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Abstract: Seed-based functional connectivity (FC) of resting-state functional MRI data is a widely used
methodology, enabling the identification of functional brain networks in health and disease. Based on
signal correlations across the brain, FC measures are highly sensitive to noise. A somewhat neglected
source of noise is the fMRI signal attenuation found in cortical regions in close vicinity to sinuses and
air cavities, mainly in the orbitofrontal, anterior frontal and inferior temporal cortices. BOLD signal
recorded at these regions suffers from dropout due to susceptibility artifacts, resulting in an attenuated
signal with reduced signal-to-noise ratio in as many as 10% of cortical voxels. Nevertheless, signal
attenuation is largely overlooked during FC analysis. Here we first demonstrate that signal attenuation
can significantly influence FC measures by introducing false functional correlations and diminishing
existing correlations between brain regions. We then propose a method for the detection and removal
of the attenuated signal (“intensity-based masking”) by fitting a Gaussian-based model to the signal
intensity distribution and calculating an intensity threshold tailored per subject. Finally, we apply our
method on real-world data, showing that it diminishes false correlations caused by signal dropout,
and significantly improves the ability to detect functional networks in single subjects. Furthermore, we
show that our method increases inter-subject similarity in FC, enabling reliable distinction of different
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functional networks. We propose to include the intensity-based masking method as a common practice
in the pre-processing of seed-based functional connectivity analysis, and provide software tools for the
computation of intensity-based masks on fMRI data. Hum Brain Mapp 37:2407–2418, 2016. VC 2016 Wiley

Periodicals, Inc.
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INTRODUCTION

Resting-state fMRI (RSfMRI) has recently become an
extensive research field, offering a method different from
the classical event-related paradigms to decode functional
neuroanatomy, especially at the level of large-scale net-
works [Biswal et al., 2010; Fox and Raichle, 2007; Gusnard
and Raichle, 2001]. Moreover, it has the potential to serve
as a clinical tool for cognitive and mental disorders due to
its short protocol and lack of need for explicit subject coop-
eration [Buckner et al., 2008; Zhang and Raichle, 2010; Peer
et al., 2014]. Seed-based analysis, based on the correlation
between spontaneous fluctuations of the fMRI signal of dif-
ferent brain voxels or regions (termed “functional con-
nectivity”, FC), is one of the most commonly used methods
in this field. This method, introduced by Biswal and col-
leagues already in the mid-90s [Biswal et al., 1995], has
repeatedly revealed the existence of correlations between
areas that are part of the same functional networks [Fox
et al., 2005; Golland et al., 2007; Power et al., 2011; Smith
et al., 2009]. Notwithstanding the vast amount of studies
investigating the RSfMRI signal, it is not yet used in clinical
practice as its reliability varies widely. Due to the reliance
on correlation estimates, and the lack of repetitions and
averaging, resting-state analysis methods have low signal-
to-noise ratio (SNR) and are highly sensitive to noise sour-
ces such as motion and magnetic field fluctuations [Jo et al.,
2010; Power et al., 2012; Satterthwaite et al., 2012]. Such
noise is often spread across different parts of the functional
image and therefore might introduce false correlations as
well as reduce the strength of real correlations [Sat-
terthwaite et al., 2013]. Therefore, a high SNR is crucial for
reliable functional connectivity measurements, as even
small amounts of noise may significantly affect results.

One major source of noise in the fMRI BOLD signal is
signal dropout due to susceptibility artifacts. These arti-

facts are mainly caused by air in sinuses and brain cavities
which generates a magnetic field inhomogeneity in neigh-
boring cortical regions, mostly inferior temporal and orbi-
tofrontal cortices. Magnetic response to air cavities leads
to faster spin decay times and attenuated signal in these
regions when acquiring T2* MRI images [but not T1, Dei-
chmann et al., 2002; Ojemann et al., 1997; Fig. 1]. Notably,
signal attenuation is more severe in stronger magnetic
fields [Krasnow et al., 2003; Poser and Norris, 2009], and
thus should be considered as technological advances ena-
ble MRI machines with stronger magnetic fields. Signal
attenuation has been shown to interfere with identification
of BOLD responses to cognitive tasks [Devlin et al., 2000;
Shum et al., 2013; Winawer et al., 2010]. While signal
attenuation artifacts have been tackled using several meth-
ods in the acquisition stage [Deichmann et al., 2002;
Glover & Law, 2001; Gorno-Tempini et al., 2002; Weiskopf
et al., 2006; Wilson et al., 2002; Ojemann et al., 1997], none
of them significantly succeeds in completely abolishing the
effect.

The attenuation artifacts under consideration are espe-
cially important when performing seed-based functional
connectivity analysis. In this technique, connectivity matri-
ces and functional connectivity maps are generated by cor-
relating the time-course of the BOLD signal in single
voxels, or in regions of interest by averaging of all voxels
in the region [Bullmore and Sporns, 2009]. Importantly,
regions of interest are usually defined by constructing a
sphere around specific brain coordinates or by pre-defined
anatomically parcellated schemes (i.e., brain atlases) [Desi-
kan et al., 2006; Power et al., 2011; Tzourio-Mazoyer et al.,
2002; Wang et al., 2009]. Since attenuation artifacts do not
affect T1 images, the anatomical definition of a region of
interest may include areas of highly attenuated signal
(Fig. 1). The effect of this artifact is often neither quantified
nor accounted for during FC analysis.

To avoid this contamination of the RSfMRI signal, we
provide here a new method of “intensity-based masking”.
We first describe the calculation of an intensity threshold
value for the identification of voxels which contain an
attenuated signal. We then explore the extent of such vox-
els, their temporal SNR and their influence on functional
connectivity estimates. Finally, we demonstrate the appli-
cation of an intensity-based mask on the functional data
prior to time-course extraction, and its effects on func-
tional connectivity estimates. The application of the
intensity-based masking method is shown to improve the
specificity and sensitivity of the FC analysis.

Abbreviations

AAL Automatic anatomical labeling (atlas)
BOLD Blood oxygen level dependent
CSF Cerebro-spinal fluid
FC Functional connectivity
fMRI Functional magnetic resonance imaging
HO Harvard-Oxford (atlas)
RSfMRI Resting-state functional MRI
tSNR Temporal signal-to-noise ratio
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MATERIALS AND METHODS

Subjects

Twenty healthy subjects (52.8 6 17 years old; eight
males) participated in the study. Subjects had no personal
history of neurologic or psychiatric disorders, and had
normal structural MRI. All subjects gave written informed
consent, and the study was approved by the ethical com-
mittee of the Hadassah Hebrew University Medical
Center.

MRI Image Acquisition Procedures

Subjects were scanned using a Siemens Trio 3T system
(32 channel head coil). Blood oxygen level dependent
(BOLD) fMRI was acquired using a whole-brain, gradient-
echo (GE) echo-planar (EPI) sequence of 160 volumes (TR/
TE 5 2000/30ms, flip angle 5 908, FOV 5 192 3 192 mm,
matrix 5 64 3 64, 33 axial slices, slice thickness/
gap 5 4 mm/0 mm, voxel size 5 3 3 3 3 4 mm). Subjects
were instructed to stay awake, keep their eyes open, and
remain still. In addition, high-resolution (1 3 1 3 1 mm)
T1-weighted anatomical images (MPRAGE) were acquired
for spatial normalization to standard atlas space.

Functional Resting-State MRI Preprocessing

Preprocessing was performed using SPM8 (www.fil.ion.
ucl.ac.uk/spm), DPARSFA [Chao-Gan and Yu-Feng, 2010]
and MatlabVR 2012a (Mathworks, inc.) software. The first
five volumes were discarded to ensure magnetization
equilibrium. All functional time-series were slice-time cor-
rected, motion corrected to the mean functional image
using a tri-linear interpolation with six degrees of free-
dom, co-registered with the anatomical image, normalized
to standard anatomical space (Montreal Neurological Insti-
tute EPI template, resampling to 3mm cubic voxels), and
spatially smoothed (4mm FWHM, isotropic). Additional
preprocessing steps included the removal of linear trends

to correct for signal drift and filtering with a 0.01–0.15Hz
band-pass filter to reduce non-neuronal contributions to
spontaneous BOLD fluctuations. In-line with recent con-
cerns regarding the effect of subjects’ motion on functional
connectivity characteristics [Van Dijk et al., 2012; Power
et al., 2012; Satterthwaite et al., 2012], we performed multi-
ple regression of 24 motion parameters [Friston et al.,
1996]: 6 rigid-body head motion parameter values – x, y, z
translations and rotations, their value at the prior time
point, and the 12 corresponding squared values. In addi-
tion, motion “spikes” were also included as regressors
(identified by frame-wise displacement of 0.5mm [Power
et al., 2012]), such that each regressor equaled zero at all
time-points and one at the spike time-point, effectively
eliminating the data at the spike without further changes
to correlation values [Satterthwaite et al., 2013]. Finally,
regressors for global mean, white matter and CSF signals
were also included as nuisance sources [Satterthwaite
et al., 2013]. Anatomical images were segmented using
SPM8’s new-segment algorithm, and each voxel’s tissue
type was identified by max tissue probability: Voxels were
labeled as white-matter (WM), grey-matter (GM), cerebro-
spinal fluid (CSF) or outside the brain (where all other
probabilities< 0.2).

Intensity-Based Masking (IBM)

To obtain a model of the intensity distribution, we gen-
erated a histogram of maximum BOLD intensity values
per voxel for each fMRI acquisition (Fig. 2A). The resulting
histogram can be modeled as a sum of two Gaussian dis-
tributions and a linear function, where the first Gaussian
spans low-intensity voxels (signal attenuation or no brain
signal), the second spans high-intensity voxels (white- or
grey-matter), and the linear function modeling the transi-
tion zone between the two Gaussians (Fig. 2B,C). Curve
fitting by optimization (fminsearch) was used to imple-
ment the model fit to the BOLD intensity histogram. An
intensity-based mask separating high- and low-intensity

Figure 1.

The signal attenuation (dropout) problem in functional connectivity. Susceptibility artifacts occur

only in T2* (functional) MRI images, and not in T1 (anatomical) images. Therefore, a seed region

defined on the basis of anatomy may include voxels with strong signal attenuation, which may

introduce non-cortical noise to functional time-courses.
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voxels was created by setting a threshold at the middle
point between the peaks of the two Gaussians. Model
goodness of fit (R2) was determined for each subject by
squaring the Pearson’s correlation coefficient between the
optimized model and the intensity distribution. This stage
was performed on functional images before application of
smoothing, filtering or nuisance-covariates regression
(which result in zero-mean voxels). Open-source analysis
software for IBM may be downloaded at http://mind.huji.
ac.il/intensity_based_masking.aspx.

Extraction of Region-Wise

Resting-State Time Series

Brain regions were identified using two commonly used
brain atlases: Automatic Anatomical Labeling atlas (AAL),
[Tzourio-Mazoyer et al. 2002] and Harvard-Oxford atlas
(HO) [Desikan et al., 2006]. The atlases were masked with
each subject’s grey-matter mask. In addition the intensity-
based mask derived in the previous stage was applied in
order to extract signal from high signal-to-noise voxels only.

For each atlas and region, voxels were averaged to produce
a time-series of the average activity within that region. Cere-
bellum regions were not included in the analyses.

Temporal Signal-to-Noise Ratio (tSNR)

tSNR values were calculated for each voxel separately by
dividing the voxel’s mean signal by its standard deviation
across the scan [Murphy et al., 2007]. This stage was per-
formed on the functional images after motion correction,
slice-timing correction and normalization, but before
smoothing, nuisance covariates regression and filtering
(which reduce voxels’ mean signal to zero). A two-tailed
paired-sample t-test was performed to compare between
average tSNR values of high-intensity voxels and of low-
intensity voxels across subjects. In addition, for each brain
atlas tSNR values were averaged across all voxels included
in each region (as determined by the specific brain atlas) to
compute a regional tSNR value. Correlation was computed
between the tSNR value of each atlas region and the number
of low-intensity voxels it contains. Signal variance across

Figure 2.

The T2* intensity distribution can be modeled as a mixture of

Gaussians and a linear trend. (A) Intensity distribution (red) and its

modeling (blue) as two Gaussians and a linear trend between them,

in a representative subject. The intensity threshold (arrow) is

defined as the middle point between the peaks of the two Gaus-

sians. (B) Percent of high- and low-intensity voxels (above or below

the intensity threshold respectively) in grey-matter, white-matter,

cerebrospinal fluid (CSF) and outside the brain. White – high-

intensity voxels (above intensity threshold), black – low-intensity

voxels (below intensity threshold). (C) Intensity-based mask cre-

ated using the computed threshold, overlaid on the brain image of

a representative subject. Signal attenuation artifacts are concen-

trated in the inferior cortical surface (grey regions). [Color figure

can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]

r Peer et al. r

r 2410 r

http://mind.huji.ac.il/intensity_based_masking.aspx
http://mind.huji.ac.il/intensity_based_masking.aspx
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


time was also computed for each voxel, and its average in
low-intensity and high-intensity voxels was compared
across subjects using a two-tailed paired-sample t-test.

Fourier Transform Analysis

The Fast Fourier Transform (FFT) algorithm (MatlabVR ,
Mathworks inc.) was applied on each atlas region’s time-
course with and without application of intensity-based
masking. Frequencies below 0.1Hz were averaged to calcu-
late the overall amplitude of slow-wave activity in each
subject [Biswal et al., 1995]. Amplitudes of slow-wave
activity with and without masking were compared using a
two-tailed paired-samples t-test.

Functional Connectivity

Regional time-courses (obtained either with or without
intensity-based masking) were correlated with each other
using Pearson’s correlation coefficient to produce whole-
brain correlation matrices. In addition, regional time-
courses were correlated to all the voxels in the brain to
produce detailed functional connectivity maps. Normality
of the correlation values was obtained using Fisher’s r-to-z
transform. Highly-affected regions were identified as
regions with >20% low-intensity voxels, and their connec-
tivity to each other was compared with and without IBM.
In addition, connectivity of highly-affected regions to less
affected regions (<20% low-intensity voxels) was com-
pared with and without IBM, using only region pairs
whose correlation was higher than r 5 0.3 before IBM
application. Additionally, whole-brain correlation matrices
were computed for correlation between all possible region
pairs using either only low-intensity voxels from each
region pair, only high-intensity voxels, or all voxels; these
connectivity values were then averaged for each subject
across all region pairs, and compared between subjects
using two-tailed paired-samples t-tests. Furthermore, the
difference between the connectivity values with and with-
out masking was computed for each pair of regions per
subject; we then computed the correlation between the
absolute value of the difference (averaged per region) to
the number of the low-intensity voxels the region contains.
Visualization was performed using MRIcron [Rorden and
Brett, 2000] and Caret [Van Essen et al., 2001].

Connectivity in Literature-Based Resting-State

Networks

We used an existing parcellation of the brain into seven
resting-state networks (Yeo et al., 2011; available at
https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalPar-
cellation_Yeo2011). We next assigned each region in the
AAL atlas as related to a specific functional network, by
choosing the network with the maximal overlap with it.
Correlation values between AAL regions were averaged

for all regions belonging to a specific network, for each
subject separately, yielding a measure of the average con-
nectivity inside each network. These average network cor-
relations were compared across subjects with and without
intensity-based masking using two-tailed paired-samples
t-tests.

Connectivity Difference Between Subjects

Inter-subject similarity was measured by computing the
correlation between their vectorized functional connectiv-
ity matrices, for each atlas separately. These similarity
measures were computed with and without intensity-
based masking, and then compared using two-tailed
paired-samples t-tests.

Correlation of Regional Signal With Grey-Matter

and Non-Brain Signals

The above procedures yielded signal time-courses,
extracted from each brain region, and averaged for all
low-intensity or high-intensity voxels in each region. We
correlated each regional time-course with the average
signal from the grey-matter and from the region outside
of the brain mask. In addition, time-courses were corre-
lated with each voxel in the image separately, and these
correlations were averaged by voxel type as indicated
by tissue segmentation (grey-matter or outside-brain
voxels). White-matter and CSF voxels’ signals were not
included in these analyses, as these signals were
removed during pre-processing at the nuisance covari-
ates regression stage. Regional average connectivity to
grey-matter and non-brain voxels were averaged for
each subject (separately for low- and high-intensity vox-
els), and compared in each subject using two-tailed
paired-samples t-tests.

RESULTS

Intensity Distribution Modeling and Signal

Attenuation Extent

In this section we show the effect of the IBM algorithm
on RSfMRI data, and analyze its impact on signal, noise
and resulting brain networks. We applied our IBM algo-
rithm fitting a Gaussian-based intensity model (See Materi-
als and methods) to the T2* signal intensity distribution of
all subjects (See Fig. 2A for a sample fit; mean R2-val-
ue 5 0.98 of fit across subjects). Based on the fitted model,
an intensity threshold was calculated for each subject.
Gaussian peaks were located at 0 6 0.1 (noise Gaussian)
and 525.5 6 87.1 (brain Gaussian), and thresholds were
therefore set at the middle between the Gaussians at
262.7 6 43.5 (mean 6 SD across subjects, units are MRI
arbitrary intensity units). In the following sections, voxels
with intensity values above and below the calculated
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threshold (for each individual subject) will be referred to
as high- and low-intensity voxels respectively. Unless
stated otherwise, the following results will only consider
grey-matter voxels.

An examination of the T2* images revealed that inside
the grey matter, as many as 10.1% of all voxels were low-
intensity voxels (below the calculated threshold, averaged
across subjects). In particular, an inspection of cortical regions

TABLE I. Extent of signal attenuation artifacts in brain atlases

Automatic anatomical labeling Harvard-Oxford

Number of regions with strong signal
attenuation artifacts (more than
20% low-intensity voxels)

10/90 (11%) 16/96 (17%)

Maximum percent of low-intensity
voxels in an atlas region

57% (gyrus rectus) 56% (subcallosal gyrus)

Atlas regions with strong signal Orbital part of superior frontal gyrus Temporal pole
attenuation artifacts (more than Olfactory cortex Inferior temporal gyrus, anterior division
20% low-intensity voxels) Gyrus rectus Inferior temporal gyrus, posterior division

Parahippocampal gyrus Inferior temporal gyrus, temporooccipital part
Temporal pole: middle temporal gyrus Frontal medial cortex

Inferior temporal gyrus Subcallosal cortex
Frontal orbital cortex

Parahippocampal gyrus, anterior division
Temporal fusiform cortex, anterior division
Temporal fusiform cortex, posterior division

Figure 3.

Whole-brain heat map of low-intensity voxels distribution across subjects. The probability of each

voxel to be classified as a low-intensity voxel is shown. Voxels with zero probability are not marked.

Low intensity voxels are mainly located in the orbitofrontal, anterior frontal and inferior temporal cor-

tices, and at the edges of gyral ridges, while the medial part of the brain is mostly unaffected.

r Peer et al. r

r 2412 r



based on the AAL and HO atlases revealed that a large num-
ber of atlas regions (11% and 17% respectively, Table I) exhibit
particularly strong signal attenuation with >20% of voxels
being low-intensity voxels. As expected, the most promi-
nently affected regions were found on the inferior surface of
the brain (which is most affected by signal attenuation arti-
facts), in the orbito-frontal, inferior temporal and anterior
frontal cortices, as well as the temporal pole and across the
brain at the edges of gyral ridges (Table I, Fig. 3).

Characteristics of Low-Intensity Voxels

Low-intensity voxels were found to have significantly
lower temporal signal-to-noise ratio (tSNR) than high-
intensity voxels (24.2 and 108.6 respectively, averaged for
each subject, paired t-test: t19 5 58.5, P< 0.0001; see Sup-
porting Information Fig. S1 for the tSNR map of a sample
subject). In atlas regions, we found a strong and significant
negative correlation between each region’s tSNR and the
number of low-intensity voxels it possesses (r> 0.78,
P< 0.0001 for all atlases). Furthermore, time-courses from
low-intensity voxels had a higher signal variance across
time than time-courses from high-intensity voxels (67.6
and 40.1 respectively, averaged for each subject, paired t-
test: t19 5 8.1, P< 0.0001). This implies that signal attenua-
tion artifacts might account for significant noise in regional
signal fluctuations, as low-intensity voxels have a higher
per-voxel influence on signal variation across time when

averaging data across a region containing both high- and
low-intensity voxels.

It is possible, however, that low-intensity voxels may still
contain proper, yet attenuated, BOLD signal, and thus their
exclusion might result in data loss. To test for the influence
of such possibility, we extracted the average time-course of
low- and high-intensity voxels from each atlas region. We
then checked the correlation, i.e., functional connectivity,
between these average time-courses and the average signal
from non-brain voxels (voxels outside the brain) and brain
voxels (grey-matter voxels). A significantly stronger correla-
tion was found between the signal of low-intensity voxels
and the signal from non-brain voxels, compared to the cor-
relation between the signal of high-intensity voxels (in the
same regions) and the non-brain voxels (Fig. 4; paired
t19> 4.7, P< 0.001 for both atlases). Furthermore, correlation
was significantly weaker between low-intensity voxels and
brain-voxels (grey-matter) in comparison with the correla-
tion between high-intensity voxels and brain-voxels (Fig. 4;
paired t-test: t19> 5.5, P< 0.0001 for both atlases). Voxel-
wise correlation yielded similar effects both for brain and
non-brain voxels (t19> 2.9, P< 0.01 for all comparisons and
atlases). Note that signal from regions outside the brain
may be affected by nuisance covariate regression due to
shared electronic noise. Nevertheless, the reduced connec-
tivity of low-intensity voxels to the grey matter undermines
their contribution to the regional averages of fMRI data,
and suggests that their inclusion in seed-based functional
connectivity analyses may introduce significant non-brain
related noise into the time-course data. Furthermore, as
averaging across a region relies on assumptions of homoge-
neity, voxels with noise will interfere with the overall
regional SNR instead of improving it.

We next focused on the connectivity between different
atlas-defined regions with large amount (>20%) of low-
intensity voxels and all other brain regions, using grey-matter
voxels only. When only considering low-intensity voxels,
these regions were found to be highly correlated to each
other, significantly more than when only considering high-
intensity voxels in the same regions pairs (average correla-
tions: AAL: r 5 0.31, r 5 0.23, HO: r 5 0.26, r 5 0.18, for low
and high-intensity voxels respectively, paired t-test: t19> 3.4,
P< 0.01 for both atlases). This suggests that low-intensity
voxels are influenced by noise which is correlated across
regions. Such contamination can lead to errors in the mea-
surement of FC in prone regions such as the orbitofrontal or
lateral temporal cortex. These errors may include both false-
positive and false-negative results. For instance, strong false-
correlation to close-by regions may eliminate true connection
to the important—but more distant—parietal regions (Fig. 5).

Improvement of Overall Functional Connectivity

Measures After IBM Application

In order to measure the contribution of our method to
FC results, we analyzed our dataset with and without

Figure 4.

Correlation of low-intensity and high-intensity grey-matter vox-

els to other grey-matter voxels and to non-brain regions (voxels

outside of the brain). Low-intensity voxels (black) have signifi-

cantly lower connectivity than high-intensity voxels to grey-

matter regions (left) and significantly higher connectivity to non-

brain regions (right).
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IBM. Removal of low-intensity voxels from each region by
masking resulted in significantly lower correlation
between regions with a large amount (>20%) of low-
intensity voxels (Supporting Information Fig. S2; average
correlations: AAL: r 5 0.23, r 5 0.27, HO: r 5 0.20, r 5 0.26,
with and without IBM respectively, paired t-test: t19> 4.5,
P< 0.0001, for both atlases), and on the other hand signifi-
cantly stronger connections between these regions and
regions with small signal loss to which they are connected
(average correlations: AAL: r 5 0.48, r 5 0.43, HO: r 5 0.44,
r 5 0.41, with and without IBM respectively, paired t-test:
t19> 6.7, P< 0.0001, for both atlases). Across all regions, a
significant correlation was found between the amount of
low-intensity voxels removed from a certain region to the
absolute difference of its connectivity to the rest of the
brain (r 5 0.32, averaged across atlases and subjects, P -
value across subjects< 0.05 for both atlases). Average con-
nectivity between all brain regions had a modest but sig-
nificant increase across subjects (Average correlation
difference: AAL: 0.004, HO: 0.003, paired t-test: t19> 3.3,
P< 0.01 for both atlases), suggesting that IBM removed
noise sources which were reducing correlations between
brain regions. Notably, in highly affected regions such as
the medial orbitofrontal cortex (gyrus rectus) and the sub-
callosal gyrus, correlations to other brain regions differed
by up to 300% after IBM, enabling better detection of func-
tional networks related to these regions (Fig. 5, Supporting
Information Fig. S2). In accordance with connectivity
increases, Fourier transform analysis indicated that follow-
ing IBM, regions with low-intensity voxels demonstrated

an increase in the amplitude of low frequencies (<0.1 Hz),
which has special importance for RSfMRI as it is this fre-
quency which indicates activity of resting-state networks
[Biswal et al., 1995] (paired t-test: t19> 9.3, P< 0.0001 for
both atlases).

Next, we investigated how connectivity is affected
inside well-known resting-state networks. To this aim we
used an existing segregation of the brain into seven func-
tional networks based on connectivity patterns in 1,000
healthy subjects [Yeo et al., 2011]. In five of the seven func-
tional networks (the visual, somatomotor, ventral-
attention, fronto-parietal control, and default-mode net-
works), average connectivity significantly increased after
intensity-based masking (paired t-test: t19> 2.9, P< 0.01 for
the five networks). This supports the conclusion that exist-
ing intrinsic connectivity patterns are strengthened by
application of intensity-based masking. One network – the
dorsal-attention network – showed no significant change
in connectivity, in accordance with its location in the most
dorsal part of the brain (which is unaffected by signal
attenuation artifacts). Finally, the inferior orbitofrontal-
temporal network showed a significant reduction in con-
nectivity across subjects following intensity-based masking
(paired t-test: t19> 4.5, P< 0.0001), strengthening the con-
clusion that connectivity between basal brain regions may
be largely driven by noise sources in low-intensity voxels.

Finally, we tested similarity in whole-brain connectivity
patterns between subjects. In accordance with the above
results, correlation between subjects’ connectivity matrices
increased slightly but significantly (considering all possible

Figure 5.

Improvement of functional connectivity after intensity-based masking. Connectivity of a medial

orbitofrontal cortex seed in a representative subject, with and without IBM application. Without

IBM, connectivity is confined to nearby regions; following IBM, distant connections are revealed.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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subject pairs, average similarity improvement after IBM:
AAL: r 5 0.008, HO: r 5 0.003, paired t-test: t189> 5.4,
P< 0.0001 for all atlases), implying that the removal of
subject-specific noise sources enables better identification
of intrinsic connectivity patterns which are similar across
healthy subjects.

DISCUSSION

In this paper we investigated the intensity distribution
of the RSfMRI signal and its contamination by attenuation
artifacts, and proposed a method for identification of vox-
els suffering from this artifact by fitting a Gaussian-based
model to the intensity distribution. Analyses of low-
intensity voxels revealed that these voxels are highly
afflicted by noise, resulting in low SNR and high correla-
tion to noise sources outside the brain. We further showed
that inclusion of low-intensity voxels can, on the one
hand, produce false correlations between functional
regions (false-positive), and on the other hand diminish
the strength of true connectivity (false-negative). Specifi-
cally, our results indicate that connectivity between infe-
rior brain regions may be partially attributed to noise from
low-intensity voxels. Finally, application of intensity-based
masking (IBM) in order to remove low-intensity voxels
prior to FC analysis had led to significant improvement in
FC results: better detection of functional networks in each
individual subject, lower false connectivity patterns, and
increased inter-subject similarity in whole brain connectiv-
ity patterns. These effects were especially prominent in
connectivity patterns of regions with large signal loss but
were also significant at the level of whole-brain connectiv-
ity and functional networks.

Our results suggest that IBM should be routinely
applied during pre-processing of RSfMRI FC studies, espe-
cially when highly-sensitive brain regions (such as the
inferior occipital, temporal and orbitofrontal regions) are
of interest. Notably, IBM is independent of structural
masking (e.g. using a grey-matter mask to obtain only
cortical signals), which therefore can and should be simul-
taneously applied. IBM should be applied regardless of
the method used for region-of-interest identification, as all
anatomically-based methods (using an anatomically-
defined atlas, or defining a seed around specific brain
coordinates) cannot account for T2* signal attenuation arti-
facts. Unlike task-based fMRI where averaging over trials
increases SNR, RSfMRI studies should include IBM to
eliminate significant contamination. Moreover, signal
attenuation artifacts can be subject-specific, suggesting that
subject-tailored IBM may be of special importance for
understanding of individual subjects or patients. In addi-
tion, the IBM method may be helpful for comparisons of
groups scanned using different protocols or scanners, as
differences may arise in these cases due to differences in
the amount of attenuated signal. It may also be beneficial
in task-based fMRI if attenuation-sensitive regions are of

interest (Abboud et al., 2015). Finally, signal attenuation
artifacts are more severe in stronger magnetic fields [Kras-
now et al., 2003; Poser and Norris, 2009], and therefore
should be taken into account when using MRI scanners
with stronger magnetic fields. Despite the importance of
IBM, this stage is not in common practice and does not
exist in popular brain connectivity analysis tools (such as
SPM, DPARSFA, CONN toolbox, AFNI, FSL). Therefore
we also provide the needed software tools in order to cre-
ate intensity-based masks.

The method we propose includes masking away voxels
with a high amount of noise. This relies on the fact that to
increase SNR, seed-based connectivity analyses average
voxels across the defined seed region, based on an
assumption of homogeneity of the signal [Yeo et al., 2011;
Zang et al., 2004]. Therefore the main question is the con-
tribution of signal vs. noise of each voxel to the average.
As we demonstrated, low-intensity voxels contain little
signal and large amounts of noise, therefore we recom-
mend their exclusion from the averaging.

Our analysis of the intensity distribution revealed a
“transition zone” between high and low intensities (that is,
between the Gaussian distributions). An exact threshold
inside this transition zone is hard to define. Here we used
the distance between the peaks of the two Gaussians to
define a threshold which ensures that only high-quality
voxels are retained for connectivity calculations; other pos-
sible threshold definition methods may be based on the
distance from the peak of the first or second Gaussians.
Future applications of the IBM methods may help to opti-
mize this parameter.

Previous approaches to dealing with signal attenuation
artifacts went in three different directions: improvement of
acquisition protocols, increasing post-acquisition SNR by
noise removal methods, and correction of correlation coef-
ficients. Improvement of acquisition protocols includes
methods such as 3D z-shimming [Glover, 1999], spiral
imaging protocols [Glover and Law, 2001; Weiger et al.,
2002], and optimization of EPI parameters [Deichmann
et al., 2002; Ojemann et al., 1997; Stenger et al., 2000; Weis-
kopf et al., 2007; Halai et al., 2014]. While these methods
increase signal intensity in attenuated areas, they do not
entirely eliminate signal attenuation, and may not be suita-
ble for all fMRI experiments. The second approach, post-
acquisition removal of noise sources from affected voxels,
may be performed using independent components analy-
sis (ICA) [Griffanti et al., 2014; McKeown et al., 1998] or
nuisance covariates regression [Lund et al., 2006]. How-
ever, ICA usually requires manual identification of noise
components and may not remove all noise sources, and
nuisance covariate regression may also not completely
resolve noise and artefactual correlations. A third
approach which was recently suggested is the estimation
of each voxel’s reliability from its test-retest replicability of
correlation patterns to the rest of the brain and correction
of correlation coefficients according to the computed
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reliability [Mueller et al., 2015]. While this method has
many advantages, it differs from IBM in the fact that it
requires long scanning times (10-15 minutes) or multiple
scans per subject [Mueller et al., 2015], while IBM provides
an easily calculable threshold based only on image inten-
sities. Furthermore, voxel reliability across time may be
influenced by other factors besides noise, such as difference
in connectivity states along the scanning period [Allen et al.,
2014]. Finally, since averaging across a whole ROI relies on
the assumption of homogeneity of the underlying signal
between all ROI voxels, removal of unreliable voxels pro-
vides better estimation of the underlying signal than includ-
ing them. Nevertheless, when investigating voxel-wise
connectivity or when investigating fine-grained ROIs from
inside low-intensity regions (a scenario where the affected
voxels cannot be removed), the approach employed by
Mueller et al., may provide an excellent alternative. In gen-
eral, application of IBM does not exclude co-application of
all the other methods described above, and combination of
these methods may provide more reliable measurements of
functional connectivity in low-signal regions.

Another alternative to discarding voxels with low signal
is to increase overall SNR by performing a group analysis.
While group analyses may indeed increase SNR and ena-
ble better detection of functional networks even in low-
SNR voxels, they do not avoid the problem of false corre-
lations, as highly-affected regions are consistently corre-
lated to each other across subjects due to similarity in
noise, as was shown above. Moreover, as FC holds prom-
ise as a tool for clinical diagnosis of patients, a solution at
the single-subject level is crucial. Our method joins a set of
other noise removal protocols which may facilitate the
development of FC as a clinical diagnostic tool in individ-
ual patients [Griffanti et al., 2014; Power et al., 2012; Sat-
terthwaite et al., 2013].

It is important to note that identification of low-intensity
voxels (to be removed from connectivity analyses) should
be applied on functional data before any intensity altera-

tions. Procedures such as signal normalization, filtering
or nuisance covariates regression result in alterations of
voxel intensity values, so that a threshold cannot be reli-
ably identified. We propose the definition of an intensity-
based mask at the pre-processing of RSfMRI data after the
stages of slice-timing correction, motion correction and
spatial normalization, but before any other alterations of
the data (such as filtering or nuisance covariates regres-
sion). The identified mask can then be applied on the data
after full pre-processing to discard low-intensity voxels
from the analysis.

In conclusion, intensity-based masking (IBM) using
Gaussian-based modeling may significantly help avoiding
both false-positive and false-negative results in functional
connectivity studies, improving true connectivity values
and distinction between functional networks, and eliminat-
ing false connectivity. Application of this method has
higher importance in studies which involve brain regions

suspected to contain low-intensity signal as well as in
studies of individual subjects and patients. As the field of
RSfMRI increases dramatically in both number and range
of studies, as well as clinical application, the importance
of artifact cleaning rises. We therefore suggest that IBM
should be incorporated in the routine pre-processing pipe-
line of RSfMRI studies. Software for IBM calculation may
be downloaded at http://mind.huji.ac.il/intensity_based_
masking.aspx.
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