface. It
is straightforward to check that the above formula applies to a sphere.
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8.4 Berry’s curvature

Consider the Hamiltonian, H, , which depends on a set of parameters, X = (X, X,, X;,*** X,,).

These parameters can be, for example, the three components of an external magnetic
field, the strength and the direction of tensile stress acting on a system, some microscopic
parameters that determine the structure of the potential, etc. For simplicity, we assume
the system size to be finite, such that the energy levels are discrete and that the system
does not possess symmetries so that all degeneracies are accidental. For each typical value
of X, diagonalization of the Hamiltonian, H,, yields a different set of non-degenerate

energy levels and wave functions:

H

X

) =el

y/§”>> : (8.6)

Now suppose that we can change these parameters, X(t) , very slowly in time (as slow
as we wish), then adiabatic theorem tells us that assuming the system does not pass

through a degeneracy point, it will remain in the same n -th eigenstate, 1//)((?2) (t)> at any

time t, if it has been prepared in the n-th eigenstate when t=0, ‘y/f(r(‘g))(o» This
property also holds when the energy of the n-th state changes significantly over time.

Now consider the adiabatic evolution of the system along a closed contour in the
parameter space, C(t), such that at times t=0 and t=T the control parameters are
equal, X(T) = X(O). In this case, the wave function of the system must return to its initial

state up to a phase factor:
"/’ an (T )> = eXp(i¢)‘l//§?%> (0)> : (8.7)

Naively, one would guess that if the change of the parameters is sufficiently slow, then for
each infinitesimal time interval the energy of the particle, gf(?t)), can be assumed to be
constant; therefore the phase, ¢, is the total dynamical phase accumulated during the

evolution of the system, i.e.,

T

1r
¢dynamical = _%J‘gi(t))dt . (88)

0

(In the case where the parameters are kept fixed in time, X(t) = X, this formula reduces

to the familiar result, @y .mica :—gf(”)T/h) . However, Berry showed that there is an

additional contribution to the phase which is geometric,

¢ = ¢dynamical + 7n (C) ’ (89)
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where y, (C) depends on the contour C in the parameter space (but independent of its

time parametrization). This phase is called the Berry phase (Michal Berry calls it the
geometrical phase).

Before we turn to calculate y, (C) let us draw some parallels between quantum

mechanical systems and two-dimensional geometrical surfaces: The parameter space in
the quantum problem is analogous to the two-dimensional surface; Close contours on this
parameter space correspond to closed loops on the surface; Vectors on the geometrical
surface are analogous to eigenfunctions of the Hamiltonian, and parallel transport is the
adiabatic evolution of the system. Finally, the mismatch phase that we have obtained by

parallel transport along a closed contour, &, is analogous to Berry’s phase, , (C), as we
shall see below.

This analogy suggests that one can also define the curvature of a quantum system in the
parameter space similar to the definition of Gaussian curvature (8.4), and that the system

may be characterized by topological numbers obtained by an integral of the curvature,
analogously to the Gauss-Bonett theorem (8.5).

To calculate Berry’s phase, we solve the time-dependent Schrédinger equation,

., 0 (n) _ (n)
'hﬁ‘%@) (t)> =Hyw[Va (t)>r (8.10)
with a wave function of the form
! T i
0

Here, 7/(”) (t) is some unknown function of the time, while ‘yli'(‘t))> is a solution of the time-

independent Schrodinger equation (8.6) with X = X(t). The left-hand side of Eq. (8.10)

gives:
)<t G| 4 [t o)
0
oo -Le 2 )
+ihexp[—i%j-gi?t),)dt#iy(“)(t)}ax@—?)-a%l//in)> .
)

while from (8.6), the right-hand side is:

Vi (t)> =&y "//i?g) (t)> : (8.13)
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Hence equating the last two expressions we obtain:

a7 m\, X0 ]2 w
B h = =0. 8.14
dt “/jx(t)> +l at 8X l//x > ) ( )
Multiplying the above equation from the left by <1//)((?3) we obtain:
dy"(6) _oxX(t) 1 w1 @)
= : — 8.15
dt "o <l//x OX ‘% >x—x(t> (813

The Berry phase is obtained by integrating this formula along the closed contour in the
parameter space,

T T

dy™(t) ox(t) 8
C :jdt - _[dt )] <, , 8.16
7, (C) J g % ax\l//x >X_X(t) (8.16)

and changing the variables of integration we obtain
. 0

C)= <JSd (=l MY, 8.17
7:(C) 't x-(w 8X\t//x> (8.17)

This formula shows that Berry’s phase is purely geometrical because it is independent of
time. It only depends on the contour in the parameter space. One can also prove that it is
purely real (see Ex. 2), thus

2 (C)Z—lmgde-<w§”) %\w@) (8.18)

The integrand in the above formula is called Berry’s connection.

Finally, for simplicity, let us restrict the discussion to a three-dimensional parameter space

where X =(X,X,,X;). In this case, we can use Stokes’ theorem to replace the above

contour integral with an area integral:

7“(C):"mﬂd5'§><<wi”)

where dsis an infinitesimal area element in the parameter space whose direction is

%\w@} , (8.19)

determined by the right-hand rule with respect to the direction of the contour C. The
integral is taken over an arbitrary surface whose boundary is the contour C, as shown in
Fig. 8-13.

Using the identity V x Vf (X) =0 we can rewrite Eq. (8.19) in the form:

7n(C):—Im”ds-Vn(x) , (8.20)
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where

2
| -L 8.21
OX Vx > (8.21)

V, (x)=1m Syl

%\wi”} = lm<§w§”)

For sufficiently small loop in the parameter space, V, (X) is approximately constant. Thus,
the integral (8.20) may be replaced with the product of V, (x) by the area of the surface

enclosed by the loop. Thus, in analogy with definition (8.4) of the Gaussian curvature,
V, (X) should be interpreted as the curvature of the parameter space. This curvature is

called Berry’s curvature or the adiabatic curvature.

X3

X2
X1

Figure 8-13 The surface integral for the Berry phase in a three dimensional parameter space

Example: The curvature near a band touching points (Weyl points)

In the vicinity of a band touching point, only two bands are essential, and the Hamiltonian
of a system can be approximated by a 2x2 matrix of the form (8.3). This Hamiltonian
contains three parameters which are the three components of Bloch’s wavenumber
vector. The number three is also the minimal number of parameters needed to obtain an

accidental degeneracy point. In what follows, we calculate Berry’s curvature of the
Hamiltonian (8.3), where x =k = (k k., k ) is the parameter space. Consider first, H_,

X1 Ny Rz

and let us calculate Berry’s curvature associated with the upper energy level |d> for which

H+

d)=nv.k|d). (8.22)

In chapter 3 (see Egs. (3.36), (3.37) and Ex. 2), we proved that this state is given by:
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d

- sin(gjexp(iqﬁ)

, (8.23)

where @and ¢ are polar coordinates that parametrize the Bloch wavenumber:
k = k(cosgsing,sin gsin 6,cos 9). (8.24)

From formula (8.21), it follows that the | -th component of Berry’s curvature is given by

v (k)] =[Ima—kx<d|a—k|d>l “Ims, %<d|%|d>' (8.25)

where ¢

;1 Is the antisymmetric tensor and repeated indices should be summed over. Using

Eqg. (8.23), we have

0 . (8
5 5 COS(E) 1 —sm(zj o0 0 o6
d> = +

ol oy T2l ey lak Tlisin[ Qe o ©20)
) jsin(;}e”’ cos(gje”’ ) 2 :

therefore

O 1y it 0] 22
<d|6kj|d>—|sm (2)@1«' (8.27)

]

Substituting this result in Eqg. (8.25) we obtain

_ainD)cos[ 2. 2020
[V (k)] _sm[zjcos(zjem Xk (8.28)
Thus
V(k):Si%HVkﬁxvm, (8.29)

where V, is the gradient operator in Kk space. Working with polar coordinates,

o 1,0 1 -0
—+—O0—+—0—,
ok k 06 ksingd 0¢

v, =k (8.30)

we obtain

1, - K
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Repeating the calculation of H_ (see Ex. 3) yields the same result but with a minus sign.

Thus, the Berry curvature of Weyl points described by the Hamiltonians (8.3) are
VO (k)=t—. (8.32)

The vector fields associated with these curvatures are illustrated in Fig. 8-14. This figure
shows that band touching points act as sources and sinks of Berry’s curvature.
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Figure 8-14 The vector fields of Berry curvature associated with Weyl points

8.5 Chern numbers and the chiral charge

Similar to the Gauss-Bonnet theorem (8.5) one can integrate v (k) over a closed surface

surrounding the band touching points. Formula (8.32) has the form of an electric field
generated by a charged particle, and from Gauss theorem, we obtain the analog of the
Gauss-Bonett theorem:

_1 VO (k)=
C_zﬁcﬂmsv (k)==1 (8.33)

The integer number, (’, obtained when integrating Berry’s curvature over a closed surface
in momentum space is called the Chern number. In the case of Weyl point, it is the chirality
charge. This number is a topological number analogous to the genus of a two-dimensional
closed surface. However, in general, the Chern number may be any integer,
C=0,+142.-.

An important constraint on the Chern numbers in a compact domain (such as the Brillouin
zone, which is periodic) is that their total sum is zero. It is because the field lines of the
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source of Berry curvature on a compact domain must end somewhere within the domain,
and the only possibility is to have a sink. Thus, Weyl points must appear in pairs of opposite
chirality charges. This property is known as the Nielsen-Ninomiya theorem. It implies that
the only way of removing a Weyl point is by annihilating it with another point with opposite
chirality.

The Nielsen-Ninomiya theorem dictates the minimal number of Weyl points in a system.
As we saw in Sec. 8.2, one must break either time-reversal symmetry or inversion
symmetry (or both) to obtain Weyl points. Time reversal symmetry reversers the
momentum Kk — —k and the pseudospin 7 — —7, and therefore does not change the
chiral charge. Thus, a system with time-reversal symmetry must have at least four Weyl
points to satisfy the Nielsen-Ninomiya theorem. On the other hand, inversion symmetry
reverses the momentum, k — —k, but does not change pseudospin 7 — 7. Hence the
chiral charge is reversed by inversion. Thus, in a system with broken time-reversal
symmetry, one can satisfy the Nielsen-Ninomiya theorem with only two Weyl points.

8.6 Dirac points

Dirac points are two Weyl points of opposite charge sitting at the same point in the
Brillouin zone. The simplest Hamiltonian describing such a point is a 4x4 matrix of the

vk -7 0
H= . (8.34)
0 —hvek-t

form:

However, adding generic perturbations, such as

o)
oH = , (8.35)

m O

mixes the two Weyl points and opens a gap in the spectrum. An example of this scenario
we saw when we added spin-orbit interaction to graphene. Thus, Dirac points are not
genetic because they require fine-tuning of parameters to obtain a fourfold degeneracy of
the energy levels. Nevertheless, breaking time-reversal or inversion symmetry may split a
Dirac point into two Weyl points of opposite charges, which are topologically protected (A
similar procedure was employed for HgTe, where degenerate points were separated by
adding J, perturbation that breaks time-reversal symmetry.)

8.7 Fermi arcs

Any physical system is finite, and one naturally asks what happens at the boundary of a
system hosting the Weyl points spectrum. To keep the discussion simple, let us consider
Weyl fermion with one chiral charge, described by the Hamiltonian:
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H =-ihv.z-V, (8.36)

and assume that the system occupies half-space, x>0. Namely, it has a boundary at
x=0. What are the corresponding boundary conditions for Weyl fermions? Consider a
particle moving perpendicular to the x =0 plane. Usually, one expects the particle to be
reflected and reverse its direction, keeping the component of the angular momentum in
the X direction intact. However, this will imply that the chirality of the Weyl fermion is
reversed, as illustrated in Fig. 8-15.

Figure 8-15 reflection that preserves angular momentum and reverses chirality

Thus, to preserve the chirality of the reflected Weyl fermion, the angular momentum
cannot be preserved on the boundary. A boundary condition that can do the work is a
condition that the wave function on the boundary is not an eigenfunction of 7, . Instead,

it is an eigenfunction of the spin in some perpendicular direction, such as:
v =My]|_, with M =7, cosp+r,sing (8.37)

One can prove (see Ex. 5) that this boundary condition ensures that H is hermitian, i.e.,
(w,|Hw,)=(Hy,|w,) for all wavefunctions that satisfy (8.37). In general, there will be an
additional momentum-dependent contribution to the matrix M ; however, assuming the

energy to be sufficiently close to the degeneracy point, the momentum is also small;
therefore, this contribution can be neglected. The angle ¢ depends on the microscopic

details of the crystal that we ignore. Here, without loss of generality, we rotate the
coordinate system around the X-axis such that ¢ =0 so that the boundary condition

(8.37) reads:
W|x:0 = TY V/|x:0 ' (838)

Now let us look for a solution to the time-independent Schrodinger equation with zero
energy,
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—ihv, Txi+ry£+rz2 y=0, (8.39)
OX oy oz

assuming that w =7,y everywhere (namely, the particle’s spin points in the y direction),

and Oy /oy =0, i.e., the y component of the particle’s momentum, vanishes. Using the

following property of Pauli matrices, 7, = —iz'xz-y, the above equation reduces to
. 0o .0
—lhaver, | ——1— | =0. 8.40
Flx [GX az}// ( )

The solution to this equation is
w =exp(-ik,z+k,X)y, with y,=7v,. (8.41)

More generally, the solution of the Schrédinger equation, Hy =gy, for non-zero

(positive) energy, ¢, is:
v =exp(ik,y)exp(-ik,z +k,X)y,, with &=hv.k, . (8.42)

This solution is normalizable only when k, < 0. Therefore, it describes edge states localized
near the boundary of the sample. When k, — 0 the solution (8.42) reduces to a plane

wave moving in the Yy direction- indistinguishable from the bulk solutions.

The energy ¢ is independent of k, along the line k, <0. Hence, on the two-dimensional
Brillouin zone associated with the surface states, the line k, <0, ky = g/hVF , should be
part of the Fermi surface. This line is called “Fermi arc”. The description that we built for

this line holds only sufficiently close to zero energy where the Hamiltonian (8.36) provides
a valid approximation to the system.

Finally, repeating the above calculation for a Weyl fermion with opposite chirality shows
that normalizable solutions exist for k, > 0.

Now consider a system with broken time-reversal symmetry having two Weyl points of

opposite chirality located, say at (0,0,iko). From each one of these points, a Fermi arc

emerges. However, since these arcs should end at points where surface states become
bulk states, the two arcs should merge and form a single curve connecting the two Weyl
nodes, as illustrated in Fig. 8-16. This behavior is very different from the traditional view
of the Fermi surface, which should form closed loops in the Brillouin zone of a two-
dimensional system. However, it is because the system is not indeed two-dimensional.
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2D Brillouin Zone

18 THLId
=

Figure 8-16 The Fermi arc in a system containing two Weyl points corresponding to Fermi energy & =0.

8.8 Exercises

Find the geodesic on a conical surface and use it to calculate ¢ .

Prove that Berry’s phase is real.

Calculate the Berry curvature of H_ =-#Av k-7 associated with the upper energy

band.

Prove the following formula for Berry’s curvature:
oH,

<W(Xn) OX

4
Vn(X)= |m; (5(")_5('“))2

ox . (8.43)

Advice: insert the Identity operator, Z‘V’im)x‘//im) , torewrite Eq. (8.21) in the form

p ™ x ("

iw§“>> . (8.44)
oX

0
Vn(x):lmz<&l/,£)
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Now take the derivative of the Schrédinger equation (8.6) with respect to X, multiply

it from the left by <1,//(m)‘ and show that

X

oH
OX

P (n)> _ <l//>(<m)

a_xl//x

(8.45)

<w§m)

(n)

X

&

Using the last two equations, prove Eq. (8.43).

5. Prove that the Weyl Hamiltonian is Hermitian in the Hilbert space spanned by wave
functions that satisfy the boundary condition (8.37). Use the anti-commutation
property of Pauli matrices, which implies that

{M,z,} =Mz, +7,M =0. (8.46)
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9 Crystals in a constant electric field

In this chapter, we study the response of the electrons to a constant (time-independent) electric
field in crystals. This issue has many aspects, and we shall present five of them: We begin with
the physical response of dielectric materials to an electric field. Here we shall see how
symmetries constrain the response of these materials to the external electric field. Next, we
consider metallic systems in the presence of a time-independent electric field, focusing our
attention on the dynamics of the electrons. To this end, we shall develop the effective mass
approximation that holds when the energy bands are far apart. Then we will use this
approximation to explain the phenomenon of Wannier-Stark oscillations. Next, we consider
situations where the effective mass approximation fails when two energy bands come too close
to each other. Finally, we discuss the Landau-Zener tunneling, which describes the dielectric
breakdown in the aforementioned situation.

9.1 Physical response in dielectric crystals

Consider a dielectric (an insulator) crystal under the influence of an external electric field whose
components are E,. In such materials, the electric field polarizes the system by creating a finite
polarization vector, P . Here we shall assume that the external force and the response are
smooth functions in space, i.e., the spatial changes in these functions are on length scales that
are much larger than the lattice constant. Generally, one expects that for a sufficiently weak
electric field, the response of the system is given by the asymptotic expansion:

P =e| 29E, + 22 ELE, + 4% (E,E Ej+- |, (9.1)
Pockless Kerr

where repeated indices are assumed to be summed over, and &, is the dielectric constant of the

vacuum. The first term of this expansion represents the linear response of the system. Here ;(Sﬁ)

the electric susceptibility tensor. The second term is responsible for the Pockles effect. The latter
is an electro-optical effect that changes or produces birefringence by changing the refractive
indices proportional to the electric field. The third term is responsible for the Kerr effect. It also
affects the crystal's optical properties, but the change in the refractive indices is quadratic in the

(n)

electric field. More generally, the term y'" is called the n-th order susceptibility tensor.

Notice that the asymptotic expansion (9.1) does not describe a situation where the response has

an essential singularity, such as eXp(— E/|E ), where E. is constant. In the last section of this

chapter, we shall deal with a case of this type associated with dielectric breakdown. Here we
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neglect these terms and see how symmetry constrains the number of parameters in the

expansion (9.1). The nominal number of parameters in;((l) is 3x3=9, but time-reversal

symmetry reduces this number to 6; ;((2) contains 18 parameters and ;((3) has 30 parameters.

The guiding principle for applying symmetry considerations is that the terms on the left-hand side
of Eq. (9.1) should belong to the same irreducible representation of the terms on the right-hand
side of the equation. If this is not the case, then applying some of the symmetry operations to
Eqg. (9.1) would give different results on both sides of the equation. As an example, consider a
system with a symmetry C,,. The character table of this point group is displayed below.

Ch| E & o(xz) o)(y2)

A |1 1 1 1 z X2, y2, 2% | 2%, %%z, y%z
Al 11 -1 -1 R, Xy XYz

B, | 1 -1 1 -1 xR, Xz xz?, x%, xy®
B, |1 -1 -1 1 Y,R, yz yz%, y3 X%y

The component of the polarization vector, P, , and those of the electric field, Eﬂ, are associated
with the X, y, and z basis functions. For example, P, belongs to the A, irreducible
representation; hence all the terms on the right-hand side of Eq. (9.1) (associated with P, ) must
also belong to A, irreducible representation. Thus, using the basis functions of the identity

representation, we obtain:

A Po= VB, + OB+ OB+ f A B+ 48 ER 4 4 EE 4+ 48 EEZ. (9.2)

z;22 z; z; 2,222 Z;ZXX z;2yy

Similarly, the expansions of the two other components of the polarization vector are:

Bl: PX :Z)El)EX_‘_Z)((,Z)zZEXE +ZX XZZE E2+ZX XXXE3+ZX XWEXE)%' (9'3)
B,: P, =VE +42EE +49 EE +, EX+ 0 EEZ (9.4)

Why P, does not contain the term ;((.2) EX2 in its expansion? Because if we apply C,rotation on

X; XX

the x component of vectors, P, - —-P, and E, - -E_, but 272 E’ does not change sign. For

X X X; XX

the same reason P, does not contain the term ;(izx)y E,E, inits expansion. On the other hand, the
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Z component of a vector is not affected by the C, rotation, therefore, P, contains the term
;(izx)z E E, in its expansion.

For another example, consider a crystal having the symmetry of a regular tetrahedron. The point
group in this caseis T, , and its character table is listed on page 144. Looking at the basis function

of this character table, we see that the polarization vector belongs to the F, irreducible

representation, hence

P, E, E,E, E® E,
P 1=xY E, |+ 27| EE [+ 17| E |+ 1VE?| E, (9.5)
P, E, E,E, E® E,

Here, the high symmetry of the system severely constrains the number of parameters that
determine the response.

9.2 The effective mass approximation

In this section, we consider metallic crystals. Our aim is to characterize the response of the
electrons in such systems to the application of an external electric field. Namely, we are
interested in the solution of the Schrodinger equation,

n oo _
{—%V +u(r)—e¢(r)}//—8w. (9.6)

The first two terms on the left-hand side of the equation describe an electron movingin a periodic
potential, while the third term represents its interaction with the external electric field, E,

represented by the scalar potential (p(l’) =—E-r. Here —¢€ is the electron charge and mis its

mass. The primary simplifying assumption that allows solving this problem is that ¢>(r) changes

very slowly in space - over distances much larger than the lattice constant. This condition,
however, does not preclude situations where the scalar potential is large; therefore, its effect
might be non-perturbative.

As a reference point for our future discussion, we first consider the problem of a free-electron
under the influence of a constant electric field,

2
{—;—mvz+eE~r}//=gw. (9.7)

To obtain the solution of this equation, it is convenient to express the wave function as a
superposition of plane waves,
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d°k
(27)

w(r)zj —c(k)exp(ik-r), (9.8)
where c(k) are the Fourier expansion coefficients. Substituting this formula in the kinetic energy
term gives:

d% #°k®

2 d
h VZJ‘ dk :
(27) 2m

am Y (2z)

c(k)exp(ik~r):j

o c(k)exp(ik-r), (9.9)

while the potential energy term may be manipulated using integration by parts:

eE-rJ' ddkd c(k)exp(ik-r):ej ddkd c(k)E-_iexp(ik'r)
(27[) (27[) iok

do ’ (9.10)

=ie E-| —c(k) |exp(ik-r) .

J gy & Lot jowticn

Thus, the Schrodinger equation in K space is a first-order differential equation:

21,2

B‘; +ieE-aik}c(k)=gc(k). (9.11)

The separation of variables in this equation yields a plane-wave solution in perpendicular
directions to the electric field. In what follows, we shall ignore this trivial part of the solution and
focus our attention on the wavenumber component parallel to the electric field. Thus, the
interesting part of Eq. (9.11) is along the electric field direction, where the equation becomes

nk* . _ 0
[ o +|eE8—k}c(k)_gc(k). (9.12)

The solution of this equation is:

i h’k? i (KK
c(k)=c, exp{g.[dk[ - —5H—Co exp{g[ - —gkﬂ, (9.13)

where C, is the normalization constant. Returning to real space using the inverse Fourier

< dk i h? . &
X)= Xcoexp| — K3 +ik| x——=—
v(x)=] 550 pL(ZmeEj " ( eEH

transform gives

—00

() (g
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where Ai (z) is the Airy function, and we choose the electric field to point in the direction of the

X axis. The behavior of this wave function is depicted in Fig. 9-1. In the above solution, the
electron energy may assume any value. However, different energy values only shift the particle's

turning point by 8/eE along the X axis. Beyond this turning point, the wave function decays
exponentially.

Y(x)

AN

LAATAATRVAVAE

Figure 9-1 The Airy function describing an electron in a constant electric field

We turn now to discuss the case where the electron moves in a lattice. Here it is natural to expand
the wave function of the electron in the basis of Bloch’s wave functions:

d k ()( r)exp(ik-r), (9.15)

JBZ

where ¢£”(r)exp(ik-r) is the Bloch function of the j-th band, Cj(k) are expansion

coefficients, and the integral is over the first Brillouin zone. In this basis, the part of the
Schrodinger equation which does not include the electric field yields

[_h_w } . (j)(k)¢|£j)(r)exp(ik-r), (9.16)
2m j BZ

where gj(k) is the eigenenergy of the particle in the absence of the external electric field.

Consider now the contribution from the electric field. Here integration by parts gives:

d k ¢, (k! (r )(eE-%jexp(ik-r)

eEr

-2 ] ddka :[‘eE'a%jC;(k)¢i”(r)}exp(ik-r) (9.17)

_ ¢|£j)(r)+ieE-—a¢g:((r)cj(k)}exp(ik-r)

- ieE-—aCj (%)
i BZ (2”) ok
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The first term in this integral is analogous to the free particle problem, see Eq. (9.10), but there
is an additional term proportional to i8k¢,£j)(l’). The latter is a periodic function of I with
periodicity of the lattice because ¢£j) (I‘) is the periodic component of Bloch’s wave function. For
any given value K, the set of functions { () (r)} with j'=0,1,... forms a complete basis for any

function defined in the unit cell with periodic boundary conditions. In particular, one may expand

the function iak(/ﬁé” (r) in this basis:

8¢k ) .[ddr ¢k ¢k1)*(rr)¢lij’)(r):Zij’(k)ﬁi’)(r)’ (9.18)

T

where the integral is over the volume of a unit cell, and we choose the periodic components
Bloch’s wave functions to be normalized as follows:

[drg " (Mg (r) =05y (9.19)

Thus, the difference between the equation of a free electron and that of an electron in a lattice
is the vector matrix element:

< ‘ ‘¢k>. (9.20)

The diagonal elements of this vector are the Berry connections. Substituting (9.16)-(9.20) in the
Schrodinger equation (9.6), we obtain that, in the basis of Bloch’s wave functions, it reduces to

{gj (K)+ieE .aik}aﬂ, +eE-Q, (k)}cj, (k) =g, (K) (9.21)

The first two terms on the left-hand side of the equation are diagonal in the band index, but the
third is an infinite matrix. Nevertheless, in many cases, the contribution of this term is negligible.
We can estimate it to be proportional to the lattice constant,

4
b

a¢k ~‘¢k“)‘a, (9.22)

o

while the term 10, (which is, essentially, representation of the operator I' in momentum space)

can be of the order of the size of the sample. The effective mass approximation is the
approximation where eE-Q;; (k) is neglected altogether. Within this approximation, Eq. (9.21)

reduces to
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[gj(k)+ieE-§}cj(k):gcj(k). (9.23)

The meaning of this approximation is that we ignore possible coupling between different energy
bands. Thus, we expect it to break when two energy bands intersect or become close to each
other. We shall return to this issue later in section 9.4. Meanwhile, let us explore the implications
of the above formula for electron dynamics.

9.3 Stark ladder and Wannier-Stark oscillations

Eqg. (9.23) has the same structure as that of a free electron (9.12). The critical difference between
the two cases is that, now, one has to impose periodic boundary conditions on the expansion
coefficients, C; (k), at the edges of the Brillouin zone. To keep the discussion simple, in what

follows, we assume that the structure of the Brillouin zone and the direction of the electric field
allow separation of variables, such that the periodic boundary condition in the direction of the

(L)

where b is the reciprocal lattice constant.

electric field is

Integration of Eq. (9.23) gives

k

c;(k)=c,exp éjdk’[gj(k’)—g] ) (9.25)
b

and imposing the boundary condition (9.24) leads to

b
i i

exps— | dk'| . (kK')—¢& |p=expys—]| | dk'e. (k')—¢&b |¢ =1. 9.26
o [ 1) -] o ] [ )0 026

2

This condition is satisfied only for discrete values of the energy satisfying the equation:
L gnz—”—_[dk’gj(k’) =27n (9.27)
ek a g

with integer n, i.e., for
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dk’ ,
&, =neEa+aJ'—gj(k). (9.28)
& 27
The second term on the right-hand side of the equation is a constant. Thus, we obtained a set of
equidistant energy levels similar to those of a harmonic oscillator. This series of energy levels is
called the Stark ladder. It implies that if we have prepared the electron in some typical wave

packet, its motion should be periodic in time with frequency @ =eEa/n .

A physical picture of the periodic behavior of the electron follows from the semiclassical analysis
of the Hamiltonian

H =e(k)+eEx, (9.29)
where &(k) is a periodic function of K . Hamilton’s equations for this system,

-

(9.30)
hk = —eE,

yield a linear time dependence of the wavenumber, k =—¢eEt/% . On the other hand, the velocity,

being a derivative of £(k), is periodicin K,

v(k+b):v(k+2§j:v(k). (9.31)

Hence v(—eEt/h) is a periodic function of time with a period 7 given by

eEr 2rx 27h
= r1=—

= . (9.32)
h a eEa

These oscillations of the electron in the lattice are called Wannier-Stark oscillations. Their
intuitive explanation is as follows: Imagine an electron initially at the bottom of the band. In this
region, the effective mass is positive, and the electric field accelerates the electron. This
acceleration raises the electron's energy until it becomes close to the top of the band, where the
effective mass becomes negative. Consequently, the electric field decelerates the electron, and
its energy reduces until the effective mass becomes positive again and the process repeats itself.
The excess momentum gained by the electron in each period of this motion is transferred to the
lattice via the Bragg reflection mechanism (when the electron reaches the edge of the Brillouin
zone, its wavelength is twice the lattice constant).
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9.4 Beyond the effective mass approximation —the K- p approximation

In section 9.2, we mentioned that the effective mass approximation breaks down when energy
bands become close to each other. This section aims to show how one can improve the
description in these situations. Before that, let us illustrate the breakdown of the effective mass
approximation with a simple example.

Consider a one-dimensional system with two &(k)

energy bands, as illustrated in Fig. 9-2. We
assume that the gap between the bands, 2A, is .

band
much smaller than the band’s width , &,,.4,

2A

A
—<1, (9.33)
gband

hahr\\\\\iﬁ
=

b |-

and that all other bands are sufficiently far so that

their effect can be neglected. Figure 9-2 An illustration of a band structure where
the effective mass approximation breaks down
Near the point where the gap is minimal, the

Hamiltonian of the system can be approximated, locally, by a 2x2 matrix:

&, +hvok A
H = , (9.34)
A &, —hvok

where 0K is measured relative to the wavenumber at which the gap is minimal, and &, is the

middle energy between the bands at this point. Diagonalization of this Hamiltonian gives the

energy levels &, =&, +1/(7vok)’ +A? and the wave functions:

2 2 2 2
hvok+(hvok)” +A% | 40 =N | vok= (Avsk) +A% 1 g 35)

A A

A’ =N,
where N, are the normalization constants. Substituting these wave functions in Eq. (9.20) gives
the vector-matrix elements ij,(k). The non-diagonal matrix element (responsible for the

transition between the energy levels) is

A
V2| (vok )’ +A2]% '

Q, (sk)=i{g” \8%\@“)) =i (9.36)

and at the point where the gap reaches a minimum, i.e. 6k =0, it reduces to
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Q. (0) (9.37)

i hv
J2a
Now, the band’s width can be estimated to be ¢, ~ Vb, where b=2x/a is the reciprocal

lattice constant, therefore
2, (0)~ ‘gbAida >a. (9.38)

This result shows that, at points where the gap between energy bands is small, the contribution
from ij, (k) cannot be ignored. On the other hand, this problem usually appears only near a

few isolated points in the Brillouin zone. Thus, one may construct an approximate description of
the system focused only on these “dangerous” points. This is the k- p approximation that we

turn to present now.

Let k, denote the wave number vector at the point where the gap between bands is minimal,

and let us expand the wave function as
w(r)=2c(Nw (r), (9.39)
i
where l//g)(r):ﬂ:)(r)exp(ikmr) is the Bloch wave function associated with the j-th band
and the wavenumber k;. The expansion coefficients C; (r) are functions that change slowly in
space. Notice that here, unlike the k- p approximation discussed in chapter 7, the wavenumber

vector is fixed. The r dependence of the expansion coefficients, C; (r), gives rise to deviation

from the spatial behavior of the wave function l//g) (r)

To derive the equation for C; (r) we substitute (9.39) in the Schrédinger equation (9.7). Consider,
first, the terms which do not include the electric field potential.
2

- vt (1) 56, (0) v s ) ()

2m

&i(ko e (r) (9.40)
hZ

FEA ) 5 (1) ) () 0V e (1

2m

To calculate the last term on the right-hand side of this equation, we rewrite its first factor in the
form
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o ey o ) e
i— vy (r) lmV[qﬁkO (r)exp(ik,-r)]

K, .7 . -
:—Ozyﬁ:)(r)—laexp(lko-r)ngﬁIEOJ)(r).

m

(9.41)

Now, as in section 9.2, we expand the periodic function V¢,on) (r) in the basis of the periodic

components of Bloch’s wave functions, ¢l£0” (r) Using (9.19), we obtain

_h_rl:lol//( )( +eXp Ik Zjddr'¢k ( i%jv;ﬁ:)(r;)ﬂg')(r)- (9.42)

i" uc

Defining the matrix
1 (0 (e . h r (] ’ . hk
Vi =VeSy + [dOrglT (r )(_'Ejv A (r'), with v, == (9.43)

the Schrodinger equation (9.10) becomes

_ew(r)}j (F)+ 3V -(-inv)e, (1) =, (1). (9.44)

v
The advantage of this equation is that it does not contain the dependence on the matrix ij, (k),
, Which diverges when the gap between the energy bands closes. Its disadvantage is that it

contains a different infinite matrix, V.., which complicates the solution. This matrix, however,

i
can be handled in a similar way as in the k- p approximation introduced in chapter 7. Namely, it

can be truncated to account only for the relevant energy levels. The more distant energy levels
can be taken into account by perturbation theory (if necessary).

Example: Graphene in an electric field

We consider graphene in a constant electric field and focus our attention on the region of the K

-point, i.e., we choose Kk, =k, . In this case, one has to reinterpret the index j (in Eq. (9.44)) as

also associated with the sublattice index of the pseudospin wave function. Adopting this view,
we notice that the local description of the graphene near the K -point (5.16) has, already, the

structure of Eq. (9.44) when (p(r) =0. Therefore, in the k- p approximation, the local equation

of graphene, in the presence of an electric field, is

[hv( *©.v)- ego(r)][z:j:g[z:j. (9.45)
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Setting E to point along the negative X direction, and separating variables, yields the following
equation for the X component:

—eEx —ihv2 c c

] ox [ Aj:g{ Aj. (9.46)
—ihv—  —eEx Ca Ca

OX

The & dependence of this equation can be eliminated by shifting the position coordinate:
X— X—g/(eE). Next, we define new combinations of the variables, ¢, and C; by the rotation

DU R e

These diagonalize the equation because:

., 0 ., O
—eEx —1hiv— 17iv— —eEx 0
-1 1 -1 1\(b b
1 ox o e “1=0 (9.48)
201 1 .. 0 1 1)\b, 0 b

—lhv—  —eEx 0 —ihv——eEx |V
OX OX

Thus, we obtained a pair of independent equations, (iV|5—eE>A()bi =0 (where we have used

operator notation). These equations describe a right moving electron (+ sign) and a left moving
electron (— sign) without scattering at a constant velocity. This phenomenon is sometimes called
Klein tunneling. The reason for this terminology will become apparent in the next section.

For future reference, we write down the wave functions obtained from the solution of Eq. (9.48)

. eEx?
b =b, (0)exp| +i , 9.49

where bi(O) are arbitrary constants that satisfy the normalization condition

b, (0)f +}b.(0)f" =1.

9.5 Dielectric breakdown (Landau-Zener tunneling)

Consider a one-dimensional system with almost degenerate energy bands in the presence of a
constant electric field. In the framework of the k- p approximation, we focus our attention only
on two energy levels in the vicinity of the point where the gap between the levels is minimal. In
the absence of an electric field, Eqg. (9.44) reduces to
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—A v .
] ox ( lj:‘{ 1], (9.50)
—ihv— A G C.

where the quadratic hZVZ/(Zm) term is neglected, )

f2a k

l

Hamiltonian gives the energy levels of the system,

&, (k) =tVA? +n*v?k?, (9.51)

where kis measured relative to k,. These energy

ek
V), =V,, =V is assumed to be real, and we choose
&(k)=—A and ¢&,(k))=+A (the middle point
between the energy levels is set to be zero without loss
of generality). Diagonalization of the above

levels are presented in Fig. 9-3.

Adding to Eq. (9.50) the potential energy resulting from . .
o o . ) Figure 9-3 The energy levels obtained from the
an electric field, E, pointing in the negative X solution of Eq. (9.50)

direction, we obtain the equation that we seek to solve

—A —eEx —ihv2 c c
] ox ( 1}5( 1). (9.52)
—ilv— A —eEx C €

OX

in this section:

Before deriving the solution of this equation, consider the dynamics it dictates in the framework
of the effective mass approximation where the transition between different energy bands is
forbidden. Suppose we have prepared the election in a wave packet localized near some negative
value of the wavenumber k =—k; in the lower energy band. The electric field exerts a force on

the electron, and from Hamilton’s equations, we see that the wave number increases linearly in
time, k=-k; +eEt/%. The particle's velocity is positive until it reaches the point k =0, because
0, & (k) >0, see Fig. 9-3. Beyond that point, assuming the particle remains in the lower energy

band, the velocity reverses the sign, and its absolute value increases. In real space, it implies that
the particle is reflected. This dynamical behavior is the familiar Wannier-Stark oscillations
discussed in section 9.3.
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Consider now the limit where the effective mass approximation is invalid because the gap
between the energy levels is too small. Now there is another possibility: that the particle tunnels
to the higher energy band. In this case, the particle velocity remains positive; namely, it continues
with its motion without reflection (similar to the solution we found for graphene in an electric
field). This phenomenon is known as Landau-Zener breakdown (or tunneling). It describes
situations where the applied electric field is sufficiently strong to induce a current in an insulator
by transferring charge carriers from the valance band to the conduction band. The physics of the
Landau-Zener breakdown is analogous to tunneling through a potential barrier, as illustrated in
Fig. 9-4. It is characterized by two parameters: the reflection and the transmission coefficients,
r and t, respectively.

&(k)

V(x)

A
N

Figure 9-4 The analogy between Landau-Zener breakdown and tunneling under the barrier

Viewing the Landau-Zener breakdown phenomenon as tunneling under the barrier allows us to
obtain the qualitative solution to the problem. Recall that the transmission coefficient for

tunneling under the barrier, within the WKB approximation, is t ~ exp(— pW/h) , where p the

(imaginary) momentum under the barrier, and w is the width of the barrier. In the analogous
dielectric breakdown problem, the imaginary momentum is of order A/v, and the only length

scale in the problem is w= A/|eE , hence

AZ
t ~exp| - , 9.53
Pl -7 weE] (9.53)
where 77 is a constant of order one that cannot be determined from these qualitative

considerations. Nevertheless, this result highlights the singular dependence on the electric field
in the limit E— 0. In particular, a slight change in E results in a dramatic change in the
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transmission coefficient. Notice that in the limit A — 0, i.e., when the gap between the bands
closes, t — 1, as we have obtained in the graphene example (the Klein tunneling).

The rest of this section is devoted to the proof of Eq. (9.53) and to the calculation of the numerical
constant i (which gives 7 =7/2). We begin by transforming Eq. (9.52) into a more convenient
form by repeating the steps presented in the graphene example on pages 178-179. Namely, first,
we shift the position coordinate, X — X—e/(eE), to eliminate the & dependence, and then use

rotated variables as defined by Eq. (9.47). The resulting equation is

ihvi—eEx A
OX b _
5 ] =0. (9.54)
A —iiv——eEx |V
OX

Next, we eliminate the trivial dependence of b_ on the electric field (see Eq. (9.49), in the limit

A =0, by defining the new variables

b _eEx? \( b’
)

With these variables, Eqg. (9.54) becomes

ihv2 A b
OX ( -j:o. (9.56)

A —ihvﬁ—ZeEx b,
OX

The Fourier transform of this equation is

—hvk A 6,
. a ~_ = O ’ (9'57)
A hvk — 2ieE — || p’
ok /N

where 6; are the Fourier transforms of b . From the first line of this matrix equation, we obtain
b’ =A6;/(hvk). Substituting this relation in the equation obtained from the second line of
(9.57), gives an equation for 5;,

2
A L wvk—2iee 2 |7 0. (9.58)
Avk ok

Its solution is:
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H k 2 H 2
b =——— [ dk’| 2 sk |=——— A—In(—%j+lhvk2+7 , (9.59)
2eE 4 5\ vk 2eE (v '\ 28 )72

hv
where y is an arbitrary phase that can be ignored. The choice of the lower bound in the above
integral is merely for convenience. Changing it will only affect the phase y. Taking the inverse
Fourier transform of BL and substituting the result in (9.55) we obtain an exact integral
representation of the solution for the coefficient b, :

2 0 2
b, = by, exp| —i °=X j%exp LA In(—th]—i W12 ik, (9.60)
2hv 2 2eEnv 2A 4eE

—0

where b, is an arbitrary constant that depends on the way we prepared the system.

To simplify the above formula, we shall evaluate b, in the asymptotic limit of large distance,
|x|>> A/|eE|. In this limit, the integral over k can be evaluated by the steepest descent method.

In this technique, the integration path is deformed from the real k axis into the complex plane
such that it passes through the saddle point of the phase and follows the steepest descent
trajectory. The first step is to choose the branch cut of the logarithm in Eq. (9.60). It is convenient
to choose is to overlap the negative imaginary axis of k as shown in Fig. 9-5.

Im(k)

In(—k) = Inlk| In(—k) = Inlk|- in

Re(k)

T
2
2

= Inlk|+ i

In(—k)
In(—k) = Inlk|— i

Figure 9-5 the choice of the logarithm branch cut in the Landau-Zener problem

Next, we identify the saddle point of the integral (9.60) by finding the stationary points of the
phase (in the exponent of Eq. (9.60)),
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d¢_(k) -0, (9.61)
dk
where
| AP ak)  hv
¢(k)=—|LeEhvln(— 2Aj+4eEk —kx] (9.62)

From here, we obtain a quadratic equation whose solutions, in the limit X — o, are

2 2 k = A°
eEx) —A -
K = eEx | (eEx) _, 2eE X (9.63)
hv v K = 2eEx
T hv

To identify the steepest descent paths that pass through the stationary points, we write the real

and imaginary parts of ¢(k +ik'), where kand k' are real,
g(k+ik")=a(k,k")+iB(kk'). (9.64)

Here both, a(k, k’) and ﬂ(k, k') , are real functions. In particular, the imaginary part is given by

h kz_er 2
ﬂ(k,k')z—Mijx— = |n[ﬂ\/k2+k'2]. (9.65)

4eE 2hveE 2A

The steepest descent path going through a saddle point

is the path along which the imaginary part of ¢(k + ik’)
is constant (and hence equal to its value at the saddle
point), i.e. B(k, k") = S(k,,0). This equation, however,

defines two trajectories: One is the steepest descent ) k.

path along which the integrand decays at the highest T
rate with the distance from the saddle point. The )
second path is the steepest ascent path one we should

Im(k)

avoid. Fig. 9-6 presents the steepest descent and
steepest ascent paths obtained from the above

condition. The red trajectory passing through the Kk_

saddle point is an artifact that results from the Re(k)

multivaluedness property of the logarithm function. It 7Y NV NN NOYRM NN NN 9-6 IR

does not represent a steepest descent path. The blue X—>+o0

and the green trajectories are the steepest descent and
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steepest ascent paths going through Kk, , respectively. Thus, one has to deform the integration

path from the real axis to the blue trajectory in the complex plane. One can easily see that for
X —> o, K, = o0, and deformation of the integration path does not cross any pole or branch cut.

The advantage of integrating along the steepest descent path is that the contribution to the
integrand is localized near the saddle point. Thus, to evaluate the integral, it is sufficient to

expand ¢(k) to second orderin Sk =k -k, :

ok, +5k) =i A {In(eEX]—iﬂ}—iﬂékz. (9.66)

i
hv 2eEhAv A 4eE

Here, we have used the definition of the branch cut of the logarithm function shown in Fig. 9.5.
With this approximation, the integral (9.60) becomes a Gaussian integral, and its evaluation
yields:

2 2 2
b, (%) = by |2 exp| — 2 |exp| i &EX° 2 In(eEXj—iZ L oxsA (967)
Thv 2eEnv 2hv 2eEhv A 4 eE

We turn to evaluate b, (x) for negative values Im(k)

of X, when X< —A/(eE). With the analogy to

the problem of tunneling under the barrier (see
Fig. 9-4), we expect that in this case, there will be
two contributions: one associated with the

f Re(k)
incoming wave, while the other describes the

reflecting wave. Indeed, when X < —A/(eE) the

saddle point, k. = —2eEx/ v, is located to the left

of the branch cut, and to deform the contour

along the steepest descent trajectory, it must go
around the branch cut as illustrated in Fig. 9-7. Figure 9-7 The integration path for the case
This integration path gives two contributions: one X< —A/(eE)

from the saddle point and the other from the

branch cut:

b, (x) =b" (x)+b (x) (9.68)

The calculation of the contribution from the saddle point is similar to the above calculation. The
only difference is that now the argument of the logarithm is positive and therefore does not
contain an imaginary contribution. Thus
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2 2 eE |x
0 () = by | S5 exp| 1 EEC iAo EM )iz | jeo A (9.69)
hv 2hv  2eEnv A 4 ek

The second contribution, from the path that goes around the branch cut, can be calculated in the

2 2
bt = by exp| —i X %exp LA In(—thj—i A
2nv ) 27 26Emv 22 ) eE
byexp| i8] thj—i LRI (9.70)
2h ,M e " 2a ) ' aeE

+h, exp| - eEx2 "mo dk hvkj AT
Zh ZEEhV 2A 4eE

0+

following way:

Changing variables to k = —iz, and taking into account the jump in the function across branch cut
(see Fig.9-5), we obtain

cut eEx? 37A2 A2
by" =—ib, exp| —i exp| — _exp
2hv 4eEnv 4eEnv
o p[ 4eéhv]smh[2§éhvj (9.71)

Tdz hvz hv
xj'—exp In| — |+i-—2"-z]x|| .
2eEhv 20 4eE

0

From here, it follows that in the limit x — —o0, the only contribution to the integral comes from

a small region (of order 1/|X|) near z=0. Thus, the quadratic term in zZ can be neglected.

Changing variables to Y =Z|X|, the integral may be approximated by

¢ dy A? A hv
_[— - In(y)|exp| —i In
|3 27 ' 2eEnv 2eEnv | 2A|X|

(9.72)
2 2
:iexp —i a In l r l—iA— .
27 || 2eEnv | 2A|X| 2eEnv
Next, we use the following identity of the gamma function,
1 2
. r(1-ia) |? _ .

I'l-ia)=|—=| |I'(l-ix)"(1 9.73

o

sinh(7za)




187

collect the various terms

2 2 2
bf“‘(x):iboexp(—iEEX jexp( i sinh( i }

~ 4eEhv

2hv 2eEnv
1 1
2 2 2
2 rf1_; A i A2 (9.74)
! exp{_i A In( hv J} 2eENv T
2 2 !
27|¥| 2eEnv | 2A|x| rl1si A h A
2eEnv 2eEnav

and rearrange them

wt A |eE CeEx® . A? 2eE|X) .z
by (x) =by ——,|—— exp| i +i In +is
4eE|x| \ hv 2V 2eEhv hv 4
1
A2 2 9.75
1 | 1-i ( )
A ) |2 . A? 2A2 ) .7 2eEnv
x|1—exp| — exp| —i In +it|| — 7
2eEhv 2eEnv | hveE 4 . A?
Tl 1+i
2eEhAv

This formula describes the contribution from the reflected wave (moving in the direction of the
negative X axis) because the first factor in this expression (which contains the space dependence)

is the complex conjugate of b (X) that describes the incoming wave.

From the ratio of the various components that we have calculated, one can identify the
coefficients of transmission and reflection, respectively, given by

t=exp| - iy
2eEhv |’

1
. clii A \F 078
A P . A? 20 ) .« 2eEhv
r=|1-exp| ———— || exp|-i In +i— :
2eEhv 2eEAv \ hveE | 4 F(l A j

+
2eEnv

In particular, comparing the above formula for the transmission coefficient with (9.53), we see
that n=7/2.
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9.6 Exercises

1. The one dimensional tight-binding model of an electron in a constant electric field, E, is:
H = 37z +eEaj)¢j6, ~(32 (€16, + €16, 077)
J j

where a is the lattice constant. Diagonalize this Hamiltonian and show that the energy
levels are

& =z +eaEm, (9.78)

where mis an integer, while the corresponding wave functions are

va(D)=(1)' 30, [ 2], 9.79

eEa

where J, (X)is the Bessel function of n-th order. Use the following integral:

s

Jn(x)=Jg—Kexp{—i[n(zc+7z)+xsinz<]}. (9.80)

T

Analyze and interpret the behavior of the wave function (9.79) in the limits of strong and
weak electric fields using the following properties of the Bessel function:

J,(0)=6,,, (9.81)
and
1 1
1im 3, (x)=(-1)" (33 Ai (;)3 (n-x) (9.82)

n~Xx

2. Find the relation between the matrix €;, defined in Eq. (9.20), and the matrix V;

defined in Eq.(9.43). Notice that the first describes matrix elements of the position
operator r, while the second is the matrix element of the velocity operator, V.
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10 Crystals in a constant magnetic field

This chapter discusses electrons moving in a periodic lattice and subjected to a constant and
uniform magnetic field. Generally, the introduction of electric, E, and magnetic, B, fields in
guantum mechanical systems is obtained using the scalar potential, ¢, and the vector potential,
A, that satisfy the relations:
B=VxA,
O0A (10.1)

The Hamiltonian of a particle with charge g moving in a periodic potential, u (r), in the presence

of an electromagnetic field is:

L _Lp-aan)]

o +qp(r)+u(r). (10.2)

This Hamiltonian is not periodic in space, even for the simplest case of a uniform magnetic field.
For instance, for a constant B pointing in the z direction, a possible vector potential choice is
A= Bxy, where ¥ is a unit vector in Y direction. The linear dependence of the vector potential
inthe X coordinate makes the Hamiltonian (10.2) non-periodic; hence one cannot employ Bloch’s
theorem to solve the problem.

Nevertheless, if the electromagnetic field is weak, one can assume that the vector and scalar
potentials are locally constants and keep using Bloch’s decomposition of the wave function as a
leading-order approximation. This approach is valid for a large class of physical problems.

When the magnetic field is strong but uniform, it turns out that for specific values of its strength,
the periodicity of the system can be restored, albeit by a larger unit cell which is an integer
multiple of the original cell. These are the situations where the magnetic flux threading one unit
cell is a rational fraction of the quantum flux unit, ¢, = Zﬁh/e . The most prominent consequence

of the multiplication of the unit cell is the disintegration of bands into minibands and the creation
of self-similar fractal patterns in the spectrum.

This chapter is divided into two main parts. In the first, we discuss the limit of a weak magnetic
field. Here we begin by presenting the gauge invariance property of the system and its relation
to charge conservation. Next, we use gauge invariance to introduce the electromagnetic field
into Bloch’s Hamiltonian in the framework of the effective mass approximation. Then we present
the dynamics of lattice electrons in the presence of a magnetic field and quantize their energy
levels. Finally, we discuss the magnetic breakdown phenomenon.
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In the second part of this chapter, we discuss the limit of a strong magnetic field. Here we, begin
by discussing Moiré patterns to show how the increased size of the unit cell generates minibands.
Moiré patterns are obtained, e.g., from superimposed layers of two lattices with slightly different
lattice constants. Next, we define the magnetic translation operators that describe electrons in
crystals subjected to a strong magnetic field and conclude by presenting the celebrated
Hofstadter’s butterfly describing the spectrum of electrons subjected to a uniform magnetic field
in a two-dimensional lattice.

10.1 Gauge invariance and charge conservation

For a given electric E and magnetic B fields, the scalar and vector potentials are not unique.
There is freedom in choosing them. From Eq. (10.1), it follows that changing potentials as:

A— A+Vf,
of (10.3)
- PR
Zand ot

where f is some arbitrary function of space and time, yield precisely the same fields E and B .
This property is called gauge invariance. It tells us that the scalar and vector potentials
themselves do not have a physical meaning. Only the electric and magnetic fields, which do not
depend on gauge, are physical quantities.

On the other hand, the gauge invariance (10.3) is a continuous symmetry of the system, and
from Noether’s theorem, one expects this symmetry to manifest itself in a conserved quantity.
In other words, similar to the symmetry for translation in time, which implies conservation of
energy, or symmetry to rotations which leads to conservation of the angular momentum, it is
expected that gauge invariance is associated with a conservation law. As we shall see below, this
conserved quantity is the particle charge.

Reminder: Conservation laws in classical mechanics

In classical mechanics, the equations of motion, i.e., the Euler Lagrange equations, are
derived by variation of the action:

S, :IdtL(r,f), (10.4)

where L(r,f) is the Lagrangian of the system. Namely

doL oL

— —_——=— 10.5
or(t) = dt or or (10.5)
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Now, let us define the following infinitesimal transformation of coordinates and time:

r'=r+¢eR(r,r,t) (10.6)
t'=t+T(r,ht) (10.7)

where R(r,f,t) and T(r,f,t) are some general functions, and & is an infinitesimal

dimensionless constant. This transformation is a symmetry of the system if it does not
change the action at any time interval i.e., when

dt'L(r',i")=dtL(r,r)+0(&*). (10.8)

Then the stationarity of the action with respect to the infinitesimal transformation (10.7)
yields the conservation law:

%:0 — i{a—lf-(R—Tr'ﬁTL}:O (10.9)
de dt| or

Namely, the quantity in the square brackets is the conserved quantity associated with the
symmetry (10.6-7). For instance, symmetry to translation in time, where R=0 and
T =constant , shows that the Hamiltonian, i.e., the energy of the system, is conserved:

_Ti{ﬁ_'j.r_L}o, (10.10)
dt| or

Similarly, symmetry to translation in space, R=R,=constantand T =0 implies

R, .i[é_'j}zo, (10.11)
dt| or

The proof of (10.9) can be found in the literature (see, for example, in section 6.12.1 of the

conservation of momentum:

book ‘Waves & Optics’, of the Open University).

To identify conservation laws in quantum mechanical systems, one can employ a procedure
similar to classical systems. Let us define the action:

Su :Idtddrw*(ihat—H)//, (10.12)

where H is the Hamiltonian (10.2). Variation of this action with respect to i yields the

Schrodinger equation of the problem:
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55; 0 = ih%‘/’{%(_'hv_qA)z+u(r)+q¢(r)}w. (10.13)

Changing the gauge by (10.3) transforms this equation to

ih%—f:{%(—ihV—qA—qu )2 +u(r)+q(p(r)—q%}//. (10.14)

It looks very different from the original one; however, this change does not affect the value of
any physical quantity. In particular, one can check that if we substitute

w =y'exp(iqf /7) (10.15)
in the above equation, it reduces to the original one (10.13) for y'.

The conservation law associated with the symmetry (10.3) is obtained from the stationarity of
the action with respect to the gauge transformation, i.e.
0 03y, 0S

oS, "
q =0 = _ +v. q :0 (10.16)
5 at S SA

This equation has the structure of a continuity equation (which is a conservation law). To identify
its ingredients, notice that

o3, .
p= =qy v (10.17)
S
is the charge density, while
é‘S _q * - - *
j=—2_—-_1 —1AV —gA)y +y (1AV —gA , 10.18
i=—a Zm[w( qA)y +y (ihV —qA)y " | (10.18)

is the electric current density. The equation obtained by substitution of (10.17) and (10.18) in
(10.16),

a—p+v-j=0, (10.19)
ot
implies that the charge cannot disappear; it can only move from one point to another. In

particular, integrating the above equation over the whole space, using the divergence theorem,
and assuming no charge or current at infinity, shows that

cL—?=O, where szd?’rp (10.20)

is the total charge of the system.
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10.2 The effective mass approximation

To construct the effective mass approximation for a particle moving in periodic potential
subjected to a weak magnetic field, let us first recall the case A=0. Namely, consider a particle
of charge q moving in periodic lattice and subjected only to the force generated by the scalar

electric potential, go(r) (that we consider to be a general function in space but time-

independent). The wave function of this system can be expanded in the basis of Bloch’s wave
functions of the bare Hamiltonian, H, = p*/2m+u(r):

D (r), (10.21)

JBZ

where the integral is carried over the first Brillouin zone, C, (k,t) are expansion coefficients, and

w (r)=¢ (r)exp(ik -r) is Bloch’s wave function of the j-th band and wave number k.The

latter is obtained from the solution of the Schrédinger equation, H.y =&y . Substituting

expansion (10.21) in the Schrédinger equation,
=[H,+de(r)]w, (10.22)

we obtain an equation for the expansion coefficients Cj(k,t). Defining the vector,

c(k,t)= ( (k,t),c (k,t),c (k,t)---),thisequationtakestheform,

ihw:[é(k)mq)[i§+fz(k)ﬂc(k,t), (10.23)

where é(k) is a diagonal matrix whose elements are the eigenvalues of H;, i.e.
[8 } =¢,(k)d;, while Q(Kk) is a matrix whose elements are

< ‘ ‘¢k > (10.24)

The proof of Eq. (10.23) is given as an exercise.

How to incorporate the magnetic field into this description? The natural way is by imposing the
condition of gauge invariance (i.e., charge conservation). Namely, the change of gauge (10.3)
manifests itself only in the phase of the wave function (10.15). However, the change of the wave
function by a phase factor,
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Q.(.0 =
c(k exp|i—fli—+Q ||c(k), 10.25
()= '{h(ak H() -
is due to the following transformation of the Hamiltonian,
. g.(.0 A\l q,.(.0 =
k expli—fliI—+Q K)exp| —-i—f|1I—+Q ||, 10.26
f)= p{h (ak ﬂg() p{ i (ak ﬂ io.26)

which ensures that £(k)c(k)=e&c(k). Thus, by identifying the dependence of the transformed

Hamiltonian on the function f , one can deduce the dependence on the vector potential.
In the effective mass approximation, one neglects the matrix Q. It is a justified approximation
if f (r) changes very slowly on the scale of the lattice constant and the energy bands are well

separated from each other such that transitions between them are weak. Setting Q:O, the
transformed Hamiltonian is given by

é(k)—>exp(iy)é(k)exp(-iy). (10.27)

where

exp(iﬁ)zexp{i% f (Ia_akﬂ (10.28)

Assuming the energy bands to be analytic functions in the Brillouin zone (recall we assume there

are no band touching points), é(k) can be expanded as a Taylor series in k. Then any term of

this expansion can be represented in the following manner:

exp(i7)k.k, -k, exp(-iy)
=exp(iy )k, exp(—iy)exp(iy)k, exp(-iy) --- exp(iy)k exp(-iy)- (10.29)

Thus, to obtain the transformed Hamiltonian it is sufficient to calculate the transformation of the

wave number vector, k — exp[i7 |k exp[-i7], which gives

k — exp[i7 ]k exp[-i7] = k-2 vi (iij. (10.30)
h ok
Before proving this result, let us discuss its meaning. The form of the gauge transformation (10.3)
implies that the introduction of a vector potential into the system is obtained by Peierls
substitution:
. O

ksk-J A(u—j . (10.31)
nU ok
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Thus, to include the magnetic field in the effective mass approximation, the Hamiltonian should
be transformed according to:

é(k)—>é k—ﬂA(iij . (10.32)
h ok
Proof of Eq. (10.30)

To obtain Eq. (10.30) we shall use the following commutation formula that applies to an arbitrary
pair of operators A and B :

1
e ® [A;eB] = J'dse‘SB [A;B]e®. (10.33)
0
The proof of this formula follows from the fact that

e ® [A; et ] = j' dse*[A;B]e®® (10.34)
0

is trivially satisfied for t =0, while its derivative with respect to time yields e™®[A,B]e® in both

sides of the equation.
Using Eq. (10.33) we have,

e’ke =k +e” [k;e"y =k+ Idse'” —iple™ . (10.35)

To calculate the commutation of [k;—ij?], let us consider, for simplicity, the one-dimensional

. .q,.(.0
case, and expand 7 =i— f | i— | in Taylor series, i.e. f f x".Then
pand =101 1.2 inTay )

[k;-iy]{k;—i%f(iaikﬂz—ik%f(iaﬁk}i%f(ia%jk
_|k2 ( j+|—2f( ) ) 1030
:—ik%f@%jﬂqu‘f (I—j +I—Zlf n[l—j

and a straightforward generalization to the tree-dimensional case gives
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[k;—i ]— [ aakj (10.37)

Substituting this formula in Eq. (10.35) and noticing that all three terms in the integrand are
functions of i19/0k and therefore commute among themselves yields Eq. (10.30).

10.3 Perturbative corrections to the effective mass approximation

The implementation of gauge invariance to identify the correct form of the Hamiltonian, as
discussed above, can be extended in order to calculate the perturbative corrections to the
effective mass approximation. In this section, we derive the leading order correction to the

Hamiltonian in the matrix Q defined in Eq. (10.24), and present a basic application of this
correction in physical systems — a direct optical transition in crystals.

Consider the transformed Hamiltonian (10.26) and let us calculate it by keeping terms that are
first orderin Q , thus

ol (]

:exp{iH i (iiﬂ(lﬂﬂfozjé(k)[l—lﬂwfzjexp{—lﬂ i (liﬂ
h ok h h ok
5 5 (10.38)
~explidflil]l)s via - 2 %
_exp{l - f(l 8l(ﬂ{g(k)ﬂ h[VfQ ; g(k)}}exp{ Ih f(l ékﬂ
—élk-Jvi (iij +idlvia; & k—Vf(lij
h ok h ok
Also, expanding of the scalar potential to leading order in Q yields
0 . 0 A
—+0 — |+ QVop. 10.39
(I o + j (D(I ak]+ 7 ( )

From the last two equations and the gauge invariance condition (10.3), it follows that the
Hamiltonian of the system transforms according to:

é(k)—)é(k—%A( aijjﬂ]go[l@%}
+%[A-fl ; é(k-%A(i%D}qéw

(10.40)
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Here the first line is the Hamiltonian in the effective mass approximation, while the second line
represents the first-order correction in Q. This is the leading order correction in a//l , Where a
is the lattice constant and A is the typical scale of the spatial variations in the electromagnetic
field. The improved form of the Hamiltonian (10.40) still holds only when energy bands are far
apart. However, for cases where the system is subjected to an electromagnetic field that induces
transitions between energy bands, the leading order correction that we have calculated plays a
dominant role, as we shall see in the following example.

Example: Direct optical transitions in crystals

The general form of the Schrodinger equation associated with the Hamiltonian (10.40) is a set of
an infinite number of coupled equations:

ih%‘?t):{é(k—%A(ia%ﬁdrqgo[iaij}c(k,t)

(10.41)

However, when two energy bands become close to
each other while all others remain sufficiently far,
this system can be truncated to only two coupled
equations.

For example, consider the problem of a crystal E, el
subjected to electromagnetic radiation that
generates transitions between two energy bands,

& (k) and &, (k). We assume that the smallest gap

between these bands is reached at k=Kk,, as

illustrated in Fig. 10-1. The electromagnetic wave’s

frequency, w, is settoinduce transitions between

the two levels, i.e., &,(k,)—¢ (ky)="nw. It will

Figure 10-1 Direct transition in a crystal

also be assumed that the wavelength of the
electromagnetic wave, A =2zC/ w, is much larger
than the lattice constant, a, in order to justify the leading order expansion of the Hamiltonian

(10.40). Under these assumptions, the matrix  reduces to a two by two matrix:

ﬁ:( 0* Q”] (10.42)
Q, 0
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The diagonal matrix elements (which are the Berry connection) are zero because the energy
levels are far apart; hence Berry’s curvature is negligible.

Substituting (10.42) in the leading order correction of the Hamiltonian (second line of Eq. (10.40))

we obtain:
i_q O A A _i_q 0 A-Q, | & 0 ) 0 Q
L Q"g}qm_hKA-% 0 NO szj}qw (9;; oj
0 q{%(gz—gl)A+V¢)]Qu (10.43)
q|:%i(52_51)A+v¢:|'Q; 0

Now using the assumption that ¢, (k,)—&,(k,) = 7@, we see that

a3 (6-0) A4V |0, =ali0A+ Vo]0, =o| TVe |0, - -GE-Q,, (1040)

where to obtain the last equality, we have used Eq. (10.1), and the replacement of iwA by 6A/dt
follows from the assumption of coherent radiation at frequency @ implying that
A= Ajexp(iwt). Thus, the Schrédinger Eq. (10.41) reduces to

ihﬁ[clj:[ gl(k)* _qE'Qﬁ}(ClJ. (10.45)
at\c, —QE-Q, gz(k) C,

This equation shows that —Q€2,, is the electric dipole moment of the system. Using Fermi’s

golden rule, we obtain that the rate of transition from the lower band to the upper one is:

1 2x 2
—= _‘qu le‘ Pz, (10.46)
7, h

where p, is the density of states at the excited state of the system. This result shows that €2,

determines whether the direct optical transition is allowed (€, #0) or not (€2, =0).

As a final comment, observe that the term “direct transition” refers to situations where the
change in the electron momentum is negligible. It follows from our assumption A>>a which
implies that the momentum carried by the photon (and absorbed by the electron), 277/, is

much smaller than the lattice momentum 277/a.
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10.4 Charged particles in a crystal subjected to a magnetic field

In this section, we describe the dynamics of charged particles (electrons or holes) in a periodic
lattice subjected to a static and uniform magnetic field, B. Our starting point is the effective
mass approximation,

H=£(p—0A), (10.47)
where q is the particle charge, p is the canonical momentum, and é(p) represents the
Hamiltonian of the system in the absence of electromagnetic field.

The dynamical momentum of the particle is defined to be 7z = p—qgA (In the case of a free

particle with mass m, n/m is the particle’s velocity). Let us calculate the commutation relations

of its components:
[mim;]=[ P —0Aip; —0A |=—[ piaA ]-[aA;p;]

(oA o)) . (10.48)
Q[ ox 5Xj ] Q& By

where hereinafter summation over repeated indices is implied, and ¢ is the anti-symmetric

tensor. Itis convenient to present this result in the form:

. h? &y B
mim =i (10.49)
B
where
h
L= |2 (10.50)
R

is the natural length scale of the problem called the magnetic length. The magnetic length is the
radius of a circle threaded by half of the unit magnetic flux, zI2B=4¢,/2, where ¢, =27hle.

For a typical field of one Tesla, the magnetic length is 257A. The effective mass approximation
is valid when the magnetic length is much larger than the lattice constant.

We turn to derive the Heisenberg equations for the operators, 7 and I'. These are given by

%:__I[ GH] ! aé[

x ———ﬁ'ﬁ]—qg % g =q % g (10.51)
ot h hom - T o, Nox ) '

j i
and
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ot h h O or.

The dynamics that result from the above equations ensure energy conservation because

=q B,=0B:| —x—

0¢ 0¢ Or, 0¢ 0¢ 0¢ 0¢
ot o ot om, Or; or orx

Thus, the particle can move only on the energy surface.

From now on, we adopt a semiclassical approach, where functions replace operators. This
approximation allows us to describe the particle trajectories in space. Multiplying Eq. (10.51)
vectorially from the right by B and substituting Eq. (10.52), we obtain

o

or or or
B=qg| —xB |[xB=qg| B-— |B—qB*— 10.54
L q(atx jx q( aJ q (10,54

o’
where the second equality is obtained from the vector identity(AxB)xC =(A-C)B—(B-C)A.

Thus, if we denote by I, the component of the vector which is perpendicular to the magnetic

field, then the above equation reduces to

o| 1
—| —5(zxB)+r,|=0. 10.55
Its integration over time yields
1
r(t)= RL_W(ﬂX B), (10.56)

where R is a time-independent constant called the guiding center.

Multiplying Eq. (10.51) by B, and summing over i 7z
shows that the component of the dynamical
momentum, in the direction of the magnetic field, is
time-independent. Thus, the particle's motion is
restricted to the cross-section of the Fermi surface
and the plane z-B =constant, where B is a unit
vector in the direction of the magnetic field, as
demonstrated by the dashed line in Fig. 10-2.

In particular, if we choose a coordinate system
where the magnetic field is pointing in the Z

Figure 10-2 The cross section of the Fermi
direction, then 7, = 7 =constant. On this plane, the surface and the plane 7 - B = constant

particle is confined to move on the contour
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g(ﬁx,ﬁy,ﬁ):constant in the Brillouin zone. Finally, Eq. (10.56) shows that the particle’s

trajectory in real space, projected on the plane perpendicular to the magnetic field, is the same
as the trajectory in the (dynamical) momentum space up to rotation by 90°, and a change of the
physical dimensions.

Examples

1. Consider a two-dimensional system of electrons (( =—€) moving in a lattice subjected to a
constant magnetic field perpendicular to the system, B =BZ. The dynamical momentum, in

this case, contains two components 7 = (ﬂ'x,ﬂ'y), and assuming that near the bottom of the

band the spectrum is parabolic and isotropic, the Hamiltonian is

2
T

2m,

H (10.57)

wherem, is the effective mass. In two-dimensional systems, it is convenient to use complex
coordinates, r=Xx+iy and 7 =7, +i7ry. In terms of these coordinates, the equations of

motion (10.51) and (10.56) become

a—”:—ia)cﬂ and r:R—Ii, (10.58)
ot eB

where @, =eB/m, is the cyclotron frequency.
The solution of the above equations is straightforward:

r=mexp(—iot) and r= —L%exp(—ia)ct), (10.59)

7ro|:1/2meﬁ6 , while

the initial conditions fix its direction. This solution describes a circular motion, both in real

where 7, is a vector whose magnitude is determined by the energy,

and momentum space, as demonstrated in Fig. 10-3.
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Figure 10-3 The circular motion of an electron in a two-dimensional system near the bottom of a parabolic band

2. When the Fermi energy is lifted away from the bottom of the band, the Fermi surface may
develop a more complicated structure. This structure is reflected in the electron motion
because the electrons are constrained to move on this surface. In particular, if the Fermi
surface (aline in two dimensions) is closed, the electron motion in real space follows a closed
trajectory with the exact shape of the Fermi surface but rotated by 90°, as illustrated
schematically in Fig. 10-4.

Figure 10-4 A schematic illustration of the electron trajectory in real space (left) and momentum space (right)
for the case where the Fermi level is far from the bottom of the band (in two-dimensional systems)

3. Anintriguing behavior appears in systems with open Fermi surfaces, as illustrated in the right
panel of Fig. 10-5. Assuming the particle is subjected to a uniform magnetic field and moves
on the upper branch of the Fermi surface, its dynamical momentum in the y direction is
positive at all times, but in the X direction it changes periodically in time. Therefore, the
particle does not follow a closed contour in real space, as one might expect from the action
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of Lorentz force. Instead, it forms a winding trajectory along the y axis, as shown in the left

panel of Fig. 10-5.

=

X

Figure 10-5 The trajectory of an electron subjected to uniform magnetic field in a two dimensional system with
open Fermi surface.

To quantify the electron motion in real space, consider the following form of the upper branch
of the Fermi surface:

7, =3+g [%) (10.60)

x
where @ >0 is aconstant, g (77) is some general periodic function (in the Brillouin zone)
with zero mean, and b is the size of the Brillouin zone in the X direction. We also assume
that max‘g (77)‘ <@, to ensure that the upper branch of the Fermi surface remains positive

for any value of 7, . For electrons (q:—e) moving in two-dimensional systems with a

perpendicular magnetic field, the equations of motion (10.54) reduce to

or oX
T _e8Y | and Zr-e8Z. (10.61)
ot ot o at

Integration of these equations give a parametric representation of the electron’s trajectory,
where the parameter of the representation is the X - component of the dynamic momentum:
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IV
y_yO eB X
(10.62)
X=X +i g+9 T
° eB b,

This representation of the electron trajectory shows that it is periodic in the X direction while
linear in the y direction. From the above solution, one can deduce the distance that the

electron advances along the Y axis during a whole period of its motion in the X direction:

15
T—, (10.63)

B #ib _ 2rh 5
eB eBa, a

X

X

where a, =27 /b, is the size of the lattice cell in the X direction.

10.5 Bohr-Sommerfeld quantization and Landau levels

The classical solutions obtained above can be used to carry out a semiclassical quantization of
the system, using the Bohr-Sommerfeld approach. Let us recall the basic idea of this approach.
Consider a closed trajectory of an electron of length L, and assume that the electron’s
wavelength is A, then constructive interference of the wave along the trajectory requires that

L accommodates an integer number of wavelengths, L/A=n+1, where n=0,12---. The
momentum of the particle is p/7i=27z/A, therefore, one may write this condition in the form
pL/h = 27r(n +1). Since the momentum is a function of the energy, &, this condition yields a

guantized set of energy levels.

Now consider a situation where the momentum changes along the trajectory. Assuming the
wavelength to be sufficiently small, one can divide the trajectory into small segments and
calculate the number of wavelengths in each one of them. It amounts to replacement of pL by

an integral of p along the closed trajectory of the particle, € . The latter is nothing but the

action:

S(a)zcﬁdr- p. (10.64)

This action, divided by #, is, in principle, the total phase accumulated by the particle along a
closed trajectory. However, one should also add contributions to this phase that come from
turning points along its trajectory. Consider, for instance, Dirichlet boundary conditions on the
edge of an infinite potential well. The reflected wave from this edge has an opposite sign to
ensure that the total wave function vanishes on the boundary. It amounts to the accumulation
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of a — phase. In the case of a soft boundary, as in parabolic potential well, the phase of the
reflected wave is—7r/2. This result is obtained by linearizing the potential near the turning point

and analyzing the local solution that takes the form of an Airy function (see Eq. (9.7)).

Denoting the accumulated phase of the particle due to the turning points by —, the Bohr-
Sommerfeld quantization condition takes the form:

%S(Sn)=27r(n+l)—;/. (10.65)

The phase y is called the Maslov phase, and more generally, in high dimensions, it also contains
contributions from focusing points, but for our purpose, it is enough to count the number of
turning points and multiply them by the appropriate factor.

As an example for the application of the Bohr-Sommerfeld quantization, consider the harmonic
oscillator:

P’ L e
H :%"Fima) X", (1066)

The particle’s momentum dependence on the energy is p = ++/2me —m?w°x* , where the sign

depends on the direction of the motion. The two turning points are the points where the

momentum vanishes. These are located at X, =i\/2€/mw2 , and since the turning points are

from a soft potential, y = .

The action along the closed trajectory of the particle is

S(g)zc.f)dxp:Zfdx\/ng—mzwzx2 :Zﬁ. (10.67)

(4

Notice that this action is the area, 4(¢), enclosed p

by the trajectory in phase space, see Fig. 10-6.
Substituting (10.67) and » = in the quantization

C
condition (10.65) yields the energy levels of the
harmonic oscillator: . Ale) X, .

Figure 10-6 The trajectory of harmonic

ncrillatar in nhace cnare

&, =ha)(n+%j. (10.68)

Now let us return to the closed trajectories of charged
particles subjected to magnetic field on the Fermi
surface. The key observation for the semiclassical
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guantization of these systems is that the components of the dynamical momentum in the plane
perpendicular to the magnetic field behave as canonically conjugate variables. In particular,
choosing the magnetic field to be in the Z -direction, the Xand the y components of the

dynamical momentum satisfy the commutation relations (see Eq. (10.49)):
[ﬂi;ﬂjJ:i—ngZ Lj=XY, (10.69)

where |; is the magnetic length defined in Eq. (10.50). This equation implies that 7 in the

guantization condition (10.65) should be replaced by hz/lé ; Hence the equitized energy levels

are obtained from the formula:

Ty

1z =
%S(gn)=27z(n+l)—7/, (10.70)
where
S(¢)=|[dmdx, =A4(s) (10.71) o
is the area enclosed by the trajectory in the momentum
space, see illustrationin Fig. 10-7. Noticing that there are
two turning points of the trajectory, the Bohr-
Sommerfeld quantization condition yields the general
formula:
h? 1 Figure 10-7 The area enclosed by trajectory
ﬂ(gn) = 27[|_2(n +_j : (10.72) in the momentum space
B

If the Fermi level is near the bottom of the band, the Hamiltonian of the system may be
approximated by (10.57), and the particle’s trajectory in momentum space is a circle of radius

\2My & . The area enclosed by this trajectory is 4 (&)=2zmy . Substituting it in formula

h? 1
&= n+= (10.73)

Finally, substituting 12 =7/|gB| and the formula for the cyclotron frequency, @, =eB/m , we

(10.72) give the energy levels:

obtain

g, :ha)c(n+%j (10.74)

These energy levels are called Landau levels.
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10.6 Magnetic breakdown

Magnetic breakdown, similar to dielectric breakdown, is associated with situations where the
particle trajectory deviates from the path dictated by the on-shell-energy condition, namely
situations where the particle tunnels between trajectories separated by a potential barrier. There
are several typical cases where a magnetic breakdown is likely to occur. One of them is when the
Fermi surface passes near the edge of the Brillouin zone, as illustrated in Fig 10-8. In this case,
the particle may tunnel between adjacent Brillouin zones and follow trajectories that are similar
to those of the open Fermi surface. In Fig. 10-8, red discs denote the regions where such

L)
O

Figure 10-8 Magnetic breakdown at regions near the edge of the Brillouin zone where a transition between

tunneling is expected.

O
9

trajectories, by tunneling, becomes likely

Another situation where a magnetic breakdown might occur is in systems with open Fermi
surfaces, at regions where two Fermi surfaces almost touch, as illustrated in Fig. 10-9.

VRNV RNV ZERN
TN T

Figure 10-9 Hot spots of magnetic breakdown in systems with open Fermi surface
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The calculation of the transition probability between trajectories is similar to that of dielectric
breakdown and is given as an exercise. However, one can deduce the functional dependence of
the transition coefficient, t, on the magnetic field without any calculation. The commutation
relation of the dynamical momentum (10.69) indicates that the effective # in the problem is

hz/lé ; hence, the transition coefficient should have the form t ~ exp(—léﬂ/hz), where A4 is

an area in the momentum space that characterizes the transition between two nearby
trajectories. This area is a property of the Fermi surface; therefore, it is independent of the
magnetic field. Thus, the primary dependence on the magnetic field comes from the magnetic
length 15 =7/|qB

, Which implies that the transition coefficient takes the form
t ~exp(—B,/B), (10.75)

where B, is the typical value of the magnetic field above which a magnetic breakdown takes

place. This value is system and energy dependent. Notice the singular dependence of the
transition coefficient (10.75) on the magnetic field, which is similar to that of the electric field for
the case of dielectric breakdown, see Eq. (9.53).

Example: Pippard’s model

Pippard’s model (1962) is a simple model for which the threshold magnetic field, B, can be

calculated analytically. It consists of a two-dimensional system with a potential that is periodic
only in one direction, say, along the X axis. The periodic potential, u(x), is assumed to be

sufficiently weak to employ the nearly free electron approximation for calculating the band
structure. In the empty lattice approximation, u (x) =0, the Fermi surface is folded into the first
Brillouin zone by duplicating the Fermi surface of a free electron in each Brillouin zone, as
demonstrated in Fig. 10-10.

k

Y

Figure 10-10 Fermi surface of Pippard’s model in the empty lattice approximation
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Each circle in this figure represents the Fermi surface of a free electron, and the vertical lines are

the boundaries of the Brillouin zones, which in our case are vertical stripes. The main effect of

the weak periodic potential, u(x), is to lift the degeneracy at the points where Fermi surfaces

intersect, as shown in Fig. 10-11. Thus, the Fermi surface contains both open and closed sectors.

In the presence of a perpendicular magnetic field, depending on the initial conditions, electrons

may follow closed or open trajectories in real space, similar to those shown in Figs. 10-4 and 10-

5. The arrows in Fig. 10-11 show the electron trajectories in the momentum space.

Ty

\CD/
[
iy,

T
e

Figure 10-11 The Fermi surface in a two-dimensional electronic system with weak periodic potential , U (X)

Magnetic breakdown in this system is realized
when an electron, prepared in the upper branch
of the Fermi surface, tunnels into the closed
elliptical sector of the Fermi surface, then into
the lower branch of the Fermi surface, and back
to the upper branch through the closed sector.
If the magnetic field is sufficiently strong, the
transition probability is high, and the particle
completes a full circular motion, as shown by
the dashed line in Fig. 10-12. In other words, the
electron behaves as if it was a free particle in a
magnetic field. It is what one should expect
when the effect of the magnetic field overcomes
that of the periodic potential. Thus, to estimate
the typical magnetic field ,B,, above which

magnetic breakdown takes place, one should

TN
VL
) [V
] S

\ b/
\ 1/

Figure 10-12 The trajectory (dashed line) of magnetic
breakdown in Pippard’s model
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compare the energy correction to the Landau levels due to the periodic potential to the energy
difference between adjacent Landau levels.

Since the periodic potential is assumed to be weak, the calculation of the energy correction to
the Landau levels can be carried out in the framework of first-order perturbation theory which

we turn to present now. To be concrete, we consider the Hamiltonian H = Hj +u(X) where

(p+eA) p2 +(p, +eBx)’
2m 2m

H, = , (10.76)

is the Hamiltonian of a free electron moving in a two-dimensional plane with a perpendicular
magnetic field (where we choose the gauge A= xBy), and

u(x)=u, cos(%ﬂ x} , (10.77)

is the perturbation potential. Here U, is a constant that characterizes the strength of the

potential, while a is the period of the potential.

Diagonalization of H, is obtained by separation of variables,

w =exp(ik,y) X (x), (10.78)
which reduces the problem to the solution of the Harmonic oscillator,

noo*X 1
—%ZX!Z +§ma)§X,2X =eX , (1079)

where g is the energy of the particle, while

hk
a)c=§ and x’=x+e—By. (10.80)
m

Thus, the energies of H, are Landau levels given by Eq. (10.68), and the wave functions

associated with the N -th Landau level are
1 . ,
Vo, (X% Y) =fexp(lkyY)Xn (x), (10.81)

where L is the size of the system in the y direction, and

%
1 (mo, Mo, , Ma,
Xn(x)_m( nhj exp( > X JHH[ - XJ, (10.82)
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Here H, (z) are the Hermite polynomials. Notice that these wave functions are normalized to

unity. Thus, the first-order correction to the n -th energy level due to the potential (10.77) is:

Ik,

U(X)‘l//n,ky>: Idxxf(x)uo cos{z—”(x—e—Bﬂ. (10.83)

A&‘n = <Wn,ky a

Comparing this correction to the distance between Landau levels, i@, yields the value of B, .

Our goal, now, is to calculate Ag, in the limit of high energies N >> 1. For this purpose, one may
use the semiclassical approximation for the wave function X (x) Within this approximation,

the amplitude of the wave function is the square root of the classical density of the particle in
space:

O x? — x?
P (x)=M (10.84)

X —xt

where X. =«/2<9/ma)c2 is the turning point of a particle with energy £, while 6(z) is the

Heaviside step function, which is one for z >0 and zero otherwise!. Notice that we choose to
normalize p, (x) such that its integral over space is unity.

The phase of the wave function is determined by the action (measured from some arbitrary point
in space which here we choose to be the origin) divided by 7 :

1 h ! !
¢(x):%jdxp(x), (10.85)
0
where the momentum is given by

p(x)= 2mg£1—xzjj. (10.86)

Thus, the semiclassical approximation for the (normalized) wave functions is:

! The classical distribution is obtained by projecting the microcanonical distribution on the energy shell down to

real space. For
2

1
H :p—+—ma)fx2'

The microcanonical distribution is N5(5— H ), where N is the normalization constant, therefore

2

pya(x)=N j dp&[e—;—m—%ma)fxzj-
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o [ [eslot]
X (x)=0(x! )ﬁm{sin[qﬁ(x)]}’ (10.87)

where the cosine and the sine functions describe even and odd wave functions (as the system is
symmetric to reflection thought the origin).

Substituting formula (10.87) in Eq. (10.83), we obtain the first-order correction to energy:

Ae = _J' dx”:g—‘)_xz[li cos(24(x)) |cos (%ﬂ x) , (10.88)

where the + and —signs correspond to even and odd wave functions, respectively. Here, we have
suppressed the shift of the cosine function by hky/eB . This dependence is trivial and will be
resorted in the final result.

The oscillatory component of the above integral changes very rapidly compared to the distance
between the turning points, £X., therefore the integral can be calculated in the stationary phase
approximation. Neglecting the contribution from the integral over cos(27rx/a) because it
changes very rapidly in space, and using the identity 2cosa cos 8 =cos(a — f3)+cos(a + ), the

above integral can be approximated by

Ag = I de{icos[2¢(x)—2§xjicos(2¢(x)+2§xﬂ . (10.89)

o 2TNXE=X°

From here, we obtain the stationary phase conditions:

d 2
&[Zgﬁ(x)i?x}zo, (10.90)

which give the stationary points, X_, as solutions of the equation

sp 7
r

k(x., Jxt==0, 10.91

(%) £ (10.91)

where k(x)= p(x)/n is the local wavenumber with the momentum defined in Eq. (10.86). Since

k(x) is positive within the range |x| < X., real solutions of the above equation are obtained only

for the minus sign. The stationary points obtained in this case are:

242
() _ zh
X = 4x,,[1- . 10.92
* 2mea’ ( )
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Notice that they lie within the integration range, i.e. ‘Xsp‘ < X

It is convenient to define the angle @ by the k,
relation: ”

7h

av2me '

Fig. 10-13 shows the geometrical meaning of this

cosf =

(10.93)

angle: It is the angle in a right-angled triangle

whose hypotenuse is the particle wavenumber
while its leg is half of the lattice wavenumber. With
this angle, the stationary points can be written in
the form

X =£x.sin@. (10.94)

The solutions of the stationary equation (10.91) Figure 10-13 The geometrical interpretation of the

stationary phase condition in Pippard’s model
with the plus sign yield imaginary saddle points, e PP
and one can show that their contribution is

exponentially small in the limit of large energy.

From the above analysis, it follows that the main contribution to the integral (10.89) comes from
the first term in the square brackets; therefore, we may rewrite it in the form:

X
u . .27
Ae =+Re dx—Oexp(ZW(x)—l—xJ . (10.95)
_‘[* 27t X2 = X° a
To evaluate this integral in the stationary phase approximation, we set X:XS(pi)in the pre-

exponential factor and approximate the argument of the exponential term by expanding it to
second-order around the stationary points:

2¢(x)—%x:iﬂ¢ 2m‘("tan(e)(x—xig))z, (10.96)
where
og(x)_ 2E [ MK
B =24(%; )—?(xsp —e—By]. (10.97)

Here we have restored the dependence on hky/eB (see comment below Eq. (10.88)).



214

With these approximations, the integral (10.95) becomes a simple Gaussian integral. Collecting
the contributions from both stationary points we obtain:

ho T

Ae=+u, [————cos| f——|. (10.98)
°\ zesin(20) (’B 4)

The energy correction, A¢, depends on ky through its dependence in ; hence the condition

for the validity of perturbation theory is max|A&| < he, where the maximum value of |Ag] is

obtained at values of k, for which ‘COS(ﬂ—ﬂ'/Ar)‘ =1. Thus, the threshold value of the magnetic

field, above which the system experiences a magnetic breakdown, is obtained from the condition
max |Ag| = ha,, i.e.

mu?

By=——0___
° rmheesin(20)

(10.99)
The B, dependence on the strength of the periodic potential and the particle energy is what one
should expect: The threshold for magnetic breakdown is lowered as the periodic potential
becomes weaker or as the particle energy increases. The quadratic dependence on U, is also
expected because By cannot depend on the sign of the potential. The more interesting ingredient

in the above formula is the angle @ : Formula (10.99) shows that when 8 — 0, B, — o ; namely,

there is no magnetic breakdown. This strange behavior is because when € =0 the electron wave
number equals half of the lattice wave number (see Fig. 10-13); namely, the Bragg reflection
condition is satisfied. Bragg reflection implies that the electron always gets the required lattice
momentum needed to pass from one edge of the Brillouin zone to the opposite edge (i.e., passing
to the next Brillouin zone); therefore, the magnetic breakdown is suppressed.

10.7 Strong magnetic field — Preliminary discussion (Moiré patterns)

Until now, we considered the weak magnetic field limit where the breakdown of the lattice
translation symmetry is ignored. This limit is realized when the magnetic flux threading one unit

cell of the lattice is much smaller than the quantum unit of magnetic flux ¢, = 27Z'h/e . This regime

applies to most physical systems, but it breaks down when the magnetic field is strong.
Nevertheless, it turns out that if the magnetic flux threading one unit cell is a rational fraction of

¢,, the lattice translation symmetry can be restored at the cost of increasing the size of the unit

cell. The following section demonstrates how it is obtained by defining a new type of translation
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operators called magnetic translations. This section will explore the implications of increasing
lattice constant by an integer multiple on the band structure. We will do that with the help of a
somewhat remote issue known as the Moiré patterns. As we shall see, increasing unit cell size
by factor n leads to disintegrating of the energy band into N minibands.

Moiré patterns are large-scale patterns produced when superimposing two periodic objects with
slightly different periods or at different angles of one with respect to the other. The patterns
generated this way are similar to the phenomenon of beats in acoustics. Recall that

superposition of two sinusoidal waves (say with the same amplitude) of nearby frequencies, @,

and ®,, suchthat |o, —®,| < @, , yields a modulated sinusoidal wave:
+ —
Acos(wt)+ Acos(w,t) = 2Acos[%tjcos(%tj, (10.100)

shown in Fig. 10-14. The period of the modulation, 47/|w, — ®,|, is much larger than the period

of each one of the waves.

A cos(w ) + 4 cos(wrf)

il
LA 1

‘(Ul —w) |

Figure 10-14 The beats phenomenon in acoustics

Similarly, a superlattice is obtained by superimposing two lattice layers with slightly different
lattice constants. An example of such a system is when one layer is graphene while the other is
boron nitride (BN). One of the reasons for preparing such heterostructures is to open a small (and
controllable) gap at the K-points of graphene to make it a semiconductor. (In pure
dichalcogenides, such as BN, the energy gap is too large, about 6 eV; hence, they are good
insulators.) However, the lattice constants of graphene and BN are slightly different. In graphene,
the bond length is 1.42 A, while in BN, it is 1.444A - a difference of 1.7% between the lattice
constants. The superlattice obtained from the superposition of two layers of these materials is
periodic on a much larger scale, as illustrated in Fig. 10-15.

An alternative way of obtaining superlattices is by taking two layers of the same lattice but
slightly rotating one of the layers with respect to the other.
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Figure 10-15 A superlattice obtained from two honeycomb lattices with slightly different lattice constants

T\«\-»b

Continuing with the example of graphene on boron nitride (BN), let b and (1—;/)b denote the

vectors of the reciprocal lattices of graphene, and BN, respectively, where y =0.017. Also, let

Ugy (r) denote the potential that the BN layer generates at the point I of the graphene.

Expanding this potential in Fourier series, we have

Ugy (r) =X u™ exp[i(1-y)b-r], (10.101)

where ukEBN) are the Fourier expansion coefficients. Evaluating this potential on the lattice points
of the graphene layer, I =a, yields U, (a) = Zbu,(JBN) exp(—iy2zn) with aninteger n. To obtain

this result, we have used the relation between the vectors of the Bravais lattice and the reciprocal
lattice, @-b=272n. Thus the period of the potential created by the BN layer on the graphene,
Ugy, (a), is a/y . This period is much larger than the graphene lattice constant - of the order of

100A.

Having a contribution to the potential energy with a periodicity that is 7_1 times larger than the

original periodicity of the graphene implies that the Brillouin zone becomes smaller by a factor
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of » . Treating ug, (r) as a small perturbation, we can repeat the procedure of nearly free

electrons. Namely, first, we fold the original spectrum of the graphene into the reduced Brillouin
zone and then use perturbation theory to open gaps at the crossing points of the bands. The
new bands obtained in this manner are called minibands. This procedure is schematically
illustrated in Fig. 10-17 for a threefold increase of the lattice constant, a —>3a, in a one-
dimensional system.

= =

\ < o < =,
< = [ > > < | =

Figure 10-17 Disintegration of bands into minibands in a one-dimensional system due to a weak external potential
that increases the lattice constant by a factor of 3. The left panel shows the original spectrum of the system. The
middle panel shows the spectrum in the empty lattice approximation (here, the new Brillouin zone is highlighted by
the bright middle stripe). The right panel is the spectrum obtained when the perturbation potential is included. This
potential opens gaps in the intersection points of the energy levels shown in the middle panel.

10.8 Magnetic translations

Consider the problem of an electron moving in a two-dimensional periodic lattice subjected to a
perpendicular magnetic field which is uniform in space and time-independent. The Hamiltonian
of the system is

A 2
H :Mw(r), (10.102)
2m

and we choose to work with the symmetric gauge:

:%er, (10.103)

where B is constant.

It seems paradoxical that the Hamiltonian (10.102) is not invariant under the translation group
of the lattice, while the physical quantities, i.e., the magnetic field and the potential, u(r), are

invariant. Namely for any lattice vector a:
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B(r+a)=B(r) and u(r+a)=u(r). (10.104)
To reveal the cause of the problem, let us first apply the translation operator Tal on the
Hamiltonian, where @, is one of the primitive lattice vectors:

1( .. e e ?
THT'=H =—| -ihV+—Bxr+-=Bx +u(r). 10.106
& & |r—>r+a1 zm( 2 2 aij ( ) ( )

The extra term that we got here is the source of the problem. However, it can be canceled out if
we redefine the translation operators such that their operation includes multiplication by a phase
factor:

T, :exp(—iz—;(Bxal)-roal (10.107)

so that

T HT,'=H. (10.108)

&

This type of translation is called magnetic translation (Zack 1964, Brown, 1964). Notice that the
order of the terms on the right-hand side of Eq. (10.107) is not important.

To check for consistency of the above definition of magnetic translations, let us apply them to
wave functions:

Talx//(r):1//(r+a1)exp(—i%(8xa1)-rj. (10.109)

Operating on the above formula by another magnetic translation operator, T~az , associated with

the second primitive lattice vector, a,, gives

., aln//(r):y/(r+a1+az)exp(—i%(Bxai)-(Haz)jexp(—i%(Bxaz)-rj. (10.110)
Now, by reversing the order of the translations, we obtain

falfazy/(r)=1//(r+al+az)exp(—i%(Bva)(Hal)jexp[—izih(Bxal)»rj. (10.111)
Thus

'I:a11 ., ='I:a2'I:a1 exp(—i%(Bxai)-a2 +i2e;h(B><a2)-a1j
(10.112)

=T, T, exp{—i%B-(alxaz)}
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But |a, xa,| is the area of one unit cell, hence ¢ =B-(a,xa,) is the magnetic flux threading a

unit cell. Using the definition of the quantum magnetic flux, ¢, =277 /e, we can rewrite the

above result in the form:

T, =TT, exp {—iZH 2} , (10.113) B
%, I
or alternatively
f—azf—alfazfal = eXp|:—i27Z' ¢£:| . (10114)
0

The phase factor in the last equation can be interpreted as due
to the Aharonov-Bohm phase (or the Berry phase) that the
particle accumulates when taken along the closed trajectory

illustrated in Fig. 10-18. Thus, the naive argument for periodicity
of the system as follows by the periodicity of the magnetic field

and the potential (10.104) is wrong because one must take into

account also the Aharonov-Bohm phase, which is a pure Figure 10-18 a closed trajectory
quantum effect along the edges of one unit cell

Notwithstanding this problem, there are situations where it does not exist. One possibility is
when ¢ = pg, where p is some integer. Namely, when the flux threading a unit cell is an integer

multiple of the quantum unit flux, so that

EXp|:—i27Z¢£j| =1 (10.115)

0

In this case, the magnetic translations commute and the translation groups with or without the
magnetic field are identical.

Another possibility is when ¢ = ¢O/q with = I?, where | is an integer. In this case, multiplying
the unit cell by | in each direction of the primitive basis vectors, such that the new primitive
lattice vectors are la,and la,, produces a new lattice whose area is q times larger than the area

of the original unit cell,

la, xla,| =1?|a, x&,| = q|a, x &,|. Therefore, the flux threading this new

large cell is precisely ¢, , and the translation group is restored, albeit for a larger lattice constant.

When ¢ = ¢0/q where ¢ is an integer but not a square of an integer, one can extend the unit cell
by choosing the new primitive lattice vectors to be Qa, and Qa,, so that the area of the unit cell

is q2 larger than that of the original lattice. The total magnetic flux threading the new lattice cell
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is also an integer multiple of the quantum unit flux: B-(ga, xqa, ) =0’Bla, xa,| =q° ¢,/q =dg,,

and translation symmetry applies for the new lattice.

The new Brillouin zone is smaller than that of the original system by factor of qz, and as in the
case of Moiré patterns, each band will be split into minibands. However, the unit cell area is g
times larger than needed to obtain a phase of 27 . It suggests that the energy levels are q times

degenerate. To prove that, consider the Bloch wave function of the lattice with the extended unit
cell, which satisfies the conditions:

v (r+a,)=exp(ika, )y, (r) and y, (r+0qa,)=exp(ikga, )y, (r) (10.116)

This function is a valid Bloch wave function because the magnetic translation operators 'I:qal and
faz commute, hence the translation group they define, is identical to that obtained by the usual
translation operators T, and T, . Now let us define q-1 additional functions obtained from

v, (r) by magnetic translations of distances ja, where j=1,2,---q-1:

~(j . . e .
l//ﬁ’)(r)=!//k(f+Jai)exp(lar-(BXJaj)j- (10.117)
These functions have the same energy as (r) because the Hamiltonian is invariant under

magnetic translations (see Eq. (10.108)), but as we shall see, they correspond to a different quasi-

momentum. Translation by a, gives

g (r+a,) =y, (r+ jal)exp(i%(Haz)-(Bx jal)jexp(ikaz)

:;ﬁij)(r)expti[k+g(8x jai)]az}

(10.118)

while translation by ga, is

A0 (8 =, (1 + oo 15+ 02)- (B ) e ikas,

(10.119)
=t/7£”(r)e><p(i{k+§(8x jai)]qai)-

From here it follows that lﬁlgj) (r) Bloch functions whose quasi-momentum, is 7k +%(B X jai) ,
hence

g[k]=g{k+%(8xjal)] (10.120)

Thus, the energy levels are g -fold degenerate.
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10.9 Hofstadter’s butterfly

Imagine an electron in a two-dimensional lattice subjected to a uniform magnetic field
(perpendicular to the sample). Let us observe the behavior of the electronic spectrum when
increasing the magnetic field. From the above discussion it flows that this spectrum undergoes a
series of changes: Each time the magnetic flux, threading a unit cell, reaches a value that equals
o= p¢0/q (where g and pare coprime integers) the band disintegrates into g minibands.
However, since the rational numbers are dense, one expects that the dependence of the
spectrum on the magnetic field is fractal. In 1976 Hofstadter solved, numerically, the tight-
binding model in a square lattice subjected to a uniform magnetic field. He plotted the energy
levels (divided by the hopping matrix element t) as a function of the magnetic flux passing

through a unit cell divided by quantum unit flux; see Fig. 10-19. In the picture’s leftmost and
rightmost sides, corresponding to ¢ =0 and ¢ =d,, the spectrum is identical and contains a
single band. Between these sides, one can see a self-similar behavior of the spectrum of the
Landau levels. For instance, at ¢ =¢,/3 the spectrum contains three minibands and the local

behavior near this value is similar to the behavior near ¢ =0.

4

A A

Figure 10-19 Hofstadter’s butterfly
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10.10 Exercises

1. Prove equation (10.23).

2. Show that in the framework of the tight-binding model, the hopping terms, f, to nearest
neighbors in the presence of a weak magnetic field are:

o
fztexp[i%jdr'. A(r’)J, (10.121)

a
Where, t, is the hopping term without magnetic field, q is the particle charge, aand a’are

neighboring lattice points and A(r’) is the vector potential.

Advice: Show that Wannier functions in the presence of the magnetic field, v”va(r), are

obtained from Wannier functions in the absence of magnetic field, w, (r) , by

W, (r)= Wa(r)expEi%j'dr’- A(r’)], (10.122)

and satisfy
HW, (r) :exp[i%jdr’-A(r')J Hw, (1), (10.123)
where H and H are, respectively, the Hamiltonians of a particle moving in a periodic lattice

in the presence or in the absence of a magnetic field.

3. Calculate Landau levels of graphene in a magnetic field (neglecting Zeeman effect)

Advice: Focus on the region of K-point and use Peierls substitution (10.31) to obtain the
effective Hamiltonian within the effective mass approximation. Write down the time-
independent Schrodinger equation as two coupled equations for the components of the
dynamical momentum. Substitute one equation in the other and use the commutation
relations (10.69).

4. Prove equations (10.98) and (10.99).
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5.

6.

Calculate the transition coefficient in the problem
of magnetic breakdown for the following model.

Consider the point k; in the k space, where two

energy bands become close, as illustrated in Fig.
10-20. In the k-p approximation, the local

Hamiltonian in the vicinity of this point is

A+hv .k, hv.K,
vk, —A+hvk,

j, (10.124)

where K is measured from k;. Here 2A is the
minimal energy gap between the levels (at k = 0),
Vyand v are parameters of the system, and

without loss of generality, we set the Fermi energy

kx
4 k(],x ~

Figure 10-20 A model for magnetic breakdown

to be zero. Now, assume the magnetic field is applied in the Z axis direction and calculate

the transition coefficient between the upper and the lower bands of the spectrum shown in

the figure.

Advice: Chose the Landau gauge A =Bx and A =A =0, and reduce the problem to that

of dielectric breakdown model discussed in the previous chapter.

Twisted bilayer graphene is obtained when superimposing two graphene layers with one of

the layers twisted by a small angle a with respect to the other. Assuming a is the lattice

constant of graphene, what is the lattice constant of the superlattice?
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11 Elastic deformations, sound waves, and phonons

Until now, we have studied electronic preparties of crystals, assuming them to have perfect
periodic structures. However, there is no such thing as a perfect crystal (even for the mere reason
that any crystal is finite in size). In reality, atoms are shifted from their equilibrium position, and
the periodic structure of the crystal is destroyed. There are many reasons for that; For instance,
defects and impurities in the crystal, thermal and quantum fluctuations, external forces acting
on the crystal, and sound waves propagating within the crystal. The distortion created by these
factors affects the behavior of the electrons in the system because Bloch’s theorem does not
apply anymore in its strict sense. In our quest to understand the physical properties of crystals,
an important step is to clarify the nature of elastic deformations in crystals and sound waves that
represent time-dependent deformations. We begin this chapter by developing the mathematical
tools that describe elastic deformations in crystals. Next, we discuss the energy of such
deformations and use it to derive the equations for sound propagation in a crystal. Then, we will
introduce phonons obtained from quantizing these sound waves, and finally, discuss optical
phonons that appear in crystals whose unit cells contain more than one atom.

11.1 The strain tensor

Lattice deformations are states of the lattice in which the atoms move from their equilibrium
position, as illustrated in Fig. 11-1. In this figure, the black disks represent the positions of the
atoms at equilibrium, while the gray disks are the locations of the atoms in the deformed lattice.

The vector u(r) describes the shift of an atom from its equilibrium position at r into its new

position at r+u(r). Itis called the displacement vector.

VAR BN

o

\
3/

(r)”

4
]

~ %

)

N

Figure 11-1 Deformation of the lattice structure as atoms shift from their equilibrium positions

NN
NN/
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Here we assume that the lattice deformations change very slowly in space, i.e.,

au(r)
or.

]

<«1. (11.1)

This assumption allows us to ignore the discrete structure of the lattice and treat r as a
continuous variable. Notice, however, that the above condition does not imply that the

u(r)

be much larger than the lattice constant because small changes in the distances between nearby

magnitude of the displacement vector, , is smaller than the lattice constant. In fact, it can

atoms may accumulate to a large displacement vector.

The object that we need in order to understand the elastic properties of a crystal is its energy
dependence on deformations. This energy comprises two main ingredients: the electrostatic
repulsion of the ions and the electronic energy that compensates for the repulsion energy and a
bit more so that all atoms are held together. The electron energy is traditionally calculated in
the Born-Oppenheimer approximation (slow ions and fast electrons). Here the Schrodinger
equation for the electrons is solved for a given static configuration of the ions, and the obtained
eigenenergy serves as the potential energy for the motion of the ions. In particular, the global
minimum of this potential energy determines the crystal structure.

Thus, to calculate the electronic contribution to the energy of deformations, one needs to
consider the potential energy of the electrons in the deformed lattice:

V(r)zzj:va[r—Rj—u(Rj)] (11.2)

Here the sum is over all ions of the lattice that, in equilibrium, are located at points Rj , While

A (r) is the potential energy created by a single ion sitting at the origin. In general, crystals are

made from several different types of ions that create different potential energies; however, this
complication does not affect the results we will derive below.

In principle, one would like to expand the potential energy in the displacement vectors, as

ov, (r-R)

w[r=R-u(R)J=v, (r-R)- =20

u;(R). (11.3)

However, V, (r) typically changes over atomic scales, while ‘u(r)‘ may be much larger than the

lattice constant. Thus, we cannot use the above expansion. To avoid this problem, let us define a
new coordinate system that follows the ion's displacements. Namely, a new coordinate, ', that
satisfies the condition:

F+u(F)=r. (11.4)
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Taking into account that V(r) is local and changes a scale of order of the lattice constant (i.e.

approximately proportional to a J -function) and the assumption expressed in Eq. (11.1), we see
that in this coordinate system the potential energy is periodic in space with the original lattice
periodicity:

V(r):Zv[r— —u(R )] Zv[r+u ~u(R )} Zj:v(

]

V(f). (11.5)

v
III

However, the new coordinate system is not cartesian anymore. Namely, the distance scale
between points depends on their position in space. Thus, in order to work with these coordinates,
one should use the metric tensor g, thatallows one to calculate distances in the new coordinate
system. If ds represents an infinitesimal distance in the physical plane, then the new coordinate
system satisfies the relation ds® = = g;dridr;, where repeated indices are summed over. In our

case:
ds? =dr-dr=25 U grgr =) 5 + M || 5, + D lar o
dF; df, oF, or,. ) !
N (11.6)
9k
= (8, +2u,, )dr,dr,,
where
ou. ~ou. ou.
Uy = | +_~J+a_li|6_ljl ZE %"‘_J (11.7)
2 or, of  of o | 2|of Ok

is the strain tensor. Notice that the nonlinear term can be neglected using the assumption of
slow changes in the displacement vector (11.1).

A non-trivial metric enforces changes in the form of the Laplacian operator. Using the chain rule
for derivatives, one can show that the transformed Laplacian is:

vz L 9 [ggil (11.8)

Jg o, arj or,’
where g' = giJTl is the inverse of the metric matrix, while g =detg; is the determinant of the

metric tensor. This operator is called the Laplace-Beltrami operator. We will not prove this
formula but demonstrate it with the simple example of polar coordinates:

r=4x+y> and go:arctan(lj. (11.9)
X

The metric associated with these coordinates can be obtained by the following calculation:
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dr de)(1 0)(dr
dx? +dy? =dr? +r’d¢’ =( ?) , (11.20)
0 r°)lde
o
Therefore g =r? and the inverse matrix of the metric tensor is
1 0
9" =g, = 1 (11.21)
0 =
r-Jij

Substituting these results in the Laplace-Beltrami operator (11.8), we obtain

1 0 iji_l(a 8]+16 10) o 10 10
dp r’0p

—_—— =—| —r— |[+= =—+t+——+=—7, 11.22
Jo o, 99 of, r\or or) r o’ ror r?og’ (11.22)
which is the familiar Laplacian in polar coordinates.

Let us return to the problem of finding the electronic contribution to the energy of a deformed
lattice. Having the form of the Laplacian (11.8) and the potential energy (11.5) in the coordinate
system that moves with the atoms, we can write the Schrodinger equation for an electron moving
in the deformed lattice in the form

1o .0 .
LU SR P SCENRVITS 11.23
am g or V0O o (F) |y =ev i

! J

This equation is the starting point for a perturbative expansion of the electronic energy in the
strain tensor (11.7), because the deviation of the metric g; =J, +2u; from the Cartesian

metric ggg) =5jk is small (due to our assumption (11.1) that deformations are very smooth in

space). Similar considerations also apply to the total energy of the system, which includes that of
the ions.

11.2 The energy of elastic deformations

The energy of a deformed crystal is a functional of the strain tensor:
d
Eelastic [uij (r)] = '[d IF“c"ela\stic I:uij (r):l ’ (1124)

where &, [uij (r)} is the energy density for a local deformation of the lattice. It is clear that

calculating this energy, from first principles, even in the framework of perturbation theory in the
strain tensor, is a formidable task. However, assuming that deformations do not produce
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dramatic changes in the band structures of the electrons, the above considerations suggest that
the energy density can be expanded in powers of u; (r)

1_
Eelastic (uij)zz‘:‘ij;kluijukl tey (11.25)

where, as usual, repeated indices should be summed over. Elasticity theory is obtained when
this expansion terminates at the second order. Notice that the linear term does not appear in
this expansion because we are interested only in small deviations from the minimal energy of the
equilibrium configuration.

In the above formula, =, is the elastic modulus tensor. In general, a tensor with four indices in

a three-dimensional space contains 3* =81elements. However, this number is reduced to 21
independent elements due to the following properties: First, it is symmetric to index changes of
i <> j andto k <> | (because the strain tensor is a symmetric matrix). Second, it is symmetric to
an interchange of pairs of indices ij <> Kkl . Spatial symmetries of the lattice are expected to
reduce the number of independent parameters of the elastic modulus tensor even more, as we
shall see now.

Let us show how to employ group theory considerations to identify the number of independent
parameters of Z;,, . The starting point is our understanding that the elastic energy (11.25) is

invariant under all symmetry operations of the lattice. Therefore, the right-hand side of Eq.
(11.25) must belong to the identity representation. Thus, one should identify the irreducible

representations of the strain tensor u., and from their direct products (because the energy is

ij /

guadratic in the strain tensor) select the identity representation. The number of times that the
identity representation appears in these products is the number of independent parameters of

—

-
L TH

To identify the irreducible representation associated with the strain tensor

~ou,
Uj :1(%4-—]} ) (11.26)
2{ or; on

notice that its symmetry is the same as the basis function rr; because both u; and 8/8rj behave
as vector’s components: U, is a component of the displacement vector, while 8/8rj , is a

component of the gradient operator which behaves the same as a vector concerning rotations,
reflection, and inversion.
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Example 1: The elastic energy of a two-dimensional lattice with C,, symmetry

Consider the in-plane deformations of a two-dimensional

lattice with C,, symmetry (such as boron nitride). The Cs,
quadratic basis functions of the irreducible representations of A, X*+y°
this group (associated only with the in-plane coordinates) are A
shown in the table to the right. This table shows that u,, +u,, i

o . . E (x*—y?,2xy)
belongs to the identity representation, while (uXX —uW,ZUXy)

is a basis function of the two-dimensional irreducible

representation. For the first case, it is clear that A, ® A, = A,; hence the elastic energy must
contain a term proportional to (uXX +uyy)2. For the second case, the product
EQE=A @A, DE also contains the identity representation. The singlet associated with the
latter product is the square of the norm of the basis functions. (one can see that the square of
this norm (X2 - yz)2 +(2xy)2 =(X2 + y2)2 is the same as the square of the A, basis function).
Thus, one expects the elastic energy to have an additional term that is proportional to
(uy —uyy)2 +4u

2, . . . .
x> hence the elastic energy of this lattice is

Eelastic = %EAl (uxx +uyy)2 +%E‘E [(UXX _uyy)z +4Ufy:| ’ (1127)

where E, and Z; are system-dependent parameters. These considerations show that =

depends only on two parameters in the case of a two-dimensional lattice with C,, symmetry.

Comment: To identify the basis functions associated with the identity representation of
products of higher dimensional representations (such as E®E in the above example), one
should work with the correct normalization of the basis functions. That is a normalization for
which unitary operators describe the actions of the symmetry operations. For this choice,
the sum of the square of the components of the basis functions is a singlet, because it is
invariant under all symmetry operations represented by unitary transformations. The factor

2 that appears in the second term of the basis function (X2 - y2, 2xy) ensures this property;

however, many character tables do not use this convention. Ex. 7 of chapter 4 explains how
to build basis functions that possess this property.

Opening the brackets in the second term of the elastic energy (11.27), and rearranging the terms
one obtains:
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1_ 2 1_ 2 2 2
Egtastic = EaAl (uXX + uyy) +§zE [uxx +Uuy, +4u,, — 2uxxuyy]
1 1 (11.28)
_ i 2 1o 2 2 2 2
=2 (uy +uyy) +28e [ZUXX +2u2 +4u’, —(u, +u,) ]
This elastic energy can also be written in terms of traces of the strain tensor and its square:
1, — 2
Eelastic — E(EA1 _:‘E) (uii) +=e Uy (11.29)

(tra)’ tr 4°

where U stands for the strain tensor matrix. Notice that writing the energy density only in terms

of tr G and tr G?implies that the elastic energy of this system is rotationally symmetric.

The first term on the right-hand side of the above formula is the energy associated with
compression or decompression of the lattice, i.e., the energy associated with volume changing
and shape-preserving deformation. It is because tr U is the relative change in the system volume

due to deformation: To see why, recall the Jacobian, \/a of the transformation from r to [, is

the ratio of volume elements in both spaces. Therefore, the relative change in the volume can be
evaluated as follows:

\V/ -V
otma Yoo _ g1 [Get(1'+20) -L-exp| 7 ndet(1+20) | -1

equilibrium (1130)
= exp[%tr In(1+ 20)} 1= exthr 20} ~1=trq,

where we have used the identity Indet A=trIn A which holds for any diagonalizable matrix A.

The second contribution to the energy density (11.29) is due to shear deformations.

Example 2: The elastic energy of a crystal with tetrahedral symmetry

The quadratic basis functions of the irreducible

representation of the tetrahedral group, T,, are T,
presented in the table to the right. The basis functions A X2 + y2 +7°
of the E and F, irreducible representations were A,
calculated in Ex. 7 of chapter 4. Here, the direct product E [222 —x2 _yzlﬁ(yZ_xz)]
of each irreducible representation by itself contains the E
identity representation. However, one should also .
. . FZ (XanZ,yZ)
check whether a direct product of two different

irreducible representations contains the identity
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representation. It is not the case here because F,®E=F @F,. Using the same procedure

presented in the previous example leads to

(11.31)

Thus, the elastic modulus tensor contains only three system-dependent parameters, Ea o B,

and = . Rearranging the terms in this formula allows to write the elastic energy density in the
form:

1

Elactin — —
elastic
2

(Ba =22 ) () + vyt %(6% Sz eup ). (1232)
—_—

spherical symmetry cubic symmetry

The first two terms in this formula are expressed in terms of tr Giand tr G2, therefore, represent
a rotationally symmetric contribution. The third term reflects the symmetry of a cube.

11.3 Sound waves in crystals

Sound waves in crystals are time-dependent smooth deformations. They come from the periodic
conversion of potential energy into kinetic energy and vice versa. Thus, apart from the potential
energy of the deformations one should include the kinetic energy of the atoms. The Hamiltonian
that describes such a system is:

2(r) 1_
p2,(0 ) +§‘:ij;kluij (r)um (r) (11.33)

Hzfddr

where p is the mass density and p(r) is the momentum density that satisfies the commutation

relation:
[ P, (1)U, (r')]==ihd,,6(r —r') (11.34)
(recall that u(r)is the displacement vector at the point )

We turn now to derive the equations of motion that follow from Hamiltonian (11.33). The time
derivative of the displacement vector is obtained from its commutation with the Hamiltonian.
Using Eq. (11.34) we obtain:
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d

;m:l[H;u ] Idd'p” - n(r');um(r)]

d,pn (r-r pm(r)
= [dr )= P

(11.35)

A similar calculation for the time derivative of the momentum density gives
dp, _ip,. i u
F:E[H:pm(r)]:_%dij;mj-ddr I:pm Uk| }
I wo(eny) O (e O —
=—2—hnij;k.'[ddfui,-(r){a—rk,[pm(r),u,(r)]+a—rl,[pm(r),uk(r)]}
1 0 0
——EEij;k,jddr'uﬁ(r’){&ml55(r—r')+5mka—r,5(r—r’)} (11.36)

k |

:%E”klfdd ’{5 au"(r)+5 au”(r)}d(r—r’)

ml arky mk arly

0

= E‘Eii:kmuij (I’)

Defining the stress tensor to be

_ SH
% = Syt (1) = 5005 (11.37)

we can write equation (11.36) in the form of a continuity equation:

dgtm _air o, =0 (11.38)

showing that the stress tensor is the momentum flux density.

Taking the time derivative of Eg. (11.35) and substituting Eq. (11.36), we obtain the wave
equation:

d’u, 1 0 _
dt2  p 8r

Eijmly (1) (11.39)

To solve this equation, we substitute a solution in the form of a traveling wave:

u, =Ue, exp(iq-r—iot), (11.40)
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where U is the wave amplitude, e is a unit vector that defines the direction of the displacement
vector, (isthe wavenumber, and @ is the frequency. With this choice, the strain tensor (11.7) takes

the form
u; :Ulz(eiqj+ejqi)exp(iq~r—ia>t). (11.41)
Substituting (11.41) and (11.42) in the wave equation (11.40), we obtain the dispersion relation
of the sound wave
1 _
n Z:ij;mn (eiqj +ejqi)qn. (11.42)
To identify the sound velocity,

c(q)zg, (11.43)

of a wave moving direction of the unit vector §=q/q, we use the symmetry of = to the

“—ij;mn

index change i <> j to obtain

. 1 A
¢’ (q)em = Zijmn U Un6; - (11.44)

1]

The above equation is an eigenvalue equation for the 3x3 matrix

1

My == ;G - (11.45)
yo,

mi

Its three eigenvalues are the squares of the sound velocities, ¢ (4) (a=12,3), for a given
direction of the wave proparagion, §. The eigenvectors of M . are the normal modes of the
vibrations, el (d) (which also depend on the propagation direction of the wave). These modes

are orthogonal

(11.46)
and form a complete basis

3
> el =5, . (11.47)

The role of the unit vector e is similar to polarization in electromagnetic waves; therefore, it is
called the wave polarization vector.
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Example 1: The spherical approximation of sound waves in a lattice

Consider the case where the elastic modulus tensor is rotationally invariant. Such a tensor has
the form

Eij = 460y +ﬂ(5ik5j| +§i|5kj)r (11.48)
where A and g are constants called Lamé parameters. This tensor satisfies the required index

symmetries, and the elastic energy obtained from this tensor (11.25) is expressed only in term of
traces of the strain tensor and its square:

1._ 1
:E‘:"j;kluijukl = E[ié‘ijé‘kl +:u(§ik5jl +§iI5kj )] UiiUyg

&

elastic

h . (11.49)
_ )2 _ ~A\2 ~2
=% Uilly +E(ukjukj +Uuy, ) = E(tru) + utrd

This form of the elastic modulus tensor provides an approximation for zinc blende crystals when
the third term in Eq. (11.32) is negligible. Substitutingitin Eq. (11.44), we obtain:

. 1 .. A A .
C2 (q)em :_':‘ij;mnqjqn i :_é‘ijé‘mnqjqnei +ﬁ(§imé‘jn +5in§jm)qjqnei
j P P (11.50)
N~ M A
=—(9-¢)q, +—(&,+(4-€)q, ),
2(@-e)0,+ (e, +(02)0)
or in the vector form:

c’(4)e= /Hﬂ(d-e)(jJrﬁe. (11.51)

P p

Now we can identify two cases: Longitudinal waves where the wave propagates in the same
direction of the displacement vector, -e =1, and two degenerate modes of transverse waves
where the displacement vector is perpendicular to the propagation direction, §-e =0. From the

above equation, we obtain that for longitudinal waves,

G = ,/HZ# ) (11.52)
Yo

c, = &, (11.53)
P

while for transverse waves

Thus, transverse waves propagate at a lower velocity than longitudinal waves. Typically, the ratio
of the sound velocity of the transverse waves to that of the longitudinal wave is small:

c,/c,~107 107"
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The dispersion of sound waves in this spherical w
approximation is illustrated in Fig. 11-2.

We remark that this figure only describes the
depression of sound waves at small wave numbers, I
namely wave numbers that are much smaller than
the lattice wave number. It is because our derivation cL

is based on the assumption of slow and smooth

deformations in space. 4

Figure 11-2 The dispersion relation of sound
waves in the spherical approximation

Example 2: Sound waves in zinc-blende crystals

The elastic energy of a zinc-blende crystal was derived in the previous section and is given by Eq.
(11.32). Redefining its constants, we write it in the form:

— —

Eelastic = ?l(uii )2 +%uijuji "‘%(fo +U§y +UZZZ) . (11.54)

—
=
—_—

The elastic modulus tensor, in this case, is

0 Ojy v (11.55)

Eij;kl =El5ij5k| +%(é‘iké‘jl +5j|5ik)+33 z 6,9, 5kv5|

v=X,Y,Z
and it can be used in order to calculate the matrix M by formula (11.45). Alternatively, one can
construct this matrix directly from the elastic energy using the formula:

2~
- 1 T e (11.56)
p 0e, 08,
where
~ 1 I A .
& pastic =§‘:‘ij;kluijukl and 0 =§(eiqj +ejqi) (11.57)

The proof of this formula is given as an exercise. Here we use it to calculate the velocity of sound

of waves that move in the direction [1,1,1] and for general direction on the (1,0,0) plane.

In the first case g, =q, =4, =1/+/3, therefore a; :(ei +e, )/(2\/5) Now, let us calculate the

various contributions to the M, matrix coming from the elastic energy (11.54). The first term

is:
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ge(ula)sﬂczza_;anan =g_; - €€ (11.58)
and from here, we obtain
.. _ - 111
_ Qe 5 LS (58 + OB ) = = ottt (11.59)
111

M@
e, 6p -

The second contribution to the elastic energy (associated with the middle term in Eq. (11.54)) is
(11.60)

22 _Zp s _
£ =—=0.0. =
elastic 2,0 ij o ji 24,0 -
which gives
o _ 8 E
M e'as“‘:: Oim + O ) O + 6 =—2(5 +1
mn aemaen 12pz|]:( )( n ]m) Gp( mn )
|1t 11 1 00 (11.61)
=Z2011 1 1(+[0 1 0
6p
111 0 0 1 .
Finally, the last contribution to the elastic energy is
~ — ~ 2 ~ 2 ~ 2 E
gg,?sm—;[(uxx) (a,) (uxx)}:é(ef+ej+ef), (11.62)
hence
3 20z 1 00
O == 2210 1 0 (11.63)
e _oe
m n p 0 0 1 .

for a wave propagatingin the [1,1,1] direction

Collecting all terms, we obtain that the matrix M
(11.64)

100, (111
ﬂlll.
111

The diagonalization of this matrix is simple because a matrix whose all elements are ones has one
eigenvalue that equals three and two degenerate eigenvalues that equal zero. Taking into

account this property, we obtain that the wave velocities are
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C,= ﬂ+i and C, = ﬂ—|—ﬁ+i . (1165)
' 6p 3p p 3p 3p

One can check that ¢, is the velocity of the longitudinal wave that moves in the [1,1,1] direction,

while ¢ , are the velocities of the transverse waves.

Consider now the case of a sound wave moving in some general direction on the (1,0,0) plane.
For this case §, =0 hence G :(eiqj +e,q; )/2 fori,j=y,z,while 0, =0, =e,g,/2 for j=Y,2

and u,, =0. Following the same procedure presented above, we have:

_ —_ 0 O 0
N = = R . \2 = N A
géllgstic :iuiiujj :i(eyqy—i_ezqz) ) M® :?1 0 q§ d,d, (11.66)
0 44, @
<2 _E faa Ve 22
Celastic — 5 €q; +¢,¢;) +— €4d;) (1167)
lasti 8p”_zw( J J ) 4,0J'_yyz( J)
/{1 00 0 O 0
M(Z)—;—; 01 0[+[0 & 4§4, ||, (11.68)
a4 A a2
00 1)1(0 4gq, ¢
and
0 0 O
~ o 2 N2 = N
€§|3;)sﬁc——3[(ey ,) +(ed,) } M&==310 ¢ 0 (11.69)
2p Y2 2
0 0 g
Thus
= 0 0
2p
M=0 i+(i+5+%jd2 (E+EJG d; : (11.70)
2p \2p p p)” p 2p)”
0 (E‘l :ZJQ qu i+('—2+'—1+’—3}'*2
p 2p)” 2p \2p p p
From here, it is clear that one wave velocity is:
C, ==~ (11.71)

while the two others are obtained from diagonalization of the 2x 2 submatrix :
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—_ —_ — —_ —_ 2 —_ —_ 2
c§3:3“2+1 "= $l =241+ 1 cos®(20)+| =2+ | sin*(20), (11.72)
Co4p 2(p p) 2\\2p p p p 2p

where we choose §,=cos® and §, =sin@ (so that w
|d|=1 because ¢, =0). Thus, we obtained three

different wave velocities for this case, which is the

typical situation as demonstrated in Fig. 11-3.
c3

Finally, we comment that, in general, the polarization

C
vector need not be parallel or perpendicular to the ch
direction of wave propagation. In other words, the
characterization of waves as longitudinal or transverse q
is, in general, only approximate. Figure 11-3 Typical dispersion of sound

waves in crystals

11.4 Phonons

Phonons are obtained from the quantization of sound waves. Each normal mode of the lattice
vibrations (assuming its amplitude to be sufficiently small) is essentially a simple harmonic
oscillator. Quantization of the latter, as we know, can be easily obtained by expressing the
position operator, X, and the momentum operator, f, in terms of the creation and annihilation

operators, 4" and &, defined by

R = ﬁ(ma*), and p=-—i /%mw(a—é*), (11.73)

where m is the oscillator mass and o is its frequency. With these variables, the Hamiltonian of

the harmonic oscillator takes the form: H = ha)(éfé+1/2) .

Similarly, to quantize the sound waves of a crystal, one has to expand the displacement vector
and the momentum density in terms of the system's normal modes and then quantize each
normal mode treating it as a simple harmonic oscillator. In analogy to Eq. (11.73), the
displacement vector and the momentum density are given by:

Z 2o )VoIJ q[a )exp(iq-r)+a; (q)exp(-iq-r)],

(11.74)

Z hpza\)/m (6)[ 4. (a)exp(iq-r) -4 (a)exp(~iq-r) ],

where @, (q)=c, (4)|a|. Here we assume the system to be finite in size (but large) and denote
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its volume by Vol . This assumption implies that the wavenumber vector q can take only discrete
values set by the boundary conditions. The operators &' (q) and &, (q) are the creation and

annihilation operators of a phonon with a wavenumber g and polarization o . Since these are

bosons, their commutation relations are :

[8,(a):a,(a)]=[al(a):a}(a")]=0, and [4,(a)i&}(q)]|=0,u0,-  (11.75)

The above representation of the displacement vector and the momentum density ensures that
these quantities satisfy the commutation relation (11.34) (see Ex. 4), and since each vibrational
mode of the lattice is an independent harmonic oscillator, substituting Egs. (11.74) in the
Hamiltonian (11.33) yields:

H = Sho, (@) a1 (@4, (0)+3] 1176)

The expectation value of the number operator i, (q) =4/ (q)4, (q) is the number of phonons

that occupy the normal mode with wave g number and polarization « . Thus, if we denote by

n, (q)) the occupation state with n, (q) phonons, then similar to the harmonic oscillator,

(n,+1]al|n,)=n, +1 and (n,-1a,|n,)=n, . (11.77)

At thermal equilibrium, the average occupation of phonons is given by Planck’s distribution:

1

(n, (@))= exp[hw“ (q)}l,

KgT

(11.78)

where kB is the Boltzmann constant, while T is the temperature. From here, it follows that the
typical frequency of phonons at equilibrium is o= kBT/h , and their typical wavenumber is
g= kBT/hC, where C is the speed of sound. Since the total vibrational energy of a system is
obtained from an integral d°q over Planck’s distribution multiplied by ho, (q)=keT (Here d
is the system's dimensionality), it is of order U ~q°T OCTd”/Cd . Hence the variation of this
energy, due to a AT change in the temperature, is AU ~ (T/C)d AT . Thus, the heat capacity of
the phonons is: C, = AU/AT oc T .

There is nothing mysterious about the second quantization procedure that we used here to
characterize sound waves in quantum systems. If we had treated the position and momentum of

each particle in the lattice as quantum operators, all the way through, the resulting energy levels
and eigenstate would be precisely those of the Hamiltonian (11.76) - see Ex. 5.
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11.5 Optical vibrations in crystals (optical phonons)

In the previous sections, we discuss lattice vibrations associated with deformation that,
essentially, do not affect the internal structure of each unit cell. For a simple crystal made from
one type of atom situated on Bravais lattice, these vibrational modes, called acoustic modes or

acoustic phonons, are all one can have. However, if each unit cell contains N atoms, it has N .d
degrees of freedom, where d is the system dimension. Thus, there must be (N, —1)d additional

vibrational modes associated with all possible internal deformations of a unit cell. These
vibrational modes are called optical vibrations or optical phonons (when quantized). A schematic
illustration of the phonon spectrum in three-dimensional systems where each unit cell contains
two atoms is shown in Fig. 11-4.

w(k)

Optical phonons

f\K

3(Nye—1) modes \

Acoustidghonons

wp

\
s T k

a a
Figure 11-4 A schematic illustration of the phonon spectrum in a three-dimensional lattice

All phonon branches, whether acoustic or optical, satisfy the condition «? (k)= @* (—k) dictated
by time-reversal symmetry. Translational symmetry implies that »? (k +b) = ® (k) where b is
an arbitrary vector of the reciprocal lattice. The highest frequency of the acoustic branches of
the spectrum appears at the edge of the Brillouin zone (K = 7r/a in the above figure). The highest
frequency among them is called Debye frequency and denoted by @,. At temperatures much
smaller than Debye’s frequency, T < h@,, the heat capacitance is C, ~T9, as we saw above.

However, when T > K@, the law of equipartition implies C, ~ kN .d/2.
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Example: Waves in a one-dimensional system

Consider a one-dimensional system made of particles connected by springs having identical
spring constants, K. Each unit cell of this lattice contains two particles with masses M and m,

as shown in Fig. 11-5. We shall consider only longitudinal vibrations of this system and denote

by Ugl) and ugz)the displacement vectors of the particles in the j -th unit cell, along the chain, as

indicated in the figure below.

a
| |

| my my ny my my

Juv\wé\mew\o'\wwwwm'\r\:O\uwmm@immwww@mm«mmmw\'o«m
: K : K K : g : K :

)
B K
- - - -

(1) (2) (1) (2) (1) (2)
j—l ”]—l HJ- HJ- ”j-+l H‘,'-+l

1
Figure 11-5 A one-dimensional chain made of two types of particles connected by identical springs

Newton’s second law yields the equations of motion:

dzu®
_ (2 O Y)
m, dt; _K[uj —2u; +uH]
(11.79)
d*u}” O _ oy y®
" :K[um—Zuj +U] }

Defining @’ =K/m, (v =1,2) and substituting solution of the type U(jv) = A exp(ikaj —iwt),

where K is wave number and a is the lattice constant, reduces the above equations to

L o =20 o] [1+exp(—ika)]][ﬁj:[oj_ (11.80)

o [1+exp(ika) | 0* — 20! A ) O

A nontrivial solution of this equation is obtained only when the determinant of the above matrix
vanishes. This condition yields the biquadratic equation:

a)4—2(a)12+a)22)+4a)12a)22 Sinz(k—;jzo (11.81)

whose solutions are:
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w=0,(k)= \/a)lz + s —\/((of + @l )2 — 40} w? sin? (k—;j , (11.82)

and

w=a,(k)= \/a)f + @l +\/(cof +a)22)2 — 4} @’ sin? (k—;] . (11.83)

The first solution (11.82) represents the acoustic branch of the vibrational spectrum. Expanding
it to leading order in K yields a linear dispersion:

o, (K)=—228 i (11.84)
2(w2+a)2)
1 2

The second solution (11.83) represents the optical branch of the spectrum. Its expansion, to

2 2,2
y(K) = [2(0f +0f) - —2L2 (11.85)

,
02 (et +a2)

leading order in K, yields:

Thus, the frequency of the optical branch in the limit K — 0 is a positive constant. It is easy to
check that in the limit, K — 0 the eigenvectors of the acoustic modes describe a rigid translation

of the whole unit cell with A = A, , while for the optical mode, the particles move one against the

other, keeping the center of mass of each unit cell fixed, w>A =-w/A,, see Fig. 11-6. Notice that

identifying acoustic modes with a motion of the whole unit cell and optical modes with situations
where particles move one against the other becomes meaningless as K it approaches the edge
of the Brillouin zone.

o o o
J\N’L"Q'\.'\N\.N\"\.’\.'\'L’\'Of\.'\f\'\'\"\f\'\.’\f\'\’QN\NVWVMO'\f\'\’VVL'V\,'L'\'\fur\’\’\'\'\’\,’\'\’\"\'\'oAf\'\f\f'\r Acoustic

P ~—] b ~—] b ]
J\rmrowwmww\form'\wmw mmww@ww\r»w».wom'vww\fvwo'\ww Optical

Figure 11-6 Acoustic and optical modes in a one-dimensional mass chain in the limit of vanishing wavenumber
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11.6 Symmetry approach to optical modes in crystals

The observation that optical modes, in the limit of vanishing wavenumber are, essentially, the
vibrational modes of an individual unit cell suggests harnessing symmetry considerations for
revealing their properties - similar to our study of molecules in chapter 4. Identifying the
symmetries of these optical modes is also crucial for the characterization of the lattice optical
response to the electromagnetic field discussed in the next chapter. To identify the irreducible
representations of the optical modes, one may use the following procedure:

(a) Identify the symmetry group of the system at k=0.

(b) Construct the character table associated with the lattice displacement vectors
representation. Here to simplify the analysis, it is convenient to represent the lattice

displacement vector representation, which we denote by I’ in the form:

lattice #

[Ny =1 QI

lattice atom-sites vector 7

(11.86)

where I is the irreducible representation associated with symmetry operations on

vector

is the atom-site representation determined only by the positions

). The

vectors, while 1—‘atom—sites

of the atoms and not by their displacements (which are taken into account by I

vector
character of the atom-site representation for a given symmetry operation is the number
of atoms that remain at their positions or moved to points that differ by one of the lattice

vectors.

(c) Find the composition of the displacement vectors representation in terms of the
irreducible representations of the group.

(d) Identify the irreducible representations of the optical phonon by subtracting the ones
associated with the acoustic modes from the direct sum of irreducible representations
obtained in the previous step. Notice that here one should not subtract irreducible
representation associated with rotations since, in a lattice, local rotations of unit cells
are also part of the phonon spectrum.

Similar to the normal coordinates describing the small oscillations of a system near its

equilibrium, the optical vibration modes of a lattice are associated with normal coordinates &,

where the index a denotes the irreducible representation of the vibrational mode, and

i=1---L,, where [_ isthe dimension of the representation. The Hamiltonian that describes

these normal coordinates is:
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H = Zjd {p, ag} (11.87)

where [pi(r);gj(r’)]z—ihé}j5(r—r’), and the equations of motion are those of simple

harmonic oscillator whose frequency, @, ,is (, -fold degenerate:

gi:pi’

_ 2 (11.88)
P =—w,&.

Example: Optical phonons in graphene

As we already know, the symmetry group of graphene is C,, and each unit cell contains two

atoms belonging to two sublattices, A and B. The characters for the atom-site representation
depend on whether the symmetry operation replaces the two sublattices or not. If the symmetry
operation replaces them, then the character is zero, while if it leaves atoms on the same
sublattice, the character is two because there are two atoms in each unit cell. This consideration
yields the following character table:

| Cﬁv

atom-sites

| r

Now, with the help of the character table of C,, on page 94 we can identify the composition of

this representation:

Na, =$(2'1+2-2~1+3~2~1)=1 (11.89)
and
1
nBl:E(z-1+2-2-1+3-2-1):1. (11.90)
Thus T, = A, @ B, and since the irreducible vector representation of is I .., = E; (because

the linear basis function of E, is a vector (x, y)) we obtain that the composition of the lattice

displacement vector representation is:

= (A, ®B,)®E, =E, ®E, (11.91)

Iattlce
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Acoustic phonons are associated with simple displacement of the unit cells; therefore, their

irreducible representationis E;. Thus, the two optical vibrations modes of the graphene belong
to E, , and clearly, their frequencies are degenerate. One can identify them from the condition
that the center of mass in each cell does not move, and from their properties under the symmetry
operations of the group (in particular that under C, rotation the basis functions of the E,

representation return to themselves - see table on page 94). These optical modes are shown in
Fig. 11-7.

& &

Figure 11-7 Optical modes of graphene

Example: Optical phonons in zinc blende crystals

The symmetry of zinc-blende crystals is the symmetry
of aregular tetrahedron, see Fig. 11-8. Itis made of two
interpenetrating fcc sublattices (see Fig. 7-14). The

symmetry group is T, , and its character table can be

found on page 144. One can check that all symmetry
operations of the group leave the atoms on their cites
modulo a change in the lattice vector; hence the
character table of the atom site representation is:

Figure 11-8 An element of a zinc blende crystal

8c, 3c, 6S, 60,

Td|E
22222|

I

atom-sites |

Since the vector irreducible representation is I' ., =F,, we obtain the composition of the lattice

displacement representation: I'...=2A ®F, =2F,. From here, it is clear that the optical
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phonons are basis functions of the F, which is threefold degenerate. These modes are shown in

Fig. 11-9.

Comment: The threefold degeneracy of
the optical phonon modes at K —>0
appears only in systems of infinite size.
In reality, there is no degeneracy
between the longitudinal optical modes
(LO) and the transverse optical modes
(TO) as one can see, for example, in the
phonon spectrum of GaAs shown in Fig.
11-10. This situation where the system's
behavior at k =0 is different from the
behavior in the limit K—0 is called
“anomaly”.

This anomaly is due to the slight ionic
nature of the crystal and the long-range
Coulomb interactions. To explain the
mechanism, consider waves moving in
the [L11] direction, such that the

gallium and the arsenic atoms reside on
different (1,1,1) planes. The plane of

the gallium and the arsenic atoms are
slightly charged: gallium planes are
positive while the arsenic planes are
negative. In transverse optical waves,
these planes glide parallel to each other,

GaAs LO

30.0

25.0

20.0

Energy (meV)

15.0

10.0

r X UK I

Wave Vector

Figure 11-10 The phonon spectrum of GaAs

Figure 11-11 An illustration of the charge accumulated on
the surface of a system due optical vibration modes
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and there is no net charge accumulated on the system's boundary. On the other hand, in
longitudinal optical waves, the same plans move towards or away from each other such that a
net charge is accumulated on the surface of the system. This charge accumulation is similar to
that of plasma waves of electrons in metals, see Fig. 11-11. The surface charge creates an electric
field that exerts an additional restoring force on the planes that increases the frequency of the
longitudinal optical mode with respect to that of the transverse modes. In the next chapter, we
will return to this feature and discuss the anomaly from a different perspective.

11.7 Exercises

1. Identify the components of the elastic modulus tensor for a three-dimensional hexagonal
lattice.

Advice: The point group of hexagonal lattice in three dimensions is D, ; however it is

sufficient to use the irreducible representations of the C,,and then to verify that the

resulting elastic energy is invariant to reflection through a plane perpendicular to the
principle symmetry axis.

2. A trigonal crystal in three dimensions is described by D,; point group. Find all components

of the elastic modulus tensor of this crystal.

Hint: Recall that the subgroup D, of D, is isomorphicto C,,.

3. Calculate the sound velocities in a three-dimensional hexagonal lattice for a wave moving in
an arbitrary direction.

Advice: Show that the elastic energy has a full rotational symmetry around the principal axis
of symmetry (in any angle) and use it to set to zero one of the components of the
wavenumber vector in the direction perpendicular to this axis.

4. Prove that Egs. (11.74) for the displacement vector and the momentum density satisfies the
commutation relations (11.34).

5. Consider a one-dimensional chain of identical particles connected by identical springs and
described by the Hamiltonian:

N 2

P} 1
H :;$+EK(XJ- ~Xp4) (11.92)
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where m is the mass of each particle, K is the spring constant, x; and p; are, respectively,

the displacement and momentum of the j -th particle, while N is the number of particles
in the chain. For simplicity, assume it to be an odd number. Also, choose periodic boundary
conditions, i.e., X, = Xy, and Py =P, ;-

(a) Define the Fourier series representation of the variables by

X; = \/_ZX exp( ij and p; = \/_ZP exp( |—v1j (11.93)

where

S NS g3 N (11.94)

Use the inverse Fourier transform of the above quantities and the commutation relations

[xj, pk] =iho, toshow that X, and P, are canonically conjugated variables, i.e.

[X,.P,]=ins,,. (11.95)

(b) Calculate the Hamiltonian in the new variables and show that

H = Z{ mO2X X } (11.96)

where QZ—4ESIn (m/j
m N

(c) Now express the canonical variables in terms of creation and annihilation operators:

X, = /thQV (av+afv) and P = ‘/hsz (a_v—aj). (11.97)

Verify that with this definition, the commutation relation (11.95) is satisfied and show
that the Hamiltonian of the system reduces to the second quantized form:

H= ZhQ (a a, + ) (11.98)
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6. Consider a two-dimensional lattice made of two ® ® °  J
interpenetrating square sublattices of two different

o O O O
atoms, as shown in Fig. 11-12. The symmetry group of
this lattice is C,, , and its character table is provided ¢ Be ¢ ¢
below. In this exercise, assume that deformations O AO 4a| O
only occur in the lattice plane. ° ° ° °
(a) Identify the elastic modulus tensor of this lattice.. 0) ®) 0)
(b) Assuming the mass density to be p, calculate the L i L 1

wave velocity of acoustic waves in an arbitrary  Figure 11-12 Interpenetrating square lattices
direction.

(c) Find the character table of the atom-site representation and identify the composition of the
Lattice displacement representation.

(d) Draw the optical phonon modes of this lattice.

w

.C | ¢ | 20| 20

A 1] 1 |11 1 z | x®+y? 2 2°,2(X* +y?)

B, |1]| -1 |1] 1] 21 X2 — y? 2(x-y?)

B, [1| -1 | 1] 1] 1 Xy Xyz

e 2] 0 [2[ 0] 0 [(xy)| 20y [2(xy)xv(v.x).(x.y)
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12 Crystals in an electromagnetic field

The following chapter focuses on the interaction between lattice vibrations and
electromagnetic waves. This subject is vast and deserves a course of its own because it
includes many interesting optical phenomena such as absorption, dispersion, anomalous
dispersion, double refraction, conical refraction, optical activity, dichroism, reflection, skin
effect, and Faraday effect. Here, however, we consider only a few features associated with
the interaction of electromagnetic waves with optical phonons. There are three main aspects
associated with the interaction of electromagnetic waves and optical phonons: One is the
absorption of electromagnetic waves by excitation of lattice vibrations — a phenomenon
called infrared activity. The second is the scattering of electromagnetic waves, which involves
either excitation or absorption of an optical phonon - an effect called Raman scattering.
Finally, the third aspect concerns the propagation of electromagnetic waves in a crystal. Here
we shall see that when the coupling between the optical lattice vibrations and the
electromagnetic field is strong, a new type of excitation appears, which mixes both. This
excitation is called a polariton.

12.1 Infrared activity

One of the essential experimental tools for investigating materials is the study of their
absorption spectrum of electromagnetic waves. In atoms, this absorption is associated with
the excitation of electrons into higher energy levels. These transitions are dictated by
selection rules, namely a nonzero value of the transition dipole moment between the atom’s
initial and final states. Similarly, when an electromagnetic field impinges a crystal, it may
excite one of its optical vibrational modes. This process that results in absorption (typically
in the infrared regime of the electromagnetic spectrum) is called infrared activity. Our goal in
this section is to formulate the selection rules for infrared absorption and identify which
crystals are infrared active.

The transition matrix element required for the absorption of an electromagnetic wave is of
the dipole operator

H =_jd3rE-P, (12.1)

dipole

where E is the oscillatory electric field acting on the crystal, and P is the induced electric
dipole moment that results from the shifts of the atoms from their equilibrium positions. This
dipole moment appears only in optical phonons, where atoms with a different number of
valence electrons move in opposite directions to create a dipole moment. Thus, in general,

P=p¢ (12.2)
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where & is one of the normal coordinates of the optical vibrational modes and p, is the
charge density generated due to the atom shift. Crystals in which p, #0 are called

polarizable. From the above equation, we see that in order to satisfy this condition, the
irreducible representation of the optical phonons (& ) should be the same as the irreducible

representations of a vector (P ).

An alternative way of presenting this condition is by looking GS EX

at the transition matrix element (s |H oo |Wes) between

the ground state |l//GS> and the excited state |t//ES>of the

system, represented by the diagram in Fig. 12-1. The E
selection rule for absorption is that this matrix element is
nonzero. Now, the ground state of a system is generally the
most symmetric state belonging to the identity irreducible

Figure 12-1 A diagram representing
representation A,. On the other hand, the operator Hdipole the absorption of electromagnetic

belongs to the vector irreducible representation since the wave in a crystal

dipole moment is a vector. Now, in order to have
(Wes | Haipore |[Wes) # 0, this matrix element must be invariant under all group operations.

Hence, the excited state must also belong to the vector irreducible representation (because
the direct product of the vector irreducible representation by itself contains the identity

representation). However, the excited state |1,VE5> has the same symmetry of & ; therefore,

the selection rule is that £ should belong to the vector irreducible representation.

Example: Zinc blende crystals

We have seen that the optical phonons of zinc-blende crystals belong to the F, irreducible

representation (see example on page 244). This is also the irreducible vector representation
of T,; therefore, zinc-blende crystals are infrared active.

Example: Diamond

A diamond is a crystal made only from only carbon atoms
in the form of a zinc-blende crystal. Namely, it is made of
two interpenetrating fcc lattices, as shown in Fig. 12-2. In
this figure, the two colors denote the two sublattices,

where one is shifted with respect to the other by the

vector 1=a(111)/4, where a is the lattice constant. . ,
Figure 12-2 the structure of a diamond

Being made of only carbon atoms, such that each one of  astwo interpenetrating fcc sublattices
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them is connected to four other atoms in a tetrahedral shape, one expects this material to be
infrared inactive. Let us verify that using the group theory approach.

The space group of a diamond is nonsymmorphic. In addition to the 24 symmetry operations
of the tetrahedral group, T, it contains symmetry operations such as glide reflection and
rotary translation. The conjugacy classes of the additional symmetry operations are: {i | I} ,
8{ic, |1}, 3{ic, |1}, 6{c, |1}, and 6{c, |I} . Altogether the group contains 48 elements (apart
from translations), and the group is isomorphic to the octahedral group O, . Below is the

character table of the group.

Diamond |7 g 6l |t} 6le, 1t} 3¢, {i|l} 6S, 8fie,l} 3ic,[I} 6c,
0, L 8¢, 6c, 6c, 3c=¢ i 68, 8, 30, 60,
Alg 1 1 1 1 1 1 1 1 1 1 xaytas
A, 1 1 -1 -1 1 1 -1 1 1 -1
Eg' 2 -1 0 0 2 2 0 -1 2 0 i J
(B -»)
F, 3.0 -1 1 -1 3 1 -1 -l
E, 30 1 -1 -1 3 -1 0 -1 1 (yz,xz.x9)
A, | N S 1 1 S S B
A, | TS T | -1 1 -1 -l
E, 2 -1 0 0 2 2 0 -2 0
F, 30 -1 1 -1 3 -l 0 1 1 |(xr2)
E, 3 I e A B -l

To identify the irreducible representation of the optical phonons, we need to construct the
character table of the atom-site representation. Recall that, in this construction, a symmetry
operation that transforms atoms between the same sublattice is considered the identity
operation. Hence all symmetry operations of the T, group leave the atoms on their sites, and

taking one atom from each sublattice, the corresponding character is 2. On the other hand,
all other operations that involve translation by | swap atoms between the two sublattices;
therefore, the corresponding characters vanish. Thus, the characters of the atoms-site
representation are:

E 8, 6c, 6c, 3c, {ill} {6c,|l} {8ic,[I} {3ic,|1} {6c;|l}

Diamond

r 2 2 2 2 2 0 0 0 0 0

atom-sites
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From the character table of the O, group, one can see that I, .. = A, ©A,,, hence the
composition of the lattice representation is
1—‘Iattice = (Alg C_BAZU)@ Flu = I:lu ® FZg : (123)

We see that the optical phonons belong to the F,; irreducible representation, which is not

the vector representation, F,. Thus, diamond is a nonpolarizable crystal, i.e., infrared

inactive. Silicon crystal has precisely the same crystal structure as diamond; hence it is also a
nonpolarizable crystal.

However, it is worth emphasizing that, contrary to the impression obtained from the example
of diamond, monoatomic crystals may be infrared active. For example, graphite made of
graphene layers stacked one on top of the other is infrared active, see Ex. 1.

12.2 Raman scattering

Raman scattering is an inelastic scattering of electromagnetic waves by molecules or crystals,
where the scattered wave has a different frequency from that of the incoming wave. Usually,
the frequency of the incoming and outgoing waves is within the visible spectrum. The small
difference in their frequencies is due to the absorption or emission of an optical phonon. The
process where the scattered wave has a lower frequency than that of the incoming wave,

|photon, 7o) ——| photon, e, ) + | phonon, k = 0), (12.4)

is called "Stokes’ process”. The wavenumber of the emitted phonon is approximately zero

because the momentum transferred to the phononis (@ -, )/c, where @ — ¢, is very small

while the speed of light ¢ is very large. Another form of the Stokes process is by the creation
of two phonons with opposite momenta:

|photon, 7) ——| photon, 7@, ) + | phonon, k) +| phonon, -k ) (12.5)

Here the total momentum transfer to the lattice is approximately zero as follows from the
above argument, but the momentum of each phonon may be significant. However, the matrix
element for two phonon emissions is much smaller than that of a single phonon emission.

An anti-Stokes process is an inelastic scattering of an electromagnetic wave where the
scattered wave has a higher frequency than the incoming wave due to the absorption of a
phonon. This process becomes significant when the temperature of the crystal is sufficiently
high such that many optical phonons are excited and may deliver their energy to the scattered
photon.

The Raman scattering can be viewed as a two-step process: In the first step, the system
absorbs the photon and in the second, it emits a photon with a slightly different frequency.
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Since the frequency of the electromagnetic wave is much higher than the typical phonon
spectrum, the intermediate state after the absorption of the photon is a virtual state of high
energy. Figure 12-3 illustrates the various processes of absorption and scattering of light in
crystals. The left side of the figure shows the infrared absorption process. The second from
the right pair of arrows represents the elastic Rayleigh scattering where the incoming and the
outgoing wave have the same frequencies. The Stokes and the Anti-Stokes Raman scattering
are illustrated from both sides of the Rayleigh scattering process.

virtual
energy states

; vibraional
I i energy levels

Raman Raman
Infrared  scattering  Rayleigh  scattering
absorption  (Stokes) scattering (Anti—Stokes)

Figure 12-3 lllustration of the main processes of interaction of light and crystal vibrations

Being a two-step process, the Raman scattering is obtained by a second-order perturbation

theory in the dipole Hamiltonian, H A diagrammatic representation of this two-step

dipole *
process is shown in Fig. 12-4. Here IS denotes the initial state of the crystal, VS is its
intermediate virtual state, and FS is the final state of the crystal. E and E’denote the

incoming and outgoing photons, respectively.

1S FS IS FS
Vs )

Figure 12-4 Diagrams of Raman scattering

Thus, the matrix element for Raman scattering is of the form:

VS){VS [Hapol H gipote [VS ) (VS | H e
| EV< +|h dipol | > <'//FS|Z dpl | E< _|ha)dp| |'//|s>- (12.6)
S Eis —Eus

<V/Fs |Z dlpole
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From here, one can deduce the selection rules for Raman scattering: Since H belongs to

dipole
the irreducible vector representation, the above matrix element will be nonzero if the normal

coordinate & belongs to irreducible representation with quadratic basis functions of the form
Lr;. In principle, the product of two vector representations (each one of them stands for
H sinole ) @lso contains the identity representation, and one may argue that a nonzero matrix

element is associated with a final state that also belongs to A,. However, this process does

not excite the lattice's optical vibrational modes required for Raman scattering. In other
words, it is associated with Rayleigh scattering.

Examples

(a) Graphene: We have seen that the in-plane optical phonons of graphene belong to the
E,irreducible representation of C,,. This irreducible representation has quadratic

basis functions(x2 — y2,2xy) (see table on page 94); hence graphene is Raman active.

(b) Zinc blende crystals: Here, we have seen that optical phonons belong to F, which is
the irreducible vector representation. It contains the basis function (yZ, Xz, Xy) (see

character table on page 142); hence this family of materials is Raman active.

(c) Diamond: The optical phonons of diamond belong to the F,, irreducible

representation, which has a basis function (yZ, Xz, Xy) (see table on page 251). Hence

diamond is Raman active.

(d) NaCl (salt): Sodium chloride is an ionic crystal whose
structure is shown in Fig. 12-5. Here each type of
atom is located on an fcc sublattice, and the two
sublattices are shifted from each other by half of the
lattice constant. A unit cell of this crystal contains
two atoms, and the corresponding point group is the
octahedral group O,. One can check that all

symmetry operations of this group shift the atoms

only within their sublattices. Hence the atom site
aomsites = 28, , and the lattice

=2A,, ®F, =2F,. This decomposition implies that the

Figure 12-5 NaCl crystal

representation is T’ "

representation is I'| ..
optical phonons belong to the F irreducible representation, which does not have
guadratic basis functions (see table on page 251). Hence, sodium chloride is Raman

inactive.
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12.3 Electromagnetic waves in polarizable crystals and polaritons

This section discusses the propagation of electromagnetic waves in polarizable crystals. To
begin with, let us calculate the polarization vector of the crystal due to the application of a
time-dependent electric field. From Egs. (11.87) , (12.1) and (12.2), we obtain that the
Hamiltonian of a polarizable crystal subjected to electric field is:

‘, p_z W’
H:Iddr Z _I+_aé:i2 _EpP§ , (127)
iz 2 2
and the equations of motion are:

E=p and p=—-alé+p.E. (12.8)

From now on, for simplicity, we assume that (at k =0) there are only three degenerate
optical phonons with frequency @, = @, (hence the system is invariant to rotations). Taking

the time derivative of the first equation of motion and substituting it in the second equation,
we have:

E=—até+pE. (12.9)

The Fourier transform of this equation with respect to time allows one to solve for &.

substituting this solution in formula (12.2) for the polarization vector we obtain:

2
pPE(a))
Plw)=22—22 1 12.10
(0) =22 (1210)
The electric displacement field is given by
,02
D=¢gE+P+P(0)=¢5¢.,+———|E, (12.11)
go(a)o - )

where P, =go(gr’w —1) E is the polarization vector due to the electrons that occupy the

atoms’ outer shells in the crystal. We ignore the frequency dependence of P, because it is
only relevant at high frequenciesw - well above the phonon spectrum. The ratio of the electric
displacement field to the electric field is the dielectric constant of the material. Dividing it by
the permittivity of the vacuum, ¢,, we obtain the relative dielectric constant:
2 2 2
Pr 0 —w

gr (a))zgr,oo+go (a)é_a)z) =gr'oo a)z_a)oz ’ (12.12)
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where @, is the frequency at which &, (a)) vanishes, as demonstrated in Fig. 12-6. Notice
that ¢, , = lime¢, (@). We also denote ¢, , = lime, (). In GaAs, for instance, &, , =12.9 while

W—>0

g, =109,

er(w)

Figure 12-6 An illustration of the relative dielectric constant in polarizable crystal

To describe the propagation of electromagnetic waves in such a crystal, consider the Maxwell
equations in a material that does not have free charges or free currents. Namely, when the
effect of the electric field on the charge carriers can be accounted for by the polarization
vector we have calculated above. Then, in Fourier space, the Maxwell equations take the
form:

k-D=0, k-B=0,
wB=KxE, wD = -t KkxB. (12.13)
Ho

Substituting Faraday's law in Ampere-Maxwell law and using (12.11) gives

"D = @'6,5, (@) E = ——kx@B = ——kx(kxE)=—[K’E-(k-E)k]. (12.14)
Hy Hy Ho

Now looking for a solution of transverse waves, k-E =0, and taking into account that the

speed of light in a vacuum is c? =]/(€0,Llo), we obtain that the dispersion relation of

electromagnetic waves in a polarizable medium takes the form a)zgr (a)) =c’k?, i.e.

2 2

a — Q,
&0 ———==c’k’. (12.15)

0" —w,

This relation is a biquadratic equation for @ with solutions:
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2¢

r,o

1
! = [Czk2 +e, 0 i\/(czk2 +&, 0 )2 —de, wyc’k? } : (12.16)

The behavior of these solutions, in the limits kK -0 and k — o, is:

C
O ——5> K, O ———> @,
e o —>0
r,
c (12.17)
0 — > w0, ——>——K.
L o 21,2 + k—o
O, ———> O+ ck”, &
—0 L 2 2 ’
&1 0@y D

These solutions describe transverse waves, however, there is an additional solution
describing longitudinal waves for which kx E =0. From Faraday's law it follows for such a
solution B =0; hence the Ampere-Maxwell law implies @D = 0. A nontrivial solution of this
equation exists for D=0 (but E#0), i.e. when the polarization vector precisely
compensates the electric field (see Eqg. (12.11)). This condition is equivalent to &, (a)) =0,

thus
0=, . (12.18)

polariton
dispersion

w

L polariton
-7 gap
Wy r——"""""""7- Pl

Figure 12-7 Dispersion relation curves in a polarizable crystal

The solutions that we have derived above are depicted in Fig. 12-7. Three different curves

represent them. Two curves are associated with the solutions a)i(k). Each one of these

curves represents two degenerate solutions since they describe transverse waves
characterized by two possible polarizations. The fifth solution (12.18) is the longitudinal wave.
Here the magnetic field component vanishes. Thus, the oscillatory nature of this wave comes
from two sources: The mechanical restoring force acting on the atoms and the force due to
the electric field created by the motion of the atoms.



259

In the absence of coupling between the electromagnetic waves and lattice vibrations, these
five solutions reduce to 3 phonon modes (two transverse and one longitudinal) and
electromagnetic waves having two possible polarizations. However, the lesson from the
above result is that in a polarizable material, one cannot decouple the lattice vibrations from
the oscillations of the electromagnetic waves.

Nevertheless, in the limit ¢ — o and k — 0 such that ck > @, the solutions of the dispersion
relations reduce to the flowing: Two degenerate solutions @ = @, = @, that describe the

transverse optical vibrations of the lattice (essentially in the absence of electromagnetic field
since the wavelength is very large), and an additional solution, @w=®,, = ®_, describing the

longitudinal optical vibrations of the lattice. These are the three solutions for the optical
vibrations in zinc-blende materials discussed in the previous chapter. From the above result,
one can show (the proof is given as an exercise) that the frequency ratio of the longitudinal
to the transverse optical vibrations satisfies the Lyddane-Sachs-Teller (1941) relation:

wﬁo o

Lo _ 210 (12.19)
W75 &

r,o

Two additional solutions describe the dispersion of electromagnetic waves a):ck/«/gmo ,

with a refraction index n :]/4 |€, . thatresults from the electronic polarization of the crystal.

In the opposite limit, ck <« @,, the solution @ ZCk/«/Sr,o describes the dispersion of a

transverse electromagnetic wave moving in material with a refractive index determined by
the crystal’s electronic and ionic polarizations, n :ZI/JgrYO . On the other hand, o, (k) is the

dispersion relation of a quasiparticle called polariton that behaves quadratically in the limit
k — 0. A polariton is an excitation of the system in the limit where the coupling between the
electromagnetic field and the lattice vibrations is strong, because the frequency of the
electromagnetic waves is in resonance with the frequency of the lattice vibrations. In this
limit, the photon and the phonon cannot be considered to be separate particles - they are
strongly entangled and form one quasiparticle.
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12.4 Exercises

1. - graphite is a crystal made carbon atoms obtained from
staking graphene layers one on top of the other in a periodic
form, ABABAB... such that layer B is obtained from the shift of

layer A by |=(a +a,)/3+c/2 where aand a, are the

primitive basis vectors in the graphene plane, and C is the
primitive basis vector in the perpendicular direction, see Fig.
12-8. Each unit cell contains four atoms which are
represented by different colors in the figure.

The space group of this crystal is nonsymmorphic. In addition

to the symmetry operations of D,, it contains the following

operations: 2{c, |1}, {c, |1}, 3{c;|I}, {i|l}, 2{S,|l}, and

B{Gd ||}. This group is isomorphic to Dy, group whose

character table is given below Figure 12-8 A unit cell of & graphite

a E 2ally  2¢, el 3¢, M iy 28, 2484 o, 3edll) 3o,
graphite

D,, L 2, 2c c, 3¢ 3¢ i 28, 28, o, 3o, 3o,

. 11 11 1 1 1 1 L1 1 1 ¥4y
A, 11 11 -1 -1 1 1 11 -1 -1 R

B]; 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

B,, 1 -1 1 -1 -1 1 -1 1 -1 -1

El; 2 I -1 -2 0 0 2 1 -1 -2 0 0 (R.R,) (xz,y2)
Ezg 2 -1 -1 2 0 -1 -1 2 0 0 (xzfyz,h}')
A, S T | 1 T L L T I .

A, 1 S R e T e B R 1 1 z

B, 1 -1 1 -l 1 S 1 11 -l 1

B,, 1 -1 1 -1 -1 1 -1 1 —1 1 -1

E. |2 1 -1 =2 0o 0o 2 -1 1 2 0 0| ()

E, |2 -1 -1 2 0 0o 2 1 1 2 0 0

Identify the characters of atom site representation and show that the composition of the
lattice representation is given by

T iice = 2(A,, ®B,, ®E,, O, )

lattice

Identify the composition of the vibrational modes and show that « -graphite is infrared
active.
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2. Identify the optical vibrational modes of graphene, which also include those that are out-
of-plane. Draw the out-of-plane optical phonon of the system. Is graphene infrared

active?
3. Is graphite Raman active?

4. Prove the rule of mutual exclusion, which states that in a system with a center of symmetry
(i.e., symmetric to inversion), vibrational modes that are infrared active are Raman

inactive and vice-versa.

5. Prove the Lyddane-Sachs-Teller relation given by formula (12.9).



262
13 Piezoelectric and polar crystals

The previous chapter discussed crystals that become electrically polarized when subjected to
an electric field or deformed by optical phonons. However, some crystals possess
spontaneous electric polarization even at equilibrium. These materials are called polar
crystals, and in this chapter, we briefly discuss them.

13.1 Piezoelectric crystals

According to their point group symmetries, all 230 crystal structures can be divided into 32
crystal classes. Of these, 21 classes are noncentrosymmetric, i.e., associated with point groups
that do not possess inversion symmetry. Out of these 21 classes, 20 are associated with
materials that may possess an electric dipole within the elementary unit cell of the crystal.
These materials are called piezoelectric crystals. Their prominent property is the ability to
change their electric polarization vector, P, by mechanical stress. Ten crystals classes out of
the piezoelectric class are called polar-neutral. In these materials P =0 in equilibrium but
P # 0 when the crystal is mechanically deformed. Namely,

P =%l (13.1)

where U, is the strain vector. The tensor 7, is called the piezoelectric tensor.
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Figure 13-1 the mechanism of the piezoelectric effect in noncentrosymmetric crystals

The mechanism that generates polarization by stress is illustrated in Fig. 13-1. The left panel
shows a unit cell of a crystal with no stress. Here, the “center of mass” of the negative and
the positive charge is precisely at the center of the cell; hence the polarization vector
vanishes. In the middle panel, compressive stress in the horizontal direction is applied to the
crystal. Now the center of mass of the negative and positive charges shift in opposite

!The classes are: C,,C,,C,;,C,,C,,S,,D,,C,,,C,,,D,,C,,,Cs,D,,C,,, D,y, Dy, D, Cg,, T, and T, . The

21% class is associated with the O point group (see Ex. 1).
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directions and create a polarization vector. In the right panel, the compressive stress is
applied in the vertical direction. Here again, the lattice deformation shifts the centers of mass
of the charges, resulting in polarization (albeit in the opposite direction from horizontal
stress).

Identifying the non-zero elements of the piezoelectric tensor is obtained in a similar way as
in the Pockless effect discussed in section 9.1. Namely, to ensure that Eqg. (13.1) is satisfied
under all symmetry operations, one has to look for irreducible representations having, both,
linear and quadratic basis functions. Notice that it is impossible in centrosymmetric materials.

Example: Piezoelectricity in C,, crystals

C
Consider the case of a lattice with C;, symmetry X
A Z x2+y2 72
(a two-dimensional version of such a crystal is ! ’
shown in Fig. 13-1). Here the A, and the E A,
2 2
irreducible representations have both linear and E (X’ y) (X -y ,2xy),(xz, yZ)

guadratic basis functions, therefore:

F)z = yl(Al) (uxx + UW)+ y:gAl)uzz’

_ 13.2
(Px] _ 71(E) (uxx uyy]+}/§E) (UXZJ' ( 3 )
P, 2u,, u,

The above equation shows that compression in the X or in the y direction results in
polarization vector in the X direction (as illustrated in Fig. 13-1), while shear stress gives rise
to afinite U,, component of the strain tensor, which results in polarization in the y direction.

Example: Piezoelectricity in C,, crystals

In crystals with Cg, group symmetry, the A, and the

C \
E, irreducible representations have both linear and :
. . . A z X2 +y?%, z?
guadratic basis functions, hence:
AZ
I:)z = J/l(Al) (uxx + uyy)+7/£A1)uzz Bl
P, E) u,, (13.3) 82
PI=7 lu
y % E, | (xy) (xz,yz)
Notice, however, that if the strain tensor does not E, (xz—y2,2xy)

have a component in the z direction, one cannot
obtain polarization in the Xy plane.
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Example: Piezoelectricity in zinc-blende crystals

The symmetry of zinc-blende crystals is T,, and from the character table on page 90, one can
see that only F, irreducible representation has, both, linear and quadratic basis functions.

Therefore, there is only one constant that characterizes the piezoelectric effect in these
materials:

I:)X

_ R
P, (=" u, |- (13.4)
PZ

Uy,

The symmetry group T, is the highest symmetry that enables piezoelectricity. Finally, we
comment that diamond has a similar lattice structure; however, its symmetry group is O, (see
table on page 252), and the irreducible representation of vectors, F,, does not have

guadratic basis functions. Therefore, diamond is not piezoelectric material.

13.2 Pyroelectric crystals

In the previous section, we mentioned the ten crystal classes of the

20 piezoelectric classes that are polar-neutral. The other 10 are
crystals that exhibit spontaneous polarization, P = 0, at equilibrium. |
These crystals are called pyroelectric. An example of such a crystal is ‘
zinc oxide, ZnO, whose crystal structure is shown in Fig. 13-2. It is

|
! —
made of two interpenetrating close-packed hexagonal lattices? of kré;\“

zinc and the other of oxygen. The oxygen layers are shifted from the

middle point between the layers of zinc. Thus, each atom of one kind

is surrounded by four atoms of the other kind, creating a
Figure 13-2 The crystal

tetrahedron. This structure is called wurtzite crystal. Since the
structure of ZnO

valences of oxygen and zinc atoms are different, it has a nonzero
polarization vector.

The polarization charge density is given by
P =—V-P, (13.5)

and from Gauss law, &V -E = p,, we know that

E=-P/s,, (13.6)

2 A closed packed hexagonal (cph) lattice is made from layers of two dimensional hexagonal lattice ordered in
an alternating manner such that nearby layers are shifted from each other by half of the lattice constant (as
shown by the red sphere in Fig. 13-2).
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where g, is the permittivity of the vacuum. Anillustration of the microscopic behavior of the

electric field in a pyroelectric crystal is presented in Fig. 13-3. This figure highlights the
following main features:

(a) The polarization charge is accumulated on the

E E E E
surface of the system. This property follows te= A e e
. +—— +—— +—— +——
from Eq. (13.5) when P is assumed to be . ]
constant within the crystal and zero outside. Yy e e demo

0 +=- 0 +>=- 0 +>- 0 +—>=- 0
(b) The electric field outside the crystal vanishes. ::: ::: ::: :::

== +— = + - +——

(c) Within the sample, the electric field changes T
rapidly in space (on the scale of the lattice (E)

constant); however, its average is finite. This Figure 13-3 The electric field in
average is essentially the field generated by the pyroelectric crystal
effective accumulated charge on the surface of

the crystal.

An important point that deserves attention is that although the charge accumulates only on
the surface, the energy associated with such a configuration is proportional to the system's
volume. It is because the energy is given by the integral of the square of the electric field over
the whole volume of the system. This property implies that in reality, “free” charges coming
from impurities and the ambient atmosphere will adhere to the surface to compensate the
electric field and lower the energy.

Thus, under normal circumstances, polar materials do not display a net electric dipole
moment. Nevertheless, the polarization vector is temperature dependent; therefore, changes
in the polarization vector, AP, of pyroelectric crystals can be detected by changing the
temperature. In particular, if the temperature is changed by AT :

AP =k,AT; iI=XY,z, (13.7)

where x,, are the pyroelectric coefficients. This material property is the pyroelectric effect.

Since P is a vector that transforms according to the symmetry operations of the group, while
k; is material property independent of symmetry operations, the only way of fulfilling the
above relation is in crystals with a group symmetry in which the identity representation A,
contains linear basis functions. The crystals (within the piezoelectric class) having this
property are characterized by a group symmetry belonging to one of the polar point groups,
c.c,.c,.C,.C,C,,.C,,C,,.Cy, and C,, . This class is called the pyroelectric class.
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13.3 Ferroelectric crystals

Pyroelectric crystals having the property that their polarization vector can be reversed by
application of an external electric field are called ferroelectric. An additional property of these
materials is that nonzero polarization appears only below some critical temperature, T_, thus

P=0 for T>T_, (13.8)

while
P00 for T<T, . (13.9)

A prototype family of ferroelectric materials is the family of perovskite oxides. These materials
have a chemical composition ABO,. Above the critical temperature, and in ideal situations,

they form a lattice of cubic symmetry, as shown on the left panel of Fig. 13-4. In this lattice,
the A cations form a simple cubic lattice; the O anions are located on the corners of a
regular octahedron, while the B cations are at the center of each cell. When the temperature
reduces below some critical value, the unit cell undergoes a structural phase transition, as
shown on the right panel of Fig. 13-4: The B cation shifts from the center of the cell, and
lattice symmetry reduces to C,, . This phase transition is accompanied by a finite polarization
vector. Notice, however, that it is a spontaneous symmetry breaking since the energy for the

case where the B cation moves up is the same as if it moves down or sideways (in any
direction of one of the oxygen atoms).

|~
[
[

!
\ J

L\L
T'>T;

T<T.

Figure 13-4 An illustration of the ferroelectric phase transition in perovskite oxides.

To understand the mechanism for the ferroelectric transition shown in the above figure, let
us construct the system’s energy using symmetry considerations. The energy contains three
main terms:

+&

coupling

E=Ep + Eqgic (13.10)
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The first is the energy due to electric polarization. To the lowest order in the polarization
vector, it should be of the form:

o= ) APP+ D 2WPPRR+--. (13.11)

ij ijkl

This expansion contains only even powers of the polarization vector because odd powers
cannot produce a scalar. Demanding also that the above expansion is invariant under all
symmetry operations of the O, group, and using its quadratic basis functions, we obtain:

& ZZl(sz +P7+ P22)+;(2(PX2 +P?+ Pf)2 +;(3(PX2Py2 +P?P? + PyZF’ZZ)- (13.12)

(Notice that the term associated with the square of

the norm of the basis function of the E irreducible O,
representation yield terms that can be absorbed A1g X2+y2+z2
into the quartic terms of the above expansion). E, [222 2 yz’\/g(yz 2 )}
The second contribution to the total energy of the F29 (Xy, XZ, yz)
system is the elastic energy of deformation, which is
given by:

1_ 2 1_

Eotastic = E‘:‘A1 (uxx +uy, +uzz) +§‘:‘Fzg (ufy +ufz + uiz)
1 (13.13)
2
+2 8, [(ZuZZ —U, —uy, ) +3(u, —uy,) }

This energy is the same as that of crystals with tetrahedral symmetry, T,, (see Eq. (11.31)).

Finally, the coupling between the lattice deformation and the polarization vector is of the
form:

gcoupling (uij ) = _Z nij;kluij Pk I:)| . (1314)

ijkl
Requiring this energy to be a singlet we obtain:

€ __77A1(uxx+uyy+uzz)(|:)x2_i_l:)y2_+_|:)zz)_77F29 (UXyPXPerU PP +u PP)

coupling — xz'x'y yz'y z

7T, |:(2uzz — Uy, —Llyy)(2|:>z2 —p?- Py2)+3(uyy _uxx)(Py2 _p? )] (13.15)

Now, let us assume that polarization may be generated along the z -axis, i.e., assume
P, :Py =0, and use the symmetry in the Xyplane to set u, =U,. One can see that

P = Py =0 implies that there is no coupling of the polarization vector to shear deformations;

therefore, we also set u,, =u,, =u, =0. With these assumptions, the energy reduces to:
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&= lezz + ZZPZ4 +%EA1 (2uxx +uzz )2 + 2E‘Eg (uzz _uxx )2

_77/'\1 (ZUXX + uZZ ) PZ2 - 477Eg (uzz - uxx ) P22 (1316)
2 2
P? e P’
=11P22+I£Pz4+%EA1(2uxx+uzz_77:1 : ] +25Eg {uzzuxx ,E:g )
=A ‘—‘Eg

where to obtain the second equality, we have completed the squares and redefined the
coefficient y, to include the contribution of the quartic terms obtained by this procedure.

The condition for minimum energy follows from the equations:

o€ 0e  O¢

ge_Y _ % _p. (13.17)
oP, ou, oau,

Taking first the derivatives with respect to the strain tensor, summing and subtracting the
resulting equations, we obtain that minimization with respect to the strain vector implies
that:

PZ ’7 PZZ
2uXX+uZZ—77f—Z:0, u, —U, ——2* =0, (13.18)

=A,

with the solution

— ! — — 1 —
S, T A=A, p2 M=, +27,5, p?
- z —_

Uy = Uy, = = and u, = —— ) (13.19)
'_‘Eg“‘Al '_‘Eg'_‘Al
Substituting Egs. (13.18) in the energy function (13.16) one obtains
e= P’ + P (13.20)
Minimizing this energy with respect to P, leads to the equation:
P, (1 +2xP?)=0. (13.21)

Now choosing z, =2a/(T —T,), we see that for T >T_, the only real solutionis P, =0 which

also implies that the strain tensor (13.19) vanishes. However, for T <T_ there are two

additional solutions:

P =+ M T<T, (13.22)
X2

and one can quickly check that they are of lower energy than the solution P, =0. These

solutions describe spontaneous symmetry breaking associated with a non-zero value of
polarization and hence deformation of the lattice as follows from Egs. (13.19), and illustrated
in the right panel of Fig. 13-4.
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The energy as a function of the electric polarization, at temperatures above and below the
critical temperature, is illustrated in Fig. 13-5. Notice that the energy barrier between the
two polarization states (13.22), depends on the temperature and becomes smaller as the
temperature approaches the critical temperature. Thus, close enough to the critical
temperature, the electric field required to flip the direction of the polarization can be very
small. In contrast, the energy barrier required to flip the polarization in pyroelectric crystals
(which are not ferroelectric) is very high. Here, the electric field required for reversing the
polarization exceeds the threshold for dielectric breakdown.

&

T>T, T<T,

P,

Figure 13-5 The energy as function of electric polarization in ferroelectric materials

Example: Landau-Lifshitz-Kittel domains in ferroelectric layers

Consider a layer of ferroelectric material with thickness h, width w, and length L, such that
h<w< L. Let us assume that the crystal directions dictate the electric polarization vector
to be perpendicular to the layer. Namely, the polarization charge is accumulated on the upper
and lower surfaces of the layer.

Assuming constant polarization throughout the sample, the electrostatic energy required for

such configuration is

2

e =2 [dE" = 2 L, (13.23)
2 2¢,

where we have used Eq. (13.6).

However, it is possible to reduce this energy by creating domains with opposite polarization
vectors, as illustrated in Fig. 13-6. In this configuration, the average charge accumulating on
the surface is zero. In particular, if we assume that the width of each domain is a, then the
electric field penetrates, essentially, only to a distance of order a into the sample. Therefore,
the electrostatic energy of this configuration is obtained from Eq. (13.23) by replacing h
with a:
P2
Eueetic (8) = — Lwa. (13.24)
2¢,
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Figure 13-6 A cross-section of a ferroelectric layer in which the ferroelectric order disintegrates into domains

On the other hand, breaking the homogeneous configuration of the ferroelectric order into
domains where the polarization vector points in opposite directions requires energy in order
to create domain walls between two nearby domains. The energy of such a domain is
proportional to its area. If we take into account that there are L/a such domain walls, the

energy needed in order to create them is

(a)= thg , (13.25)

where yis a constant with dimensions of surface tension energy. The last two equations

gdomain—wall

show that the electrostatic energy prefers small domains, while the domain wall energy
becomes smaller when domains are large. The optimal size of the domains is obtained by
minimizing the total energy with respectto a:

d d| P? L| P? L
—| e, (A)+eE, a)|=—| —Lwa+yhw—=|=—Lw—vhw— =0, 13.26
da|: electrlc( ) domaln—wall( ):| da|:2€0 7 a} 50 7 a2 ( )
which gives
a= yzégh. (13.27)

These domains are called Landau-Lifshitz-Kittel domains (Landau Lifshitz 1935, Kittel 1946).

The above result applies to the case of thin layers where anisotropy of the lattice dictates only
two possible orientations of the polarization vector. In cases where the polarization vector
can point in more directions and in three-dimensional samples, one may obtain different
configurations of domains. An experimental picture of the domains in a three-dimensional
system of the perovskite oxide BaTiO, is presented in Fig. 13-7.
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Figure 13-7 Domains in Ferroelectric rode of BaTiO,
(Adapted from Catalan et. al, J. Phys.: Cond. Mat. 19, 132201 (2007).)
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13.4 Exercises
1. Explain why crystals described by O point group do not belong to the piezoelectric
class even though this group lacks inversion symmetry.

2. Identify the piezoelectric tensor for crystals with D, symmetry

3. Write an expression for the total energy (due to polarization, elastic deformation, and
the coupling between them) for lithium niobate?, LiNbO, having a rhombohedral unit

cell with D,, group symmetry at the paraelectric phase, see Fig. 13-8.

Minimize the energy and find the polarization value below the critical temperature.
Consider two cases, one for which P, # 0, while P, = Py =0, and a second case where

P, =0 while P, #0 and/orP, #0.

4

¢
¢

Nb

A
N

Figure 13-8 The unit cell of LiNbO3 (at the paraelectric phase). Left panel side view,

and right panel top view.

3 This unique material is used nowadays extensively in telecommunication, mobile phones, optical switches,
optical waveguides, optical deflectors, surface acoustic devices, and many other applications.
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14 Electrons in deformed crystals

Until now, we have discussed the electrons’ behavior and the lattice deformations (whether
static or dynamic) separately. However, to get a complete physical picture of a crystal, we
need to consider the coupling between electrons and lattice deformation. Here we start
presenting this issue by discussing the interplay between electrons and static deformations
of the lattice. We begin the chapter with the effect of deformations induced by external stress
on the electronic spectra of crystals and how they deform the Fermi surface. Next, we
consider the effect of local deformations, created by dislocations, on the wavefunction of the
electrons. Finally, we show that metallic crystals may spontaneously deform and become
insulators due to the interaction between electrons and lattice deformations - a phenomenon
called Peierls instability.

14.1 The effect of lattice deformation on the electron’s energy spectrum

Generally, one expects lattice deformation to produce a perturbation proportional to the
strain tensor. There are two types of contributions: One is a local contribution that results
from a local change in the potential seen by the electrons due to the shift of atoms from
their equilibrium position:

SH(r)=Au;(r), (14.1)

where ﬂ,,j are system-dependent constants. The second type is a nonlocal contribution that
appears in piezoelectric materials. Here the polarization charge density induced by
deformations,
0
Pro ==V -P==7iy 6_rukl , (14.2)

generates a long-range potential according to Coulomb’s law:

;€ (1) , e au (1)
SH(r)=—[ar L) __ g3 ' "
(r) I ' Arese, |r—r| I ' Arese, [r—r| P (14.3)

where ¢, is the relative dielectric constant of the material. Usually, this is the dominant

contribution in piezoelectric materials; however, we focus only on the local contribution of
lattice deformations.

Lattice deformations commonly reduce the system’s symmetry; hence, they are expected to
lift degeneracies in the electronic spectra. However, as we know, this should not always be
the case because degenerate points may be protected by topology. In this section, we
demonstrate both these scenarios by concrete examples.
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T k
Figure 14-1 A typical be behavior of energy bands Figure 14-2 A gap opening in the spectrum
near I point of a crystal with T, symmetry of a crystal as a result of lattice deformation

Consider first the spectrum of electrons near the I' point of a crystal with tetrahedral
symmetry, T,. The typical behavior of the energy bands in such materials is shown in Fig. 14-

1. Here the upper band is nondegenerate and belongs to the A, irreducible representation,

while the two other bands are degenerate and belong to the E irreducible representation.

To identify the structure of the Hamiltonian (14.1) of the system, one has to construct singlet
terms that are linear in the strain tensor. The latter behaves as the quadratic basis functions
of the irreducible representation. The quadratic basis functions of T, are listed in the table

on the right.
Td
Consider first the energy level associated with the A; —
. . . . A, Xty +12
irreducible representations. From the table, it A
follows that the local Hamiltonian that takes into EZ s . .
account the lattice deformation is of the form: (22 Xy ,\/g(x -y ))
21,2 Fl
L S
e (k)= + Ager Ui » (14.4) K (yz,xz,xy)

eff

where /152, is a constant that characterizes the strength of the coupling between the
electrons and the lattice deformation. (Recall that repeated indices are summed over). The
term /152
band.

2u“ is known as the deformation potential. This perturbation simply shifts the energy
Consider now the degenerate energy levels associated with the E representation. Assuming

the Pauli matrices {rx,ry} to be basis functions of this representation, the local Hamiltonian
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takes the form:

eﬁk):—Z?Z+ﬂR2@—kf—@)q+J§“f—@)g}

ot (14.5)
+ 212 [(ZUZZ —U,, Uy, )7, +3/3(u, —uw)ry]

where ml,, £, and /15;) are constants that characterize the system. The first two terms in
this local Hamiltonian describe two quadratic energy levels that are degenerate at k =0. The
third term is the perturbation due to deformation. Its form is similar to the second term, and
therefore, it is a singlet. This term lifts the degeneracy at k=0, unless u, =u, =u,,, as

2z 7

demonstrated in Fig. 14-2.

We now analyze the effect of lattice

deformations on the electronic spectrum of Cs,

graphene near the K and K' points of the A 1y
Brillouin zone. Recall that the little group !

associated with these points is C,,. The basis A, TZAB

+ _AB

functions of this point group are listed in the E X+iy LB L j A8 (X iy)2
. Ox y -
( j (rfB —ir J

table to the right. From this table, it follows that X—iy ;

the local Hamiltonian near the K points, which y

takes into account planar lattice deformation,
is:

H=hv o/ ®c" ok + 41 ® 1" (u, +u,, )
| (14.6)
+/1<g:f)| K« ®[TAB (uxx _uyy)+ ZT;BUXY}

X

The first term accounts for Dirac’s spectrum of graphene. Here the wavenumber 6K is a four-
component vector describing the deviation from the degeneracy points, i.e.

k -k,
sk=| (14.7)
K'—K,.

The second term, obtained from the quadratic basis function of the A, representation, is
associated with compressive (or tensile) deformations of the lattice. This contribution shifts

the whole energy spectrum and is not very interesting.

The third term is a singlet formed from the E irreducible representation, which has the same
form as the triangular wrapping term (see Eq. (5.16)). It plays a role similar to vector potential
because the Hamiltonian can be rewritten in the form

H=mv 7 @¢* (k- ) ® Ay )+ A1 ®1%° (u,, +u, ), (14.8)

where
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) (u. —u
Aet :_EL ” Wj- (14.9)

Vi 2u,,

This contribution does not open a gap at the degeneracy points. It only shifts the Dirac points
in the energy and the momentum space, as illustrated in Fig. 14-3. Notice that the K and K’
points are shifted in opposite directions in the momentum space to preserve time-reversal
symmetry.

Figure 14-3 Changes in the electronic spectrum of graphene due to lattice deformations. The left panel shows
the shift of Dirac points, while the right panel depicts a cross-section along kx axis when U, = 0.

The Hamiltonian (14.8) implies that in the case where the lattice deformations are not
homogenous in space, such that Vx A, #0, the system may be viewed as subject to

magnetic field pointing perpendicular to the graphene layer, but with opposite signs for the
particles occupying the K and the K' points (so that time-reversal symmetry is preserved).

14.2 Deformation of the Fermi surface of metals due to lattice deformations

In the previous section, we discussed the effect of lattice deformation on the degeneracy
points of the spectrum. In metals, however, the Fermi surface is usually far from such points,
and the effect of lattice deformation is mainly to deform the Fermi surface. To account for
this effect, one cannot ignore a basic property of metal - its ability to screen electric charge
effectively. As we shall see below, this feature constrains the form of deformation of the
Fermi surface.

The simplest theoretical description of screening is by the Thomas-Fermi approximation. If
we denote by V (r)the potential seen by one electron due to all charges in the system (ions

and other electrons) and assume that it changes slowly in space (such that a semiclassical
approximation applies), then the charge density in space due to the electrons is given by

pe(r)=—eT vdgz—ev[gF —V(r)], (14.10)
Vv(r)
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where v is the electron density of states which we assume to be essentially constant, for
simplicity, and we have neglected temperature effects since it is usually much smaller than
the Fermi energy (by a few orders of magnitude). A schematic illustration that explains the
above formula is shown in Fig. 14-4.

/
N\

Figure 14-4 An illustration explaining formula (14.19): The density of electrons at a given point I is proportional

to the number of levels between the bottom of the potential V (r) and the Fermi energy & .

The total electric charge in the system is
ptot = pe + pion +pext . (14'11)

Here p,,, =t€ve. isthe positive charge due to the ions of the crystal (averaged over distances

larger than the lattice constant; hence considered to be homogeneous), while p,, is the

external charge. Substituting (14.10) in (14.11), we obtain
Prot =—VEP()+ Py (14.12)

where ¢(r)=-V (r)/e is the electric potential. Using Gauss law

V.E=Po (14.13)
&y

where E = —V(p(r), we obtain the self-consistent equation:
ve’ o
~Vio(r)=——gp(r)+=2. (14.14)

& €y

In particular, the electric potential generated by a point charge, Q, located at the origin is

obtained from the solution of

(-V* 405 )p(r)==5(r), (14.15)

where Q¢ is the Thomas-Fermi wavenumber given by:
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0 =—. (14.16)

The solution of Eq. (14.15) is' :

¢(r): 472 rexp(—qTFr). (14.17)

Thus, at distances much smaller than r, =1/¢,- , the potential is essentially the Coulomb
potential of a point charge, while for r > r_, the potential is essentially zero. This behavior
manifests the screening of a charge by the conduction electrons and r; is the corresponding
screening length. In metals, I, is of the order of the Fermi wavelength, and screening implies
that these systems are quasi-neutral.

Crystal deformations do not introduce charge into the system; hence, quasi-neutrality

imposes constraints on how the Fermi surface can change. In particular, the electronic charge
density which is given by the integral

d’k
(27)°

over the volume enclosed by the Fermi surface in the first

(14.18)

p=2|

Brillouin zone (see illustration in Fig. 14-5), must remain
unchanged. In the above formula, the factor of 2 is due to
spin.

To formulate the quasi-neutrality constraint, let us assume
that the Fermi surface is deformed as

K. () — ke (A)+ 8k, (1), (14.19)

where Nis a unit vector pointing in some arbitrary direction

in K space (see figure), k. (ﬁ) is the Fermi wavenumber in

that direction, and Sk, (1) is the change in the Fermisurface ~ Figure 14-5 Aniillustration of Fermi
surface in three dimensional system

! Taking into account the radial symmetry of the problem, and expressing the Laplacian in polar coordinate Eq.

(14.15) reduces to
2

—%%(r(p)+q&(o=0 for r=0.

Substituting ¢ = @/r one obtains a simple equation for @ , whose physical solution is
b
Q= Fexp(_qTFr) :

The constant D is now determined from the requirement that in the limit r — 0, @ should reduce to the
Coulomb potential of a point charge.
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due to the lattice deformation. Quasi-neutrality requires that the change in the electron
density vanishes, i.e.

5p = —>—fpdi- sk (A2 (/) =0. (14.20)

Here din =dQni and dQ is an infinitesimal element of the solid angle in k space. Now the
most general distortion of the Fermi surface, which is linear in the strain tensor, is:

OKe i = AjaUafy s (14.21)

where A;, is some general tensor. Substituting this formula in (14.19) yields the following

conditionon Ay, :

gpn Ay qunik? (1) =0. (14.22)

Example — The spherical approximation for A,

The spherical approximation for A, is
A,
Ajua = M8y8g +=E 2(8,8; +6,5,) (14.23)

where at this point A; and A, are free parameters. However, substituting (14.23) in (14.22)
yields:

dpan {Aéé +22(8,0, +5”5,.k)}uklnjk,§(ﬁ)

(14.24)
= @[Alukkdn -n+A,u,ndn JkZ () =0

If we assume that kZ (1) is symmetric for reflections:

k(nnn)k(nnn)kz(nx,nn)k(nn -n,),  (14.25)

x1 lyr iz x1lyrtlz yr'z

then in the integral over kZ(f)A,u,ndn; only diagonal terms survive kZ(A)A, (u;ndn,);

thus quasi-neutrality implies

Ay=-

% “A. (14.26)

From here, it follows that the Fermi surface deformation is
1
ke =Alun, —gukkni . (14.27)

In particular, compressive deformation where u; oc §; implies that ok, =0.
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14.3 Dislocations

Perfect crystals are extremely rare. In reality, any crystal has defects that destroy its perfect
periodic structure. A common defect is a dislocation, illustrated in Fig. 14-6 for a two-
dimensional square lattice. Here an extra row of lattice points appears on the right side of the
lattice, and far from the endpoint of this row (the dislocation center), the lattice seems to
have a perfect structure?. Thus, dislocation represents a nonlocal lattice deformation, which
is noticeable only when encircling the dislocation. The mathematical characterization of
dislocations is obtained using the Burgers vector defined by the following integral

ou
b, =q5d|ri 'S (14.28)
or;
along a closed contour that encircles the dislocation, see Fig. 14-6. The value of this integral
is independent of the contour’s shape or its distance from the dislocation point as long as it
encircles the dislocation center.

— |

Figure 14-6 A dislocation in a two-dimensional square lattice and the definition of the Burgers vector

As we shall see in this section, dislocations may play a role similar to magnetic flux lines. We
begin the section with a reminder of the Aharonov-Bohm effect due to magnetic flux lines,
then discuss dislocations in graphene, and finally, in the framework of the k-p

approximation.

Reminder: Magnetic flux lines and Aharonov-Bohm phase

A magnetic flux line in a two-dimensional system is obtained from a magnetic field
perpendicular to the system and concentrated at a point. For instance, if the flux line is
located at the origin of the Xy plane, then

2 Dislocations play a central role in explanation of the plastic properties of materials. In particular they explain
large difference (of several orders of magnitude) between the experimental measurement of the force needed
for plastic deformation, and the theoretical results which assume perfect lattice structure.
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B,(r)=¢5(r), (14.29)
so that at any point B =V x A=0 but still

pA-dr=g, (14.30)

as flows from Green’s theorem. Thus, although the magnetic field is zero, the vector
potential is not, and the Hamiltonian of a particle with charge q is given by

_ (-inv -gA)’

H _T+V(r) (14.31)

The wave function obtained from the solution of the Schrédinger equation with this
Hamiltonian can be written in the form:

y/(r):exp(i%jdr'-A(r’)J%(r). (14.32)

Here y, (r) is the solution of Schrédinger’s equation with A=0, and boundary conditions
(around the flux line) that ensure a single-valued function, z//(r). The phase in the

exponent of (14.32) is the Aharonov-Bohm phase (Aharonov & Bohm, 1959). Along a

contour that encircles the flux line it equals 27¢/d, , where ¢, = 27h/q is the unit quantum
flux. Thus, when ¢ is not an integer multiple of ¢, , the exponential factor in (14.32) must

have a jump somewhere along the closed contour that encircles the flux. One can choose
this jump along an arbitrary line that starts at the flux line and extends to infinity. The
freedom of choosing this branch cut is due to the gauge invariance of the electromagnetic
potential. In particular, for the problem considered above, one can choose it to be along
the positive X axis, as demonstrated in Fig. 14-

y
7. Thus, if we denote by l//(()i) the wave function ]

above and below the branch cut, as shown in
Fig. 14-7, then:

wi) = exp[i 27775] wl) (14.33) 7
\

This condition and the requirement that y ()

(+)
¥y

\ X
W

is a single-valued function are manifested in a

shift of the energy levels and the existence of
persistent currents. Figure 14-7 The branch cut of flux line

To illustrate these features, consider the simple
example of a free particle of mass m moving in a ring of radius R threaded by a flux line,

¢ . The wave functions of the system are y,(x)=bexp(ikx), where X is the coordinate

along the ring, k is a free parameter, and b is the normalization constant. The condition
(14.33) yields
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b= bexp(ikZzR)exp[i@j (14.34)
0
and, hence,
27kR +@ =27n, (14.35)
0
where nis an integer. Thus,
37
k = o (14.36)
R
and the energy levels of the system of the particle are:
2 2
£ = h . n_ﬂ (14.37)
2mR &,
The electric current associated with the n-th state is
I :—e%:—ei n—ﬂ (14.38)
m mR &,

Assuming |¢| < ¢,/2, and an even number of particles (with two possible spins) that occupy

all the lowest energy states of the system , n=—N,-N+1,---,0,---N -1, N, the total
current flowing in the system is

(N +1)7
Juo = ZZ m;) ;Z (14.39)

This current is zero for ¢ =0 (due to time-reversal symmetry); however, it is finite for a

non-zero value of the flux.

Notice that if we had an odd number of particles that occupy the lowest energy states of
the system with ¢ =0, then the currents of all particles, except that at the highest energy

level, will flow in opposite directions and cancel each other. In this case, the total current

in the system is that of the last particle j,,, =eA(N +1)/(mR). It shows that the persistent

current (14.39), for ¢ ~ ¢, /2, is approximately the current carried by the most energetic

particle.
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We now show that dislocations behave as
Aharonov-Bohm flux lines in some situations. It
is convenient to start with the example of
graphene, where we already know that
deformations appear in the form of a vector
potential, see Eq. (14.8), and then generalize the
result to other systems.

In Fig. 14-8, we depict a dislocation in graphene
lattice. It is realized by two disclinations: A cell
with a polygon shape with seven sides attached
to another cell with five sides. This distortion
appears as a column of hexagonal unit cells
inserted below the X -axis.

In the continuum limit, we can choose the
negative Y -axis to be the branch cut where the
jump that gives the Burgers vector, occurs. Thus,
over distances much larger than the size of a unit

Y Y Y Y

Figure 14-8 Dislocation in graphene

cell, the translation vector associated with the dislocation is given by:

a
u, = ~ 2 arctan (XJ-F 4
27 X

x>0
, and u,=0, (14.40)
x<0

where a is the lattice constant. The function uX(X, y) is presented in Fig. 14-9. Substituting

Egs. (14.40) in formula (14.9) for the vector potential due to deformation we obtain:

A :_ﬂéff)a 1 (
ef

Vi X2 +y?

Now one can quickly check that the magnetic
field associated with this vector potential
vanishes,

Bdef = V X A\ief = O, (14.42)
but the magnetic flux is finite:

2
¢:¢Ajef -dr:hi}:. (14.43)
\"

Thus, the effect of dislocation on the behavior
of electrons is similar to that of magnetic flux

y) Alazxr
Vi r

X

—. (14.41)

0.5
ux(x, )
0 a

Figure 14-9 The continuum limit of the translation
vector for the dislocation presented in Fig. 14-8.
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line (with opposite signs for electrons in the K and the K’ valleys, to endure time reversal
symmetry).

Dislocations in the framework of the k- p approximation

We now show that the analogy between dislocations and magnetic flux lines goes beyond the
particular example of graphene and also applies for cases where the k-p approximation

holds near a point in the Brillouin zone which is not the I" point (lordanskii & Koshelev, 1985).

In the continuum limit, a dislocation can be described as a branch cut on which the translation

vector, u(r), jumps as demonstrated in Fig. 14-9. Recall that the convenient coordinate
system to work with is defined by F+u(f)=r (see Eq. (11.4)). Thus if we denote by F, and
I the coordinates at the same point in space but from both sides of the branch cut, then
F.—F =Db,where b is the Burgers vector. However, the wave function should be single-

valued, y (7, )=w (), therefore y (¥ )=y (f, —b) as shown in the figure below.

)\ b? W(F,) .

Y(F-) = Y(7.—b)

Figure 14-9 The branch cut associated with dislocation and the wave function on its both sides.

Now, in the framework of the k- p approximation, the wavefunction near a valley at K, is
approximated by a sum over bands:
w(r)=>c (vl (r), (14.44)
]
where Wéj)(r) is the Bloch wave function of the j-th band at k=XK;, and c,(r) are

functions that change slowly in space. Let us identify the change of the wave function when
going along a contour the encircles the dislocation from the upper side of the branch cut to
its lower side:

Wg) (F)— V/g’) (F)= wﬁ? (F.—b)= wg> (F.)exp(—ik,-b), (14.45)
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where for the last equality we have used the fact that 1//&2) (r) is a Bloch wave function and

that the Burgers vector is a lattice vector (i.e., a linear combination of the primitive lattice
vectors). From here, it follows that

c; (F)=c;(F. )exp(-ik,-b) (14.46)

Thus the wave function, C; (F) accumulates a phase ¢=—k0 -b similar to the Aharonov-
Bohm phase obtained when a particle encircles a flux line (see Eq. (14.33)). This phase is

obtained by adding the vector potential A, =—V(k0-u) to the Hamiltonian by minimal

substitution:
—inV ——inv+V(k,-u). (14.47)

Notice that the magnetic field associated with this vector potential vanishes, B=Vx A, =0,
but its integral around the dislocation is ¢, hence dislocations can be regarded as magnetic

flux lines.

14.4 Peierls instability

One of the dramatic manifestations of the interaction between electrons and lattice
deformation is when this interaction drives a metal into an insulator. If the interaction is
sufficiently strong, the system favors a lower energy state in which the lattice deforms such
that the unit cell is doubled, and a gap opens at the Fermi level. This phenomenon, called
Peierls instability, is generic for half-filled one-dimensional systems, which we now discuss.

Consider a one-dimensional lattice and let us assume that each unit cell, represented by a
lattice point of the Bravais lattice, contributes one electron to the conduction band. The spin
degree of freedom implies that the conduction band is half-filled, as illustrated in Fig. 14-10,
and the system is, apparently, metallic.

(k)

I
Figure 14-10 The spectrum of a one-dimensional lattice where each unit cell contributes one

electron to the conduction band
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However, consider a scenario where pairs of lattice units approach each other. This can be
realized with alternating shifts of the original lattice points, by &, to the left and right, as
shown in Fig. 14-11. We shall assume that these shifts are much smaller than the original
lattice constant a,i.e. 6 < a.

- o T - P
a+26 a-20 a+26 a-26

2a

Figure 14-11 A deformation of one-dimensional lattice that doubles the unit cell

This deformation doubles the unit cell of the lattice; therefore, the Brillouin zone becomes
smaller by a factor of 2. The electronic spectrum in the deformed lattice is obtained by folding
the original spectrum into the new Brillouin zone and opening a gap at the degeneracy points,
as shown in Fig. 14-12 (the lift of the degeneracy follows from the same arguments presented
in section 7.1 for nearly free electrons ).

ek)

i T
2a 0 2a

Figure 14-12 The electronic spectrum obtained from doubling the size of a unit cell as shown in Fig. 14-2

Now the electrons will fill the lower energy band; hence the gap that has been formed at the

Fermi energy lowers the electronic energy, A&, <0. Clearly, lattice deformations
requires elastic energy, &4, > 0. However, if the total change in the system’s energy is

negative, A& =&y qm +AE <0, the original lattice becomes unstable. Namely, it will

electron
deform, as illustrated above, and the system will become an insulator. This scenario is generic
in one dimensional-systems (as we shall see below). In higher dimensions, Peierls instability
depends on details of the system, such as the band structure, the elastic modulus tensor, and
the strength of coupling between the electrons and the lattice deformation.
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To be concrete, let us calculate the total energy of a one-dimensional lattice in the nearly free
electron approximation. This energy is given by a sum of the electronic energy and the elastic
deformation energy :

Ewot = Egeform T €, (14.48)

electron *

Our goal is to calculate the dependence of these energies on the deformation parameter, J,
defined in Fig. 14-11.

The deformation energy can be deduced from general principles: It should be proportional to

5° (being a shift from an equilibrium position), and to the length of the system, L. Therefore

2
Edeform — %EL(§] ’ (1449)

where the constant = (having the same physical dimensions as the elastic modulus tensor)
accounts for the elastic restoring force. Here we normalized & by the lattice constant of the
undeformed system a.

The electronic energy is given by the integral
‘¢ dk ¢ dk
g =2L | —¢(k)=4L| —¢(k), 14.50
electron _{F 272_ ( ) '([27[ ( ) ( )

where the factor 2 accounts for the spin degeneracy, g(k) is the lowest energy band, and
Ke =— (14.51)

is the Fermi wavenumber.

To calculate e(k) , we employ a procedure similar to the nearly free approximation. Namely,

we first fold the original spectrum into the reduced Brillouin zone and then treat the

degeneracy point at the edge of the Brillouin zone by perturbation theory in AV (X) where

the latter is the perturbation potential obtained from the shifts of the atoms from their

positions by ¢ . Namely, if we represent the potential of the undeformed lattice, V (X), asa

sum over the potentials produced by the ions in each unit cell,
V(x)=>Y v(x-na), (14.52)
n

then

AV (x)= Y v(x-na+(-1)" §)-v(x—na)= EW(-Q” 5 (14.53)

n

where we assume d/a < 1.
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Let us now focus on the two lowest bands within the range 0<k<k.=r/(2a).
Furthermore, let l//lii) (X) denote the wave functions corresponding to the lower and upper

bands, as shown in Fig. 14-13.

e(k)

N )
\Yi

LY * ,
. 7 ’
. 4 s
. 4 s
LY * . ’

"\ 4 , é
., " -, ’

\ / \ ’

\, / \, /

. 4 . ¢
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8’ — et
K B

\ L 1 1 _—/ k

_ T
2a 2a

L
a
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Figure 14-13 The energy spectrum of deformed one-dimensional lattice in the nearly free electron approximation

In the nearly free electron approximation, these wave functions are approximately given by
v (x)= iexp(ikx) and y\(x)= iexp[i (k -2k ) x] (14.54)
JL JC

Notice that in the range k. >k >0, the higher energy band describes a left moving particle,

while the lower energy branch is associated with a right moving particle. In the basis of these
functions, the Hamiltonian takes the form:
h°k® _ N

o (v av |wi?)
H= , (14.55)

2
(o) SR

where m is the electron mass. The diagonal matrix elements of the perturbation vanish
because the space average of AV(X) is zero. The off-diagonal matrix elements can be

expressed as Fourier coefficients of the Fourier series of the perturbation potential:

) o1l .
<l/,£ )‘AV "//15 )>: !mtj_;dmv (x)exp(-2ik:X) .
= 2_1a : dxAV (x)exp(-2ik.x) = AV,

where to obtain the second equality, we have used the 2a periodicity of the integrand. The
Fourier coefficient, AV,, , can be expressed as (see Ex. 2):
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AV,, =—-12K.V,, —5, (14.57)
F Fa
where

V, = _idxv(x)exp(ikx). (14.58)

Substituting (14.55) and (14.57) in (14.55), and diagonalizing the Hamiltonian yields:

201k k) 21,2 “k—k.) ?
(k):h (k—ke)” |, 7' ikF\/h (k—ke) +4‘V2kpr(§) _ (14.59)

&
2m 2m m?

Since the lower band is the one occupied by the electrons, the total energy density is:

2 Ke
ﬁzlg(éj +4I%g_(k) (14.60)
L 2 \a ’ 2r
To find the minimal value of this energy, we take its derivative with respect to the
deformation parameter, 0, and demand it to be zero:
20
2 d s 8k mk. ‘VZKF‘
——— &y :a———_[dk
Ldo a

0 4 2 2 2( 6 2
\/h (k=K ) +4m|v,, | (aj

(14.61)
2
8k-miv,, | & k
:Eé——F ‘h;kF tanh™ —— =0
a Th™a ; 4m? ‘Vzkp‘ 52
kF h4a2
The solution of this equation (with minimal energy) is
h°k a h’k.a =

o=1% F =+—7F —”—2 . (14.62)

m‘vsz‘ Th’= m‘VZkF‘ 8mk,. ‘VZKF‘

2cosh 5
8mk ‘VZKF‘

It shows that no matter how stiff the elastic deformations are or how small the coupling of

the electrons to the lattice, the system’s total energy can be lowered by deforming the lattice,

thereby opening a gap in the electronic spectrum makes the system insulating.
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Comment: Mott instability

Doubling of the unit cell, which in the case of half-filling, transforms the system into an
insulator, can also be archived by spin ordering, as demonstrated in Fig. 14-14.

SESR SR SRS B A IR A

-

2a
Figure 14-14 Doubling of the unit cell due to the antiferromagnetic ordering of spins

Such an antiferromagnetic spin ordering will open a gap in the conduction band and transform
the system into an insulator - a phenomenon known as the metal-insulator Mott transition.
Like the Peierls instability, the Mott instability always occurs in one-dimensional systems. In
two and three dimensions, it depends on the strength of electron-electron interaction. In
some cases, this transition can be induced by external forces such as compression stress.

14.5 Exercises

1. Consider the square lattice presented in the example on page 136 and Ex. 2 of the same
chapter and assume it is subjected to shear stress as illustrated in Fig. 14-15 below.

Figure 14-15 A square lattice with degenerate bands subjected to a shear stress

Let us model the effect of the shear by changing the hopping matrix elements shown in
the figure such that

L

t(l+e) and §,=T(1-¢), (14.63)
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where |g| < 1. Analyze the behavior of the energy levels near I" as function of ¢, by

expanding the Hamiltonian to second order in the components of the wavenumber. In
particular, check the possibility of obtaining accidental degeneracy points.

2. Prove Eq. (14.57).

Advice: Show that Fourier coefficients of the Fourier series for the periodic function
AV (x) (with periodicity 2a) is:

N x)exp (ikx :iw av(x)_av(x—a) exp (ikx
W= ga LAY () e(i) Zaj{ 0 } p(k), (14.64)

:—il;—zvk [1-exp(ika) |
and the set k =2k .
3. Inatight-binding approach to Peierls instability, one considers the Hamiltonian
H :—thcjcj+l+h.c., (14.65)
j

where hopping matrix elements between nearest neighbors site is

t, :t[1+§(—1)‘} , (14.66)

where a is the lattice constant and O represents the deformation parameter.
(a) Calculate the energy bands of this tight-binding model.

(b) Use formula (14.49) for the elastic energy and the result of (a) to obtain the following
equation for the minimum of the total energy of the system:

) Ke .
R I sin (kaz _o, (14.67)
Ls ds 73 2 SY

cos’ (ka)+ o) sin (ka)

where k. = 7r/(2a) :

(c) Toevaluate the above integral in the limit &6 — 0, notice that it diverges logarithmically
due to divergence near k =k. =7r/(2a). Expand the numerator and denominator of

the integrand to leading order around K =K, evaluate the resulting integral and solve

the equation foro .
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15 Electron-phonon interaction

In the previous chapter, we discussed the effect of a static deformation of the crystal on the
electronic spectrum. Now we shall extend the discussion to the interaction of electrons with
dynamical deformations of the crystal, i.e., phonons. There are few channels for the electron-
phonon interaction that depend on the crystal's nature (e.g., whether it is piezoelectric, polar,
or neither) and the type of phonons (e.g., acoustic or optical). We begin this chapter by
discussing the case where the electron-phonon coupling is due to local deformations of the
crystal and see how the kinetic equations that follow from this coupling take the system into
an equilibrium state (hence breaking the time-reversal symmetry on a macroscopic level).
Next, we consider piezoelectric coupling and interaction of electrons with optical phonons
that give rise to an excitation called “polaron”.

15.1 Deformation interaction

The guiding principle for describing the interaction of electrons and phonons is the
observation that electrons are light and move fast while phonons, associated with the
dynamics of heavy ions, are slow. This property justifies the Born-Oppenheimer
approximation in which the potential seen by the electrons, at any given time, is the one
generated by the deformed lattice.

Deformation interaction refers to the coupling between electrons and acoustic phonons that
is described by the interaction Hamiltonian:

He—ph =ﬂ’ljuij(r)' (151)

where Uu; (r) is the strain tensor, while ﬂ,,j are arbitrary coupling constants (at this stage),
and, as usual, repeated indices should be summed over. Since u; (r) is a symmetric tensor,
/l”. can also be chosen to be symmetric without loss of generality. The above Hamiltonian

manifests the Born-Oppenheimer approximation because the electron-phonon interaction
depends only on the deformation potential and does not involve coupling between the
electrons and the momentum density of the lattice deformation.

Thus, the total Hamiltonian of the system contains three components:

H=H,+H, +H,, (15.2)

The first is the Hamiltonian of an electron in a periodic lattice. The second is the Hamiltonian
of the phonons,

Hy, Zzh%(Q){na (Q)+ﬂ, (15.3)
a,q
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where @, (q) is the phonon frequency on the a branch of the sound wave spectrum with

wavenumber (, while

n,(a)=a;(a)a,(a) (15.4)

is the number operator expressed in terms of the creation and annihilation operators with
the property:

a|n>:\/ﬁ|n—1>, a'ln)=vn+1|n+1). (15.5)
Finally, the third contribution to the Hamiltonian (15.2) is the coupling Hamiltonian (15.1).

In order to express the coupling Hamiltonian in terms of the creation and annihilation
operators of phonons, we use Eq. (11.74) for the translation vector:

)=2,

2pa, ( )VolJ (q)[éa(q)eXp(iq'r)"‘é‘l(q)EXp(—iQ'r)], (15.6)

where p is the mass density of the crystal, Vol is the volume of the system, ega) (4) is the ]
-th component of the polarization of a wave moving in the direction § = q/|q| with frequency

, (q) With this representation, the strain tensor takes the form:

g, +elq BN N
_IZ 2p0, q)Vol 2 |4, (a)exp(iq-r)-& (q)exp(-ig-r)]. (15.7)

To shorten the notations, from now on, we suppress the dependence of the polarization
vector on the propagation direction of the wave. Taking into account that the coupling tensor,
A

ij’

is symmetric, we obtain that Eq. (15.1) can be written in the form:

_'Z 20, ( Vol Zeq;[ 4, (a)exp(ig-r)-al (q)exp(-ig-r)].  (15.8)

Our goal now is to project this Hamiltonian on the basis of Bloch’s wave functions, i.e., to
calculate the transition matrix elements between two Bloch states:

Hek;l;h <‘//|£

Heh ‘!//iv)>, (15.9)

where l//ﬁv) (r) is Bloch wave function of the v -th band and with wavenumber Kk .

Apart from cases where energy bands become degenerate or very close to each other, energy
conservation hinders transitions between different energy bands; hence, we shall consider
only the matrix elements between Bloch wave functions of the same band and suppress the
band index. Let us represent these functions in the form:
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1 .
v (r)= rjexp(ik-r), (15.10)
(1) == (r)exp(ik-1)
and expand the periodic component of this Bloch wave function in Fourier series

Zcb Jexp(ib-r), (15.11)

where C, (k) are the Fourier expansion coefficients, and the sum is over all vectors of the

reciprocal lattice. The normalization of , (r) implies that

J.ddr‘l//k (r)‘2 :%J’ddr%cb(k)cg(k)exp[i(b_b').r]
=§cb (k)co (K) 8,y = g\cb(k)f 1.

To calculate the matrix elements of the electron-phonon interaction (15.9), we need to
calculate the following matrix element:

(15.12)

(wi|exp(ig-r)|y, )= Zjd rc, (k) (K')exp[i(k—k'£q+b—b')-r]

VO|Zc 27)' 5(k—K'£q+b-b) (15.13)
_Zcb k K’ Fq+b'~b

In order to simplify this result, we shall assume that: (a) b=Db" (In the next chapter we will
discuss situations where this is not the case), and (b) consider only acoustic phonons of long
wavelength such that k—k'=q=0, hence ¢, (k") =c, (k). With these assumptions and the

normalization condition (15.12), we obtain the momentum conservation condition:
(wie [exp (g 1) v ) = Sy yora - (15.14)

Substituting (15.8) in (15.9) and using (15.4) yields

Hkk

i = 'Z W 90, (4, (0) g —41 (A) g |- (15.15)

The first term in this Hamiltonian describes an absorption of a phonon by an electron that

changes its momentum from 7k to h(k +q). The second term is associated with emission
of a phonon when the electron changes its momentum, from 7%k to h(k—q). These

contributions are represented by the diagrams shown in Fig. 15-1.
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phonon absorption phonon emission

kl

k K

Figure 15-1 Diagrammatic representation of absorption and emission of a phonon when

an electron scatters from lattice vibrations

The effects of electron-phonon scattering can be classified into two main groups:

(a) Real scattering processes where an electron may change its energy by emitting and
absorbing phonons - a mechanism that drives the system into thermal equilibrium.
When the system is subjected to an electric field, these real scattering processes
generate finite electrical resistance.

(b) Virtual processes of phonon emission followed by absorption of the same phonon.
These processes manifest themselves in the renormalization of parameters, such as
the effective mass of the electron.

In what follows, we shall focus our attention on real scattering processes. The essential tool
for describing these processes is Fermi’s golden rule which gives the transition rate from one
state to another. Hence, before turning to calculate the transition rate between electronic
states (due to electron-phonon interaction), we remind Fermi’s golden rule.

Reminder: Fermi’s golden rule

Consider the Hamiltonian H=H,+AH, where H, represents the unperturbed

Hamiltonian that satisfies the time-independent Schrodinger equation
Ho|n)=¢,|n), (15.16)
while AH is some perturbation. The time-dependent Schrodinger equation of the system is

ih§|yx(t)> =H|w(t)). (15.17)

Its solution, to leading order perturbation theory in AH , is obtained by expanding y/(t) in

the basis eigenfunctions of the unperturbed Hamiltonian:

Zc exp( htj|n>. (15.18)
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Substituting (15.18) in (15.17), one obtains:

Zih%(t)exp( j Zc exp[ JAH|> (15.19)

Multiplying this equation by <k| from the left leads to an equation for the expansion

coefficients:

Zc exp[—|¢J<k|AH In). (15.20)

This equation is still exact. To solve it, in the leading order perturbation theory, we assume
that the system has been prepared (at the time t =0) in an eigenstate of the unperturbed

system ||> and replace c, (t), on the right-hand side of the equation, by the zeroth-order
solution, ¢, (t)=2,;. Thus:

C, (t):%jdt'exp[—i(gi_Tgk)t’J(kMH i) (15.21)
0

Taking the time derivative of ‘ck (t)‘zwe obtain that the rate of change of the probability of

finding the system in the state |k) is

ick (1) M|<k|AH|i>2'

_2
dt h  Ag,

(15.22)

where Ag, =& —¢&,. Now let us focus our attention on the following order of limits: First,

we take the system size to infinity so that the mean spacing between energy levels , A,
(which is inversely proportional to the volume of the system) goes to zero, and then take
time to infinity, t —o00, such that A< 7/t. In this limit, the energy spectrum forms a

continuum, and the sinc function can be replaced by a ¢ - function because

(Adj
0 Sin 7
jdAg—:n. (15.23)

Thus, if we denote by dV, aninfinitesimal volume element of the final states of the system,
associated with energy & , then the rate of transition to the finial states within this volume
is

Z|ck [ = |aH ) 6(s —)dv, . (15.24)

kedV
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This form of Fermi’s golden rule will be used below. However, in the literature, one usually

finds the formula obtained when setting dV, = p(gf )dgf , where ,o(e;f ) is the density of

the final states of the system, and the integral over ¢, is carried out:

W, :%”jdgfp(gf V(AR [ 5 (e, —5).- (15.25)

15.2 The transition rate between electronic states

We turn now to calculate the transition rate between electronic states due to electron-
phonon interaction. As we saw above, these can occur due to absorption or emission of a
phonon, see Fig. 15-1. Here we calculate the transition rate associated with absorption. The
transition rate associated with emission can be obtained by a straightforward generalization
of the same calculation.

Consider the process of absorption of a phonon with wavenumber ¢ and polarization « :
k.0, (9))—[k;.n, (a)-1), (15.26)

where k;and Kk, are the initial and the final wavenumber vectors of the electron,

respectively. From Fermi’s golden rule, we obtain that the rate of this transition is:

iof

dWabsorption :277["\/'” ‘2 §(gf _gi )de , (1527)

where dV, is an infinitesimal volume element in the final state of the system (which we shall
specify below) while

My =(K;.n, (4)=1|H, 4 [0, (a)) (15.28)

is the transition matrix element between the initial and the final state of the system. Using.
Egs. (15.15) and (15.5) we obtain that this matrix element is given by

) h «
Mi :IVW&@} )qj N, (0)S%, .q- (15.29)

The energy levels of the initial and the final states of the system are, respectively,

! q

g =¢(k)+ho, ()} and &, :g(kf)+ha)a(q)(n(“)—1), (15.30)

thus
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2
on AV 27 h‘ﬂ’ljei(a)qj‘
absorption __ f
dW,ST™ Vo 2 ZpCO—a(q)na(q)ékfkivqé[g(kf)—g(ki)—ha)a(q)] (15.31)

The infinitesimal volume element of the final state is associated with particular momentum
states of the electron and the phonon; hence it is given by

Vol
(27)’

Vol
(27)’

dv, = d’k, dq. (15.32)
(Recall thatVoI/(27z)d is the density of states in the wavenumber space of a d dimensional

system.) However, in order to sum over the final states of the system with the help of an
integral over K, and g, we should replace the Kronecker delta function in Eq. (15.31) by its

continuum counterpart. This is obtained by the rule:

(27)

o, . —>—
itk Tyl

Sk, -k —q). (15.33)
Thus

d+1 (@g [°

d'%, diq (27)" h\ﬂv.,-ei q,—\ i

M (2z)" (2z)" h Z 2p0,(d)
x5(k; —k —q)5] &(k, )-&(k )~ ha,(q) |

absorption __

(15.34)

A similar calculation for the transition rate for a process where the phonon is emitted yields:

2

w4k, d%q (22) h\/l.jef“’q,-\
_emlssmn — n +1
i—>f (272')d (Zﬂ)d h ; 2,06% (q) ( a(q) )

><5(kf —k, +q)5[8(kf )—8(ki)+h%(qﬂ

(15.35)

In order to shorten the notations of the following discussion, it will be convenient to define
the density of transition rate:

Ayl
w, (K, .k, )2%(27?)‘“15(&_ki—q)ﬁ[e(kf)—g(ki)—ha)a(q)] (15.36)
so that
_ d’k d
d\/\/ia—esf()rptlon :z fd d—qdwa(kf’ki’q)na (q)
o (27r) (27[) (15.37)
g d’k, dg '
dW_emlssmn — f v k,k , 1
T2 g (e 9@



299

Observe that in deriving the above formulas, we considered a single electron. Thus, we did
not consider the possibility that another electron may already occupy the final state of the
scattered electron. In the next section, we present the kinetic equations for the electron and
phonon distributions, which account for this information.

15.3 The kinetic equations for distribution functions of the electrons and the
phonons in a crystal

Let f (k) be the electron distribution function, i.e., the probability to find an electron in a

state defined by the wavenumber k (for simplicity, we assume a single energy band and
ignore spin). In the absence of coupling of the electrons to the lattice vibrations, this
distribution is independent of time (assuming no other reasons for electron scattering, such
as defects in the crystal structure or impurities). However, the electron-phonon interaction
induces transitions of the electron from one state to another, and, using the results of the

previous section, one may write down the rate of change of f (k) due to collision with the

lattice vibrations:
e " (e kan, (@)1 (-1 )]

oL Tl

+zj(ddk)l (d) L (K k,q)n, k)[1-f (k)]

d k ——w, (k,k,q)[n, (a)+1] f (K)[1-f (k)]

q
27)
ZI“ G ka)n @] ()i 1 ()]

absorption

(15.38)

emission

Let us explain this formula: The first two terms are associated with the absorption of a
phonon. The first describes a process where an electron, at state k , is scattered into a state
k, by absorbing a phonon of wavenumber q . The factor f (k)[l— f (kl)] takes into account
the requirement that the initial state of the system is occupied while the final state, into which
the electron scatters, is unoccupied. The integral is over all possible final states of the
scattered electron and the absorbed phonon. This contribution appears with a minus sign
because it reduces the probability of finding the electron in the state k. However, there is
also a process that enhances the probability of finding an electron in the state K. It is given
by the second term of Eq. (15.38). Here an electron at state K, is scattered into the state k,

while absorbing a phonon. It appears with a positive sign, and the factor f (kl)[l— f (k)]

takes into account the probability of finding the states k; and k occupied and unoccupied,

respectively. The other two terms in Eq. (15.38) describe similar processes but with an
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emission of a phonon rather than absorption. Finally, in the above equation, n, (q)

represents the average number of phonons with polarization ¢ and wavenumber q - this

qguantity is the phonon distribution function.

The justification of Eq. (15.38) rests on several assumptions. First, it assumes no memory
effects, namely, that an electron which leaves the state k can be considered as never coming
back. Second, the initial and final states of the electron and the number of phonons in the
system are assumed to be uncorrelated. This property implies that the joint distribution
function is reduced to a product of the distribution functions. Third, Eq. (15.38) neglects other
scattering processes which involve emission and/or absorption of more than one phonon at
a time.

The kinetics equation of the system may be written in the form

df (k)

” St[f ] (15.39)

where

St,[ f (k)]{%j : (15.40)

This term is called the collision integral (and in German stoRB). Rearranging the terms in the
collision integral yields:

[ (k ]=
Z k L w, (k. k,a){[n, (a)+1] f (i )[1-f (k)]-n, (a) f (K)[1- (k,)]} (15.41)

= (2x) (27
", (k) 0, (0) f (k)[L (k)] [, (@)+1] £ (K)[1- 1 (k,)]}

5 )

In a similar manner, one can obtain the kinetic equation for the phonons:

dn,(q
P st [n, (0)], 1542

where the collision integral for the phonons is:
Stph [na (q)] -

;(ij.k)ld %wa (k. ko@){[n, (a)+1] f (k)[1- f (k)]-n, (a) f (K)[1-f (k,)]}-

The collision integrals satisfy several properties associated with conservation laws:

(15.43)
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d’k [ f(k)]=0. (15.44)
(27)’
This property follows from the conservation of the number of electrons in the system.

Noticing that the integral of f (k) over the wavenumbers in the Brillouin zone gives the

electron density, we see that the integral of the left-hand side of Eq. (15.39) must vanish.
Hence the integral of the right-hand side of the equation also vanishes, leading to (15.44).

Notice, however, that phonons do not share this property because excluding some special
situations (such as an equilibrium state), the phonon number is not conserved:

;f %% [n.(a)]=0 (15.45)

2. Conservation of the total energy of the system implies:

d’k
I(2”)d

k)st, [ f(k)]+ q)St,,[n,(q)]=0. (15.46)

The following steps yield the above equation: First, we multiply Eq. (15.39) by the

electron energy g(k) and integrate over Kk . This integral gives the time derivative of

the total electronic energy of the system. Next, we multiply Eq. (15.42) by 7w, (q),

sum over the phonon polarization and integrate over (. The result is the time
derivative of the total phonon energy of the system (which does not take into account
the zero-point energy of the phonons). Finally, by summing these two equations, one
obtains an equation that describes the change in the total energy of the system.
Conservation of this energy implies that the collision integrals should satisfy Eq.
(15.46).

3. Similar considerations for the conservation of the total momentum give:

(g:;" ]ZJ = hqs‘ph[“ q)]=0.  (1547)

15.4 Thermodynamic equilibrium

In this section, we seek to find solutions of the kinetic equations (15.39) & (15.42) that
describe a steady-state of the system. Namely, solutions that do not contain time dependence
and hence should satisfy the condition that the collision integrals vanish:

Sty [N ()] =St,[ f, (k)]=0 (15.48)
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Because of our expectation that these solutions should include the equilibrium distribution of
electrons and phonons, it is instructive to represent them as follows:

__ 1 a2 AK)
f“(k)_1+A(k) sothat 1 fSS(k)_lJrA(k)’ (15.49)
and
n,(q)= sothat 1+n,(q)= B(a) (15.50)
SS B(q)—l SS B(q)_l’

where A(k) and B(q) are some general functions. Substituting the above formulas in Eq.
(15.41) for St, [ f (k)] , we obtain that the expression in the curly brackets of the first term

is:

{[n (@) 2] i (k) [2- fi () ] =g (@) £ (K)[2- s (ko) ]
A(k,) (15.51)

- [B(a)-1][1+A(k)][1+A(k)] [B(a)A(K)A™ (k) 1]

To nullify this expression, one can employ the energy and the momentum conservation laws

of the scattering process, which are enforced by the ¢ -functions in Eq. (15.36). In particular,
choosing:

A(k):exp(ﬂ[s(k)—hv-k—gF])

(15.52)
B(q)=exp(ph[w,(a)-v-q])

where the scalar £ (having a dimension of inverse energy) and the vector v (having

dimensions of velocity) are arbitrary constants, we obtain:

B(a)A(K) A" (k)1

—exp{ [ ho, (0)+(k)-&(k )]~ Bhv-(a+k-k,)}~1=0. (15.53)

One can quickly check that the second term in the collision integral St [ f (k)] , as well as

those in St,, [ n,, (q) ], vanish for the same reason.

Identifying £ as the inverse temperature of the system (by calculating the average energy of
a particle), the steady-state solutions describe a system of fermions and bosons in
equilibrium that moves at a constant velocity, vV, with respect to the laboratory reference
system. Such a solution is expected by the Galilean invariance of the system. When V=0 we
obtain the Fermi-Dirac and the Plank distributions:

fu L2 (k)=

1
exp{ﬂ[e(k)—gF]}H'

(15.54)

and
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3 1
- exp| Sho(q) -1’

N, @(a)]

(15.55)

respectively. Here ﬁ:]/kBT and &; is the chemical potential (Fermi energy) of the electrons.
Notice that the chemical potential of the phonon is zero. The following argument clarifies this
property of the phonon system: The chemical potential, defined as the energy needed to add
a phonon to the system, is =dF /N where F is the free energy while N is the number of
phonons. Since there is no conservation law for the number of phonons, the system
minimizes the free energy by choosing some particular number. However, at this number,
oF /oN =0, hence the chemical potential vanishes.

The solution obtained here demonstrates that electron-phonon interaction drives the system
into equilibrium distribution. Notice, however, that the system's thermalization may also be
obtained by other types of interactions, for instance, electron-electron interactions.

To find the rate at which the system decays to the equilibrium distribution, let us perturb the
system such that the electrons move slightly from their equilibrium distribution:

fle(k)]=fq[e(k)]+of(k), (15.56)

but the phonon bath remains at equilibrium. Then expanding the collision integral to first
orderin §f (k) yields:

St,| o[ £(K)]+0f (k)]=—5f(k), (15.57)

Te-ph

where 7, is the electron-phonon scattering time, which sets the relaxation time to

equilibrium. One can identify its temperature dependence without calculation by taking into
account that the relaxation rate is determined only by the phonons that contribute to the
process. The electron-phonon scattering contains three factors: the volume element of the
collision integral, the matrix element, and the constraint set by momentum conservation:

1 3 q2 1 3 1 3
-~ q x — x = ~Qa—«cT’ (15.58)
e-ph integration volume q 9 ﬂ
— —
d3q matrix element & - fucntion

of momentum
where we took into account only acoustic phonons, hence qoc1/8 as follows from the
condition Shw(q)= Bhco~1.
Example: Calculation of 7,

Here we calculate the relaxation time due to the interaction of an electron with acoustic
phonons. We shall consider a three-dimensional system, assume that phonons are at thermal
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equilibrium, and, for simplicity, that the sound velocities of all-acoustic branches of the
phonon spectrum are equal to C, i.e. @, (q) =, =cq. Then from Egs. (15.57) and (15.41)

we obtain:

1 d’k, d°q
oo P e

x{wa (ko k@[ fog(2)+ 1 (@) ]+ W, (Ko @) g (0, ) 42— 1, (gl)]},

where to shorten the notations we have defined &, = £(k, ). The above equation is obtained

(15.59)

by substituting f = f_, (¢£)+&f (k) inthe collision integral (15.41) and expanding it to leading
orderin o6f (k) in order to get Eqg. (15.57). In principle, there is an additional contribution
coming from the expansion of f(k,)= f, (& )+df (k). However, this contribution should

be calculated at kK, =K, i.e., =0 where w, (k;, k,0)=0, therefore, it vanishes.

Performing the integral over K, we have

=] dslqu)[feq[e<k>+hwq]+neq(wqﬂé[e(kw)—g(k)—h%]

Teph ) ( 2
gl

where to obtain the arguments of the distribution functions we have used conservation of
energy in order to replace &, =s(k+q) by ¢(k)*%ao,, and defined

(15.60)

(2;(;3W(q){neq (a)q)+1— feq [E(k)—ha)q ]}5[5(k)—€(k—Q)—ha)q],

et r

W(q)= 27:2“2'7. (15.61)
a q

To simplify the calculation, from now on, we assume that the electron-phonon coupling
tensor is diagonal A; = AJ; . With this assumption, we obtain:

~ (@) 2 a a
W(q) :Z‘ﬂﬁjei qj‘ :Zﬂzé‘ijei( )qj5k|e1£ )Q| :izé‘ijqjé‘qulé‘ik _ /12q2 _ qu . (15.62)

2r T 2pa, p 2pa, 2po, 2pw, 2pC

The third equality in the above formula follows from the completeness relation of the
polarization vectors expressed in Eq. (11.46), while for the last equality, we substitute
@, =cq.

q

Now to perform the integral (15.60) over(q, notice that under our assumptions, the only

angular dependence of this vector appears in the argument of the O -function that secures
energy conservation in Eq. (15.60). Hence if we consider the typical situation in metals, where

g kF , we may use the approximation
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e(kxq)-&(k)Fho, =+(hv. -q-hcq). (15.63)

Here we have neglected terms of order q2 and for the first order expansion in q used the
approximation:

oe(k) 88(k)|

ok ok

=hv,. (15.64)
-

Namely, we approximate the velocity by its value at the Fermi energy. This approximation is
justified by the fact that deviations from the equilibrium distribution function of the electrons
usually take place only near the Fermi energy.

With approximation (15.63), the angular integration over the energy o -functions in Eq.
(15.60) yields

jdgo_fd@sm@éﬁ hv.qcos 0 —heq) | =

[ ——}: 27 (15.65)

Ve | hve(Q

where we took into account that the sound velocity is much smaller than the Fermi velocity,
C <K V. (because electrons are light, and ions are heavy). Using this result for the integral
(15.60) and rearranging the terms we obtain

Tjh =I(q;:;q2 Z\fl){zneq (0)+1+ f [ e(K)+ R, |- 1, [g(k)—hwq]}. (15.66)

To approximate the expression in the curly brackets, we use the property that deviations from
equilibrium are usually very close to the Fermi energy, thus, we may set g(k) = g . With this

approximation, one can verify that

2n,, () +1+ f,, [5(k)+ha)q}— foq [g(k)—ha)q]
2 2 (15.67)

B exp[,Bha)q]—lJr exp| fha, |+1

Substituting this result and Eq. (15.62) in (15.66), we obtain

ZTq dq A 1 . 1
Ton o 27 hvppc|exp(pheq)-1 exp(phcg)+1
T y’dy 1 1
_ + (15.68)
h4c4vppﬂ3-([ 2 pr(y)—l exp(y)+1}

_7¢(3) 2 (kT )’
4z hictvep

where
= 1
= ZF (15.69)
n=1

is the Reimann zeta function, and in particular ¢(3)=1.202.
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15.5 The thermodynamic equilibrium from entropy considerations

Equations (15.48), from which we deduced the equilibrium distribution of the system, are
nonlinear integral equations. Being nonlinear, it is unclear whether (15.54) and (15.55) are
indeed the correct solutions into which the system relaxes. To prove that, we shall employ
entropy considerations.

Let us define the entropy density (entropy per unit volume) of the electrons and the phonons
by:

S. :—kBI%{ f(k)In f (K)+[1-f (k) ]In[1-f (k)]}, (15.70)
and
Spn = —kBj%{n(q)ln n(q)-[1+n(q)]In[1+ n(q)]} (15.71)

respectively. Using the kinetic equations (15.39) and (15.42), one can prove (see Ex. 1) that
these quantities satisfy the inequality

%[se +8,]20. (15.72)

This inequality is a generalization of Boltzmann’s H-theorem for electrons and phonons in a
lattice. It implies that an equilibrium state is a state with maximal total entropy. Hence to
identify this state, one should maximize the entropy density under the constraints of a fixed
number of electrons, and fixed energy, namely:

ML(k) Se+Sph—%[j%[5(k)—gF} (k)| =0, (15.73)

where T and & are Lagrange multipliers that impose the constraints mentioned above. From

this equation, we obtain:

In[l—fIElZI)()J:_k:T I:é‘(k)—EF:', (15.74)

which leads to formula (15.54). Similar considerations show that the equilibrium distribution
of the phonons is given by Eq. (15.55).

Example: Relation to Shannon’s entropy

Although the above definitions for the entropy densities, (15.70) and (15.71) need no
justification (because it is enough to prove that they satisfy the inequality (15.72)), it is
instructive to show that they are consistent with the definition of the information entropy,
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i.e., Shannon’s entropy (Shannon, 1948). The information entropy is defined as follows: Let P

be the probability to find the system in a state i, then the information entropy is

S=->PRInp. (15.75)

In this example, we show that this definition is consistent with the electronic entropy density
defined in Eq. (15.70). The case of phonon entropy is given as an exercise.

Since we neglect electron-electron interaction in our treatment, the probability of finding a
configuration with N, electrons in state i isindependent of the occupation of other states of
the system. Thus, the probability of finding N, electronsin state 1, N, in state 2, etc. is given

by a product of probabilities:
P(NllNz"'):Pl(Nl)Pz(Nz)"' (15.76)

Now, let us assume that the probability of occupying the state j by N, =0,1 electrons is

P, (Nj ) oc qJNJ' where 0<q; <1 is an unknown quantity (which depends, for instance, on the

state that we have prepared the system). From the requirement of normalization of the
probability, we obtain that:

_ 1 q; (15.77)
1+q;

P (N))

With this probability, the average occupation of the j -th state is given by:

N

f=S N o b (15.78)
Nooa  1+d; 144
Now let us substitute (15.76) and (15.77) in definition (15.75) and use (15.78):
1 1
S :_Z...Z ...p(NP N2-~-)In P(leNz"')
N,=0  N;=0
o) 1 ’_\‘J NJ
Sy A,
TNol+q; |1+
(15.79)

=01 1 Q; q;
= In + In

; 1+qj L+q1} 1+qj L+qj}
= 1 In(f,)+(2-1,)In(1- 1,).

j

Thus, apart from some physical constants, this formula is precisely the same as the electronic
entropy density defined by Eqg. (15.70).
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15.6 Piezoelectric interaction

As we have learned in chapters 13 & 14, deformations in piezoelectric crystals generate a
polarization vector. The polarization, in turn, induces an electric field that acts on the
electrons. This mechanism is the primary mechanism for electron-phonon interaction in
piezoelectric crystals. The Hamiltonian describing this interaction (see Eq. (14.2)) is:

e ou, (r')
0 Viki P
dreqe, |r—r| or,

He—ph,piezo = Id3r (1580)

Substituting Eq. (15.7) for the strain tensor we obtain:

H e-ph,piezo

= Jar a4, (@e(ia-r)+ (@ep(-ia-r)],
Areye, |r — r| 2pw q) Vol \“ a ,

where we have used that 7,, is symmetric to the interchange of the indices K and |. The

integral over r’ is the Fourier transform of the Coulomb potential in three dimensions, hence

Z —€7;. Ikek q|q|
Hompiro = 2pw, (q)VOI £&,9°

&, (a)exp(ia-r)+4] (a)exp(-ig-r)]. (15.82)

Finally, calculating the matrix elements of this Hamiltonian between two Bloch’s wave
functions, we obtain:

H _ Z 97i;|ke|((“)Q|qi I:é (q)5 i (q)§ , } (15.83)
e-ph, plezo Zpa) )VO| gogrqz a k-k',—q o k-k',q

Now, following the same steps that lead to formula (15.26) for the density of transition rate
in the case of deformation potential, for piezoelectric interaction, we obtain

(27z_)d+l
2pa, (q)

€7 e(a)q G :
a0 gl ) ot (0] 500

Wa(kf'ki’q):

With this formula, one can deduce the temperature dependence of the relaxation rate using
the same arguments that lead to Eq. (15.58). The only difference is that the matrix element

is proportional to 1/q rather than to g, and since qoc T one obtains
1

piezo
Te—ph

oT. (15.85)

This result applies for lightly doped semiconductors in which the density of charge carriers is
small and dictated by the temperature (as will be discussed in Chapter 17), and screening
effects are small. A more accurate approximation is obtained when replacing the Coulomb
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interaction with screened Coulomb interaction (see Eq. (14.14)), i.e., by changing the

denominator in Eq. (15.84) according to £,6,0° — &, (q2 +q,§), where 1/q, is Debye’s

/ e’n,
= , 15.86
%o &6, KgT ( )

where N, is the effective density of the charge carriers. This type of screening adds a

screening length. The latter is given by

logarithmic temperature dependence to Eq. (15.85), see Ex. 2. We will return to discuss
Debye’s screening (15.86) in chapter 17 (see Example on page 333).

15.7 Frohlich’s polaron

Consider an electron moving in a polarizable material. The electron's electric field will polarize
the medium by attracting the positive ions and repelling the negative ions, as illustrated in
Fig. 15-2. This lattice deformation lowers the energy of the system. When the coupling
between the electron and the lattice deformation is strong, one cannot decouple these two
degrees of freedom. The excitation that mixes them is a particle called polaron. This section,
first, presents the Frohlich Hamiltonian (Frohlich, 1950) that provides a simple model for such
a system. Then, we use a variational approach to calculate the ground state energy of the
polaron and estimate its size.
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Figure 15-2 An electron in a polarizable material
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Recall that deformations in a polarizable crystal generate polarization vector:
P=p.¢, (15.87)

where & represents a linear combination of the optical normal modes that create a local
deformation of the latticel. The polarization charge is minus the divergence of the
polarization vector, =V - P, and this charge generates a Coulomb potential that acts on the
electron. Thus, the Hamiltonian that describes the coupling between the electron and the
optical phonons of a lattice is:

jdd LA epeV-£(r) (15.88)

eph 47zgo|r—r|

The general expansion of §(r’) , in terms of the optical modes of the system, takes the form:

)=2, 2V0|,060 Nolpa, (q)< e PLAAT), (15.89)

where p is the mass density of the lattice, @, (q) is the frequency of the normal mode with

polarization €, and wavenumber g, and Q, , is the dimensionless amplitude of the normal

mode. Notice, however, that the divergence operator leaves only the contribution from the
longitudinal modes, V-&(r")ecq-e,. To simplify this Hamiltonian, we assume that all the

longitudinal optical modes of the system have the same frequency, @,, independent of the

wavelength (Einstein model), thus for our purpose,

. .
= _— —-iq-r'), 15.90
qu 2V0|pa)0qu exp(~ig-r’) (15.90)

A

where @ is a unit vector in the direction of q. Substituting this equation in (15.88) and

integrating over r’ yields (for a three-dimensional system):

Hepn (T Q, exp(-ig-r (15.91)
()= M 23 )

M, =P | R (15.92)
28, '\ pa,

The Frohlich Hamiltonian describes a single electron in the environment of optical phonons.

where

It contains three contributions:

! Notice that § is different from the displacement vector U because the latter refers to displacement of the
whole lattice cell which do not produce polarization.
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H=H,+H,+H.,

2

P> ho, . . 2 1 .
“om 2 DR R HQQ)+ M XS Quep(da ),

q

(15.93)

The first term describes a parabolic dispersion of an electron near the bottom of a band with
effective mass m. The second term is the contribution from the optical phonons of the
system, which is expressed in terms of a sum over harmonic oscillators having an equal

frequency, @,;. Here P, is the dimensionless momentum that is conjugated to Qq, and

satisfies the commutation relations:
[PiQy |=-i5,. (15.94)
Finally, the third term in Eq. (15.93) represents the electron coupling to the phonons.

To find the approximate minimal energy of the above Hamiltonian, we use a variational
principle calculation. We choose an electronic wave function describing a localized particle:

b’ (Wi
%(r)_ﬂ% exp(— ) J (15.95)

where b is the variational parameter. Now, we project the Hamiltonian (15.93) on this family
of wave functions (parametrized by b ) by calculating its expectation value:

3n’° h . o 1 -
(H)=(ye|Hlye) =7~ +%;(PqPq+Qqu)—§Zq:(Lqu+Lqu), (15.96)

/ 2 M 2
Lq: W?Oexp[—%j (1597)

The projected Hamiltonian is quadratic in the variables of the harmonic oscillators, and its

where

min

" which satisfies the

minimum can be calculated exactly. The minimum is obtained at Q, =Q

condition:
a*<H>:ha)°Q 1o, (15.98)
oQ, 2 4 20
Thus
QM u 15.99
qa hwo : ( . )
Shifting the variables as
. L
—-Q,-Q"=Q,—— 15.100
Q —~Q-Q =Q o ( )

0
transforms the projected Hamiltonian to
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3nh® ha . . 1 2
<H>=<%IH|V/Q>=Z - +70;(Pqpq+Qqu)_qu:‘Lq‘ . (15.101)

The last term on the right-hand side of the equation is:

|M0|2 1 _ q’
Zha)o Z‘ ‘ ha,Vol Zq: q° oXP 2b°
i , (15.102)
|M0|J'dq 1 a |_ [M,[ b
PR hay (27)2
thus, the projected Hamiltonian takes the form
ha)o 3’ *b’w, 2
P p , 15.103
(H)= Z( +QuQp )+, 0{ — ( )
E(b)
with
o= \/_|M°| (15.104)

n(2hay) i x

In formula (15.103), the first term represents the phonon energy of the system, which is now
decoupled from the polaron energy, E(b) . The minimization over the parameter b can be

straightforwardly calculated:

) (15.105)

1
2 3 2
d(H) _dE(b) _3wd (Hay ) _, _  _2a [ma,
db db  2m

2m m "3\ gh

and substituting this result in E(b) yields an upper limit on the polaron’s ground state
energy:
2

E, <E(b,,)= —g‘—ﬂh% ~—0.10602ha,. (15.106)

The exact asymptotic expansion of the ground state energy in the limit of strong coupling,
a — «© (Miyake, 1975), is given by

E,(a)=-ha,| 0.1085¢* +2.836+O(%ﬂ. (15.107)

Thus, the above variational calculation gives a rather accurate result. Finally, we can also
deduce the size of the polaron, |. It equals the inverse of b, as can be seen from Eq. (15.95).

Thus
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1 3 |zh 42A

-2 (15.108)
b, Z2a\mo, a

Here we have used a typical value of frequency of optical phonons, Zi@, ~0.03eV, and the

mass of a free electron. Typically, a ~5+6 therefore the size of the polaron is of the order
of 10A.

15.8 Exercises

1. Prove Boltzmann’s H-theorem for a system of interacting electron and phonons
Advice: The total entropy of the system is

S =—kBj—kd{ f(K)In f(k)+[1-f (k)]In[1- f (k)]

dd
(27) (15.109)

+n(k)Inn(k)-[1+n(k)]In[1+n(k)]},

where f(k)and n(k)are the electrons and the phonons distribution functions,

respectively. Take the time derivative of this entropy and use the kinetic equations (15.39)
and (15.42) to show that

% =k [d’kd“kdqw, (k;, k,@)[1- f (k)] f (K )[1+n(a)](x-1)In(x), (15.110)

where
f(k) n(k) 1-f (k)
I T f(k) (15111

Finally, show that maximum entropy is obtained at X =1, and this condition is satisfied by
the equilibrium distribution functions of the electrons and the phonons.

2. Calculate the relaxation rate of electrons due to piezoelectric interaction for the simplest
case where only one parameter controls the interaction:

Vi = 7ET, (15.112)

sym

where » is a constant (in the literature, it is usually denoted by d,, ) and &y Isasymmetric

tensor which equals one when all its indices are different and equal zero if any two of them
are equal. Also, assume acoustic branches of the phonon spectrum can be approximated
by the spherical approximation, namely the sound velocities are independent of the
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propagation direction of the wave but only on its polarization: The velocities of the two

transverse waves are degenerate and equal C, while the velocity of the longitudinal wave

is C,. Go along the following steps:

(a) Show that the relaxation rate is given by

= 2 I

Te, ph a=L|

[ eq[g +hw ]+n }5[5 k+q)- (k)—ha)a]
(15.113)

+ Z jﬂw (q){neq(a)a)+1— foq [g(k)—ha)a]}5[g(k)—g(k—q)—ha)a]

a=L (27[)3 “
with

~ T 1 |&n Jke qqk 72627z |: [ A4j o 2:|
W (q)="= = 2/ 1- —(7 4G4 15.114)
() pa;z o,(a)) &4 | pcoel Zk:qk riadii)

|2

and

|87.,ke qqk| }/e/r(

Aa A )2
‘ £ q ‘ pC qe’ 8,j{mqiqjqk) (15.115)
® I

- p/a
W, (a)==
I
P (Q)
where § is a unit vector in the direction of q, &, =¢,&, is the material’s dielectric constant,

and, for the time being, we ignore screening effects.

(b) Ignore the angular dependence of g(k) (because in what follows we shall assume
g(k) =& ), and use the same approximation as in Eq. (15.63) in order to average the &

- function that ensures momentum conservation over the directions of the electron

velocity, i.e., over V., Show that with this averaging Eq. (15.114) reduces to

{2n (a)+1+ f,[£(k)+ha, |- fy[£(k)-hw, ]} (15.116)

plezo
e ph

2thq

(c) Integrate over the directions of g and show that

phie - z.[ W‘” (q)> {Zneq (Q)+1+ feq [8(k)+hwa]— feq [E(k)—ha)a]} , (15.117)
eph
where
2.2
(qu(q»:EV e’Z and  (aW (q))= Ryen (15.118)

35 pce

HOO
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(d) Assume that g(k) = g in order to show that

1 7%’ B, 1 1
piezo = 2 z o dq

+ , (15.119)
e-ph ﬂ'hvaSw a=L,| Ca exp(ﬁhcaq)_l exp(ﬂhcaq)+l

T

with

B =—, and B, =—. (15.120)

The above integral diverges logarithmically at q=0. In particular, its asymptotic

behavior is:

im wdy{ SR }zln[iJ (15.121)
Yrin >0 & exp(y)-1 exp(y)+1 Yoin ) .

min

Now, take into account screening effects (with screening wavenumber Q, given by

(15.86)) in order to cut off this logarithmic divergence and show that

1 2y%e’k, T | 4 2k, T 3 2k, T
= B |:—2|n( B ]+—2|n( B J:| (15122)

i 3rhipvesl | b (hedy ) o hedp

What is the temperature range where this formula applies?

3. Prove that Eq. (15.71) for the entropy of phonons is obtained from Shannon’s entropy
(15.75).

4. Calculate the approximate energy of the first excited state of a polaron by choosing a
variational wave function in the form of a 2p state:

% 2.2
Wzﬁ—bzexp[—bzr j (15.123)

What is the size of the polaron in this state?
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16 Umklapp processes

In the previous chapter, we consider electron-phonon interaction in which the momentum
transfer from the lattice, either by acoustic or by optical phonons, is small, g — 0. This
chapter focuses on the opposite limit, i.e., when the phonon momentum is large enough to
transfer an electron between different Brillouin zones. As we have seen, see Eq. (15.13),
momentum conservation in the scattering process dictates that

k—k'=+q+b. (16.1)

Here k and k' are, respectively, the wavenumbers of the electron before and after
scattering, ¢ is the wavenumber of either absorbed or emitted phonon and b is an arbitrary
lattice vector of the reciprocal lattice. Scattering processes where b =0 are called “normal”,
while those with b=0 are called umklapp processes (derived from the German word
umklappen — ‘to turn over’). In normal processes, the momentum transferred by the phonon
is usually very small, while in umklapp scattering the momentum, 7b, is sufficiently large to
transfer the electron from one Brillouin zone to another.

In this chapter, we present the physics of umklapp processes using the example of graphene.
In particular, we focus our attention on scattering processes that transfer an electron from
the K -point to the K'-point (or vise versa),

ek ) +|ph, g ) —> e k), (16.2)
as illustrated in Fig. 16-1.
&(k)
UmNlapp Normal,
| Optical
K’ K’ KI K k,\‘

Figure 16-1 Umklapp scattering in graphene

The left panel of the figure shows the Brillouin zones of the system. Here it can be seen that
when an electron at K -point changes its momentum by 7K, , it moves to the K’ - point in the
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adjacent Brillouin zone, namely it appears on the other side of the first Brillouin zone. The
right panel shows the normal and the umklapp processes in energy space.

To build a physical picture for the umklapp scattering in graphene, we begin with a qualitative
explanation of the process based on the structure of the phonon's vibrational modes. Next,
we employ group-theoretical considerations to construct the umklapp Hamiltonian. Finally,
we rederive the result in the framework of the k- p approximation for a tight-binding model

where bond lengths (and hence hopping matrix elements) are modulated in space and time.

TO at K-point, A,

o
1600 —— -
TO LO e ? "
1400} L] e, ' L0 o
1200} ® 'l ‘ ) ®
:|<—\ 1000} -0 &~
Te -7
E)/ soor LA ° ° ? ° °
3 6
TA TA at K—point, A,
400k [ ] [ ) o
Q‘ -9 “
200} y \
e
0 ° ” d‘ q‘
: \.
@
o -0’ &
o~
[ ] /. o o [
LA at K—point, E; LO at K—point, E;
o @ @ o [ ] o ] @
o ® 0 é <o 5,
o o % (-
° . v o ° ° 5, ¢ 4 °
° ) g ° ° 1S °
. o o ¢ 4 -0 5,
o ~o 1Y o
o ® ? ® ® o [ ] @ ’ L ]

Figure 16-2 The phonon spectrum of graphene and the vibrational modes at the K -point
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16.1 Qualitative discussion

In understanding the nature of electron-phonon interaction, one should keep in mind that
electrons are light and fast while ions are heavy and slow. For instance, the sound velocity of

acoustic phonons is 12.9:10°m/s for transverse waves and 19.9-10°m/s for longitudinal
waves, while the Fermi velocity of the electrons is larger by more than two orders of
magnitude, vVp = 3.10° m/s . It means that one may consider the lattice deformation due to
phonon modes to be, essentially, stationary in time and study the scattering of electrons on
a deformed lattice. In order to employ this approach, let us, first, identify the phonon modes
that induce the umklapp processes, i.e., phonons with momentum t7k, , that provide the

momentum needed for the transfer of an electron between the K and the K’ -points.

In Fig. 16-2, we depict the phonon spectrum of graphene (associated only with in-plane
vibrations) and the structure of the vibrational modes at the K -point. The symbols used in
this figure are ‘T’ and ‘L’ for transverse and longitudinal waves, respectively, while ‘A’ and ‘O’
for acoustic and optical branches (although this classification is problematic at the K -point).
Each normal mode is denoted by the irreducible representation of the C,, group it belongs
to. Notice, the phonon spectrum exhibits a degeneracy in the phonon frequency spectrum at
the K -point, similar to the electronic spectrum.

As we are interested in scattering process that mixes the K and the K'-points, the suitable
group is the extended group,

Cs, =Cq, ®(EOtOY), (16.3)

where t=T, and t? =T, are the translation operations in the primitive lattice vectors of the

system. As we saw in Chapter 6, these translation vectors form the cyclic group C;. The

vibrational modes at the K -point, being basis functions for the irreducible representation
of C/

e, » should exhibit this C, property of the translation group. Namely, translation by one

lattice constant rotates the displacement vectors associated with the vibrational modes by

+120° where the sign depends on the sublattice. Indeed, the normal modes that are shown
in Fig. 15-4 exhibit this property.
To be concrete, let uA(rA) and U, (rB) be the displacement vectors on the points r,and r,

located on sublattice A and B, respectively. Then the phonons normal modes (belonging to
A, and A, irreducible representations) can be written in the form:

Reu,e ™™ Reu_ g™«
uA(rA):( 3 ikK»rAJ’ uB(rB):( ° ikK-rB]' (164)

Imu,e” Imuge
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where the upper and lower components of these vectors are the X and the y components

of the displacement vector, while u, and ugare complex numbers associated with each one
of the modes. In particular, choosing U, =—Ug =i&, , where &, is real, gives the so-called
Kekulé* vibrational mode associated with the irreducible identity representation A, while
Uy=-Uy =&, , with real &, , describes the vibrational mode that belongs to the A,
irreducible representation. A similar description applies to the E, vibrational modes (see
Ex.1). More generally u, and u, are slowly changing functions in space (and time), i.e. over

distances that are much larger than the lattice constant.

The important property of the vibrational modes at the K -point is that they triple the unit
cell’s size (i.e., its area). It is most easily observed in the Kekulé vibrational mode. In the left
panel of Fig. 16-3, we present the unit cell of an undeformed honeycomb lattice. The unit cell
contains two atoms belonging to the different sublattices of the system. On the right panel,
we illustrate an instantaneous state of the deformed lattice due to Kekulé’s vibrational mode.
The different colors highlight the fact that there are three different types of cells in the
deformed lattice; hence the new unit cell contains three cells (one from each color), i.e., six
lattice points. The shaded parallelogram represents this unit cell. Notice that its side is larger

by a factor of x/§compared to the original unit cell, and it is also rotated by 30°.

Figure 16-3 The rhombic unit cells of undeformed (left) and deformed (right) lattices of graphene

The increased size of the unit cell of the deformed lattice, by a linear factor of\/é compared
to that of the original lattice, implies that the same factor reduces the Brillouin zone of the
deformed lattice. The rotation of the unit cell induces a similar rotation of the Brillouin zone,
as illustrated in Fig. 16-4. As we know, the energy spectrum in the new Brillouin zone is

L August Kekulé (1829-1896) was a German theoretical chemists. His famous for discovery is the structure of
benzene molecule, C,H;, allegedly, after having a day-dream of a snake seizing its own tail.
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obtained by folding the spectrum of the original (undeformed) system. This folding shows
that both K and K’ points move into the T" point, as indicated by the arrows in Fig. 16-4.

K K’

K K’

Figure 16-4 The Brillouin zones of the lattices shown in Fig. 16-3

The same result applies to the other phonon modes shown in Fig. 16-2. All these modes bring
together the K and the K’ points such that for a sufficiently long time, compared to the
typical time scale of the electron scattering, they are essentially the same. In this way, the
phonon induces the umklapp transition.

16.2 The umklapp Hamiltonian: Group theory approach

The umklapp Hamiltonian, H mixes the K and the K'-point; therefore, ignoring spin

umklapp ?
effects, it acts on an electronic wave function having four components as presented in Eq.
(6.17). This form of the wave function implies that the Hamiltonian should be expressed in

terms of direct products of Pauli matrices, TiKK' ® TjAB wherein general, I, j = X, Y, Z. However,

the Pauli matrix 7/ does not describe a transition between the K and the K’-points, thus

KK’

v and the three Pauli matrices that act on the

we are left with the matrices: 7/ , 7

sublattice space, rjAB with j=X,y,Z. The matrix z'ZAB is associated with electronic transitions

between sites on the same sublattice. If we are interested in the largest contribution to
H imkiapp » it should be also be left aside because the transition between nearest neighbors

sites, (i.e. different sublattices) is usually much stronger. Thus H is constructed from

umklapp

products of the form riKK' ®z'jAB with i, j=X,y. It should also be linear in the phonon's

normal modes and invariant under all symmetry operations of the system.

All elements of the point group of the problem can be generated from c,,0,,0, and C,. The
reflection operation through the horizontal axis, o,, replaces Aand B sublattices but does

not affect the K and the K'points; hence it is given by:
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, © 0
I(o)=1"®7" :(TX J (16.5)

AB
0 7,

The rotation by 180° interchanges both Aand B sublattices as well as the K and K’ points;
hence it is described by

AB
T 0

X

’ O AB
I(c,)=r" ®7;° :( x J (16.6)

Reflection o, through a line that connects two opposite lattice points does not interchange

the Aand B sublattices but interchanges the K and K'points; thus it is represented by

I(og)=1,"®1" = 0 17 16.7
oq)=1, Tl oo | (16.7)

Finally, as we show in chapter5 (see Eq. 5.5), the C, rotation operation on the wave function
associated with K -point is given by exp(—i27zrzAB/3), and one can check that the

corresponding operation on the K'- point is obtained by the complex conjugate operator;

.27 AB)
exp| —-1—rz 0
o2

r(c,)= . . (16.8)
0 exp(i?rz’“ﬂ}

Now, let us construct the contribution to the umklapp Hamiltonian. Since the Hamiltonian

hence:

belongstothe A, irreducible representation, we need to identify the product riKK' ®z'jAB (with
I, J =X, ¥ ) which is a singlet. One can check that all these matrices are invariant with respect
to the c; operation, but only o ®7*® and T;K, ®17/® are invariant under reflection, o, .

Out of these only 7/ ®7/® is invariant to bothc, and o, operations. Thus, the umklapp

Hamiltonian is
Humklapp = lgAler, ® TXAB ’ (169)

where Ais a constant that depends on the details of the model.
16.3 The umklapp Hamiltonian from the modulated hopping approach

In this section, we rederive Eq. (16.9) from a tight-binding model in which the hopping lengths
between nearest neighbors sites change due to spatial modulation of the bond length
according to Kekulé’s vibrational mode, as illustrated in the right panel of Fig. 16-3. Our
strategy is in line with the k- p approximation. Namely, we start from an electronic wave

function in the form
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i
ry r
()| (16.10)

(Nye (1)

where WAK((;') (r)is the exact Bloch wave function on sublattice A(B)atthe K (K') point, and

Ca (1w
Cs (Nvs
cx (Nya
cs (N)vs

(r) are functions that change slowly in space, and then construct the effective
Hamiltonian acting on the coefficients CK((;)') (r) . This construction is obtained by calculating

the matrix elements of the full Hamiltonian of the system, H, and averaging over the fast

degrees of freedom, treating C:((;) (r) as constants. This averaging results in the following
expression:
(6(r) ci(r) e (r) e (N)(HE HE HE HE (e (1)
GIHIPY - HEC HE HE R (0] ey
<< | | >>fast_ HEK KK KK KK K’
AA AB AA AB CA (r)
Hor  Ha Hed Hea \cg (1)

The 4x4 matrix on the right-hand side of this equation is the Hamiltonian in the generalized
k - p approximation, which includes umklapp transitions between the K and K'-points. In
what follows, we shall calculate its matrix elements, but to keep the calculation simple, we
consider only hopping between nearest neighbors sites and set all onsite energies to be zero

sothat H, , =H;+H . with
0 HE 0 0 0 0 0 HX
HX 0 0 0 0 0 HE 0
Ho=| * e |-and Hyoo = oA (16.12)
0 0 0 HS 0 HS 0 0
0 0 HY o He 0 0 0

To illustrate the averaging procedure, let us start by calculating the term

(e (| HS ek (1) =(ek (wE (N[H[es (v (), (1613
For this purpose, we represent the Bloch wave function as a sum over the Wannier functions,
w, (r), ie.

' 1 .
Vi (1)= N 2 eXP('kK(Kr> “Tae) )WrA(B) (r), (16.13)

Ta8)

where the sum runs over all points Mae) of sublattice A (B) and N is the number of unit cells.

Substituting the expansion in (16.13) we obtain:
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(cx ()| Hiz[ea (r))

:%Z <c§*(r)exp(—ikK -1 )W, (r)Heg (r)exp(ik, -ry)w, (r)>fast

I'aslg

— B (e ()W (1) Hw, (1) (r+a)exp(ik, -a,)),,

rA ’al

:%§<w; ()| H W, (1)) exp(ik -2, )cs" (r)ek (r+a,).

(16.14)

The second line of the equation is obtained under the .
assumption that the Hamiltonian allows only hopping ?

B
between nearest neighbors sites, namely that .\A ‘/.

r; =r,+a where a, (i=123) are the vectors
a

shown in Fig. 16-4. These are given by

U4

al:(o’%ja' az:(%,_%ja’ (16.15) ./A\‘

1 1 d
* B - E a m a'
Figure 16-4 Definition of the vectors @, . The

displacement vectors show the modulation
due to Kekulé vibrational. mode

where a is the lattice constant.

Also observe that the argument of cg () is replaced

by cs (r+a) because the reference point of the expansion is r, and although cg (T)

changes slowly in space, as we shall see below, this small shift yields the leading order

contribution. The third line of Eq. (16.14) is obtained by treating CK(B)(r) as constants

compared to the Wannier functions, which change over the scale of a lattice constant.
Defining the hopping matrix element to be

(W, ([H|w,_, (r))=-t, (16.16)
we obtain
(ch (r)[Hax [eh (r))=—t2 exp(iky -3, )ck™ (r)cy (r+a,). (16.17)

Now, the assumption that CBK (r +q ) changes slowly in space allows one to expand it as
cy (r+a)=cs (r)+a-Veg (r)+- (16.18)

Substituting this expansion in Eq. (16.17), we see that the leading term vanishes because

Zexp(ikK-ai)zo, however, the next to the leading term gives the familiar Dirac
a;

Hamiltonian:
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Ha = */_ha( i )(——ii]. (16.19)

From the above derivation, it is clear that Ha =H & and Hermiticity of the Hamiltonian

H, :t@[f (V) 0 J , (16.20)

2n 0 —¢" . (<inV)

implies

We turn now to calculate the terms that couple the two valleys. Ignoring the modulation of
the hopping matrix elements due to phonons we have:

<C§'(f)\H§BK\CBK(f)>=<°§'(f)'/f OlHe (v (1),

:—rzr:< r)exp(- rA)wa(r)erB(r)cg(r)exp(ikK-rB)>fast

16.21
_ = Z< r)exp(—iky. -r,)w, (r)Hw, , (r)cs (r)exp[ikK (ry+a )]>fast ( )
=——Ztc"* (r+a,)exp[ ik, -(r, +a )ik -1, ] =0.

Notice that this term vanishes due to the sum over all lattice points, r,. Since k,. =-k, this

sum is a sum over a rapidly oscillating function that averages out to zero when the system is
large enough:

N—o0

%Zexp(iZkK Ty)———0. (16.22)

Now let us take into account the modulation in the hopping matrix elements due to a phonon
mode that displaces the atoms from their sites, as shown in Fig. 16-2. The distance between
two neighboring atoms s

s =1y +& [ Uy (1, +a,)—u, (ry) ], (16.23)
where |, is the equilibrium bond length, &, is a unit vector in the direction that connects the

neighboring sites, while u,(r,) and ug (r,+a,) are the displacement vectors at these sites.

Since the hopping matrix element depends on the distance between the atoms, assuming the
displacement to be very small, we can expand the hopping matrix element in the form:

t(IAB)zt(IO)+%éi~[uB(rA+ai)—uA(rA)] (16.24)

The second term on the right-hand side of this equation, hereinafter denoted by ot, is
responsible for the umklapp processes. Using Eqgs. (16.4) it can be represented in the form:
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5t:%a -Au (16.25)

where Au = (Aux,Auy) and using (6.4), the components of this vector are given by

1 ik (ry+a; * _—iky (ry+a; —ik, - * ik, -
AuX:E[UBe"K(A ) e M) _y ek el “AJ
(16.26)

Auy 1 [U ele (ra+a;) _u;e—ikK~(rA+ai) _ uAe—ikaA + u;eikK~rA:|
2i

Now let us use the above expansion to calculate the matrix element (16.21) where the
hopping matrix element, t, is now replaced by 6t, i.e.

<C§'(r)‘H§§K‘ >=——Z§tc r)ce (r+a, exp[lk (ra+a,)- ikK,-rA]. (16.27)

Recall that when we calculated this matrix element without modulation, it vanished due to

the sum of the oscillating function, exp(|2k ) over the lattice points r,, see Eq. (6.22).
However, now, ot contributes an additional oscillating factor. In particular, the exponents
that multiply u, and U contain the term exp(ik, -r,) that gives a sum of the form

D" exp(i3k, -r,). This sum does not vanish. To why, we substitute k, =(47/3a,0), and

notice that the X component of the lattice point positions, r, are multiples of half the lattice
constant, a/2, see Fig. 16-4. Hence 3K, -r, =27, where | is an integer. Thus, taking the
factor 1/N in Eq. (16.27), the sum of these terms over r, gives one. One can quickly check
that the other terms in (16.26) do not have this property and vanish when summing over the

lattice points.

Thus substituting Eqg. (16.25) with (16.26) in (16.27), we obtain

dt
di 5

KK' _
HAB -

.1 . * .
i {ailxa[uBexp(QkK -a;)—up exp(ik -a;) |

+ZaIy [u exp(i2ky -a, )+u, exp(ik, a)}} (16.28)

_|\/_dt( A)

Ug +U
2 dl

For the Kekulé vibrational mode, u, =-Uy =i&, , with real £, one obtains:

, dt
Hye =«/§E§Al, (16.29)
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while for the A, mode u, =—Uy =&, withreal §, hence H & =0.The contribution form
the E, vibrational modes also vanishes (see Ex. 1); thus A, vibrational mode is the only one

that contributes to the umklapp Hamiltonian. Employing time-reversal and inversion
symmetries, one deduces that H& = HXX = HE = HEX, hence

dt ,
Humklapp = \/éafAler ®TfB . (1630)

This formula is the same one obtained in Eq. (16.9) from symmetry considerations.

Finally, we comment that diagonalization of the Hamiltonian H =H; +H ., » with H; and
H umkiapp 8iven by (16.20) and (16.31) respectively, give:
\/§ 2 2 dt ?
&, (ok)= =0t (oka)” + Y (16.31)

Thus, the umklapp process opens a gap in the spectrum of graphene.
16.4 Exercises

1. Show that the E, vibrational modes do not contribute to the umklapp Hamiltonian

within the framework of the modulated hopping to nearest neighbors' sites.

First, verify that these modes are described by formulas that are similar to (16.4) except
for different signs in the exponents:

Reu "« ™ Reuge "«
UA(rA)=(,mu g | U ()= O | (16.32)
A B

Next, repeat the calculation presented in Sec. 16.3 to show that their contribution
vanishes.
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17 Semiconductors and disordered crystals

Until now, except for a short discussion on dislocations, we assumed our crystals to be
perfect. This assumption is far from reality. In realistic systems, there is always some disorder
that comes, for example, from domain walls between regions where the crystal structure is
in different orientation, dislocation, disclinations, vacancies, interstitials, and impurities.
Much of the advances in understanding the role of disorder in crystals came with the
technological development of semiconductors that are extensively used for electronic
devices. In these crystals, doping by different types of atoms is achieved in a controlled
manner. This doping is a source of disorder and, at the same time, the way of introducing
charge carriers (electrons or holes) into the system. In this chapter, we present a few models
for disordered crystals based on semiconductors. Then we discuss scattering from impurities
and the kinetic equations that describe the dynamics of electrons in such systems.

17.1 Impurities and defects in crystals

In order to describe how impurities are combined into a semiconductor, let us first recall the
basic physics of chemical bonding. A chemical bond between two identical atoms can be
understood as coupling between two potential wells, as illustrated in Fig. 17-1. Each potential
well represents the potential seen by an electron due to the atom’s nucleus and the other
electrons of the atom. When the atoms are far away from each other, the potential wells are
decoupled, and the system’s ground state is fourfold degenerate (twice due to the two wells
and another factor of two due to spin), as illustrated on the left panel of Fig. 17-1. When the
two atoms become close to each other, the potential wells are coupled by tunneling, and the
two degenerate levels split into upper and lower levels, as illustrated in the right panel of the
figure. Occupying the lower energy level by two electrons with opposite spins lowers the
system’s total energy and creates chemical bonding.

anti—bonding

1
w_ er —> / ~E (lﬁ+—lﬁ—)

_______________ -

1
~7z Wetyo)
bonding

Figure 17-1 An illustration of chemical bonding as coupling between potential wells.
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In the limit of weak coupling between the potential wells, the ground state wave function is
approximately given by the singlet:

Vg = %(% wp )| |N)-I1)] (17.1)

where /. are the ground state wave functions of the uncoupled wells. The orbital part of this

wave function is symmetric so that the spin part secures the antisymmetric property of the
fermionic wave function. This wavefunction is associated with chemical bonding.

The excited state of the system is an anti-bonding state described by the triplet :

)
Vi = 5 v v SN )] @72)
)

When the atoms are weakly coupled, their electronic orbitals
can approximate the wave functions y, . For instance, for the
hydrogen molecule, H,, these orbitals are the 1s states of ‘

each atom. However, there can be more complicated

situations like the methane molecule, CH, , shown in Fig. 17- .
Figure 17-2 Methane molecule

2. In this molecule, the carbon creates four symmetric

bonding with the hydrogen atoms resulting in a tetrahedral

shape. However, this structure is puzzling because the electronic configuration of a carbon

atom, 15?252 p?, apparently, allows for only two electronic orbitals to form chemical bonds,

say 2p, and Zpy, as shown in the left panel of Fig. 17-3. Thus, naively one would expect
carbon and hydrogen atoms to form a CH, molecule similar to a water molecule. However,

it is not what one finds in nature.

2py I 2py | 2p-
2 —

ls ls | ‘

Figure 17-3 Promotion of an electron from 2S to 2P energy level to form four bonding orbitals

The explanation is as follows: To obtain four orbitals available for chemical bonding, we
promote an electron from the 2s orbital to 2p orbital, as shown in the right panel of Fig.

17-3. This cost some energy, however, it will be compensated, and much more, by sharing
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these electrons with the hydrogen orbitals. The molecular orbitals that create the strong
covalent bonding with the four hydrogen atoms are presented in Fig. 17-4. These molecular
orbitals are classified by the irreducible representation of the tetrahedral group T, . The upper

orbital is associated with the A, irreducible representation emerging from the 2s orbital,
while the lower orbitals are three degenerate molecular orbitals associated with the F,

irreducible representation that emerge from the 2p orbitals.

Figure 17-4 The molecular orbitals of Methane. The surfaces represent a constant value of
the wave function where blue and red represent opposite signs.

Comment: In the valence bond theory approach to covalent bonding (initiated by Linus
Pauling), the four orbitals, 2s, 2p,, 2 p, and 2p, are assumed to hybridize together to form

new equivalent four orbitals denoted by sp3 . These are and given by

|2s)+|2p,) +‘2py>

\H/
I\)IH
—

N
~—
Il

|25)-[2p,)-|2p,

+|2p, )
e ) (17.3)
_|2pz)

w

~~—

Il
NP NP -
— — —

)
|25)+2p,)-|2p,)
)-

SN
=
Il

|23>—|2px>+‘2py 12p,) )

One can check that the wave functions associated with these orbitals are indeed oriented
toward the four corners of a regular tetrahedron. However, this approach is inaccurate. For
instance, measurements of the absorption of an electromagnetic field in methane molecule
show that there are two different absorption lines associated with energy levels of A, and

F, irreducible representations. This finding contradicts the single absorption line predicted

by the valance bond approach.
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In a silicon crystal, the situation is similar. Silicon has
14 electrons; hence its orbital configuration is

1s°2s?2p®3s°3p®, namely, there are only two
electrons in the 3p level. However, promoting one
electron from 3s to 3p enables the formation of four

covalent bonds with four neighboring silicon atoms
creating the crystal shown in Fig. 17-5.

Consider now a situation in which the silicon crystal is

lightly doped with phosphorus atoms, P, that
substitute some silicon atoms. Let us also assume that Figure 17-5 A silicon crystal
the phosphorous atoms are sufficiently far apart so
that we may ignore interactions between them and focus on a single site. The atomic number
of a phosphorus atom is 15. Namely, it has an additional electron compared to the silicon
atom. Four of its electrons create four covalent bonds with the neighboring silicon atoms,
leaving one electron weakly tight to the positive phosphorous ion. Thus, the additional
electron behaves as a hydrogen-like atom system. The relative dielectric constant of the
silicon crystal is 11.7, and the effective mass of the electron is half that of the bare electron.
Hence if we use the familiar formulas for the grand state energy and Bohr radius of hydrogen
atom:

m.e* Age

E,=———, a,= ) 17.4
° 32r%sh’ " me’ (174)

and substitute &, >11.7¢, and m, —m, /2, we obtain that the ground state energy of the
electronis E, — &, =—0.045eV (the subscript d stands for ‘donors’ because the phosphorus

atoms donate electrons to the system), while the effective Bohr radius is about 20 times
larger than the radius of hydrogen atom (this large radius justifies tearing the crystal as an
isotropic material).

conduction band

L S Y LY L S Y L S Y LYY
| I | I | I | 11 7

|
PSSP R Ay AR Sy Ja——— J_L___Z1-/7 M
bound states

valence band

Figure 17-6 Band diagram of n-type semiconductor
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The ground state energy of the electron is approximately (minus) the ionization energy. Since
ionization means that the electron moves into the conduction band, the energy level of the
additional electron of the phosphorous is 0.045eV below the conduction band, as illustrated

in Fig. 17-6. In temperature units, bonding energy of 0.045eV corresponds to 450°K
therefore, at room temperature, many of the phosphorus electrons move into the conduction
band. A semiconductor in which the charge carriers are electrons is called an n-type
semiconductor.

The density of charge carriers in the system depends on the doping level and the temperature.
In particular, it depends on the probability that a given phosphorus atom is ionized. To
calculate this probability, let N, be the density of phosphorous atoms (assumed to be
uniform in space), and denote by N/ and N_ the densities of the ionized and the neutral

phosphorous atoms, respectively. In equilibrium, these are given by:
NS =bN,[1-f(g,)] and Ng=bgN,f(s,) (17.5)

where f (&,) is the Fermi-Dirac distribution function at the binding energy &,, and g is the
degeneracy of the occupied state. Here g =2 due to the spin degeneracy of the occupied
state. The unoccupied state, on the other hand, is non-degenerate. The normalization
constant b is determined by the condition N, = N2 +N;. This normalization is required
because the number of states does not equal the number of impurities. From these

considerations, one concludes that the probability that a randomly chosen phosphorus atom
is neutral is given by:

P =—0= = (17.6)

N, N2+N; 1+1exp &4 — U
2 ke T

Notice, this is not Fermi-Dirac distribution because the spin degeneracy of the occupied state
increases its probability.

Now consider a situation where the silicon crystal is lightly doped with aluminum (atomic
number 13), i.e., when some silicon atoms are substituted by aluminum. Now there are only
3 electrons available for covalent bonds with the neighboring silicon atoms; namely, there is
a deficit of one electron, or in other words, a hole. In a binding state of the hole, one of the
four covalent bonds of the aluminum is missing; therefore, this state is fourfold degenerate
(here, we assume that temperature is sufficiently high such that one can neglect the energy
difference between the A, and the F, binding orbitals). In an ionized state, an electron from
one of the other covalent bonds takes this place, i.e., the hole moves to some other location
in the crystal. Such semiconductor is called p-type, and its band diagram is presented in Fig.
17-7, where ¢, is the binding energy of a hole (the subscript a stands for acceptor).
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valence band for holes

bound states of holes

B T A TR W M AN R )
VY VY vV y

y Yy y

conduction band for holes

Figure 17-7 Band diagram of p-type semiconductor

Repeating the same arguments presented above, one finds that the probability of finding an
aluminum atom in a neutral state is:
1

1+1exp K™%
4 KT

where u < g, is the chemical potential set to ensure that the number of ionized acceptors

P, = (17.7)

plus the number of neutral ones equals the total number of acceptors.

Finally, compensated semiconductors are obtained when doping is with both donors and
acceptors. In this case, some of the electrons occupy some of the hole states, as illustrated in
Fig. 17-8. This recombination generates local electric dipoles oriented in random directions.
These dipoles create a random-like potential acting on the uncompensated charge carriers
(obtained, e.g., when the number of phosphorous atoms is larger than that of the aluminum
atoms). In this way, one can control the amount of disorder in the system.

Figure 17-8 Compensated semiconductors
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Additional common sources of disorder in crystals are associated with vacancies and
interstitials. In many cases, there are correlations between two such defects. For instance,
the Schottky defect in ionic crystals, such as sodium chloride salt, is realized when vacancies
of the negative and the positive ions are located close to each other to reduce the Coulomb
energy (see left panel of Fig. 17-9). Another example is the Frenkel defect (also in ionic
crystals) realized when an ion moves from its lattice position into a nearby point not on the
lattice, as illustrated on the right panel of Fig. 17-9. Here, Coulomb attraction also results in a
tendency of the vacancy to be near the interstitial.

S o e

Figure 17-9 An illustration of Schottky (left) and Frenkel (right) defects in a lattice
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Example: The law of mass action in semiconductors

According to the law of mass action, the geometric mean of the hole and the electron
concentrations in a semiconductor at equilibrium is a constant independent of the doping
level. To derive this property, let ¢. be the lowest energy of the conduction band in the

semiconductor, and v, the density of state in the conduction band assumed to be constant

for simplicity. Then the density of electrons is given by:

[’e]

n, = _[Vcdg L — =VckeT exp(—g;—__l_ﬂj, (17.8)
P 1+exp(‘€k Tﬂj 8
B

where p is the chemical potential (that depends on the doping level). To obtain this result

we assumed that ;. — ¢ > KT , hence Boltzmann’s distribution could approximate the Fermi-

Dirac distribution. We also assume the width of the conduction band to be sufficiently large
so that one may replace the upper limit of the integral by infinity.

A similar calculation gives the density of holes:
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Y
n, = Ivvdg

o 1+exp ('u —f
KT

H—&y
=v, kT exp| — 17.9
] VB p{ kBT J ( )
where v, is the density of state in the valance band, while &, is the highest energy of the

valance band. From the above equations, we obtain:

n.n, = n? (17.10)

e 1

with

£
n2 =vew, (koT) exp| ——22 |. (17.11)
KgT
Here &, =&; —& is the gap energy between the conduction and the valance band of the
intrinsic superconductors. This result implies that n, is independent of the chemical potential
and consequently independent of the type of doping and its concentration. Hence, n; is called

the intrinsic density of the charge carriers in the semiconductor.

Example: Debye’s screening length is semiconductors

As explained above, in a semiconductor, the density of the charge carriers depends on the
temperature. Therefore, the screening length in lightly doped semiconductors is expected to
be temperature-dependent. Namely, it is not described by the Thomas-Fermi theory
(presented in section 14.2). This example is devoted to the calculation of the screening length
in semiconductors. To be concrete, we consider the case of a semiconductor doped only by
donors, but the result is more general and applies to semiconductors doped by acceptors.

Let N, denote the density of donors in the semiconductor, which is assumed to be

homogenous throughout the system. The effective density of charge carriers (see Eq. (17.5))
is given by

n.=Ny[1-f(g,)], (17.12)

where f (&) is the Fermi-Dirac distribution. An external charge density, p,, (r), introduced
to the system creates an electric potential (p(r) seen by the electrons. Here we assume this

potential to change slowly over a distance of the order of the typical electron wavelength to
employ a semiclassical approach for its calculation. Namely, we use Gauss law,

—£0&, V(1) =p, + p_+ P (1), (17.13)

where ¢, is the relative dielectric constant of the crystal, p, =en. is the positive charge

density due to the ions in the system, and
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p=—eNp {1-f [, +ep(r) ]} (17.14)

is the charge density of the electrons in the presence of the external charge, which shifts the
ground state energy of the donors. Expanding this function to linear order in ¢, assuming

lep| < ksT, and using the formula

df (&) 1 ~
dc kT f(e)[1-f(¢)] (17.15)
give:
p_ =-Nne-h kn;_ o(r), (17.16)

where b= f (&,). In the high-temperature regime, kT > 11—¢&,, b is approximately one-

half, while in the opposite limit, k;T <« 1 —¢&, itis approximately one. Therefore, this constant

does not play an important role, and from now on, we assume b =1. These considerations
imply that Eq. (17.13) can be approximated by

_ne (r)+pe“(r). (17.17)

—V? =_
¢ ( r) &6, KT ¢ Eo,

This equation has the same structure as the equation obtained from the Thomas-Fermi
approximation of metals, see Eq. (14.14). Hence, by similar considerations, one can identify

/ n.e’
= . 17.18
%o &8, KT ( )

This quantity is the inverse of Debye’s screening length.

the screening wavenumber as

17.2 The Jahn-Teller effect of an impurity in a crystal

Occasionally, crystal defects are accompanied by local lattice deformations — i.e., local
phonons. These appear when the impurity’s electrons occupy degenerate energy levels. The
bound state of an electron on such impurity is characterized by one of the irreducible
representations of the lattice. However, a local deformation may change the symmetry and
open a gap in the degenerate electronic levels associated with the impurity. In this event, the
electron will occupy the lower energy and reduce the system’s total energy. This effect is
called the Jahn-Teller effect (1937).

Let & denote the coordinates that represent a local deformation of the lattice. The local

Hamiltonian that describes the deformation and its coupling to the electronic spectrum is:
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oH = Znié +% Ki§i2 ’ (17.19)

where K& represents the restoring force due to the deformation while 7, characterizes the

coupling between the deformation and the electronic energy levels. As the change in the

electron energy levels is linear in |§ , While the deformation is quadratic in £, there will be a

spontaneous symmetry breaking with a new minimum at non zero value of £, asillustrated
in Fig. 17-10.

oH
oH

F e =

3 fold degeneracy n=0

==

Figure 17-10 An illustration of the Jahn-Teller effect

The above picture rests on the assumption that 7, #0. To clarify the conditions for this

assumption, let us expand the Hamiltonian of the impurity in the normal coordinates of the
local deformation:

oH (r,&)

, (17.20)
% .. &

H(r,&)=H(r,0)+

where ris the electron coordinate on the impurity, and H (r,O) is its Hamiltonian in the
absence of deformation. We shall assume that the electron energy levels are degenerate and
described by the wave function 1//2“) , which belongs to an irreducible representation «

whose dimensionis (.

The corrections to the energy of the electron due to the local deformation is given by

degenerate perturbation theory; namely, one should diagonalize the matrix éjka;ij , Where

OH (r,&)

(@)
Vk;ij = <1//.
Eék

‘w§“)>. (17.21)

&=0

If one of the elements of this tensor is nonzero, then the correction to the energy levels will
be linear in at least one of the components of &. Then assuming a single electron occupies
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these energy levels, the system becomes unstable to local deformation since £ can be chosen

in such a way that the electron energy reduces.

Consider, for example, an impurity in a lattice with tetrahedral symmetry and that the
electronic state belongs to either to F or to F, irreducible representations. The

representation obtained from a product of two wave functions, y/(F)*y/EF), belonging to this

irreducible representation (which we denote by F)is F®F=A, +E+F +F,. On the other
hand, the operator oH (r,£)/0& has the same symmetry as &, hence &oH (r,&)/0&

generically contains at least one component that belongs to one of the irreducible
representations in the product F®F (the only irreducible representation of T, that does not

appear in this productis A, ). From here it follows that kak;ij has a singlet. Thus, the coupling

constant, 7,, is generically nonzero.

Example: Cr?" impurities in a CdSe crystal

Cadmium selenide crystal is a wurtzite hexagonal
crystal where each cadmium atom is surrounded by
four selenium atoms (and vise versa), forming a regular
tetrahedral shape. When doped with chromium, ions of

Cr*replace some of the cadmium atoms, as
demonstrated in Fig. 17-11.

Let us first identify the atomic term of Cr*" . Chromium
contains 24 electrons; therefore, the electronic
configuration of Cr* is 1s°2s*2p°3s*3p°®3d°.
According to Hund’s rules the electrons occupy 4 of the

d-orbitals such that all spins are parallel and the total  Figure 17-11 Cadmium selenide doped
by chromium

orbital angular momentum is maximal. For instance,
the electrons may occupy the states with m, =2,1,0,-1.

Thus, the total orbital angular momentum is L =2 , and the total spin is also S=2. As we
are dealing with less than a half-filled state, the total angular momentumis J=L-S=0

Thus, the term of the ground state of free Cr* is lD4 , and the orbital momentum is fivefold
degenerate.
However, when the chromium ion is placed in a crystal, the crystal field breaks the full

rotational symmetry of the system and reduces the degeneracy of the ground state. In
exercises 6 and 7 of chapter 4 it was shown that in a crystal with tetrahedral symmetry, T,,

the L =2 states split into E®@F, irreducible representations. It turns out that the ground

state is associated with the triplet F,, while the excited state is associated with the doublet
E.
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Now let us identify the possible deformations of the tetrahedron surrounding a Cr* ion. As
we are not interested in rotations or translations of this tetrahedron (which do not change
the crystal field around the ion), all possible deformations are described by the normal modes
of a single tetrahedron. Since this system has 15 degrees of freedom, it has nine vibrational
modes. In exercise 4 of Chapter 4, we saw that the composition of the normal modes of a
methane molecule (that has the same structure) is A @E®F, @F,. The corresponding

normal modes are shown in Fig. 17-12 below.

F,, Asymmetric Stretch F,, Asymmetric Bend

Figure 17-12 Local deformation of the octahedron sounding the chromium impurity

From this figure, it is clear that the symmetric stretch is a basis function of the identity
irreducible representation; therefore, it shifts all three levels of the F, electronic levels in the

same amount. The symmetric bend, on the other hand, has the symmetry of D,, group

whose largest irreducible representation is two-dimensional and therefore opens a gap in the
electronic spectrum, as illustrated in Fig. 17-10. The asymmetric stretch has C;, symmetry
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implying that it also opens a gap in the spectrum. Finally, the asymmetric bend mode has the
lowest symmetry: C,, . This group has only one-dimensional irreducible representations;

therefore, such deformation will split the F, degenerate electronic levels into three different

levels. These considerations show that some of the coefficients 7, in Eq. (17.19) are nonzero.

Consider now the quadratic term in Eq. (17.19), which accounts for the elastic energy of the
local deformation. Each one of the normal modes shown in Fig. 17-12 can be associated with
a deformation of a cube defined by the tetrahedron, as shown in the figure. This local
deformation serves as a boundary condition for the local phonon mode obtained by solving
the elasticity problem. In what follows, we will illustrate the calculation of this mode and its
energy for the symmetric stretch. For simplicity, we assume that the elastic modulus tensor
can be approximated by its spherically symmetric component (see Eq. (11.48)), i.e.

Eijn = 40,04 +/u(5ik5jl +5i|5jk), (17.22)

where A and u are the Lamé parameters. The corresponding elastic energy is given by
1 3 2
Eelastic :Ejd r|:ﬂ“(uii) +2uuijuji:|r (17.23)

where U; is the strain tensor. We shall also assume that the boundary conditions set by local

deformation of the symmetric stretch mode can be approximated by setting the value of the
displacement vector on a small sphere of radius a to be radial and constant:

uj_ =¢&r. (17.24)

Here £ measures for the amount of deformation while a is of the order of the size of the

cube shown in the upper left panel of Fig. 17-12.

The equilibrium condition of an elastic system is given by the equation

u _q (17.25)
or,
where
Oy =Ejuly = A8y +2uu,, (17.26)

is the strain tensor, see Egs. (11.37) and (11.38). Expressing the strain tensor as derivative of
the displacement vector (see Eqg. (11.26)), we obtain that

ﬂ:ﬂiv-uvt;{aiVUJrVZulj. (17.27)

Hence the equilibrium condition (17.25) is:

(A+u)V(V-u)+puviu=0. (17.28)
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Now, using the identity V2u =V (V-u)—Vx(Vxu) and taking the divergence of the resulting

equation, one concludes that
V#(V-u)=0. (17.29)

Thus, the divergence of the displacement vector satisfies the Laplace equation. Finally,
operating with the Laplacian on Eq. (17.28) and using (17.29) we obtain that the displacement
vector satisfies the biharmonic equation:

V*V?u=0. (17.30)

The spherical symmetry of the problem implies that we should seek for a solution of the form

u= f (r)f.From here we obtain the equation

3 4
%ﬁﬁﬁ(%ﬁﬂ@j:ﬂd I+d I:o (17.31)
ror or\r-or or r dr dr

whose general solution is
_b 2
f(r)==+b,+b,r+b,r?, (17.32)
r

where b. are constants. However, being interested in a local deformation that decays far from

the origin, the only relevant term in this solution is the first one. Imposing the boundary
conditions (17.24), we obtain:

u(r):a—éf, for r>a. (17.33)
r

Thus, the displacement vector decays slowly as 1/r . The corresponding strain tensor contains
only one component:

ag
2

r

u, =-—

rr

, for r>a. (17.34)

Substituting it in Eq. (17.23) we obtain the energy of the local deformation:
3
Eelastic :(g-i_,u]azfz J. d_4r:%472'(ﬂ+2ﬂ)§2a (17.35)
r

Comparing this energy with the second term in Eq. (17.19), one can identify the constant K,

as 47r(ﬂ,+2,u)a.

Notice that although the displacement vector decays slowly, the energy density behaves as
Zl/r4 , hamely, it is concentrated within a region near the impurity. Deformations that are
volume-preserving behave as quadrupoles rather than monopoles and result in a much faster

decay of the local phonon mode, U~ ]/r3 , hence the energy density decays as Zl/r8 .
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17.3 Elastic scattering and the optical theorem

To describe the basic ideas of elastic scattering (i.e., scattering which preserves the particle’s
energy), we begin with the scattering of a free electron from a single impurity. The impurity
is represented by a scattering potential localized within a small domain in space, as illustrated
in Fig. 17-13.

e: k-r

->

—
=

>

Figure 17-13 Scattering of a plane wave from a finite range potential

Far from the impurity, the electron satisfies the free-particle Schrédinger equation:

h*v?

v=cy, (17.36)
2m

where m is the particle’s (effective) mass and ¢ is its energy. Thus, far from the scatterer, the
wave function is of the form:

c,y(r):exp(ik-r)+wexp(ikr). (17.37)

Here we assume that the scatterer is located at the origin, k is the wavenumber of the

incoming wave, and a(ﬁ’, ﬁ) is the scattering amplitude in which

A=—, and ="
i

K (17.38)

are unit vectors in the directions of the incoming and outgoing waves, respectively. The
scattering amplitude is obtained from the solution of the Schrédinger equation in the

presence of the scattering potential. If this potential is spherically symmetric, a(ﬁ',ﬁ)

depends only on the angle between 1A and fA'.

The generalization of Eq. (17.33) to a particle in a lattice, in the framework of the k- p

approximation, is obtained by taking the envelope of Bloch’s wave function to be
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>

u(f) a(a, rA])exp(lkr) (17.39)

w(r)=exp(ik-r)+ o) T

where v(ﬁ) is the velocity of a particle moving in direction A. This formula is valid when

assuming the dynamics to take place within a single band. A generalization for several bands

is obtained when replacing the scattering amplitude a(ﬁ', ﬁ) with a matrix in the band space.

In what follows, we shall consider only the simple case described by Eq. (17.37).

The current density obtained from the wave function (17.37) is

o
j= 2m|[wvw Wy ]

., (17.40)
={ﬁ+:—2‘a(ﬁ’,ﬁ)

2}v+(n—:[exp ik-r—ikr)a (', ﬁ)+cc]

where v=7k/m. To obtain this result, we kept only leading order terms in 1/kr, as we are

interested in the limit where r is much larger than the particle wavelength. In particular, we
have neglected the gradient of the preexponential factor in Eq. (17.33) but kept gradients of
the exponential term.

Let us now calculate the total current passing through a distant spherical shell surrounding

@rzdﬁ'.j—v@d A’

<ﬂ>d exp(lk r—ikr)a (A’ ﬁ)+c.c.],

the scatterer:

Ar A

nn

(17.41)

where d?A =dfA-Ais an infinitesimal element of the solid angle. The first contribution to the

3, =ofp

is manifestly independent of the position of the spherical shell. However, apparently, the

integral,

Ar oA

n n (17.42)

second contribution to the total current (given by the second line in Eq. (17.41)) contains r
dependence. On the other hand, since the total current passing through the spherical shell
must vanish, there should be no such dependence when r — .

To calculate the second contribution to the total current, it is convenient to express the

argument of the exponential function in (17.41) in the form K-r —kr = ( n-N'— )kr so that
or N A Ay : o A
J, :?c_ﬁ)dn (A+A ){exp[—lkr(l i) ]a" (A, A) +c.c.}. (17.43)

Inthe limit r — o0, the integrand is a rapidly oscillating function that can be calculated by the
stationary phase approximation. The stationary phase points are i’ ==+N. It is easy to derive
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this result by writing the phase in terms of the angle, &, between fi and A’. In this form,
the stationary phase condition,

;—gkr(l—cose):krsinezo, (17.44)

yields @ =0, 7 which imply that A" =+N. The contribution from the stationary point A’'=-nN
can be neglected due to the preexponential factor (ﬁ+ﬁ'). To calculate the contribution

from the second stationary point, i’ =N, let us define oA to be the deviation from the
stationary point, i.e.

A

A"=NA+0on. (17.45)
The normalization condition of this unit vector imposes the constraint
2A-on+on°=0 (17.46)

Substituting (17.45) in (17.43) using Eq. (17.46) shows that within the stationary phase
approximation (in which the pre-exponential factor is approximated by its value at the
stationary point):

J, = vr@dzdn-{exp{i%é‘nz}a’k(ﬁ, A)+c.c}

=—"—a (ﬁ,ﬁ)+c.c.:—%lma(ﬁ,ﬁ).

(17.47)

This formula becomes exact in the limit r — o. Now, conservation of the total number of
particles dictates that J, +J, =0, hence

Ima(ﬁ,ﬁ):%ﬁ)dzﬁ’ (17.48)

T

L

l-n-n

Figure 17-14 The angular dependence of the scattered particle current
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This relation is known as the “optical theorem” of scattering theory. Its physical interpretation
is that the total scattered particle current in directions that are different from the incoming
wave, i, must come from a reduction in the particle current moving in the original direction.
In other words, if & = j—wn is the scattered current, its integral over all directions vanishes,
and the manner by which the positive and negative contributions add up to give zero is
demonstrated schematically in Fig. 17-14.

Example: Scattering from a spherical potential

The large-distance asymptotic form of a wave function describing scattering from a finite
range potential with spherical symmetry (located at the origin) is:
exp (ikr)

. .

w =exp(ikz)+a(6) (17.49)

Here exp(ikz) is the incoming waves describing a plane wave moving in the z direction, and

a(&) is the scattering amplitude that depends only on the angle between the direction

scattered wave and the z axis. This function is a particular form of the general wave function
of a free particle having a cylindrical symmetry:

y =Az S 210V, (6) A [ h (kr)e® +h® (kr) . (17.50)

Here Y, ,(6) are the spherical harmonic functions, while h” (x) and h®(x) are the spherical

Hankel functions which have the following asymptotic behavior at large argument:

exp[ix—i”lj
W (x) 1 2 )
T X (17.51)
exp(—ix+i”lj
1 2
h|(2)(x) X—>0 >_? X '

Thus, the functions h,(l)(x)are associated with radially outgoing waves, while hl(z)(x)

describe the incoming waves. The parameters &, are called the scattering phase shift. These

parameters must be real in order to ensure the conservation of probability. Namely, that the
flux of the incoming wave, with a given angular momentum, equals that of the outgoing wave
with the same angular momentum. Finally, the coefficients A are arbitrary.

To identify the relation between a(@) and the scattering phase shifts, we use the expansion

of the plane wave in terms of the spherical Hankel functions:

" (kr)+ b (kr)

exp(ikz):ﬂi\/zl +1i'Y, 4 () h . (17.52)
1=0

2
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Equating the general solution (17.50) to (17.49) using (17.52) and substituting the asymptotic
form of the Hankel functions (17.51), we have

ikr—iZl —ikr+iZ1
2

o 2
EZ\M +1i'Y,’0(49)% © " gz E
1=0

r r

(17.53)

r r r

zmimiwl’o(e)% e' -5 e 2 +a(0)exp(ikr)’

where we choose A =1/2 to ensure that the incoming component of the wave function, on

both sides of the equation, are equal. Solving for a(¢) we obtain:

Zle,o )Ee 2'(ei2o‘. -1)

(17.54)
—”Z\/ZI +1Y,,(0)e" sin ;.
1=0
Now we see that
J'dQ\a(e)\z - i—fZ\/ZI +12m+1e " sin g6 sin, [ A, (6)Y, (6)
. i (17.55)
L:zz (2I+l)sm S5,
and using the property
2l +1
Y,,(0)= . (17.56)
we obtain
Ima(0)= Im@i 21+1Y,,(0)e” sing,
1=0
(17.57)
=Imﬁz 2l +1,[——= 21+ Lo sing, = Z 21 +1)sin® 5.
k 1=0 471' 1=0

From Egs. (17.55) and (17.57) follows the optical theorem:

Im a(o)=4ljdg|a(9)|2. (17.58)
T
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Example: Scattering from a “hard” (i.e., impenetrable) sphere

Consider the case in which the scatterer is an impenetrable sphere of radius R. The wave
function, y, in this case, satisfies Dirichlet boundary conditions on the surface of the sphere:

y(r)

Imposing this condition on the wave function (17.50) yields the equations,

=0. (17.59)

r=R

h (kR)e™ +h? (kR)=0, (17.60)
that determine the phase shifts to be

s _ h" (kR)

17.61
17 (R) el

Notice the absolute value of the ratio on the right-hand side of this equation is one because
h? (2)=h""(z) for real z . The latter condition follows from the fact that the incoming and

outgoing waves are related by time-reversal symmetry; hence one component is the complex
conjugate of the other.

It is convenient to express the spherical Hankel functions in terms of the spherical Bessel and
Neuman functions:

(17.62)

With these definition,

e == : = ) (17.63)

hence

(R) (17.64)

and

sin? 5 tan’s, i’ (kR)

- = : 17.65
" l+tan®s,  jP(KR)+n7 (kR) (17.:63)

We shall use this formula to calculate the total scattering cross-section in the limits where the
sphere’s radius is much smaller (KR <«1) or much larger (KkR>1) than the particle
wavelength.

Recall that the scattering cross-section is defined as the number of scattered particles per unit
time divided by the incoming particles’ flux (number of particles per unit time per unit area).
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In our calculation, we choose the amplitude of the incoming wave to be one; hence the cross-
section is:

O =J'dgz\a(9)\2 =i—’fi(2l +1)sin’ g, (17.66)

1=0

To calculate this sum, we need the asymptotic behavior of the spherical Bessel and Neuman

functions:
N
2l 0 x50 @) X — 0
. (2|+1)| 2I|| XI+1
Ji (%)~ n (x)~ (17.67)
1 . T 1 T
—sm(x—l—) x> ——cos(x—l—j x> |
X 2 X 2

Consider first the limit kR <« 1. Using Egs. (17.65) and (17.67) we obtain

( 2'I! X.] .
|imsin25|=& {%] (kR)™. (17.68)

R0 ((jll)!! X|1+1 jz 21+1)1(2

From here, it follows that the main contribution comes from | =0, where sin? ol :(kR)

x=kR

2
Substituting this result in (17.66), we obtain:

Oy =47R?, for kR<1. (17.69)

Notice that this scattering cross-section equals the full surface of the sphere rather than its

cross-section area, 7R?. This is not surprising because this result applies to the ultra-
guantum limit, where the size of the sphere is much smaller than the particle wavelength.

Consider now the opposite limit, KR >1. Using Egs. (17.65) and (17.67) give that for kR >
N PR _Z_l_ _ _1__|
sin® §, = sin (kR I Zj_ 2[1 cos(2kR -1 | = 2[1 (-1) cos(ZkR)} (17.70)

Substituting this result in Eq. (17.66) and taking into account that the contribution from the
second term in (17.70) is negligible because of the alternating signs, and that sum over |
extends up to KR where the asymptotic formula (17.67) for large argument applies (at higher
values o, decays exponentially with |), we obtain:

kR
4”2(2|+1)%=2;:R2, for kR > 1. (17.71)

1=0

Oscat = 2

Thus, we obtain a cross-section that is precisely twice the classical value (the area of the
sphere cross-section). This result is surprising because, from the correspondence principle,
we expect that when the wavelength approaches zero, one should recover the classical result.
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This discrepancy between the classical value of the cross-section and its quantum value in the
classical limit is called the extinction paradox.

The reason for paradoxes is usually rooted in some hidden assumptions. Here it is associated
with the orders of limit in which the cross-section is calculated. To reveal this assumption, let
us recall the problem of diffraction from a slit whose width, w, is much larger than the
wavelength A . In this problem, one identifies two regimes that depend on the distance, r,

of the detector from the slit. In the near-field regime, A < r <+ Aw, diffraction effects due
to the edges of the slit are small so that rays move, essentially, along the classical trajectories.

On the other hand, in the far-field regime, r > m, essentially all rays detract and generate
the distinctive Fraunhofer interference pattern. This example shows that although one may
assume A to be the smallest length scale in the problem in both cases , the order of limits,
A—>0 and r—ow, isimportant. The classical result is obtained when first A — 0 and only
then r — oo, while strong diffraction is revealed in the opposite order, first r— oo and only
then 1 —>0.

The calculation that led to Eq. (17.71) has been performed in the orders of limits where
quantum diffractions effects are always significant (i.e., first r - o and then 4 —>0). To
understand the reason for the factor of two between the quantum and the classical result, let
us consider the problem of diffraction from a thin circular mirror of area A, as illustrated in
Fig. 17-15. Clearly, all rays that hit the mirror will be reflected and contribute an area A to
the total cross-section. However, diffraction takes place also for rays that do not hit the
mirror, as illustrated in the figure.

Figure 17-15 Diffraction from a thin circular mirror

To find the contribution of these rays to the total cross-section, we use Babinet’s principle
according to which, in the far-field regime, the diffraction pattern from an impenetrable
screen is the same as from a slit with the same shape (in any direction which is different from
that of the incoming plane wave). This principle implies that the effective area of the
diffractive rays (which do not hit the mirror directly) is also A, hence the total cross-section
is 2A.
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17.4 The kinetic (Boltzmann) equation for elastic scattering

Impurities and lattice defects scatter the electrons from one Bloch state to another. In this
section, we construct the kinetic equations that describe this process. This description is

semiclassical in nature: It constitutes an equation for the probability density, f (r, p,t), of

finding a particle at a point (r, p) in phase space at a time 1. It is based on the assumption

that the elastic mean free path, that characterizes the distance between successive scattering
events, is much larger than the particle’s wavelength and neglects interference effects.
Solution of the kinetic equation allows one to calculate the particle’s density,

p=jd3pf(r, p.t), (17.72)
and the current density:

i = [d®pf(r, p.t)P. 17.73

j=]d*pf(r p,t)— (17.73)

If there is no scattering, the electron distribution function satisfies the Liouville equation,
which in the absence of external forces reduces to

of of

—tv-—=

ot or
where v = p/mis the particle’s velocity. A solution of this equation, analogous to a plane

0, (17.74)

wave solution of the Schrodinger equation of a free particle, is:

f(r.pt)=p5(p-1,), (17.75)
where p is the density, which is constant and homogeneous in space, while p, is the initial

momentum. The particle current obtained from this distribution function is

j=pPo (17.76)
m

Since elastic scattering conserves energy, it is convenient to express the conservation of
momentum, as conservation of its absolute value and direction, A= p/p. For parabolic
energy spectrum, conservation of the absolute value of the momentum is equivalent to

conservation of the energy, ¢, = p§/2m , hence representing the probability density function

in the form f(r, p,t)= f (& 1), the solution (17.71) may be written in the form:

f(e,ﬁ)z85;85(5—80)5(ﬁ—ﬁ0), (17.77)

where A, = p,/ P, is the initial direction of the particle’s momentum. From now on, we shall

suppress the energy dependence of the distribution function because it is conserved.
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To take into account scattering by disorder, one has to add to the right-hand side of the
Liouville equation (17.70) a term that describes the change of the distribution in time due to

scattering:
of (Ar,t)  of (At

or

+v- ):Ste,[f (ﬁ,r,t)], (17.78)

with the collision integral

Sty[f]=36(r-R )ﬁdzﬁ'vﬂa(ﬁ, i)

2

f (A, r,t)—|a(A’,n)

“t(any]. 0779)

Here, for simplicity, we assume that the lattice disorder comprises identical scatterers located

A A2
at points R, with a differential cross-section of each scatterer given by ‘a(n ,n) (for

scattering from direction n to n'). The first term of Eq. (17.79) describes the increase in the
probability density to find a particle in direction n, due to scattering of a particle from a
different direction n'into N. The second term represents the decrease in the probability
distribution as a result of scattering from n to n’.

Notice that except for the scattering amplitude, which may take into account quantum
properties of the system, the above equation is essentially classical. Expressed only in terms
of the probability for scattering from individual scatterers, it neglects possible interference
effects. To explain this point, consider two trajectories of a particle passing from point A to
point B, via several scattering events, as illustrated in Fig. 17-16. Denoting by W, and W, the

probabilities of passing through the upper and lower trajectories, respectively, the classical
probability of passing from point A to point B, is given by the sum w=w, +Ww,.

Wi

AN

Wo

Figure 17-16 A particle passing from point A to point B experiencing several scattering events

On the other hand, when treating the problem quantum mechanically, one should sum
probability amplitudes rather than probabilities. The probability amplitudes are given by
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\/Wiexp(ig/i,), where ¢ and ¢, are the phases accumulated along the upper and lower

trajectories, respectively. Thus, the probability of transition is
W= ‘\/Wlexp(i@)hlw2 exp(ig, )‘ =W, +W, +2\W,W, cos(¢ —¢,)  (17.80)

The last term on the right-hand side of this equation is the interference contribution. This
term is not taken into account by the kinetic equation (17.73). Interference might become an
important factor leading to various physical phenomena such as localization, weak
localization, and mesoscopic fluctuations. These subjects are beyond the scope of this course.
The interference effects can be neglected when scattering is sufficiently weak or in the
presence of processes that destroy phase coherence (such as electron-electron interaction at
sufficiently high temperature).

Usually (even when taking interference effects into account), the microscopic description of
elastic scattering from individual scatterers contains too much information, which is not
required to characterize the behavior of a large system. Instead, one may characterize the
scattering process by the transition rate between different momentum states (or momentum
directions). To obtain such a description, we define the density of scatterers as

Nimp :<Zi:5(r—Ri )>, (17.81)

where <> represents a statistical average over the positions of the scatterers. Here we

assume that the density of scatterers is uniform in space. In this case, the collision integral
(17.75) reduces to

Ste.[f]zﬂdzﬁ[f(ﬁ,’r' ) Har t))} (17.82)

where

(17.83)

is the scattering rate from a state where the particle moves in direction A’ to a state where
it moves in direction N. In the absence of a magnetic field, time-reversal symmetry implies
that

r(A,A")=7(-A,-A"). (17.84)

On the other hand, in general, one cannot replace the roles of the incoming and outgoing
momenta during the scattering events, namely

(A, A) =7 (A A). (17.85)

This feature is explained in Fig. 17-17. Nevertheless, when the scattering potential is weak,
and the transition rate can be calculated perturbatively (by Fermi’s golden rule), one obtains
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that 7(A,A")=7(""A), see Ex. 1. This equality is called the “principle of microscopic

reversibility”. Assuming this property, the kinetic equation (17.78) reduces to:

of of d’a’ 1
a . .o = (ALt = f(Art)]. .
pak i H o r(ﬁ,ﬁ’)[ (A, rt)—f(A,rt)] (17.86)

Finally, we comment that elastic scattering does not take the system into an equilibrium state
because the particle energy remains intact. On the other hand, the momentum relaxes and
leads to diffusive behavior, as discussed in the following chapter.

n T(n’B n)

T(n, n') n

Figure 17-17 Scattering from an impenetrable triangle illustrating the inequality (17.80).

17.5 Exercises

1. Prove the principle of microscopic reversibility with the framework of Fermi’s golden
rule.

2. Foranelectronin a two-dimensional system, calculate the total cross-section from an
impenetrable circular potential in the following limits:

(a) When the circle radius is much smaller than the electron’s wavelength. Here, show
that the cross-section is determined mainly by the electron wavelength rather
than the size of the scatterer.

(b) When the wavelength is much smaller than the circle radius. Show that the cross-
section obtained in this limit is twice the classical one.



353

Advice: Use the solution of the two dimensional Schrodinger equation of a free

particle in polar coordinates (r,6):

w = i i"exp(ind) A, [Hﬁz) (kr)e™ +H (kr)]

N=-o0

where
H
HEY ()=

(17.87)

(17.88)

are the Hankel functions of the first and the second kind expressed in terms of the

Bessel and the Neuman functions which have the following asymptotic behavior:

%(%} XxX—=0
3a(x)~ "
f2 ( pa 72')
—CoS| X—n=-=1] x>n
X 2 4
2 X0, n=0
T 2
n—1)! "
N, (x)~ —u[gj Xx—0, n>0
V4 X
2 . ( T 72']
—sin| x-1=-= X>n
X 2 4

Use also the expansion:

exp(ikx) = exp(ikrcos @) = i i"J, (kr)exp(ing).

N=—co

(17.89)

(17.90)

(17.91)
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18 Transport coefficients & thermoelectric effects

In the final chapter of this course, we consider the nonequilibrium behavior of electrons in
disordered crystals in response to spatial changes in the electron’s density, p, the
temperature gradient, VT , and the application of an external electric field, E . We focus our
attention on the regime of linear response where the electric current is given by

j=cE-DVp-pBVT, (18.1)

and discuss the coefficients that characterize the response and the relations among them.
These are the conductivity tensor o, the diffusion constant, D, and the thermopower
coefficient, . We conclude by presenting thermoelectric effects - the Seebeck, Peltier, and

the Thomson effects - and the relations among the thermoelectric coefficients associated
with them.

18.1 Diffusion

Diffusion is a dynamical process by which a particle scatters and changes its direction rapidly,
but, similar to random walk, its position changes slowly in space such that the square of the
distance from the origin is proportional to time:

<r2> - 2Dt, (18.2)

where D is the diffusion constant. Here we derive this equation and identify the diffusion
constant by solving the kinetic (Boltzmann) equation (17.74) with the collision integral (17.78)

for which we assume the principle of microscopic reversibility, T(ﬁ, ﬁ') = r(ﬁ', ﬁ) ,i.e.,

PG | [
ot or 4 r(ﬁ,ﬁ')

[f (A, rt)—f(Art)]. (18.3)

We also assume the absolute value of the velocity to be approximately constant and express
it in the form v =N, where 1 is a unit vector.

Averaging Eq. (18.3) over the directions of N yields the continuity equation:

1) v (onf) =0, (18.0

where

<...>=J'd_2ﬁ(...)_ (18.5)
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It is clear that Eq. (18.3) is satisfied by a constant function. Such a solution is expected to be
reached after a long time when momentum relaxes and the particle probability density
spreads uniformly in space. This property suggests looking for a solution in the form of a
gradient expansion,
f(ﬁn0=fJn0+ﬁVﬁuipﬁﬁQ%fz

i 8rj

f,(rt)+-, (18.6)

where f. (r,t) changes slowly in space and time, i.e., over distance (and time) that is much

larger than the typical distance (or time) between successive scattering events. In what
follows, we consider only the first two terms of the above expansion. Substituting (18.6) in
the continuity equation (18.4),

%(fo+ﬁ-Vfl>+V-<vﬁ(fo+ﬁ-Vf1)>:O (18.7)

we obtain

gﬂiﬂ+§vﬁdnqzo. (18.8)

The terms linear in N vanish upon averaging, while those quadratic in N are calculated as
follows:

V- (vif )=V -(vA[ f,+A-VE,]) = v(AA ) —— (18.9)

Now, it is clear that for i # j <ﬁ A > 0, while for i = j the average ,<ﬁi2>, is, by symmetry,

independent of i; hence
3

<ﬁ[j>:5ij<ﬁi2>:%<zﬁiz>5ij :%% (18.10)

i=1

Notice that in this equation, we do not sum over repeated indices. Substituting this equation
in (18.9) gives the second term in (18.8).

To obtain an additional relation between f, and f,, we substitute the expansion (18.6) in

(18.3), multiply by fi, and average over the directions of N. Keeping those terms that do not
vanish upon averaging, the resulting equation takes the form:

O j.x\ O A A 1 .. .
at<nn>8r f(r,t)+v<nn _[ f e T ﬁ)n(ni_ni)a_' (18.11)

From now on, we assume that the scattering time depends only on the angle between the
incoming and outgoing rays, €, i.e. A"-A=cos@, and denote 7(A',A)=7(8). With this
assumption, the double integral on the right-hand side of Eq. (18.11) reduces to a single
integral over the angle €. Thus,
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d*ipd®n” 1 ., .\ of 1
'—A)—Lt=—-—VFf, 18.12
J.47rj 47 T(ﬁ’,ﬁ)n(n' n')ﬁﬁ & ( )
with
1 1% . 1
—==|d@fsing 1-co0s@). 18.13
\, "] 00 gt eest) e

The time 7, is called the transport mean free time. It is the typical time when the particle
loses memory of its initial direction. When scattering is by small angles (i.e., when 1(49) is
peaked at & =0), the transport mean free time can be much larger than the elastic mean free
time,

1 1% . 1

—:—jdesme—, (18.14)

T 2y

7(9)

because many scattering events are required to reverse the particle’s direction.

Using Eq. (18.10) in order to evaluate the left-hand side of Eq. (18.11), and the Eq.(18.12) for
the right-hand side, we obtain

10 1 1
éanl(r,t)Jrgvao(r,t)=——Vf1(r,t). (18.15)

37,

However, the first term on the left-hand side of the equation is negligible because time
derivative is equivalent to higher spatial derivative (as follows from Eq. (18.8)), hence

f.(r,t)=—uvr, f(r,1). (18.16)

Substituting (18.16) in (18.8), we obtain the diffusion equation:
0

P fo(r,t)=V-[ DV, (r.t)], (18.17)
where
2
D="Tr (18.18)
3

is the diffusion constant. The above result is derived for a three-dimensional system. Ina d -
dimensional system, a similar calculation gives Eq. (18.17) with the diffusion constant,

D=4z, /d.

Assuming D to be uniform in space, the solution of the diffusion equation (18.17) (assuming
initial conditions where the particle is located at the origin) is:

1 ( r2 j
fo(rt)=———exp| ——|. (18.19)
(47Dt)z 4Dt

Using this solution to calculate the expectation value of r® leads to Eq. (18.2).
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To summarize, the above results imply that the diffusion equation (for charged particles) is
obtained from the continuity equation

6—p+v-j:o, (18.20)
ot

where pand | are the charge density and the current density, respectively. Fick’s law
determines the latter,

j=-DVp. (18.21)

This diffusion current is only one of the contributions to the total current. Additional
contributions may come from the temperature gradient and the electric field, see Eq. (18.1).

18.2 The electric conductivity and Einstein’s relation

Consider a system of electrons in thermal equilibrium without a magnetic field. The electric
current in the system,

: d’p
j =—ej(2”)d vf(r,pt), (18.22)

vanishes due to time-reversal symmetry. Mathematically it can be verified by taking into
account that the equilibrium distribution function is only a function of the energy

f(r,pt)="f(e) (so that its Poisson bracket with the Hamiltonian vanishs). Then
representing the distribution function in the form f =0F/d¢, and taking into account that
the velocity is the derivative of the energy with respect to the momentum, v = 68( p)/&p,

the current can be expressed as an integral over a full derivative and therefore vanishes:

: d’p o¢ d’p oF
— e 2 t(e)=—e Z-o. 18.23
=] (27)" ap ()==¢] 27)" op nez)

(
Now consider an isolated system subjected to an electric field, E, but in an equilibrium state
so that there is no electric current flowing in the system. For simplicity, we assume that the
system is isotropic and homogeneous; hence the conductivity tensor can be replaced by a
scalar, o . In this situation, the electric current due to the electric field must be compensated
by the diffusion current due to the gradient of the charge density, p, i.e.,

j=cE-DVp=0. (18.24)

This equation suggests that the conductivity and the diffusion constant are related. To identify

this relation, let go(r) be the electric scalar potential that determines the electric field,
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E=-Vop(r). (18.25)
The Hamiltonian of the system is then given by
H=¢,(p)—ep(r), (18.26)

where 6‘0( p) is the electronic spectrum of the system in the absence of an electric field. To

proceed, we adopted a semiclassical approximation where the Fermi wavelength is much
smaller than any other length scale in the problem. In particular, the electric field is assumed

to be sufficiently weak so that (o(r) changes very slowly over a distance of the order of the

Fermi wavelength. With this assumption, the equilibrium electronic distribution function can
be approximated by

fo(r.p)=0(s. —H)=0] & +ep(r)-(p)] (18.27)

where we assumed the Fermi energy, &-, to be much larger than the temperature,
KsT < &g, therefore the Fermi distribution function can be replaced by a unit step function
(this is the typical situation in good metals). Within this semiclassical approach, each electron
occupies a volume of (Zﬁh)d in phase space; hence the charge density is obtained by the

following integral over the momentum:
:—j p 9[5F+e¢ (N-&(p)]. (18.29)

It follows that to the leading order in ep(r) /e,

Vp=-evVo(r), (18.30)

where

P Sle —5,(p)] (18.31)

dd
v=| g
(27h)
is the density of states at the Fermi energy. Substituting (18.30) and (18.25) in the equilibrium
condition (18.24) yields Einstein’s relation,

o=e’vD, (18.32)

that relates the conductivity to the diffusion constant.

Example: PN junction (a diode)

A PN-junction is obtained when a p -type semiconductor is brought to contact with n-type

semiconductor. Near the interface, electrons from the n-type semiconductor diffuse into the
p -type semiconductor and compensate the acceptors, creating a depletion layer with a low
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concentration of free charges, as illustrated in the upper panel of Fig. 18-1. At an equilibrium
state, the diffusion current, due to the gradient of consecrations of holes and electrons, is
compensated by the electric current induced by the electric field. This electric field is created
by the charge carriers that have passed from one side of the junction to its other side.

An electric field’s buildup is required to equate chemical potential on both sides of the
junction. It leads to a voltage drop, AV, as illustrated in the lower panel of Fig. 18-1.

p —type n—type

+ +
+ +t o+ o1
T * E _

_ free electrons

+ +
+
|, free holes 27

+ + ++

depletion
layer

p —type ¥
QOO

@@@@@m\

Figure 18-1 A PN junction (diode) at equilibrium. Upper panel: The depletion layer
and the buildup of an electric field. Lower panel: The band structure of electrons.

To calculate the potential drop across the PN junction, we consider, for simplicity, the case
in which the intrinsic semiconductors on both sides of the junction are identical and construct
the equation for a zero current flow, analogous to (18.24). Here, however, one has to take
into account that the electric field and the density of carriers are not uniform in space.
Focusing on the current due to holes, and assuming one-dimensional geometry, we have

jX=e[;¢hnh(x)E(x)—Dhgnh(x)}:o, (18.33)
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where n, (X) is the density of holes at point X, g, =er,/m, is the mobility of the holes (see

definition below Eq.(1.3)) in which m, is the effective mass of the hole, and D, is the hole
diffusion constant. Notice that in the case of lightly dope semiconductors, one cannot use
relation (18.32) that was derived for a metal. Instead, assuming a temperature range where
the Boltzmann distribution approximates the hole distribution function, one can calculate the
diffusion constant using the equipartition law:

tr

D = =
"3 2 3m, 2 3m, m,

vz, mv? 2r, _3KgT 27, _ KeT 7 _ (18.34)

This result may also be written in the form D, =k,T z,/e, which constitutes the Einstein

relation for a Brownian particle. Using this result, Eqg. (18.33) reduces to:

on, (X op( X
L om( ):ﬂE(x):—i—(o( ), (18.35)
n, (Xx) ox D, kT Ox
where go(x) is the electric potential. Integrating the above equation across the depletion

layer from a point located deep in the p -type semiconductor to a point located deep in the

n-type semiconductor, we obtain:

n, Y e
In| 0z |=———AV, (18.36)
N, KgT

where AV is the voltage across the junction (i.e. the difference between the voltage in the
n-type side of the junction, V,, and the voltage on the p -type side, V), while, n’~ and
n,?*ty”e are the densities of the holes at the p -type and at the n-type regions of the junction,
respectively. In particular, the density of holes in the p-type semiconductor can be
approximated by the density of acceptors, N’ = N,, and using the law of mass action
(17.10), we deduce that the density of holes in the n-type semiconductoris 0" =n? /N,
where n.is the intrinsic density of charge carriers in the semiconductor, while N, is the

density of donors (which approximates the density of electrons). From here, we conclude
that

€ n.

AV :kB_Tm[NA_’ij. (18.37)

18.3 The second law of thermodynamics in electronic systems

Consider the Boltzmann (kinetic) equation for the distribution function of electrons subjected
to an external electric field,
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q+a—g-@—eE-@=St[f], (18.38)
ot op or op
where the collision integral accounts, both for the scattering of the electrons by impurities
and the collisions among electrons®. These conditions imply that the scattering processes
conserve the number of particles and energy. Thus, multiplication of Eq. (18.38) by —e and
integration over the momentum yields the conservation law of electrical current (18.20),
where the charge density and the current density are given by

—e
pj_ ddp f(

= p)| de |. (18.39)
(J J.(Zﬂ'h)d _eé_p

Notice that this equation follows from two properties: (a) the conservation of the number of
particles by collisions, and (b) that the integral over the force term in the Boltzmann equation
(18.38), —eE - of /dp, vanish because it is a full derivative.

Similarly, one can construct the dynamical equation for the energy flow in the system,

op .
—£+V-j.=J-E, 18.40
P ). =1 ( )

where p_is the energy density, and j_ is the energy current, defined by the integrals:

[’%j:j a’p f(p) oe|. (18.41)

i.) 7 (2xn) £

Here, the contribution from collision integral vanishes; however, the force term on the left-
hand side of the Boltzmann equation (18.38) gives a finite contribution to the energy balance
equation (18.40). This contribution can be calculated using integration by parts:

d d
e d pdgEﬂ:I d’p ¢
(27rh) op (27rh) op

Ef =—j-E. (18.42)

It is called Joule heating. It describes the property that a moving electron changes its energy
due to the work performed against the electric field. The above equations can be
straightforwardly generalized to include the magnetic field, and the Lorentz force that acts on
the charge carriers.

! Similar to collision with phonons, the collision of electrons among themselves bring the system into Fermi-
Dirac distribution (in the absence of external forces). At low temperature, this is the dominant mechanism

because the electron-electron collision rate is proportional to T (in three dimensions), while the electron-

phonon rate is proportional to TS,
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There is, however, an additional type of forces called thermodynamic forces. These forces

originate from spatial or temporal changes in the temperature, T (r,t) and/or in the chemical

potential ,u(r,t). To identify these forces, let us represent the electron distribution function

as a sum of two contributions:
f=f [T(rt)u(rt)]+sf, (18.43)
where the first contribution,

fu [ T(rt)ipe(r,t)]=

1

1+exp{g(p)_”(r’t)]

(18.44)
keT (r,t)

is a distribution function describing local equilibrium (assuming the temperature and the
chemical potential to change slowly in space and time), while the second contribution, 6 f ,
represents deviations from local equilibrium. Substituting Eq. (18.43) in Boltzmann’s equation
(18.38) and linearizing with respectto 6 f (focusing for simplicity on a steady-state solution),

we obtain the equation:

Lof =—32JeE+V — VT , 18.45
oe Gp{e #r)+— ) (r) (18.45)

where L is a linear operator representing the action of the linearized Boltzmann equation
(including the collision term) on 6 f . The right-hand side of this equation accounts for the
external forces (here, the electric field) and the thermodynamic forces (gradients of the
temperature and the chemical potential) acting on the system. To derive these forces, let
us first consider the action of the spatial derivative (the second term on the left-hand side of

Boltzmann’s equation (18.38)) on f,, [T (r);y(r)] :

e 2Tt -lar () T 2. 2 £k

op or og op or| kT (r)
o o) (18.46)
_08 Qe ) _ezHn)
_8p 88{ Vy(r) T(I’) VT(I’)}

Next, we make use of the fact that the dependence of f,, [T (r);y(r)] on the momentum is

only through the energy dependence,g=5( p), hence the force term in the Boltzmann

equation (the third term on the left-hand side of (18.38)) is given by:

0 of o€
e £ [T(r): _ el p. % 18.47
e % eq[ (r) y(r)] eag P ( )
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The sum of these two contributions gives the inhomogeneous term on the right-hand side of
Eq. (18.45).

To weave the connection to the second law of thermodynamics, first, notice that the
contribution to the change in the entropy density from the distribution function (18.43)

comes only from &f because the local equilibrium distribution, f,, [T(r);y(r)], already

maximizes the entropy. Hence Eq. (18.45) suggest that the entropy density, s, satisfies an
equation of the form:

os .
Z4v.j,=J-F, 18.48
p Jo ( )

where jQ is the heat (or entropy) current density. In the right hand side of this equation, F

represents the external and thermodynamic forces acting on the system, while J stands for
the current densities that couple to these forces. The left-hand side of the above equation
follows from the left-hand side of Eq. (18.45). It describes reversible processes in which the
entropy is conserved. The entropy change comes from the right-hand side of the equation
and has the same form of Joule heating.

To identify the current J, we begin from the thermodynamic relation,

TdS =dU — udN , (18.49)

where S isthe total entropy, U is the total energy, and N is the number of particles. Passing
from these extensive quantities to their intensive counterparts (i.e. densities) and focusing
our attention on their time dependence, we obtain

&_1o%. up (18.50)

where we replaced the particle density with the charge density (divided by e). Now, let us
substitute Egs. (18.20) and (18.40) for the time derivative of the energy and the charge
densities. Rearranging the terms in the resulting equation gives

os 1 . H
B_(v.j+jE)+Ly
_ J'E+V-(—£jg+ijj+jg~vl—j-vi (18.51)
T T eT T eT

jqzi(jg—ﬁj]. (1852
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This equation has the same structure as Eq. (18.48). It may be written in a form that allows
one to identify the forces and the currents that couple to them:

L Vu
%y io _1(i o), e . (18.53)
ot T T

The condition set by the second law of thermodynamics is that the right-hand side of Eq.
(18.53) is non-negative. This condition implies that within linear response theory, the matrix
that relates the currents to the forces,

. . ~ V’u
[.J J=[G ﬂ] e (18.54)
ko) \7 S vt

is non-negative. The following Onsager relations set this condition:
£(B)=¢"(-B), (18.55)

These relations are written here for the case where the system is subjected to a magnetic
field, B .

Example: The I-V characteristic of a diode and Onsager’s relations

In their simplest form, Onsager’s relations imply that in the linear response regime of a
passive system and in the absence of a magnetic field, the conductivity is independent of the
current direction. This property seems to contradict the behavior of a diode that allows an
electric current to flow only in one direction. In this example, we calculate the |-V
characteristic of a diode and show that the magnitude of the current flowing through a PN
junction is indeed independent of the direction of voltage bias, provided it is small enough.

The main assumption that we shall need to calculate the I-V curve of a diode is that the
injected current is sufficiently small. Notice, at equilibrium, the current in any part of the
diode vanishes because the currents of charge carriers moving in opposite directions cancel
out. The typical current associated with one of these components is of the order of one
ampere, while the current flow through a biased diode is typically a few milliamperes. Small
injected current implies a slight voltage bias that has only a small effect on the depletion layer.
Hence we may also assume that the depletion layer is free of charge carriers. In addition, we
assume that the resistivity of the depletion layer is much higher than that in the other parts
of the diode; hence the voltage drop occurs, essentially, only on the depletion layer.
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To calculate the current in the diode, we focus our attention on the minority charge carriers
in each side of the PN junction. When the diode is forward biased by a voltage V, the
equilibrium drop voltage is lowered from AV, to AV —V and holes are injected into the n-
type region of the diode at the point W, , see Fig. 18-2. The holes in this region diffuse and

recombine with electrons, thereby generating a current flow.

depletion

p —type ]ayer n—type
+ - _
+ -il.- + + + I -
+ + + —
+ 4+ + - _ - T
L free holes 1 _free electrons
- + + - - 7
X
- L.,; - Wp Wn Lh‘

Figure 18-2 The geometry of the PN junction used for calculating the I-V characteristic of a diode

To be specific, let 6n, (x) be the deviation of the hole density from its equilibrium value in

the n-type region. The time evolution, describing diffusion and recombination process, is
given by the equation:

osm, (x) _y @°om (x) _ o, (x) (18.56)
ot Y Top '

e—

where D, isthe hole diffusion constant, and the right-hand side of the equation accounts for
recombination at rate 1/z, . This equation implies that the hole may diffuse only a distance
of order |, , =+/D,7, , until it recombines with an electron. Assuming the length of the n-

type region to be much larger than this distance, L, —W, > 1, ., a steady-state solution of
Eqg. (18.56) is:

on, (x)=on, (Wn)exp[—xl_wnj, for L, >x>W.. (18.57)

h—e

Here Jn, (Wn) is the deviation of the hole density from its equilibrium value at the edge of

the depletion region,Xx=W_, where holes are injected (see Fig. 18-2). Thus, the electric

current density coming from the holes is the diffusion current (recall we assume there is no
electric field within the diode apart from the depletion region):

= ID—h5”h (W,) (18.58)

X=W, h—e

oon, (x)

f -_D
In h T o

A similar process takes place for electrons in the p -type region and the total current is the

sum of both contributions.
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Our goal now is to find the voltage dependence of the nonequilibrium density of the holes,

on, (Wn). For this purpose, we integrate Eq. (18.35) across the depletion layer, from W to
W, , taking into account that the total voltage change is AV -V , thus

n, (W,) _ exp@%) (18.56)

Taking the hole density at the edge of the p -type region, n, (Wp), to be approximately the

density of acceptors, N,, and using the equilibrium relation (18.37), we obtain:

n

z eV
n, (W”)zN_IEXp[ﬁj' (18.57)
D B

Subtracting the equilibrium hole density (i.e., the value of n, (Wn) at V =0) we obtain

on, (W, ) = S—‘{exp(%l—l} . (18.58)

Substituting this result in Eq. (18.58) yields the contribution of the holes to the current

density:
. D, n Y
jy=—"——|exp| — |-1|. (18.59)
Ih—e ND kBT
A similar calculation gives the electronic contribution to the current density:

Je = . n—‘{exp[ﬂj—l}, (18.60)

Ie—h NA kBT

where D, is the electron diffusion constant and |, , is the recombination length for electrons

in the p-type region of the diode.

Finally, summing the two contributions (18.59) and (18.60) and multiplying by the area of the
diode cross-section, we find that the total current flowing through the diode satisfies the

| = I{exp[%)—l} , (18.61)

where | is the saturation current when the diode is reversely biased. In particular, close to

equation:

equilibrium,

eV| < kT, this equation reduces to the familiar Ohm’s law describing linear

response:
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| =—=V, (18.62)
T

This behavior manifestly satisfies Onsager’s relation.

18.4 Thermoelectric effects

Thermoelectric effects involve the conversion of temperature gradients to electric current or
voltage and vice versa (in metallic systems). In metals, the chemical potential is usually
constant due to quasi-neutrality; hence, gradients of the chemical potential can be neglected.
Furthermore, the physical quantities that can be controlled in the experimental systems are
the electric current and the temperature gradient; therefore a convenient way of
representing Eq. (18.54) is

A

ey (2 Q)
2 [w)
T T

where p =61 is the resistivity tensor, Q = 6'*1,3 is Seebeck coefficient, T1=T 76" is Peltier

coefficient,and K =T (f - 776‘%) the heat conductivity coefficient. All these coefficients are,

in general, tensors.

The above equations allow us to explain several thermoelectric effects. For simplicity, we
consider systems where p, Q, IT, and x are scalars rather than tensors.

1. Seebeck effect (1821)

Consider an open electric circuit made from two
metals with different Seebeck coefficients. Let us 0>
assume that the interface between the two metals

is held at a temperature that is different from the

temperature at the other edges of the metals, as T, @ %
illustrated in Fig. 18-3. Such a device is called a
thermocouple. As the circuit is opened, the
current that flowing through the system vanishes,
j =0, hence from Eq. (18.63), it follows that

O T, —

E— QVT (18.64) Figure 18-3 A thermocouple
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Integrating this equation along a curve that starts at one edge of the thermocouple and
ends at the other edge gives the voltage drop between these edges:

vsz-dlszVT-dlsz(T)dT

; ; (18.65)
- [QdT+ [ Q0T =(Q-Q,)(T.-T,)

Thus, the voltage is proportional to the temperature difference and to the difference
between the Seebeck coefficient of the two metals.

Peltier effect (1834)

Peltier effect can be regarded as the inverse of
the Seebeck effect. When current flows through m, ,
a thermocouple made of two metals with

different Peltier coefficients, the junction can
Figure 18-4 A system demonstrating the

emit or absorb heat according to the current Peltier effect

direction (see Fig. 18-4).

Assuming the temperature is constant in the vicinity of the interface between the two
metals, the heat current is proportional to the current, jQ =TIIj/T (seeEq. (18.63)). Since

the Peltier coefficient from both sides of the junction are different, the heat current
entering (or emitted from) the junction is

. 1 .
Ajq = ?(Hl ~IL,)j. (18.66)
Thus, the electric current may heat or cool the junction depending on its direction and the
values of Peltier coefficients. The relation between the Seebeck and the Peltier effects is

manifested by the relation between the coefficients that characterize these effects:
Im=TQ. (18.67)
. Thomson effect (1951)

In general, thermoelectric coefficients are temperature dependent. In particular, in the
presence of a temperature gradient, the Seebeck coefficient may vary substantially in
space. If, in addition, an electric current flows in the system (in the direction or in the
opposite direction to the temperature gradient), a continuous variation of the Peltier
effect is obtained — this is the Thomson effect. To characterize it, let us write Eq. (18.53),
assuming constant chemical potential, in the form
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T%sz—TVjQ—jQVT:j-E—V~(TjQ). (18.68)

Substituting Eq. (18.63) we obtain
T§=pj2+j.(QVT)—v-(QTj—KVT), (18.69)

where we also used Eq.(18.67).

Next we assume that the Seebeck coefficient, Q, is temperature-dependent, and take
into account charge conservation in a steady-state , V- J=0. These conditions reduce
Eqg. (18.69) to:

T§=pj2—,uTj-VT+KV2T, (18.70)
where
dQ
=T — 18.71
dT ( )

is the Thomson coefficient. The first term on the right-hand side of Eq. (18.70) is
independent of the current direction, but the second one does depend on the current
direction and accordingly increases or decreases the entropy density in the system.
Namely, this effect is manifested by heating or cooling of a current-carrying conductor in
the presence of a temperature gradient.

18.5 Relations between the kinetic coefficients

There are relations among the kinetic coefficients presented in Eq. (18.54). This section
employs the Boltzmann equation to reveal these relations in simple metallic systems. To
begin with, we use Eqgs. (18.39), (18.41), and (18.52) to write the electric current and the heat
current as integrals over the distribution function of the electrons:

] dp o€ -
.= f —l e—ul- 18.72
(JQ) j(27[7%)(1 (p) p gT,u ( )

Next, we substitute a solution of the form (18.43) with (18.44),i.e. f=1f, +Jf, where f,

describes a local thermodynamic equilibrium (with chemical potential and temperature that

change slowly in space), while 6 f describes deviations from local equilibrium. When time-
reversal symmetry applies, feq , does not contribute to the currents in the above equation

because these currents vanish at equilibrium. Thus f ( p), in the above equation, should be

replaced by 6 f .
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To simplify the problem, we assume that the electron dynamics is governed by elastic

scattering; hence the operator L in Eq. (18.45) is:

L=v.——eE - —+—, (18.73)

where the collision integral is approximated by the relaxation time approximation. Moreover,
we focus our attention on the limit where the transport mean free time is shorter than any

other relevant time scale so that L =1/, . With this assumption, the solution of (18.45) is

of -
5t =rtrﬂa—g{eE—g ’u(—VT)}, (18.74)
ds 0p T

where we also assume the chemical potential to be constant in space. Substitution (18.74) in
(18.72) yields
—e

i dy  of _
.J' =j d pd eqﬁ{eEj—g ’u(—VT)}a—g e—u | (18.75)
loi) *(27n)" O¢ op; T Hop| =

and by comparing with Eq. (18.54) we can identify the kinetic coefficients as

g_
—e? efH

B of T
) s 92, S (a_aj (a_gj |- (18.76)
Yij é/ij 4z = Oe \ op ).\ op J. eg—lu _(g_lu]

T T

Here we have replaced the integral over momentum with an integral over the energy, where
v is the density of states (see Eq. (18.31)), and d<Q is an infinitesimal element of the solid
angle.

To calculate the integrals (18.76) we assume, for simplicity, that the system is isotropic,
namely that the particle velocity is independent of its direction. This assumption implies that
all tensors on the left-hand side of the equation are proportional to the identity matrix.
Furthermore, we assume that the temperature is sufficiently low so that Fermi-Dirac
distribution can be approximated by a step function and leading order corrections due to the
temperature. Namely,

—E_5"(e—p)++, (18.77)

so that

B 5"(e—p)+--. (18.78)
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Consider, first, the conductivity. Observe that when substituting the expansion (18.78) in Eq.
(18.76), the leading contribution comes from the delta function. It yields o =e’vD with
D =47, /d, where d is the dimensionality of the system and v=2de/dp the velocity at

Fermi level.

. ) . . 2
Let us now consider the integral of { where the integrand contains the term (g—y) . Here

it is clear that the contribution from the delta function in (18.78) vanishes, but the second
term in this expansion gives a finite contribution. Substituting the second term of (17.78) in
(18.76) and integrating twice by parts gives (see Ex. 1):

21,2
_ﬂ-kB

- 3e?

s (18.79)

In both calculations, for o and ¢, we have neglected the energy dependence of the density
of states. On the other hand, if we use the same assumption for calculating £ and y, we
would get that these quantities vanish. Hence, in this approximation, the heat conductivity
k=T (;’—7/0’1,8) (see paragraph below Eq. (18.63)) is T¢ . Thus, the heat conductivity and

the electric conductivity are proportional and satisfy the relation:

L
To 3

(18.80)

This equation is called Wiedemann-Franz law (1853), and the constant on the right-hand side
of this equation is the Lorenz number.

To calculate the constant £ (which equals y in isotropic and time-reversal symmetric

systems), we observe that the following term

Id_thr (5_5} (5_5} :"(2‘9), (18.81)
4 "\op)\ap) e

which appears in the integral (18.76), is the conductivity at energy ¢ divided by the square of

the electron charge. Expanding the conductivity to linear order in the deviation from the
chemical potential energy,

o(e)=0,——(e-n) (18.82)

and substituting this expansion for the term (18.81) in the integral (18.76), we see that the
leading contribution comes from the second term in (18.78) (similar to the calculation of ).

Thus, integrating twice by parts (see Ex. 1) gives

kST do

e du

(18.83)
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Finally, using the relation Q =o'/ (see text below Eq. (18.63)) gives the Seebeck coefficient:

_7kT dIno
e du

(18.84)

Q

This relation between the conductivity and Seebeck coefficient is called the Mott-Cutler
formula (1969).

18.6 Exercises

1. Prove formulas (18.79) and (18.84).



