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CHAPTER 1

Many particle systems

1.1. The Schrödinger equation

Consider a system of N 3D particles having with position
variables (1, . . . N) ≡ (r1, . . . , rN ), in a potential

(1.1.1) W (1, . . . , N) =
N∑
n=1

v (rn) +
1

2

∑
n 6=m

u (rm, rn)

where v (x)is a potential of an external force operating on each
of the particles and u (rm, rn) is the potential describing the
pairwise force between particles n and m. The Schrödinger
equation Ĥψα (r) = Eαψα (r) determines the energy levels Eα
α = 0, 1, 2, . . . (in ascending order) as eigenvalues and the cor-
responding stationary states as eigenstates (or eigenfunctions)
of the Hermitean energy operator

Ĥ =

N∑
n=1

(
− ~2

2µ
∇2 (n)

)
+W (1, . . . , N)(1.1.2)

≡ − ~2

2µ
∇2 +W (1, . . . , N)(1.1.3)

where the first term is the total kinetic energy operator.
The system can be in a non-stationary state, which is a

linear combination of the eigenstates:

(1.1.4) Ψ (1, . . . , N) = aαΨα (1, . . . , N)

5



1.1. THE SCHRÖDINGER EQUATION 6

where now 1 is the collection of spatial coordinates of the par-
ticle r1 and its spin coordinates s1, and where aα are the linear
combination amplitudes. When a system is in this state and a
measurement of the energy is performed the result is always
an eigenstate of Ĥ. However, one cannot predict with cer-
tainty the outcome only the probability pα = |aα|2∑

α′ |aα′ |
2 that the

value Eα will be found. The linear amplitudes can be obtained
by an integration

(1.1.5) aα = 〈Ψα |Ψ〉 ≡
ˆ

Ψα (1, . . . , N)∗Ψ (1, . . . , N) dNrs

where the integral is over the 3N-dimensional spatial and the
N spin “variables”. This result assumes that the eigenstates are
orthonormal (as can be assumed for a Hermitean operator):

(1.1.6) 〈Ψα |Ψα′ 〉 = δαα′ .

When solving the Schrödinger equation we demand the func-
tions belong to a space of acceptable solutions, called the Hilbert
space. Basically we require that the integrals in Eqs. 1.1.6 and
1.1.5 are finite. This is achieved by selecting the Hilbert space
to include all wave functions that go to zero rapidly enough
when diminish to zero as |x| → ∞.

One of our main theoretical tools is the variational princi-
ple of quantum mechanics. Before we state and prove it, let is
cover the following exercise:

EXERCISE 1. How to properly define kinetic energy: A func-
tional over a domain of functions is a mapping between each
function in the domain and a number. Consider two “kinetic
energy functionals” defined on the domain of normalized func-
tions that decay as |x| → ∞ fast enough for the integrals to
converge. The first (we omit the spins),

(1.1.7) T1 [ψ] = − ~2

2m

ˆ
ψ (r)∗∇2ψ (r) d3Nr
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is the usual quantum mechanical definition of kinetic energy
which we learn in QM courses, and the second,

(1.1.8) T2 [ψ] =
~2

2m

ˆ
|∇ψ (r)|2 d3Nr

(1) Show that if the domain is limited to smooth ψ’s these
two functionals are identical: T1 [ψ] = T2 [ψ].

(2) But in general they are not. For example: ψ0 (x) =√
αe−α|x| is a normalized wave function but has a

cusp (non-smooth pointed shape) at x = 0. Show
that in this case the two definitions are in complete
disagreement: T1 [ψ0] = −T2 [ψ0]!

(3) Based on this example, which of the two functionals
T1 or T2 is physically unacceptable as kinetic energy?
Why?

(4) From this discussion, try to find a natural definition
for a function which is a kinetic energy density related
to the wave function, i.e. a function that:
(a) is everywhere positive.
(b) the integrates over space to the value of kinetic

energy.
An important theorem in quantum mechanics shows that the
ground state wave function minimizes am energy functional:

THEOREM 2. (The variational principle of Quantum Me-
chanics) Given a Schrödinger equation ĤΨn = EnΨn, the so-
lutions are orthonormal eigenfunctions Ψn (1, . . . , N) and eigen-
values indexed in increasing energy order: E0 ≤ E1 ≤ · · · ≤
En ≤ En+1 ≤ . . . , the ground state wave function , Ψ0 (1, . . . , N)
is the function that among all normalized functions minimizes
the energy functional:
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E [Ψ] = T [Ψ] +W [Ψ]

=
~2

2m

ˆ
|∇Ψ (1, . . . , N)|2 dNrs+

〈
Ψ
∣∣∣Ŵ ∣∣∣Ψ〉(1.1.9)

where
〈

Ψ
∣∣∣Ŵ ∣∣∣Ψ〉 ≡ ´ |Ψ (1, . . . , N)|2W (1, . . . , N) dNrs.

PROOF. Let’s work with one particle and one dimension
(ignoring spin). The generalization to several particles and
spins is trivial. Any normalized wave function is a linear com-
bination of eigenstate: ψ (x) = aαψα (x) where aαa∗α = 1 (we
assume summation over repeating indices). We note that

E [ψ] = a∗α′aα

ˆ ∞
−∞

ψα′ (x)∗
(
− ~2

2m
ψ′′α (x) +W (x)ψα (x)

)
dx

= a∗α′aαEn

ˆ ∞
−∞

ψα′ (x)∗ ψα (x) dx

(1.1.10)

=
∑
α

|aα|2Eα ≥
∑
α

|aα|2E0 = E0

with equality when ψ (x) = ψ0 (x). �

EXERCISE 3. Consider the quantum ground-state problem
for a particle in a well V (x) = 1

4kx
4. We consider the family

of functions:

φσ (x) =
e−

x2

4σ2√√
2πσ

where σ is a positive constant.What is the best function if this
form for representing the ground state?
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SOLUTION. The functions are normalized. The energy is
the expectation value of the Hamiltonian which can be ob-
tained by integration:

E (σ) =
〈
φσ

∣∣∣T̂ ∣∣∣φσ〉+
〈
φσ

∣∣∣V̂ ∣∣∣φσ〉
=

~2

8meσ2
+

3

4
aσ4.

Minimizing this is looking for σ∗ for which E′ (σ∗) = 0, hence:

− ~2

4meσ3
∗

+ 3aσ3
∗ = 0

From which the optimal value for σ is:

σ∗ =

(
~2

12ame

)1/6

and the minimal energy is then

E∗ = E (σ∗)

=
3

8

(
3

2

)1/3(~4a

me

)1/3

1.2. Identical particles: Bosons and Fermions

The particles in the preceding section are identical. We will
write Ψ (. . . , i, . . . ) as a short hand for Ψ (. . . , (ri, si) , . . . )where
ri is the position variable of particle i and si is the spin. The
basic requirement for identical :

|Ψ (. . . , i, . . . , j, . . . )|2 = |Ψ (. . . , j, . . . , i, . . . )|2

Here xn are the spatial and spin coordinates of the particles in
the system. Bosons (Fermions) are particles which achieve this
requirement by demanding that

Ψ (. . . , i, . . . , j, . . . ) = ±Ψ (. . . , j, . . . , i, . . . )
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with “+” for Bosons and “−” for Fermions. This symmetry
relation has deep consequences. For example, two Fermions
cannot be in the same position because

(1.2.1) Ψ (. . . , i, . . . , j ≡ i, . . . ) = 0

where j ≡ i means that the spatial state and spin of particles i
and j are the same.

Ground-state wave function of Bosons. It is seen that
Fermion wave function must have zeros or “nodes”. By the
term nodes we mean the following:

DEFINITION 4. A node of a continuous 1D function ψ (x) is
a point x0 through which the function changes sign. (Techni-
cally we say that ψ (x0) = 0 and there exists a positive num-
ber δ such that ψ (x1)ψ (x2) < 0 for all x1 and x2 for which
x0 − δ < x1 < x0 < x2 < x0 + δ).

We will now show that the opposite exists for the ground
state of Bosons: wave function has no nodes. We will then
return to Fermions and show it has nodes of very special struc-
ture, which in some sense are “minimal” nodes.

THEOREM 5. The ground-state of a 1D Schrödinger equation
is “nodeless”.

PROOF. By reductio ad absurdum. Assume that ψ (x) is
the normalized ground state and it has a node at x = 01. We
will build a new function ψ̃ (x) every where equal to |ψ (x)|
except in a tiny interval, the δ-interval, enclosing the origin:
x ∈ [−δ, δ] (where δ > 0 is finite but as small as we wish)
where we will make a change that such that E

[
ψ̃
]
< E [ψ].

This will be the absurd part since this contradicts the varia-
tional principle. Throughout the development we will neglect

1Choosing the node in the origin simplifies the argument but is not
essential.
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any quantity which is higher than first order in δ. Consider-
ing the interval ψ (x) is very nearly a straight line ψ (x) ≈ ax,
where a = ψ′ (0). From this, the contribution of this interval
to the kinetic energy is to leading order:

δT [|ψ|] =
~2

2m

ˆ δ

−δ

∣∣ψ′ (x)
∣∣2 dx(1.2.2)

=
~2

2m
2 |a|2 × δ.(1.2.3)

The potential has much lower contribution to leading order is:

δV [|ψ|] =

ˆ δ

−δ
V (x) |ψ (x)|2 dx(1.2.4)

≈ 2

3
V (0) |a|2 × δ3(1.2.5)

and likewise, the norm:

ˆ δ

−δ
|ψ (x)|2 dx ≈ 2

3
|a|2 × δ3.(1.2.6)

Since we are going to change the function ψ (x) in the δ-interval,
we see that we should only concern ourselves with the first or-
der changes in the kinetic energy as the potential and norm
will not change to first order. We introduce a new function
ψ̃ (x) which is identical to |ψ (x)| outside of the δ-interval and
is parabolic inside it (see Fig 1.2.1):

(1.2.7) ψ̃ (x) =

{
a
δx

2 x ∈ [−δ, δ]
|ψ (x)| o/w

.

Note ψ̃ (x) is continuous (to first order in δ). The interval con-
tribution to the kinetic energy of ψ̃ is
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FIGURE 1.2.1. Reductio ad absurdum
proof:ψ (x) is the “noded” groundstate with
supposedly minimum energy E [ψ] (blue);
|ψ (x)| replaces the node by a pointed cusp
preserving energy, E [ψ] = E [|ψ|]. ψ̃ (x) is the
function of Eq. (1.2.7) for which E

[
ψ̃
]
< E [ψ]

thereby contradicting the variational principle.
Note that ψ̃ is discontinuous to second order in
δ.

δT
[
ψ̃
]

=
~2

2m

ˆ δ

−δ

∣∣∣ψ̃′ (x)
∣∣∣2 dx(1.2.8)

=
1

5

~2

2m
a2 × δ3(1.2.9)

hence is negligible to first order. Thus we found a function of
lower energy thanE [ψ] contradicting the variational principle.
This proves the theorem that ground states must be nodeless.

�

A similar proof exists for wave function ofN identical bosons
has no nodes.
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Fermions. The Fermions have antisymmetric wave func-
tions which therefore must be excited states of the Hamilton-
ian (since the ground state is symmetric, bosonic, and has no
nodes). The ground-state wave function of N > 1 Fermions is
more complicated than that of N > 1 Bosons. This is because
of the Pauli principle which states ψ (x1, x2) = −ψ (x2, x1),
i.e. ψ is bound to have nodes in general. Thus, the Fermion
ground-state is actually a highly excited eigenstate of the Hamil-
tonian. It can still be described by a minimum principle, namely
the normalized many-body antisymmetric wave-function which
minimizes E [ψ] =

〈
ψ
∣∣∣Ĥ∣∣∣ψ〉. This formulation of the ground

state problem is very convenient. We do not have to look for
many eigenstates of Ĥ, we need only search for minimum.
Finding the minimal energy and the expectation values of var-
ious physically important operators is the main challenge of
electronic structure theory. Doing the same for low-lying ex-
cited states is the grand challenge of this field.

The concept of correlation is highly important in quantum
chemistry. It is a general concept which arises from the interac-
tion between particles, causing them to correlate their motion.
This correlated motion results in a very complicated structure
of the wave function. This issue is

1.3. Two non-interacting particles in a trap

We have stressed that the electronic structure problem is
difficult because of the complexity of the many-body wave
function when electrons interact. Equation Section (Next)In
order to appreciate this complexity of the electronic wave func-
tion, let us first study a simple system, of two non-interacting
electrons in a 1D "atomic" well. We consider an atomic well
given by the potential v_ext (x) and we place in it an electron.
The Hamiltonian is:

(1.3.1) ĥ = − ~2

2me
∇2 + vext (x) .
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The eigenstates and eigenvalues of this Hamiltonian are the
ψα (x) and εα (α = 0, 1, . . . ) respectively:

ĥψα (x) = εαψα (x) ,

and we follow the convention that the energies form a non
decreasing series ε0 ≤ ε1 ≤ . . . . Now consider a 2-electron
problem.

Now assume we have two electrons, Fermions, non-interacting
in this potential well vext (x). The Hamiltonian of such a sys-
tem is

Ĥ = ĥ (1) + ĥ (2) .

The notation ĥ (i) means the Hamiltonian of Eq. (1.3.1) ap-
plied to particle i = 1, 2. What are the eigenstates in this case?
First, since each electron can have a spin, we must decide on
the spin of the state. For now, let us assume the state is that of
“total spin 1”, both electrons are in spin-up orbitals α. Hence
we try the following form as a wave function:

Ψ (1, 2) =
1√
2

[ψ0 (1)ψ1 (2)− ψ0 (2)ψ1 (1)]α (1)α (2) .

EXERCISE 6. Show that the factor 1√
2

is necessary for nor-
malization of Ψ (assume that ψα are a orthonormal set) and
〈α (1)α (2) |α (1)α (2)〉 = 〈α |α〉 〈α |α〉 = 1.

SOLUTION. Note the following

2 〈Ψ |Ψ〉 = 〈ψ0 (1)ψ1 (2) |ψ0 (1)ψ1 (2)〉
− 〈ψ0 (1)ψ1 (2) |ψ0 (2)ψ1 (1)〉
− 〈ψ0 (2)ψ1 (1) |ψ0 (1)ψ1 (2)〉
+ 〈ψ0 (2)ψ1 (1) |ψ0 (2)ψ1 (1)〉
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This is then:

2 〈Ψ |Ψ〉 = 〈ψ0 |ψ0 〉 〈ψ1 |ψ1 〉
− 〈ψ0 |ψ1 〉 〈ψ1 |ψ0 〉
− 〈ψ0 |ψ1 〉 〈ψ1 |ψ0 〉
+ 〈ψ0 |ψ0 〉 〈ψ1 |ψ1 〉

Since 〈ψ1 |ψ0 〉 = 0 and 〈ψ0 |ψ0 〉 = 〈ψ1 |ψ1 〉 we see that

2 〈Ψ |Ψ〉 = 1× 1− 0− 0 + 1× 1 = 2

hence 〈Ψ |Ψ〉 = 1.

EXERCISE 7. Show that the Ψ (1, 2) is an eigenstate of Ĥ
with eigenvalue equal to ε0 + ε1:

(1.3.2) ĤΨ (1, 2) = (ε0 + ε1) Ψ (1, 2)

SOLUTION. It is easy to see that ψ0 (1)ψ1 (2) is an eigen-
state of Ĥ:(

ĥ (1) + ĥ (2)
)
ψ0 (1)ψ1 (2) = ĥ (1)ψ0 (1)ψ1 (2)

+ ψ0 (1) ĥ (2)ψ1 (2)

= (ε0 + ε1)ψ0 (1)ψ1 (2)

From this, Eq. (1.3.2) follows immediately .

We now build a simple electronic structure model that will
allow us to study in some detail the most basic concepts. For
this, we suppose that the electrons are in a harmonic atom,
that is the potential well:

(1.3.3) vext (x) =
1

2
meω

2x2

The two lowest eigenstates of the Harmonic oscillator are:

ψ0 (x) = N0e
− 1

2
meω
~ x2

(1.3.4)

ψ1 (x) = N1e
− 1

2
meω
~ x2

√
meω

~
x(1.3.5)
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where the eigenvalues are

(1.3.6) εα =

(
1

2
+ α

)
~ω, α = 0, 1, . . .

The normalization constants in Eqs, (1.3.4)-(1.3.5) are:

N0 =
(meω

π~

)1/4

N1 =

(
4meω

π~

)1/4

As discussed above singlet and triplet two-electron ground
state wave functions composed of two orbitals must be space-
symmetric or antisymmetric, respectively. We consider below
3 wave functions. The first ΨS,00 is the ground state singlet
where both electrons are in ψ0:

ΨS,00 (1, 2) = ψ0 (1)ψ0 (2)

= N00e
− 1

2
meω
~ (x2

1+x2
2)(1.3.7)

The second and third are a singlet made from one electron in
ψ0 and the other in ψ1:

ΨS,01 (1, 2) =
1√
2

[ψ0 (1)ψ1 (2) + ψ0 (2)ψ1 (1)]

= N01e
− 1

2
meω
~ (x2

1+x2
2) (x1 + x2)(1.3.8)

and finally, a triplet from the same orbitals

ΨT,01 (1, 2) =
1√
2

[ψ0 (1)ψ1 (2)− ψ0 (2)ψ1 (1)]

= N01e
− 1

2
meω
~ (x2

1+x2
2) (x1 − x2)(1.3.9)
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The normalization constants are:

N00 = N2
0 =

√
meω

π~

N01 =
1√
2

√
meω

~
N0N1 ≡

meω

π~
Eqs.(1.3.7)-(1.3.9) describe the distribution of positions of

both electrons in their corresponding states. How much are the
electrons in this state aware of each other? Do they correlate
their motion in some way? One way to measure correlation is
to consider the position correlation constant defined as

(1.3.10) CΨ = 〈Ψ |x1x2|Ψ〉 − 〈Ψ |x1|Ψ〉 〈Ψ |x2|Ψ〉 .
If electrons are completely unaware of each other this quan-
tity is zero because then the average of the product of their
position must decompose to the product of the average. Any
deviance from zero indicates some degree of correlation.

EXERCISE 8. Prove the following, for the wave function in
Eqs.(1.3.7)-(1.3.9) :

〈x1〉Ψ = 〈Ψ |x1|Ψ〉 = 0

〈x1x2〉S,00 = 〈ΨS,00 |x1x2|ΨS,00〉 = 0

〈x1x2〉S,01 = 〈ΨS,01 |x1x2|ΨS,01〉 =
1

2

~
meω

〈x1x2〉T,01 = 〈ΨT,01 |x1x2|ΨT,01〉 = −1

2

~
meω

We find from Exercise 8 the following position correlation
constants:

CS,00 = 0.

CS,01 =
1

2

~
meω

.
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CT,01 = −1

2

~
meω

.

Since there is no interaction between the electrons, the cor-
relation in these wave functions arises only from the Pauli
principle, i.e. because we impose the fact that electrons are
Fermions. This is called Fermi correlation. Our lesson is this:

(1) Wave functions that are mere products of singe-particle
orbitals have no correlation.

(2) If the products are symmetrized (antisymmetrized)
like in the case of the excited singlet (triplet) the po-
sition correlation constant C is positive (negative) in-
dicating that the particles “like to (not) be together”
i.e. a bias for (not) being both on the right or on the
left of the origin.

1.4. Correlation: two interacting particles in a trap

Up to now, we assumed no e-e interaction. So now let’s
include it and add to the Hamiltonian an interaction term:

(1.4.1) Ĥ = ĥ (1) + ĥ (2) +W (1, 2) ,

where, as before, ĥ is given in Eq. (1.3.1) and vext (x) in Eq. (1.3.3)
and we take a coupling which is simple enough to yield to an-
alytical analysis:

(1.4.2) W (1, 2) = meγ
2x1x2,

with γ2 < ω2. This interaction seems strange at first site be-
cause it does not depend on the distance between the particles,
as we are used to from electrostatics, yet, it does describe a re-
pulsion. We can see this in two ways. Once, since if 1 and 2
are both large and of the same sign this is energy-costly; if they
are both large and of opposite sign that lowers energy. Second,
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the Hamiltonian can be written as:

Ĥ = ĥ′ (1) + ĥ′ (2) +W ′ (1, 2)(1.4.3)

where the same Ĥ in Eq. (1.4.1) is now written as describing
two identical particles, each with ĥ′ = − ~2

2me
d2

dx2 + v′ext (x) with
single particle Hamiltonian in a new potential well v′ext (x) =
1
2me

(
ω2 + γ2

)
x2 and interacting via a new repulsive spring

force depending on their distance:

(1.4.4) W ′ (1, 2) = −1

2
γ2me (x1 − x2)2

EXERCISE 9. Show that if γ2 > ω2 the total potential V (x1, x2) =
1
2me

[(
ω2 + γ2

)
x2

1 +
(
ω2 + γ2

)
x2

2 − γ2 (x1 − x2)2
]

cannot sup-
port bound states.

SOLUTION. We’ll show that the energy drops as particles
receded from the origin. . Take x1 = −x2 the potential is
V (x1,−x1) = 1

2me

[
2
(
ω2 − γ2

)
x2

1

]
hence, if γ2 > ω2 the en-

ergy can be lowered in definitely when from below as x1 =
−x2 →∞.

EXERCISE 10. Find the eigenvalues and eigenfunctions of
this Hamiltonian.

SOLUTION. Define new coordinatesX and x by: (X + x) /
√

2 =
x1 and (X − x) /

√
2 = x2. The conjugate momenta are: p1 =

(P + p) /
√

2 and p2 = (P − p) /
√

2 (show that the new mo-
menta are indeed conjugate to the new positions by testing
that the commutation relations [P,X] = [p, x] = −i~ and
[p,X] = [P, x] = 0). Then, a straightforward calculation shows
the new Hamiltonian separates into two non-interacting har-
monic oscillators of mass me:

(1.4.5) Ĥ =

[
P 2

2me
+

1

2
meΩ

2
1X

2

]
+

[
p2

2me
+

1

2
meΩ

2
2x

2

]
,
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FIGURE 1.4.1. The frequencies Ω1 and Ω2 of
the decoupled oscillators in the problem of two
particles in a Harmonic well of frequency ω
coupled by a repulsive harmonic interaction of
frequency γ = ω

√
cos θ and where 0 ≤ θ ≤ π/2.

where Ω1 =
√
ω2 + γ2 and Ω2 =

√
ω2 − γ2. Let us define

cos θ = (γ/ω)2 for θ ∈ [0, π/2] so that when θ = π/2 the two
particles are non-interacting (γ = 0), and when θ = 0 the
interaction is maximal (γ = ω). With this, Ω1 =

√
2ω cos θ2 and

Ω2 =
√

2ω sin θ
2 . This representation shows that (Ω1,Ω2) is a

always point on the arc of radius
√

2ω making an angle θ/2
with the x axis of the x-y plain.
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We find the eigenstates are simple products of eigenstates
of the left times the right Hamiltonian in Eq. (1.4.5):

Ψαβ (X,x) = ψα (X; Ω1)ψβ (x; Ω2)(1.4.6)

Eαβ =

(
α+

1

2

)
~Ω1 +

(
β +

1

2

)
~Ω2

α, β = 0, 1, 2, . . .

where:

ψα (z; Ω) = Nαe
− q

2

2 Hα−1 (q)

q =

√
meΩ

~
z

and Hα (q) are the Hermite polynomials of order α and Nα are
orthogonalization constants.

EXERCISE 11. Write down the ground-state energy and wave
function for the triplet state of the system in the previous exer-
cise. Determine the effect of interaction on the energy by cal-
culating r = Egs,γ/Egs,γ=0 and on the correlation coefficient
C.

SOLUTION. We need to find the lowest energy solution which
is antisymmetric in 1 and 2. The two variablesX = (x1 + x2) /

√
2

and x = (x1 − x2) /
√

2 are respectively symmetric and anti-
symmetric combinations of the positions of the electrons. Since
x is the antisymmetric combination we require the Hermite
polynomial in x to be odd. The lowest antisymmetric state
is the combination α = 0 for X and β = 1 for x, i.e. the
wave function Ψ01 (X,x) of Eq. (1.4.6) which can be written
in terms of x1and x2:

(1.4.7) Ψ01 (1, 2) = N01e
−meΩ1

4~ (x1+x2)2−meΩ2
4~ (x1−x2)2 x1 − x2√

2
.

where

(1.4.8) N01 =

√
2m2

π

√
Ω1Ω3

2
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FIGURE 1.4.2. The triplet wave functions for
two Fermions of mass me = 1 at posi-
tions x1and x2 in an harmonic well with fre-
quency ω interacting via a repulsive interaction
(Eq. (1.4.2)) of various interaction strengths γ
determined by the angle θ wherecos θ =
(γ/ω)2.

In Fig. 1.4.2 we see how the interaction “distorts” the wave
function forcing the particles to become more distant from
each other. This triplet groundstate energy can be written as

E01 =
1

2
~ (Ω1 + 3Ω2) =

1

2
~ω
√

2

(
cos

θ

2
+ 3 sin

θ

2

)
.

The ratio r (θ) = Egs,γ/Egs,γ=0 =
(
cos θ2 + 3 sin θ

2

)
/2
√

2 shows
the dependence of the energy on the interaction strength plot-
ted in Fig. 1.4.3(top). It is seen that the repulsive interaction
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lowers the total energy because the . This is explained by ob-
serving that on the average X = 0 irrespective of γ and so in
the Hamiltonian of Eq. (1.4.5) the first term does not increase
much as γ grows is small due to because the triplet wave func-
tion structure promotes electrons being away from each other.
Thus one is pushed towards the +x direction and the other to-
wards that of −x and thus they acquire a large negative value
of x1x2. To see this note that the expectation values of x and
X are both zero and therefore 〈x1〉 and 〈x2〉 are zero as well.
Furthermore, note that X2 − x2 = 2x1x2 and the hence the
position correlation constant is: C (θ) = 1

2

(〈
X2
〉
−
〈
x2
〉)

=

1
4
√

2
~

meω

(
1

cos θ
2

− 3
sin θ

2

)
. In Fig. 1.4.3(bottom) we plotC (θ) /C (π/2),

where C (π/2) = −1
2

~
meω

is negative as discussed in Exercise 8
for non-interacting particles.

1.5. Electron density: simpler than wave function

The complexity of the wave function Ψ (1, 2, . . . , Ne) is over-
whelming. One piece of information is the single electron
probability density p (r). This function gives the probability
density of finding an electron at point r in space. It is the ex-
pectation value of an operator, p (r1) =

〈
Ψ
∣∣∣ 1
Ne

∑Ne
n=1 δ (r̂n − r1)

∣∣∣Ψ〉.
It can also be represented as a partial integral over the wave
function (assuming all spins are integrated over):

(1.5.1) p (r1) =

ˆ
|Ψ (r1, r2 . . . , rNe)|

2 d3r2 · · · d3rN

The density of electrons in real space is closely related to the
probability density

(1.5.2) n (r) = Nep (r1) ,

clearly, n (r) d3r is the number of electrons in an infinitesimal
cube of volume d3r around the point r. The integral of the
density n (r) over entire space must equal the total number of
electrons:

´
n (r) d3r = Ne.



1.5. ELECTRON DENSITY: SIMPLER THAN WAVE FUNCTION 24

0.0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

θ/π

c(
θ
)/
c(
π
/2
)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

r(
θ
)

FIGURE 1.4.3. Upper panel: The energy ratio
r (θ) vs interaction strength parameter θ be-
tween interacting and non-interacting particles
in the Harmonic oscillator; Lower panel: the
ratio C (θ) /C (π/2) (where θ = π

2 is the non-
interaction particle regime) of position correla-
tion constants.

Another layer of information deals with pairs of electrons.
The pair probability P (r1, r2) , is the probability density of
finding an electron at r1 and another electron at r2. This
quantity too is an expectation value,

P (r1, r2) =

〈
Ψ

∣∣∣∣∣∣ 1

Ne (N2 − 1)

∑
n6=m

δ (r̂n − r1) δ (r̂m − r2)

∣∣∣∣∣∣Ψ
〉

and can be represented as an integral (assuming all spins are
integrated over):

(1.5.3) P (r1, r2) =

ˆ
|Ψ (r1, r2 . . . , rNe)|

2 d3r3 · · · d3rN .
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Another information is the reduced density matrix (RDM), which
is given as a partial integral:
(1.5.4)

γ
(
r, r′

)
= N

ˆ
Ψ (r, r2 . . . , rNe) Ψ

(
r′, r2 . . . , rNe

)∗
d3r2 · · · d3rN

Clearly, the density can be obtained as a diagonal element of
the RDM: n (r) = γ (r, r).

One can go on and obtain information concerning triples of
particles etc. However, for most purposes n (r1) and P (r1, r2)
and the RDM γ (r, r′) are all we need. For example the poten-
tial energy of electron electron repulsion is given by
(1.5.5)

Eee = Ne (Ne − 1)

ˆ
P (r1, r2)uC (|r1 − r2|) d3r1d

3r2

or the kinetic energy is

(1.5.6) T =

¨ [
∇r · ∇r′γ

(
r, r′

)]
δ
(
r − r′

)
d3rd3r′

and the energy of interaction with a single particle potential:

(1.5.7) Vext =

ˆ
vext (r)n (r) d3r

Looking at Eqs. (1.5.1) and (1.5.2), we see that n (r) in-
volves integrating out a huge amount of wave-function details.
Only the data concerning the density distribution of a single
electron remains! This is multiplied by Ne in Eq. (1.5.2) so
n(r) accounts for the combined density of all electrons.

EXERCISE 12. Calculate the 1D electron density of the triplet
ground state from
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SOLUTION. Use the wave function of Eq. (1.4.7) and to
compute the density:

n (x) = 2

ˆ [
N01e

−meΩ1
4~ (x+x2)2−meΩ2

4~ (x−x2)2 x− x2√
2

]2

dx2

(1.5.8)

=

√
2
π

√
m
4~Ω

(
Ω2
~
)

(Ω2 + Ω2)2
e−

mΩ
2~ x

2 (
4mΩ2

1x
2 + ~(Ω1 + Ω2)

)
(1.5.9)

where Ω = 4Ω1Ω2
Ω1+Ω2

.



CHAPTER 2

My first density functional: Thomas-Fermi
theory

The solution of the Schrodinger equation of materials or
molecules allows in-principle understanding and prediction of
their properties. However, such a solution is not easily avail-
able especially not with the required accuracy for modern-
day applications. The problem is largely in the basic concept
of quantum mechanics, namely the correlated wave function
Ψ (1, 2, . . . , N) of N interacting particles. We have seen that
even for two particles, the wave function is a complicated non-
trivial object. A naive approach for its representation for large
numberN of particles quickly ends up with exponentially large
resources. For example, suppose that the amplitude for a spa-
tial degrees of freedom has F possibilities. Then for 3N de-
grees of freedom the total amount of information the wave
function must hold is F 3N . Even for a modest case of N = 30
electrons and F = 10 this number far exceeds the estimated
number of atoms in the visible universe. The wave functions
of non-interacting particles on the other hand are much sim-
pler as each particle is described by it’s own wave 3D function,
and hence the amount of data is linear with system size, i.e.
N × F 3 .

In view of this, scientists are are continuously seeking for
new ways to bypass the need for a description of the many-
body wave function. One such way is to develop a method
which does not require knowledge of the correlated wave func-
tion at all. In fact, even if we had at our disposal the entire

27
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wave function, we would probably only use a small amount of
the vast data it offers. We almost always need only average
properties of an electron or a pair of electrons. The average
properties of a pair require knowledge of the single electron
density matrix which we discuss in later chapters . Because the
electron-electron Coulomb repulsion is a pairwise interaction
the electronic energy depends only on the relative distance of
pairs of particles, i.e. on the “pair probability”, namely the
probability to find a pair of electrons, one at point r of space
and the other at point r′. We will discuss the pair distribution
in a later chapter as well.

The simplest non-trivial quantity that can be extracted from
the electronic wave function is the electron density n (r). This
3D-function tells us the expectation value of the density of
electrons. That is, n (r) d3r is the expectation value of the
number of electrons in a small volume d3r around point r:

(2.0.1) n (r) = 〈Ψ |n̂ (r)|Ψ〉
where

(2.0.2) n̂ (r) =
N∑
n=1

δ (r − r̂n)

and r̂n is the operator corresponding to the position vector of
electron n, n = 1, . . . , N . The 3D delta-function symbol δ (a),
where a is a 3D vector, has the property that for any function
f : R3 → R in 3D space and any point a:

(2.0.3)
ˆ
δ
(
a′ − a

)
f
(
a′
)
d3a′ = f (a) .

EXERCISE 13. Using the fact that the electrons are identical
particles obeying the Pauli principle prove that

(2.0.4) n (r1) = N

ˆ
|Ψ (1, 2, . . . 3)|2 d (2 . . . N)

Looking at Eq. (2.0.4), we see that n (r) involves integrat-
ing out a huge amount of wave-function details. Only the data
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concerning the average density distribution of a single elec-
tron remains! This is multiplied by N so n (r) accounts for the
combined density of all electrons. Indeed, integrating over the
entire space, one obtains:

(2.0.5)
ˆ
n (r1) d3r1 = N.

The density is such a “washed out” version of the wave
function that we would think it is not capable of holding all
the information the wave function holds. However, in a cer-
tain sense this is not true and it does. This was discovered by
Hohenberg and Kohn and forms the basis of density functional
theory (DFT).

Before we describe the basics of DFT, we give here an early
theory developed independently by Llewellyn H Thomas [7]
and a year later by Enrico Fermi [1] which is an early form of
an approximation to the in-principle exact density functional
theory which came some 40 years later. A detailed account
of Thomas-Fermi theory including application to the study of
stability of matter in the universe can be found in works of
Elliott Lieb . [4, 5]

Before giving a simplified account of the Thomas Fermi
theory we first examine a very crude model for the atom, which
allows for a correct asymptotic scaling of the atomic energy
with the atomic number Z →∞.

EXERCISE 14. A crude model for the energy of heavy
atoms

Develop a qualitative theory for the energy E (Z) of an
atom with atomic number Z. The model presents the energy
as a function of a fictitious “atomic radius” R:

E (R,Z) = T + Een + Eee

and once the function is built R is determined by minimizing
the energy. Here are the assumptions for the various terms of
the energy
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(1) The e-e repulsive interaction energy Eeeis estimated
as the classical classically. The Z electrons are mod-
eled by a homogeneous spherical cloud of total charge
−Ze in a spherical volume V of atomic radius R.

(2) The kinetic energy T of the electrons is estimated, re-
specting the Pauli principle, under the assumption
that each pair is in a separate non-overlapping cu-
bic box of volume a3 = V/2Z . The Z/2 boxes are
distributed equally within the spherical volume V . If
the sphere is large the inconsistency of fitting boxes
in the sphere will be small.

(3) The nucleus is a positive point charge +Ze located
within the center of the sphere.

Find the scaling of the energy with the only variable imposed
parameter Z. Show the model leads to a unphysical assump-
tion that the radius Z decreases as Z grows.

SOLUTION. The electron-nuclear energy is the energy to
bring a nucleus from infinity into the center of the electronic
charge distribution. The electric field due to the electrons is

Er (r) =
Ze

4πε0

Q (r)

r2

Where Q (r) is the amount of electron charge inside the sphere
of radius r. Assuming this positive charge distribution is ho-
mogeneous we have:

Q (r) = −Ze
[( r
R

)3
θ (R− r) + θ (r −R)

]
where θ (x) = 1 for x > 0 and 0 otherwise. The work done for
bringing the positive nucleus from infinity to the center of the
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sphere is then the line integral over the electric field is:

Een = − (Ze)

ˆ 0

∞
Er (r) dr

= −e
2Z2

4πε0

[ˆ R

0

1

r2

( r
R

)3
dr +

ˆ ∞
R

1

r2
dr

]
= −B1

R

where in atomic units e2/4πε0 = Eha0:

B1 =
e2

4πε0

3

2
Z2

= 1.50Eha0Z
2

The kinetic energy T at the groundstate is quantum and take
into account the Pauli principle dictating a different quantum
state for electron of different spins. Hence, assume each pair
of electrons occupies a unique small cube within the atomic
sphere. The cube volume is V1 = V

Z/2 = 4π
3
R3

Z/2 . Hence, the

cube side length is a =
(

8π
3

1
Z

)1/3
R. The quantum energy of

a free particle in a cube is T1 = 3 × ~2π2

2ma2 , multiplying by Z/2
pairs of electrons we find in atomic units:

T =
A

R2

A = 1.8Z5/3Eha
2
0

Finally, Eee is the energy of Coulomb repulsion between
the electrons. Here we can take a model of a uniform sphere
of charge n = Z

V where V = 4π
3 R

3 is the atomic volume. We
do this by repeatedly bringing a shell of radius r and charge
n × 4πr2dr from infinity to its location in the sphere, one at a
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time, we have:

Eee =
e2

4πε0

ˆ R

0
n

4π

3
r3 × 1

r
× n4πr2dr

=
e2

4πε0

(4π)2

3
n2R

5

5

=
B2

R
where

B2 =
3

5

e2

4πε0
Z2

= 0.6Z2Eha0

The total energy becomes a function of the atom radius R and
Z:

E (R) =
A

R2
− B

R
.

Where B = B1−B2 = 0.9Z2Eha0. We now select the radius R
by assuming that it minimizes the energy. Solving E′ (R∗) = 0

gives R∗ = 2A
B and the atom minimal energy is E = −B2

4A .
Evaluating this in atomic units gives the following relation in-
volving the atomic number:

E = −0.11× Z7/3Eh

R∗ = 4.0× Z−1/3a0

Since the H atom has radius R = 1a0 and energy E = −0.5Eh
this result is not very good for this small atom limit. However,
the scaling of the energy with Z turns out to be exact when Z
as it increases but the exact prefactor is much higher, close to
−0.7687 instead of −0.11.

2.1. Basic concepts in Thomas-Fermi Theory

In the early days of quantum mechanics there was no prac-
tical way of using the Schrödinger equation to determine the
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electronic structure of many-electron systems such as heavy
atoms. A simple, albeit approximate method was in need and
supplied separately by Thomas. Their theory can be thought of
as an application of “density functional theory”, although the
latter appeared only 40 years later.

The TF theory focuses on the 1-particle density function
n (r), giving the number of electrons per volume at point r,
defined in Eq. (2.0.4). They assumed that the density mini-
mizes an “energy density functional” built from 3 terms:

ETF [n] = TTF [n] +

ˆ
vext (r)n (r) d3r(2.1.1)

+
1

2

¨
n (r1)n (r2)uC (r12) d3r1d

3r2.

where r12 = |r1 − r2| and

(2.1.2) uC (r12) =
e2

4πε0

1

r12

is the Coulomb force potential. The first term in Eq. (2.1.1) is
the density-dependent kinetic energy functional which will be
discussed below. The second term is the potential energy of
the external potential operating on the electrons while the last
term is the classical repulsive Coulomb energy.

The density n (r) that minimizes the TF energy functional
must be performed under the constraint that the density in-
clude the specified number N of electrons of the atom or mol-
ecule: ˆ

n (r) d3r = N.

The method for minimizing the constrained energy is discussed
in Appendix C. Meanwhile we discuss what should we take as
the “kinetic energy (KE) functional”. We need to assign a ki-
netic energy to any density n (r) we are given. We must take
into account the Pauli principle, namely the Fermion and quan-
tum nature of the electrons. The Thomas-Fermi approach is to
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assume a simple local form for the KE functional:

(2.1.3) TTF [n] =

ˆ
tS (n (r))n (r) d3r.

Where the meaning of the function tS (n) is elucidated by search-
ing for a system where the form is valid. This is the system
of Ne electrons in a box of volume V with periodic bound-
aries, which due to symmetry must have a homogeneous den-
sity characterized by a number: n (r) = n = Ne

V . Since we do
not want the size of the system (V ) to play a role, we look at
the “thermodynamic limit”, namely the limit of V → ∞ and
Ne → ∞ (but n = Ne/V stays finite). The system is often
called the non-interacting Homogeneous Electron Gas (HEG)
or sometimes Uniform Electron Gas. In this case the integrand
of Eq. (2.1.3) is independent of r and the integral can be read-
ily performed:

TTF = tS (n)Ne.

From this relation we see what is the meaning of the function
tS (n) = TTF /Ne: it is the average kinetic energy per electron
in a HEG. Note that here too, in the thermodynamic limit both
TTF and Ne go to infinity but the ration tS remains. We will
now show that this indeed is the case by calculating the kinetic
energy of a non-interacting HEG.

EXERCISE 15. The eigenstates of a particle on a ring of
radius a are indexed by the integers m = 0,±1,±2, . . . and
given as ψm (φ) = eimφ, the energy eigenvalues are Em = ~2m2

2I

where I = mea
2. Show ψm (φ) is also an eigenstate of the

angular momentum Lz = ~
i
d
dφ and that all eigenvalues are

integer multiples of the smallest momentum ~. Map the ring
onto a coordinate x = Lφ. Show that the wave functions are
now ψkn (x) = eiknx where kn = n2π

L , n = 0,±1,±2, . . . and

the kinetic energy eigenvalues are En = ~2k2
n

2me
.

SOLUTION. We compute the overlap integral for k 6= k′ as
follows:
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〈ψk |ψk′ 〉 =

ˆ L

0
ψk (x)∗ ψk′ (x) dx

=
1

L

ˆ L

0
e−ikxeik

′xdx

=
ei(k

′−k)L − 1

iL (k′ − k)

= 0

where the last equality is due to the quantization k = 2π
L n,

where n is an integer, and ei2πn − 1 = 0. When k = k′we have
〈ψk |ψk′ 〉 = 1. Finally

p̂x |ψk〉 =
~
i

d

dx
|ψk〉 = |ψk〉 ~k

T̂ |ψk〉 =
p̂2

2me
|ψk〉 = |ψk〉

~2k2

2me

where me is the electron mass.

Consider a homogeneous gas of Ne uncharged electrons,
non-interacting, put in a cubic cell of length L with electron
density uniform: n = Ne/V = Ne/L

3. We will be interested
in the “thermodynamic limit”, meaning in the case where both
Ne and V are taken to infinity while n which is their ratio
stays constant. In this limit many intricate details get washed
out as will be seen below. The fact that the electrons are non-
interacting means that we can compute the levels of each elec-
tron separately and then just let the Neelectrons occupy these
levels, two by two, starting from the lowest energy and increas-
ing. This imposes the Pauli principle. The periodic boundary
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conditions mean that the wave functions of each electron is pe-
riodic in the box. Hence by Fourier’s theorem any wave func-
tion of such a system is expressible as:

ψ (r) =
∑
k

akψk (r) ,

namely, a linear combination of plane-waves ψk (r) = eik·r√
V

where:

(2.1.4) k = (kx, ky, kz) =
2π

L
(nx, ny, nz)

are quantized set of wave-vectors and nx/y/z are integers.

EXERCISE 16. Show that in the thermodynamic limit the
sum of a function f (k) over the discrete kn = 2π

L n values
1
L

∑
k f (k) is equal to integral over k 1

2π

´
f (k) dk .

SOLUTION. We start from the discrete approximation to the
integral:

´∞
−∞ f (k) dk ≈ ∆k

∑∞
n=−∞ f (kn) where kn = ∆kn

and ∆k is any small integral. The approximation improves as
∆k decreases. The box of length L in x−space defines a mesh
in k-space with spacing ∆k = 2π

L and hence 1
L

∑
n f (kn) ≈

1
2π

´∞
−∞ f (k) dk. In 3D this equation is straightforwardly gen-

eralized to 1
V

∑
k f (k) ≈ 1

(2π)3

˝
f (k) d3k. This approxima-

tion becomes exact as V grows to infinity. In all cases we con-
sider below the integrand function f (k) is spherically symmet-
ric, i.e. f (k) = f (k), so the 3D integral becomes a spherical
integral

´∞
0 4πk2dk, giving the following useful formula

(2.1.5)
1

V

∑
k

f (k) ≈ 1

2π2

ˆ ∞
0

f (k) k2dk.

For the HEG we want to occupy the lowest energy states by
two electrons each and once we exhaust all electrons the other
states are vacant. Suppose the energy of the highest occupied
state is µ, this is called the Fermi energy. Then the occupation
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function is pk = θ
(
µ− ~2k2

2me

)
assigns to each momentum state

k either 0 (empty) or 1 (full), according to whether the kinetic
energy of that state ~2k2

2me
is less than and energy µ or not. Since

there are 2 electrons in each occupied state, 2
∑

k pk = Ne.

Let us set the “Fermi” wavenumber kF : µ =
~2k2

F
2me

, then pk =

θ (kF − |k|) and we must have 2
∑

k θ (kF − |k|) = Ne. Sums
on k must be divided by V to converge in the thermodynamic
limit (Eq. 2.1.5) we find

(2.1.6) 2
1

V

∑
k

θ (kF − |k|) =
Ne

V
= n

From Eq. (2.1.5) the sum 2 1
V

∑
k θ (kF − |k|) is converted to

the integral 1
π2

´ kF
0 k2dk = 1

3π2k
3
F , giving the highest occupied

wavenumber (momentum) in terms of the density in the non-
interacting HEG:

(2.1.7) n =
k3
F

3π2
⇐⇒ kF =

(
3π2n

)1/3
.

The kinetic energy per electron is the sum of the kinetic ener-
gies of the occupied states times 2: TTF = 2

∑
k θ (kF − |k|) ~2k2

2me
.

Hence the kinetic energy per electron is

tS =
TTF
Ne

=
2

nV

∑
k

θ (kF − |k|)
~2k2

2me
,

where we used the relation Ne = nV . Replacing the sum by
an integral (Eq. 2.1.5) and the density n by k3

F
3π2 (Eq. (2.1.7))

we find:

(2.1.8) tS =
3

5

~2k2
F

2me
=

3

5
µ.

The average kinetic energy is 3/5 of the maximal kinetic en-
ergy - the Fermi energy. In terms of the density, we use Eq. 2.1.7
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and obtain:

tS (n) =
3

5
Cn2/3(2.1.9)

where

C =
~2
(
3π2
)2/3

2me
= 4.785

~2

me

Going back to the TF kinetic energy functional, Eq. (2.1.3) we
find:

(2.1.10) TTF [n] =
3

5
C

ˆ
n (r)5/3 d3r

EXERCISE 17. The Thomas-Fermi functional for the hydrogen-
like atom.

(1) Derive the TF kinetic energy functional for a “spin-
polarized HEG”. That is, do not assume that there are
2 electrons in each k-state (the “spin-unpolarized”
case) but instead, that all spins are up and so there is
only one electron per k-state.

(2) Since the electron in a hydrogen-like atom is “spin-
polarized”, use the Thomas-Fermi KE functional de-
rived in the previous question and compare its esti-
mate of the kinetic energy of the electron in a hydrogen-
like atom to the exact value. Using the exact kinetic
energy in the hydrogen atom (which, using the virial
theorem, is just the negative of the ground state en-
ergy), assess the quality of the result as a function of
the nucleus charge Z.

The TF energy functional is thus

ETF [n] =
3

5
C

ˆ
n (r)5/3 d3r +

ˆ
vext (r)n (r) d3r(2.1.11)

+
1

2

¨
n (r1)n (r2)uC (r12) d3r1d

3r2.
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For atoms and molecules, the external potential is a result of a
positive charge distribution n+ (r):

vext (r1) = −
ˆ
n+ (r2)uC (r12) d3r2.

In this case one can write the TF functional as:

ETF [n] =
3

5
C

ˆ
n (r)5/3 d3r +

1

2

¨
ρ (r1)uC (r12) ρ (r2) d3r1d

3r2.

(2.1.12)

where

(2.1.13) ρ (r) = n+ (r)− n (r)

is the total charge density.

2.2. The virial theorem for Thomas-Fermi theory

The Thomas-Fermi theory enjoys some interesting scaling
laws. Some of them, like the one we study here turn out to
be valid in the exact Schrödinger equation. Others are unique
to the theory and are correct only for infinitely heavy atoms.
The virial theorem in quantum mechanics is studied in detail
in chapter XXX. Here we give only the details pertinent to TF
theory. We consider the TF functional for an atom, evaluated
at the density n (r), which we assume is its minimum:

(2.2.1) ETF [n] = TTF [n] + U [n]

where

U [n] = −Zκ
ˆ
n (r)

1

r
d3r+

1

2

¨
n (r1)n (r2)uC (r12) d3r1d

3r2.

Let us assume that the electron density n∗ (r) is minimizes
the above functional, subject to the constraint

´
n (r) d3r =

Ne. Let us now scale this electronic density in the following
way, using the scaling parameter λ > 0:

nλ (r) = λ3n∗ (λr) .



2.3. MINIMIZATION OF THOMAS-FERMI ENERGY 40

Clearly,
´
n∗ (r) d3r =

´
nλ (r) d3r, so both charge distribu-

tions ascribe to the same number of electrons. Similarly it is
straightforward to check that:

TTF [nλ] = λ2TTF [n∗]

U [nλ] = λU [n∗]

The TF energy is then

ETF [nλ] = λ2TTF [n∗] + λU [n∗]

The scaling parameter λ∗ that minimizes the energy is ob-
tained from the condition d

dλ (ETF [nλ])λ=λ∗
= 0. We know

that the result should be λ∗ = 1. Thus:

2TTF [n∗] + U [n∗] = 0.

Using Eq. (2.2.1) we find the virial theorem for TF theory:

(2.2.2) ETF [n∗] = −TTF [n∗] =
1

2
U [n∗] .

Interestingly, despite the fact that the TF theory for an atom is
a gross approximation it obeys the virial relation which is iden-
tical in form to the exact quantum mechanical virial theorem.

2.3. Minimization of Thomas-Fermi energy

The TF approach assumes that the ground-state electron
density n (r) should be determined by minimizingETF [n], among
all densities having the required number of electrons:

´
n (r) d3r =

Ne. For imposing this constraint we introduce a Lagrangian
(see XX):

(2.3.1) L [n] = ETF [n]− µ
(ˆ

n (r) d3r −Ne

)
The derivative with respect to n (r), at the solution density
n∗ (r) gives the Euler-Lagrange equation for TF theory:

(2.3.2) 0 =
δL

δn (r)
=

δETF
δn (r)

∣∣∣∣
n∗(r)

− µ
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We denote the minimal value of the TF functional by:

(2.3.3) ETF∗ ≡ ETF [n∗]

From Lagrange’s theory XXX, the Lagrange constant µ is
the derivative of ETF∗ with respect to the number of electrons:

(2.3.4)
∂ETF∗
∂Ne

= µ.

Hence µ is the chemical potential. Applying Eq. 2.3.2to the TF
energy functional of Eq. 2.1.12 we find:
(2.3.5)

Cn∗ (r)2/3 = µ+

ˆ (
n+

(
r′
)
− n∗

(
r′
))
uC
(∣∣r − r′∣∣) d3r′.

This is the integral Thomas Fermi equation for n (r). We solve
it and adjust µ so that

´
n∗ (r) d3r = Ne.

Another way to define the electric potential φ (r) (shifted
by µ) as:

φ (r) = µ+

ˆ (
n+

(
r′
)
− n∗

(
r′
))
uC
(∣∣r − r′∣∣) d3r′.

And then :

(2.3.6) φ (r) = Cn∗ (r)2/3 .

We can obtain a differential equation for φ (r) as follows. The
Laplacian of φ is equal to 4πκ (n∗ (r′)− n+ (r′)), hence, using
Eq. (2.3.6):

(2.3.7) ∇2φ (r) = 4πκ

((
φ (r)

C

)3/2

− n+ (r)

)
.

This is the differential TF equation for φ (r) from which n∗ (r)
is obtained through Eq. 2.3.6. The chemical potential enters
this equation as a boundary condition: φ (r) → µ, i.e. µ is
simply an unimportant additive constant to φ that is designed
to ensure that

´
n∗ (r) d3r = Ne .
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2.4. Thomas-Fermi theory of atoms

Application of TF theory for atoms explains the main fea-
tures of stability of atoms. The theory becomes ever more ac-
curate as the atomic number Z increases. We consider first a
H atom in the origin, the TF equation becomes, in spherical
coordinates,

1

r
(rφ (r))′′ = 4πκ

((
φ (r)

C

)3/2

− Zδ (r)

4πr2

)
.

Which upon multiplication by r2 becomes:

r (rφ (r))′′ = 4πκr2

(
φ (r)

C

)3/2

− κZδ (r) .

This equation is not convenient because of the delta-function
source term in the origin. We note first that for r > 0 the
equation is

(2.4.1) r (rφ (r))′′ =
4πκ

C3/2
r2φ (r)3/2

and the delta function can be converted to a boundary condi-
tion. Indeed, integrating from 0 to (small) r gives:

(rφ (r))′ r − rφ (r) = κ

ˆ r

0

(
φ (r′)

C

)3/2

4πr′2dr′ − κZ.

where we used the fact that r (rφ (r))′′ =
(
r (rφ (r))′

)′−(rφ (r))′.
We observe that taking the condition

(2.4.2) lim
r→0

rφ (r) = κZ

makes both sides of the equation equal in the limit r → 0.
Hence, what we need to solve is Eq. 2.4.1 under the boundary
condition Eq. 2.4.2 and limr→∞ φ (r) = 0.
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Fermi simplified this equation by changing variable x = αr
and:

(2.4.3) rφ (r) = κψZ (x)

where

(2.4.4) α = (4π)2/3 κ

C
.

This gives the following “clean” equation by Fermi to be solved:

ψ′′Z (x) =
ψZ (x)3/2

√
x

(2.4.5)

lim
x→0

ψZ (x) = Z(2.4.6)

lim
x→∞

ψ (x) = 0

This equation assumes that ψZ (x) is never negative, in accor-
dance with the definition Eq. (2.3.6). We can show that one
needs to solve the Fermi equation only for Z = 1. The other
Zs are obtained by a simple transformation:

EXERCISE 18. The Fermi equation for atom with charge Z,
the solution for Z = 1 generates the solution for all Z:

(2.4.7) ψZ (x) = Zψ1

(
Z1/3x

)
Show that ψZ (x) obeys Eq. (2.4.5) and the boundary condi-
tion

lim
x→0

ψZ (x) = Z

SOLUTION. The second derivative of ψZ (x), ψ′′Z (x) = Z5/3 ψ1(Z1/3x)
3/2

√
Z1/3x

is easily shown to equal to ψZ(x)3/2

√
x

, establishing Eq. (2.4.5).
The boundary condition too is a direct result if the x → 0
boundary condition of ψ (x).

EXERCISE 19. Assuming ψZ (x) = βxα for large x, show
that:

(2.4.8) lim
x→∞

x3ψZ (x) = 144
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What is the r−dependence of the long range density in TF
theory of the atom?

SOLUTION. Plug ψZ (x) = βxα into Eq. (2.4.5), and find
βα (α− 1)xα−2 = β3/2x3α/2−1/2. From the x-dependence we
find α=-3 and then β3/2 = β (−3) (−3− 1) → β = 144;
hence Eq. (2.4.8). As for the density dependence on r: From
Eqs. (2.3.6) and (2.4.3) we have: n (r) ∝ φ (r)3/2 ∝ (ψZ (αr) /r)3/2 ∝(

1
r4

)3/2
= 1

r6 .

EXERCISE 20. Show that the kinetic energy of the electrons

is proportional to
´ ψZ(x)5/2

√
x

dx. Find the proportionality con-
stant.

SOLUTION. From Eqs. (2.1.10) and (2.3.6), the kinetic en-

ergy is TTF = 3
5C
´ (φ(r)

C

)5/2
d3r which in spherical coordi-

nates gives: TTF = 3
54πC−3/2

´∞
0 (rφ (r))5/2 dr√

r
. We change

integration variable αx = r and use the definition Eq. (2.4.3)
and we find after some manipulations:

TTF =
3

5
C−3/24π

√
α

ˆ ∞
0

(κψZ (x))5/2 dx√
x

=
3

5
C−1 (4π)2/3 κ2

ˆ ∞
0

ψZ (x)5/2 dx√
x

= 0.67776Eh

ˆ ∞
0

ψZ (x)5/2 dx√
x

(2.4.9)

Now use Eq. (2.4.7) so: TTF (Z) = 0.67776Eh
Z5/2
√
Z1/3

´ (ψ1(y))5/2

√
y dy

which leads to TTF (Z) = TTF (1)Z7/3. From the virial the-
orem E = −TTF and thus EZ = E1Z

7/3. There is no an-
alytical way to compute E1. A numerical calculation gives:
E1 = −0.7688Eh. Hence the energy of atomic number Z is

(2.4.10) EZ = −0.7688EhZ
7/3.
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FIGURE 2.4.1. The density functional (within
the local density approximation) energy of
rare gas atoms vs the Thomas-Fermi value of
Eq. 2.4.10. It should be noted that the HF ener-
gies are almost indistinguishable from the LDA
values on the scale of this graph.

This should be compared with the exact energy of the hydro-
gen atom, which is −0.5Eh. The TF energy is much lower. But
for larger atoms the estimate improves. In fact Lieb proved
that the TF energy approaches the exact energy of atoms as Z
grows. [4] This is demonstrated in Fig. (2.4.1) where the TF
energy is compared to higher–level ab initio theories (the local
density approximation for DFT [2]). In that respect TF theory
is an “exact” theory of the many electron atom.

EXERCISE 21. Atoms shrink in size as Z grows: show that
the atomic radius is proportional to Z−1/3.
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SOLUTION. The radius of the neutral atom can be defined
by the moment over the density

R =
1

Z

ˆ ∞
0

n (r) r × 4πr2dr

where from Eq. (2.4.3) n (r) =
(
φ(r)
C

)3/2
.Now, from Eqs. (2.4.3),

(2.4.4) and (2.4.7):

rφ (r) = κψZ (x)

= Zκψ1 (y)

where y = xZ1/3 = αZ1/3r and α = (4π)2/3 κ
C . Hence:

n (r) r3dr =

(
rφ (r)

C

)3/2

r3/2dr

=

(
Zκψ1 (y)

C

)3/2 y3/2dy(
αZ1/3

)5/2
so: RZ = Z−1/3R1, where R1 = (4π)−2/3 C

κ

´∞
0 [yψ1 (y)]3/2 dy

2.5. Thomas-Fermi theory cannot explain chemical bonds

What is the physical meaning of φ (r) of Eq. 2.3.6? Sup-
pose we change the positive charge at a point r by δn+ (r) si-
multaneously changingNe by the same amount δNe =

´
δn+ (r) d3r,

so that the total charge of the system is conserved. What
is the change in the TF energy ETF∗ of Eq. 2.3.3? There
are two contributions. First, from the change δNe there is a
change due to the chemical potential, Eq. 2.3.4. Then, from
the change in δn+ (r) there is a change by taking the derivative
of the Coulomb term of the TF energy functional in Eq. 2.1.12:
(δETF∗/δn+ (r))2 =

´
(n+ (r2)− n (r2))uC (|r − r2|) d3r2. Adding

the two contributions, taking into account Eq. 2.3.5 we see
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that the total change is
δETF∗
δn+ (r)

∣∣∣∣
const total charge

= φ (r) δn+ (r)

Hence, φ (r) describes the rate of change of the TF energy
when a positive charge perturbation is applied keeping the to-
tal amount of charge constant. Notice that from the very def-
inition of φ (r) ,Eq. 2.3.6 the potential is positive everywhere,
meaning that the TF energy increases whenever we add a neu-
tral system to our system. Hence whenever two atoms ap-
proach each other the energy grows: any kind of chemical
bonding is precluded by TF theory! This result was discovered
by Edward Teller[6].

2.6. Linear response theory and Thomas-Fermi screening

We now examine the electrostatic potential which develops
when a positive charge density δn+ (r) = δqδ (r) is imposed
on the homogeneous electron gas (HEG). In vacuum the elec-
trostatic potential by the added charge would be Coulombic,
namely δφ (r) = κδq

r . However in the HEG, which is a model
for a simple metal, we expect that an added positive (nega-
tive) charge will attract (repel) the negatively charged elec-
trons and thus the overall potential δφ (r) will be smaller and
have maybe a different spatial dependence. TF theory offers a
quantitative account of this effect. It predicts a length scale for
this.

We will assume that upon the addition of the external charge
δn+ (r) we add the same amount of electronic charge, so the
system stays neutral. Under these conditions, we have from
Eq. (2.3.5):

2

3
Cn∗ (r)−1/3 δn∗ (r) =

ˆ (
δn+

(
r′
)
− δn∗

(
r′
))
uC
(∣∣r − r′∣∣) d3r′
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Where we ignore the change in µ. In the end of the calculation
we show that the result anyway preserves the total charge of
the system so δµ = 0. The right-hand side of this equation is
the perturbation potential, hence:

(2.6.1) δφ (r) =
2

3
Cn
−1/3
∗ δn∗ (r) .

For the electron gas we have the simplification that n∗ (r) = n
so the linear response equation is:

2

3
Cn−1/3δn∗ (r) =

ˆ (
δn+

(
r′
)
− δn∗

(
r′
))
uC
(∣∣r − r′∣∣) d3r′.

In order to solve this equation we use the Fourier transform:

f̃ (k) =

ˆ
f (r) eik·rd3r

f (r) =
1

(2π)3

ˆ
f̃ (k) e−ik·rd3k.

We use the fact that the Fourier transform of a convolution
f (r) =

´
h (r′)u (r − r′) d3r′ is the product of the Fourier

transforms: f̃ (k) = ũ (k) h̃ (k), 1 Thus: 2
3Cn

−1/3δñ∗ (k) =

(δñ+ (k)− δñ∗ (k)) 4πκ
k2 leading to

[
2
3

(
k2

4πκ

)
Cn−1/3 + 1

]
δñ∗ (k) =

δñ+ (k), from which:

(2.6.2) δñ∗ (k) = γ2
TF

δñ+ (k)

k2 + γ2
TF

where:

γTF =

√
6πκ

C
n1/3(2.6.3)

1This is easily proved: f̃ (k) =
´
h (r′)

[´
d3reik·ru (r − r′) d3r

]
d3r′

=
´
eik·r

′
h (r′)

[´
d3reik·(r−r′)u (r − r′) d3r

]
d3r′ = ũ (k) h̃ (k)
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is the Thomas-Fermi screening constant. One can see that
δñ∗ (k = 0) = δñ+ (k = 0) so the total charge is unchanged by
the perturbation, as we required. For a point charge in the ori-
gin δn+ (r) = δqδ (r), and δñ+ (k) = δq the perturbed charge
distribution is δñ∗ (k) = γ2

TF
δq

k2+γ2
TF

and a reciprocal Fourier

transform gives

δn∗ (r) =
1

(2π)3

ˆ
δn∗ (k) e−ik·rd3k

=
1

4π
γ2
TF δq

e−γTF r

r
.

The potential is now obtained from Eq. (2.6.1):

(2.6.4) δφ (r) =
κ

r
δqe−γTF r

and is a Yukawa potential. It is similar to the vacuum potential
κδq
r only when very close to the charge perturbation, i.e. when
γr � 1. As one moves away, the potential acts as if it is due to
a smaller charge δqe−γr. The potential is nearsighted: beyond
the distance γ−1

TF the charge is completely screened away.

2.7. von-Weizsäcker kinetic energy

The Thomas-Fermi kinetic energy density functional is ex-
act in the limit of non-interacting homogeneous gas of elec-
trons in an infinite box and also in the limit of an atom at very
high density (Z →∞). We would like to mention here another
density functional which is exact in a certain limit, i.e the limit
of a single electron. In this case, if the particle’s wave func-
tion is ψ (r) the kinetic energy is: T = ~2

2me

´
|∇ψ (r)|2 d3r the

density of the particle is given by n (r) = |ψ (r)|2. Given the
density n (r) a kinetic energy can be assigned to it, by imagin-
ing the relation ψ (r) =

√
n (r):

TvW [n] =
~2

2me

ˆ (
∇
√
n (r)

)2
d3r
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Since ∇
√
n (r) = ∇n(r)

2
√
n(r)

we obtain:

TvW [n] =
~2

8me

ˆ
(∇n (r))2

n (r)
d3r

Defining a wave vector

kvW (r) =
1

2

∇n (r)

n (r)
=

1

2
∇ log n (r)

we have

TvW [n] =

ˆ
~2kvW (r)2

2me
n (r) d3r

EXERCISE 22. Show that:

The functional derivative of vvW (r) = δTvW
δn(r) is:

vvW (r) = − ~2

8me

(
k2
vW (r) +∇ · kvW (r)

)
.

Given a density n (r), what is the potential for which this den-
sity is groundstate density?



CHAPTER 3

Hartree-Fock Theory

We examine some properties of the many electron wave
function with spin in Appendix D. Here we describe only
closed shell spin systems.

3.1. Slater functions
The many electron wave function is a antisymmetrized prod-

uct of a spatialN electron wave function and a spinN electron
wave function given in Eq.D.3.10 in appendix D. The simplest
form is when the spatial part is a product of single particle wave
functions ϕn (r), n = 1, . . . , N and the spin part is a closed shell
product:
(3.1.1)
Φ (1, . . . , N) = Âϕ1 (r1)ϕ1 (r2) · · ·ϕN/2 (rN−1)ϕN/2 (rN )α (1) β (2) · · ·α (N − 1) β (N)

This form reduces to the closed shell “Slater function”:
(3.1.2)

Φ (1, . . . , N) =
1
√
N !

det


ϕ1 (r1) ϕ̄1 (r1) · · · ϕN/2 (r1) ϕ̄N/2 (r1)
ϕ1 (r2) ϕ̄1 (r2) · · · ϕN/2 (r2) ϕ̄N/2 (r2)

...
...

. . .
...

...
ϕ1 (r2) ϕ̄1 (r2) · · · ϕN/2 (rN−1) ϕ̄N/2 (rN−1)
ϕ1 (r2) ϕ̄1 (r2) · · · ϕN/2 (rN ) ϕ̄N/2 (rN )


For example, for N = 2:

Φ (1, 2) =
1√
2

det [ϕ1 (r1) ϕ̄1 (r2)](3.1.3)

=
1√
2

(ϕ1 (r1) ϕ̄1 (r2)− ϕ1 (r2) ϕ̄1 (r1))(3.1.4)

= ϕ1 (r1)ϕ1 (r2)
1√
2

(αβ − βα)(3.1.5)

51
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LEMMA 23. In a nonzero Slater function Φ (1, . . . , N) =

det [ϕ1 (1)ϕ2 (2) · · ·ϕN (N)], if ϕn (x) =
∑N

m=1 φm (x)Amn,
n = 1, . . . , N then Φ (1, . . . , N) = detA×det [φ1 (1)φ2 (2) · · ·φN (N)].

PROOF. Simply a property of determinants: det [AB] =
det [A] det [B]. �

COROLLARY 24. We may assume without loss of generality
that the single particle wave functions φn (x) in a Slater function
Φ (1, . . . , N) = det [φ1 (1)φ2 (2) · · ·φN (N)] are orthogonal.

PROOF. If they are not, we can choose ϕn (x) =
∑N

m=1 φm (x)Amn
where A is a N × N matrix which are selected in a way that
renders ϕn (x) an orthonormal set. Then, since Φ (1, . . . , N) =
detA × det [ϕ1 (1)ϕ2 (2) · · ·ϕN (N)] the two Slater functions
det [φ1 (1)φ2 (2) · · ·φN (N)] and det [ϕ1 (1)ϕ2 (2) · · ·ϕN (N)] are
identical to within a multiplicative factor detA. �

EXERCISE 25. Find the matrix A which transforms the N
wave functions φm (x) to a set ϕn (x) =

∑N
m=1 φm (x)Amn

which is orthonormal, i.e.: δnn′ = 〈ϕn|ϕn′〉

SOLUTION. To obtain an equation for A, we expand this
condition:

δnn′ =

〈
N∑
m=1

φmAmn

∣∣∣∣∣
N∑

m′=1

φm′Am′n′

〉

=
N∑
m=1

A∗mn

N∑
m′=1

Am′n′Smm′(3.1.6)

where Smm′ = 〈φm|φm′〉 is the N ×N overlap matrix of the N
φ orbitals from which ΦS is composed. Eq. (3.1.6)can be writ-
ten in matrix form as: I = A†SA, where I is theN×N identity
matrix, and A can now be expressed formally as: AA† = S−1.
If S is invertible, this equation has many solutions. For ex-
ample, since S is Hermitean (S = S†) we can diagonalize:
S = UsU † where U is the diagonalizing unitary matrix (UU † =
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U †U = I) and s the diagonal matrix of eigenvalues of S. Then,
one can select A = Us1/2. The Hermitean overlap matrix S
is positive definite, i.e. all it’s eigenvalues are positive. For
suppose the normal column vector u, is an eigenvector of S,
corresponding to the eigenvalue s, then s = u†Su. Indeed, for
t we have:

s = u†Su

N∑
mm′=1

u∗mSmm′u

=
N∑

mm′=1

u∗m 〈φm|φm′〉um′

=

〈
N∑
m=1

φmum

∣∣∣∣∣
N∑

m′=1

φm′um′

〉
> 0

the last line is correct because the overlap of a wave function∑N
m=1 φm (x)um with itself is always positive.

3.2. Density, reduced density matrix of Slater functions

We defined the density and reduced density matrix of a
Fermionic wave function in Eqs. (1.5.2) and (1.5.4). For Slater
functions, Φ = det [φ1 . . . φN ] these objects have more spe-
cific form, in terms of the one particles orbitals. The RDM
of Eq. (1.5.4) becomes:

(3.2.1) ρΦ

(
r, r′

)
=

N∑
n=1

φn (r)φn
(
r′
)∗
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and the density, nΦ (r) = 〈Φ |n̂ (r)|Φ〉 = ρΦ (r, r) is

nΦ (r) =
N∑
n=1

|φn (r)|2(3.2.2)

EXERCISE 26. Prove that ρΦ (r, r′) is idempotent, i.e.

(3.2.3)
ˆ
ρΦ

(
r, r′′

)
ρΦ

(
r′′, r′

)
dr′′ = ρΦ

(
r, r′

)
SOLUTION. Simply use the definition of a density matrix in

Eq. (3.2.1) in terms of single particle wave functions twice and
then use the orthogonality of these wave functions.

EXERCISE 27. Calculate the density matrix of homogeneous
electron gas particles of density n = N

V where N is the number
of electrons and V is the box size in the thermodynamic limit
i.e. when both N and V go to∞. Hint: Assume that the single
particle states are ϕk (r) = eik·r√

V
and k is such that k < kF

where kF is the Fermi wave number (see Eq. (2.1.7)).

SOLUTION. The DM ρ (r, r′) is a sum over products of the

type ϕk (r)ϕk (r′)∗ = eik·(r−r′)

V and therefore the DM is a func-
tion of s ≡ r − r′, but since there is no preferred direction
in space, we can say that s = sẑ is in the z direction and the
DM becomes a function of s ≡ |r − r′|: ρ (s) = 2

∑
|k|<kF

eik·s

V .
We can replace the sum by integral (see Eq. (2.1.5)): ρ (s) =

2
(2π)3

´ kF
0 k2dk

´ π
0 sin θdθ

´ 2π
0 dφeiks cos θ, where we used the def-

inition of a scalar product k · s = ks cos θ. Evaluating the inte-
grals we find: ρ (s) = 2

(2π)2

´ kF
0 k2dk×2 sin ks

ks =
k3
F
π2

sin kF s−kF s cos kF s

(kF s)
3 :

(3.2.4) ρ (s) =
k3
F

π2

j1 (kF s)

kF s

where j1 (x) = sinx−x cosx
x2 is the spherical Bessel function of

order 1. The density matrix ρ (s) is plotted in Fig. 3.2.1.
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FIGURE 3.2.1. The density matrix ρΦ (r, r′) =
2
∑
|k|<kF ϕk (r)ϕk (r′)∗ = ρ (s), where s =

|r − r′|, corresponding to a Slater determinant
Φ composed of the wave vector plane waves
ϕk (r) = eik·r/

√
V where |k| < kF in a box

of volume V .

3.3. Expectation values in Slater functions

Consider a 1-particle operator of the form: Ô =
∑N

n=1 ô (n).
The expectation value in a Slater function with orthonormal
orbitals is:

(3.3.1)
〈

Φ
∣∣∣Ô∣∣∣Φ〉 =

N∑
n=1

〈n |ô|n〉

where the notation 〈n |ô|n〉 ≡ 〈ϕn |ô|ϕn〉 is used. For closed
shell:

(3.3.2)
〈

Φ
∣∣∣Ô∣∣∣Φ〉 = 2

N/2∑
n=1

〈n |ô|n〉

For two body operators: Û = 1
2

∑N
n6=m û (n,m) we have then

(using the notation 〈nm |û| kl〉 ≡ 〈ϕnϕm |û|ϕkϕl〉):
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〈
Φ
∣∣∣Û ∣∣∣Φ〉 =

1

2

N∑
n6=m

[〈nm |û|nm〉 − 〈nm |û|mn〉](3.3.3)

=
1

2

N∑
n,m

[〈nm |û|nm〉 − 〈nm |û|mn〉] .(3.3.4)

Note the second equality, where the condition n 6= m was re-
moved because the term m = n is canceled between the two
contributions.

For the Coulomb interaction, ûC (n,m) = κ
|rn−rm| where

rn and rm are the positions of electrons n and m, the expecta-
tion value

〈
Φ
∣∣∣Û ∣∣∣Φ〉 is thus written as:

(3.3.5)
〈

Φ
∣∣∣ÛC∣∣∣Φ〉 = J [Φ] +K [Φ]

where J andK are the Coulomb and exchange energies,respectively
defined by:

J [Φ] ≡ 1

2

N∑
n,m

〈nm |ûC |nm〉(3.3.6)

K [Φ] ≡ −1

2

N∑
n,m

〈nm |ûC |mn〉(3.3.7)

The Coulomb energy can be written as the Hartree-energy func-
tional:

(3.3.8) J [Φ] = EH [nΦ]

where

(3.3.9) EH [n] =
1

2

¨
n (r)uC

(∣∣r − r′∣∣)n (r′) drdr′
and where nΦ (r) is the electron density of the Slater function
Φ, given in Eq. (3.2.2). The exchange energy can be written in
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terms of the density matrix

(3.3.10) K [Φ] = −1

2

¨ ∣∣ρΦ

(
r, r′

)∣∣2 uC (∣∣r − r′∣∣) drdr′
where ρΦ (r, r′) is the reduced density matrix (RDM) of the
Slater function Φ, given in Eq. (3.2.1).

For closed shell we still use these definitions butN in Eqs. 3.3.6
and 3.3.7is now replaced by N/2 and the integrals do not need
to include spin. The expectation value is then:

(3.3.11)
〈

ΦS

∣∣∣ÛC∣∣∣ΦS

〉
= 4J + 2K(closed shell).

EXERCISE 28. Calculate the exchange energy of a Slater
determinant

3.4. Hartree-Fock theory

For electrons in an external potential vext (r), the Hamil-
tonian, in the non-relativistic approximation, for N electrons
is given by:

Ĥ = ĥ+ Û

=

N∑
n=1

ĥ (n) +
1

2

N∑
n6=m

uC (|rn − rm|)

where uC (r) = κ
r is the Coulomb repulsion potential and

ĥ = − ~2

2me
∇2 + vext (r). The ground state wave function and

energy of this Hamiltonian obey: ĤΨGS = EGSΨGS . The
wave function ΨGS (1, . . . , N) is extremely complicated and
cannot be found to high accuracy except perhaps for very small
systems of two electrons. Hence we must resort to approxima-
tions. The basic approximation is the Hartree-Fock approxima-
tion discussed now.

To obtain a theory for the ground state energy and wave
function we use the variational principle, which says that for
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any Slater wave function Φ, EGS ≤
〈

Φ
∣∣∣Ĥ∣∣∣Φ〉. We thus search

for the Slater function ΦHF that minimizes the right hand
side, giving the HF energy EHF =

〈
ΦHF

∣∣∣Ĥ∣∣∣ΦHF

〉
. This en-

ergy will be the best Slater function approximation to the true
ground state energy EGS .

In order to find the best Slater function, let us express
the expectation value of the Hamiltonian in terms of the or-
bitals:

〈
Φ
∣∣∣Ĥ∣∣∣Φ〉 =

∑N
m=1

〈
φm

∣∣∣ĥ∣∣∣φm〉 + J [Φ] + K [Φ] (see
Eqs. (3.3.6)-(3.3.7)), and for a closed shell system:

(3.4.1)
〈

Φ
∣∣∣Ĥ∣∣∣Φ〉 = 2

N/2∑
m=1

〈
φm

∣∣∣ĥ∣∣∣φm〉+ 4J [Φ] + 2K [Φ] .

Equations for the orbitals φm (r) are found by minimizing
〈

Φ
∣∣∣Ĥ∣∣∣Φ〉

under the constrained of orthonormality. This involves the La-
grangian

L [φ1, . . . , φN ] =
〈

Φ
∣∣∣Ĥ∣∣∣Φ〉− N∑

nm=1

εnm (〈n|m〉 − δnm) ,

where εnm are Lagrange multipliers. Since we can assume
without loss of generality that φn (r) are orthogonal, we will
obtain the first simplification by demanding only orthonor-
mality using the Lagrangian: L [φ1, . . . , φN ] =

〈
Φ
∣∣∣Ĥ∣∣∣Φ〉 −∑N

m=1 εm (〈m|m〉 − 1). The variation to first order is:

δL = δ
〈

Φ
∣∣∣Ĥ∣∣∣Φ〉− N∑

m=1

δεm (〈φm|φm〉 − 1)−
N∑
m=1

εmδ 〈φm|φm〉 .

At the constrained minimum 〈m|m〉 − 1 and

(3.4.2) δ
〈

Φ
∣∣∣Ĥ∣∣∣Φ〉 =

N∑
m=1

εmδ 〈m|m〉



3.4. HARTREE-FOCK THEORY 59

The variation of the bra can be assumed separate from the
variation in the ket. Hence

(3.4.3)
〈
δΦ
∣∣∣Ĥ∣∣∣Φ〉 =

N∑
m=1

εm 〈δφm|φm〉

And since we can use any variation we wish, let us change only
φi (r) for a certain i and leave other orbitals untouched. Then,
using δ

δφi(r)∗
〈m|m〉 = δimφi (r), we have:

(3.4.4)
〈

δΦ

δφi (r)

∣∣∣Ĥ∣∣∣Φ〉 = εiφi (r) .

We now need to evaluate the left hand side. We use:

(3.4.5)
δ

δφi (r)∗

N∑
n=1

〈
n
∣∣∣ĥ∣∣∣n〉 = ĥφi (r)

for the one body part and for the direct interaction.

EXERCISE 29. Show that:

δ

δφi (r)∗
J [Φ] =

(ˆ
uC
(
r − r′

)
nΦ

(
r′
)
dr′
)
φi (r)(3.4.6)

= vH [nΦ] (r)φi (r)

where

(3.4.7) vH [n] (r) ≡
ˆ
uC
(
r − r′

)
n
(
r′
)
dr′,

is called the Hartree potential, and it is the classical electro-
static potential associated with the electron density n (r). Fur-
thermore, show that:

δ

δφi (r)∗
K [Φ] = −

ˆ
uC
(
r − r′

)
ρΦ

(
r, r′

)
φi
(
r′
)
dr′(3.4.8)
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SOLUTION. Hint: we use the facts that
δ

δφi (r)∗
nΦ

(
r′
)

= δ
(
r − r′

)
φi (r) .

δ

δφi (r)∗
ρΦ

(
r′, r′′

)
= δ

(
r − r′′

)
φi
(
r′
)
.

Using Eqs. (3.4.5), (3.4.6) and (3.4.8) in Eq. (3.4.4) we
find the celebrated HF equations:

(3.4.9) F̂ φi (r) = εiφi (r)

where F̂ is the Fockian:

(3.4.10) F̂ = ĥ+ vH (r) + k̂

and where

(3.4.11) k̂φ (r) ≡ −
ˆ
uC
(
r − r′

)
ρΦ

(
r, r′

)
φ
(
r′
)
dr′

is the exchange operator. This equation should be solved to-
gether with Eqs. (3.2.2) and (3.2.1). They are of the eigen-
value type, yet the Fockian itself depends on the density nΦ (r)
and the RDM ρΦ (r, r′), which both depend on the orbitals
φi (r). Hence, the HF equations are called self-consistent field
equations. They should be solved by demanding that φi (r)

should be the eigenstates of F̂ and at the same time F̂ is built
out of the φi.

Once we solve the HF equations, we have the HF function
ΦHF which is the Slater function minimizing the expectation
value of Ĥ, Eq. (3.4.1), hence the HF energy is

EHF =
〈

ΦHF

∣∣∣Ĥ∣∣∣ΦHF

〉
=

N∑
m=1

〈
m
∣∣∣ĥ∣∣∣m〉+ J [ΦHF ] +K [ΦHF ] .(3.4.12)

where we use the shorthand notation
〈
φm

∣∣∣ĥ∣∣∣φm〉 ≡ 〈m ∣∣∣ĥ∣∣∣m〉.
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EXERCISE 30. Show the HF energy can also be written as

EHF =

N∑
m=1

εm − (J [ΦHF ] +K [ΦHF ])(3.4.13)

SOLUTION. Hint: show that, for all m = 1, 2, . . . :

εm =
〈
m
∣∣∣F̂ ∣∣∣m〉 =

〈
m
∣∣∣ĥ∣∣∣m〉+

N∑
i=1

[〈mi |uC |mi〉 − 〈mi |uC | im〉] .

Then sum over m = 1 . . . , N and compare.

For the closed shell case, called restricted HF (RHF), we
have

(3.4.14) ERHF = 2

N/2∑
m=1

〈
m
∣∣∣ĥ∣∣∣m〉+ 4J [ΦHF ] + 2K [ΦHF ]

Unlike the TF theory the HF theory can describe chemi-
cal bonds. For example, application of RHF to the H2 mole-
cule in the typical bond length (1.4a0 gives the value ERHF =
−1.134Eh. Compared to the energy of 2 H atoms, each with
ground state energy of −1

2Eh, this result indicates that the H2

atomization energy is 0.134Eh = 3.65eV. This calculated value
should be compared to the H2 atomization energy estimate
based on experimental data, which is about 4.75eV, showing
that the RHF approximation does not give high quality atom-
ization energies, since the deficit exceeding 1eV is substantial
in Chemical energy terms.

Linear response. Here, we consider perturbations of the
system which moves it from one ground state to another ground
state. This is called an adiabatic or time-independent pertur-
bation. In the most general form the Hamiltonian Ĥ is thought
to depend on a parameter λ and the perturbation is a change in
this parameter: λ→ λ+δλ. The HF energy and wave function
depend on λ so: EHF (λ) =

〈
Φ (λ)

∣∣∣Ĥ (λ)
∣∣∣Φ (λ)

〉
. The change
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is δEHF =
〈
δΦ (λ)

∣∣∣Ĥ (λ)
∣∣∣Φ (λ)

〉
+
〈

Φ (λ)
∣∣∣Ĥ (λ)

∣∣∣ δΦ (λ)
〉

+〈
Φ (λ)

∣∣∣δĤ (λ)
∣∣∣Φ (λ)

〉
. Taking into account Eq. 3.4.2 the sum

of the first two terms on the right-hand side is
∑N

m=1 εmδ 〈φm|φm〉
and since the orbitals stay orthonormal when λ changes, this is
zero (δ 〈φm|φm〉 = 0). Hence, δEHF =

〈
Φ (λ)

∣∣∣δĤ (λ)
∣∣∣Φ (λ)

〉
or:

(3.4.15) δEHF =
〈

Φ (λ)
∣∣∣Ĥ ′ (λ)

∣∣∣Φ (λ)
〉
δλ.

This result is the HF analog of the Feynman-Hellman theorem
which applies to the exact GS wave function and eigenvalue
ΨGS (λ) and EGS (λ):

(3.4.16) δEGS =
〈

ΨGS (λ)
∣∣∣Ĥ ′ (λ)

∣∣∣ΨGS (λ)
〉
δλ.

We thus see that the effect of a perturbation on the ground
state energy is, to first order, simply the expectation value of
Ĥ ′ (λ). When the perturbation is a one-body operator λ

∑
n p̂ (n)

then, taking the perturbation around λ = 0 we find:

(3.4.17) δEHF = δλ
N∑
n=1

〈φn |p̂|φn〉 .

We see that the derivative of the HF energy with respect to the
perturbation parameter λ gives the ground state expectation
value of the operator in HF theory.

What about the wave functions themselves? How do they
change? First order perturbation theory states that if we as-
sume the Fockian does not change

(3.4.18) δφn (r) =
∑
k 6=n

φk (r)
〈φk |p̂|φn〉
εn − εk

.

3.5. The HF theory of the homogeneous electron gas

For the electron gas we know the solution of the HF equa-
tions, so all we need is to write down the energy: EHF =
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FIGURE 3.5.1. The Hartree-Fock energy of the
homogeneous electron gas of density n.

ETF + EX , where the ETF is the Thomas Fermi energy given
in 2.1.12. For the electron gas all the charge energies cancel
each other so ETF = TTF and thus the HF energy is εHF (n) =

tS (n) + εX (n) where tS = 3
5CSn

2/3 is the Thomas Fermi ki-
netic energy per particle where C = 4.785 ~2

me
(see Eq. (2.1.9)).

The exchange energy per particle is εX (n) = KX
N , which can

be estimated by evaluating KX = −1
4

˜ ρ(r,r′)2

|r−r′| drdr
′. For this

case the density matrix was discussed in Exercise (27), where
ρ (r, r′) was shown a function of s = |r − r′| , so: KX =

−1
4κV

´
V
ρ(s)2

s ds. The integrand is a function of s only and
not the direction of s so the integral can be accomplished
by spherical integration, we further assume the box size is
so large that we can take the integration to infinity: KX =

−1
4V
´∞

0
ρ(s)2

s 4πs2ds. Using the form of ρ (s) in Eq. (3.2.4) the
integral can be calculated analytically, giving: KX = −1

4κV ×
k4
F
π3 . Since k3

F = 3π2n (Eq. (2.1.7)), we find:

(3.5.1) εX =
KX

N
= − 3

4π
κkF = −3

4
Cx × n1/3
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where Cx =
(

3
π

)1/3
Eha0 = 0.9845Eha0 . Together with the

kinetic energy, HF energy per electron is thus: εHF = 3
5CS ×

n2/3− 3
4Cx×n

1/3, plotted in 3.5.1. If we assume that the elec-
tron gas could determine its own density, i.e. given a large
number of electrons, they would self-determine their own vol-
ume, then they would choose to minimize εHF . This mini-

mum is obtained (solving ε′HF (n∗) = 0), at n∗ =
(

5
8
Cx
CS

)3
=

0.0021a−3
0 and ε∗HF = −15

64
C2
x

Cs
= −1.29eV , both values are

close to the density and the energy per electron of sodium,
0.004a−3

0 and −1.13eV , respectively. The pressure of the HEG
is P = n2ε′HF and the bulk modulus is Y = nP ′ (n) = 1

3n
4/3
(
Cx − 2Csn

1/3
)

gives Y = n∗P
′ (n∗) = 0.66GPa (which is much lower than

that of sodium, 6.3GPa).
The HF eigenvalues are ε (k) = εk = ~2k2

2me
+
〈
ψk

∣∣∣k̂∣∣∣ψk

〉
where:〈

ψk

∣∣∣k̂∣∣∣ψk

〉
= −κV −1

¨
e−ik·r

ˆ
ρ (r − r′)
|r − r′|

eik·r
′
dr′dr,

which, using assumptions similar to the calculation of exchange
energy (see Exercise 27),〈

ψk

∣∣∣k̂∣∣∣ψk

〉
= −2πκ

ˆ ∞
0

s2ds
ρ (s)

s

ˆ 1

−1
eiksxdx

= −4πκ

ˆ ∞
0

ρ (s)
sin ks

ks
× sds

leads to:

ε (k) =
~2k2

2me

[
1 +

1

kFa0
F

(
k

kF

)]
.(3.5.2)

where F (x) = 4
πx2

((
x− x−1

)
tanh−1

[
e−|lnx|

]
− 1
)
. The eigen-

values are given in the upper panel of Fig. 3.5.2 and it is seen
that at k = kF there is a “feature” (within the ellipse) in
the eigenvalue function. This is seen in the density of states
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ρ (ε (k)) = 4π V k2

ε′(k) , plotted in the lower panel of the figure,
which diverges to zero at k = kF . As we learned, the occupied
eigenvalues are ionization potentials, i.e. “hole” energies of
the system and the drop to zero of density of hole states pre-
dicted by HF theory contradicts experiments on simple metals,
which show a high DOS of hole states near the Fermi level.
This failure is associated with the tendency of the HF band
gap (the difference between the lowest unoccupied and the
highest occupied energy eigenvalues) to be much larger than
the experimental hole-electron energy gaps.
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FIGURE 3.5.2. The Hartree-Fock wave num-
ber dependent eigenvalues εk (upper panel)
and density of states (DOS, lower panel) for
the homogeneous electron gas at the density
n∗minimizing the HF energy (see Fig. 3.5.1).



CHAPTER 4

Hohenberg-Kohn theory

In view of the poor predictions of chemical bonds and molec-
ular properties afforded by HF approximation and the high
numerical price of wave function approaches, it is beneficial
to seek out methods that circumvent the need to represent
the many-body electronic wave function. We studied in de-
tail two theories. One was based on the density, but had no
real rigorous basis. The other was a method that assumed
the electronic wave function is of the form applicable only for
non-interacting electrons. We now want to describe a rigorous
method that combines ideas of this type in a new way which is
both rigorous and leads to very accurate approximations.

4.1. Hohenberg-Kohn theorem

In electronic structure theory the Hamiltonian is given as:

(4.1.1) Ĥ = T̂ + Û +

ˆ
v (r) n̂ (r) dr

Where T̂ =
∑N

n=1
−~2

2me
∇2
n is the kinetic energy and Û = 1

2

∑
m 6=n uC (|rn − rm|)

is the Coulomb repulsion and v (r) is the external potential
acting on the electrons, represented by their density function
n̂ (r) =

∑N
n=1 δ (r − r̂n) where r̂n is the position of electron n.

It is essential to appreciate that the terms F̂ = T̂ + Û and n̂ (r)

appearing in Ĥ are the same for all N -electron Hamiltonians.
Thus what differentiates one system Ĥ from another system
Ĥ ′ is only the difference in the external potentials v(r) and

67
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v′ (r):

Ĥ − Ĥ ′ =
ˆ (

v (r)− v′ (r)
)
n̂ (r) dr =

N∑
n=1

(
v (r̂n)− v′ (r̂n)

)
As an application of this, we show that there are no eigenstates
of Ĥ, which are also eigenstates of Ĥ ′. For suppose thatΨm is
such an eigenstate:

(4.1.2)(
Em − E′m

)
Ψm (r1, . . . , rN ) =

N∑
n=1

(
v (rn)− v′ (rn)

)
Ψm (r1, . . . , rN ) .

We can divide by the wave functions (at points it does not
zero) and we obtain (Em − E′m) =

∑N
n=1 (v (rn)− v′ (rn))This

clearly cannot hold at all positions unless v (r) − v′ (r) = 0 at
any point.

Next, let us observe that if Ψ1 and Ψ2 are two wave func-
tions having the same density expectation value at each point
in space: 〈Ψ1 |n̂ (r)|Ψ1〉 = 〈Ψ2 |n̂ (r)|Ψ2〉 and

〈
Ψ1

∣∣∣Ĥ∣∣∣Ψ1

〉
<〈

Ψ2

∣∣∣Ĥ∣∣∣Ψ2

〉
, then:

〈
Ψ1

∣∣∣F̂ ∣∣∣Ψ1

〉
<
〈

Ψ2

∣∣∣F̂ ∣∣∣Ψ2

〉
and for any

other Hamiltonian, Ĥ ′ this inequality holds as well:

(4.1.3)
〈

Ψ1

∣∣∣Ĥ ′∣∣∣Ψ1

〉
<
〈

Ψ2

∣∣∣Ĥ ′∣∣∣Ψ2

〉
.

These two fact will now be used to prove the first theorem of
DFT, due to Hohenberg and Kohn:

THEOREM 31. (Hohenberg-Kohn): If two (non-degenerate)
electronic systems exhibit the same ground-state density function
then they are identical: their external potentials are the same up
to a constant.
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PROOF. Proof by reductio ad absurdum. Assume Ĥ and
Ĥ ′ are not identical to within a constant and the two corre-
sponding ground states Ψ and Ψ′ have the same density ex-
pectation value. Then according to the variational principle〈

Ψ′
∣∣∣Ĥ ′∣∣∣Ψ′〉 < 〈Ψ

∣∣∣Ĥ ′∣∣∣Ψ〉 and since this inequality holds for

any Hamiltonian, we obtain
〈

Ψ′
∣∣∣Ĥ∣∣∣Ψ′〉 < 〈Ψ

∣∣∣Ĥ∣∣∣Ψ〉, an ab-
surd result since it contradicts the variational principle. �

The Hohenberg-Kohn theorem is a uniqueness theorem. It
shows that the ground state density of Hamiltonian Ĥ is can-
not be ground state density of any other Hamiltonian. But
does any density n (r) correspond to a ground state density of
something?

DEFINITION 32. Pure state v-representable densities: A den-
sity n (r) is called pure state v-representable if it is the ground
state density of N =

´
n (rdr) electrons in some potential

v (r). In other words, if there exists a potential v (r) such
that the ground state wave function Ψgs of Ĥ = T̂ + Û +´
v (r) n̂ (r) dr yields this density: n (r) = 〈Ψgs |n̂ (r)|Ψgs〉.

4.2. Hohenberg-Kohn variational principle

The Hohenberg-Kohn functional. From the HK theorem,
it is clear that a v-representable density n (r)determines uniquely
(up to a constant) the potential v (r). This means that we may
think of the potential as a functional of the density. We write
v [n] (r). We may then think of the Hamiltonian is a functional
of v-representable densities: Ĥ [n] and they ground state wave
function too: Ψgs [n]. We can also see that the 3rd excited state
of Ĥ [n] is a functional of n (r). In short, all properties of the
system are functionals of v-representable densities.

Since "everything" is a functional of v-representable densi-
ties, we can assert that the ground-state kinetic energy T [n]
and electron repulsion energy U [n] are such functional and
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FIGURE 4.2.1. Illustration of Definition 33: the
left domain is convex while the right domain is
not, since a segment joining to of its points is
not fully contained within it.

define the Hohenberg-Kohn functional:

(4.2.1) FHK [n] = T [n] + U [n] =
〈

Ψgs [n]
∣∣∣T̂ + Û

∣∣∣Ψgs [n]
〉
.

FHK [n] is a universal functional, not limited to any particular
molecular system. We have of course no practical way to calcu-
late FHK [n] in general, and despite this progress can be made
with the discovery of the Hohenberg-Kohn minimum principle.

The domain of definition of FHK , the domain of v-representable
densities, is difficult to characterize in a simple way. In fact,
and perhaps unexpectedly, this domain is not even convex.[3]
Roughly speaking, a convex domain has no holes or insertions
in it. If our domain is not convex, we cannot easily search in it
or work with it. Here’s a formal definition of a convex domain.

DEFINITION 33. Convex domain: a set which includes the
segments joining any pair of its points. See Fig. 4.2.1

This means, that if n0 and n1 are two v-representable den-
sities domain it is not guaranteed that the convex sum nλ ≡
λn0 + (1− λ)n1 (where λ is some parameter in the range
[0, 1]) is in it as well. An example where convexity fails is
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produced by considering the case where the two densities are
different and yet correspond to degenerate eigenstates of the
same Hamiltonian, as we show later.

We ignore for the moment the practical problem of v-representability
and present the HK minimum principle, which allows us, in
principle, to set up a ground state energy and density search as
a minimum, without the need to explicitly solve the Schrödinger
equation:

THEOREM 34. (Hohenberg-Kohn minimum principle): The
ground state density nv (r) of N electrons in a potential v (r)
minimizes the functional:

(4.2.2) Ev,N [n] = FHK [n] +

ˆ
v (r)n (r) dr

defined for all v-representable densities n (r) with
´
n (r) dr =

N . The ground state energy Egs of this system is equal to the
minimum value Ev,N [nv].

PROOF. Denote Ĥv = T̂ + Û +
´
v (r) n̂ (r) dr. Then for

any v-rep density n (r) Ev,N [n] =
〈

Ψgs [n]
∣∣∣Ĥv

∣∣∣Ψgs [n]
〉

. Since

Ψgs [nv] is the ground state of Ĥv, we find from the variational
principle of quantum mechanics:
(4.2.3)
Ev,N [n] =

〈
Ψgs [n]

∣∣∣Ĥv

∣∣∣Ψgs [n]
〉
≥ Egs =

〈
Ψgs [nv]

∣∣∣Ĥv

∣∣∣Ψgs [nv]
〉

= Ev,N [nv]

�

The Levy-Lieb functional and the variational principle.
We would like to use the HK minimum principle as a varia-
tional principle. However, since the HK functional is only de-
fined for v-rep densities and the space of v-rep densities is not
convex, this proves to be impossible. However we can formally
remedy this situation by defining a new functional, denoted
FLL [n] within a broader domain yet coinciding with the HK
functional for v-rep densities.
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The approach of Lieb, followed the Fenchel-Legendre the-
ory (see Appendix A.3) and defined the Legendre transform of
the ground state energy functionEgs [v] = minΨ

〈
Ψ
∣∣∣T̂ + Û +

´
v (r) n̂ (r) dr

∣∣∣Ψ〉:

(4.2.4) FL [n] = max
v

{
Egs [v]−

ˆ
n (r) v (r) dr

}
The functional FL is convex and does not require n to be v-rep.
Furthermore, one also has:

(4.2.5) Egs [v] = min
n

{
FL [n] +

ˆ
n (r) v (r) dr

}
(see proof in sectionComnbination of the two leads to the

Levy approach, whiThis functional is defined as:

(4.2.6) FLL [n] = min
Ψ→n

〈
Ψ
∣∣∣T̂ + Û

∣∣∣Ψ〉 ,
where the minimum is taken over N -body Fermionic wave
functions Ψ (1, . . . , N) (i.e. antisymmetric to exchange of two
particles) that have the density expectation value equal to n (r)
at each point r. Since for v-representable densities n (r) the
minimizing wave function is Ψgs [n], we have for this case
FLL [n] = FHK [n]. However, FLL is defined over a much wider
set of densities.

In the sequel we will use the symbol F [n] to mean FLL.
To minimize Ev,N [n], we set up the Lagrangian Lv,N [n] =
Ev,N [n]−µ

(´
n (r) dr −N

)
, so that the constraint

´
n (r) dr =

N is incorporated. The variational principle of DFT now be-
comes an implicit equation for the density ngs (r):

(4.2.7)
(

δF

δn (r)

)
ngs

+ v (r) = µ.

Furthermore, derivative of L by the constraint N gives the
physical meaning of µ :

(4.2.8) µ =
∂Ev,N [ngs]

∂N
,
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showing that µ is the chemical potential of the system.

Direct density functional theory. Suppose we have an
approximation Fapp [n] for FLL [n]. Then the ground state en-
ergy and density for electrons in a potential v (r) can be found
by minimizing

Ev,N [n] = Fapp [n] +

ˆ
v (r)n (r) dr

under the constraint
´
n (r) d3r = N . The constraint intro-

duces a Lagrange multiplier and the Euler-Lagrange equation
for the approximate ground state density n∗ (r) is(

δFapp
δn (r)

)
n∗

= µ− v (r)

EXERCISE 35. (DFT description of strongly interacting Bosons
at high density) Suppose the particles are bosons, interacting
through a contact potential uC (r − r′) → cδ (r − r′) and that
due to the high density of the Bosons, the kinetic energy can
be neglected. Then, approximately: Fapp [n] = 1

2c
´
n (r)2 dr.

Derive the density of the system of bosons. Apply the theory
to such bosons in a harmonic potential.

SOLUTION. The Euler-Lagrange equation is

n∗ (r) = s

(
µ− v (r)

c

)
.

where s (x) = θ (x)x.
For N 1D bosons in the potential v (x) = 1

2kx
2 we have,

for −a < x < a:

n∗ (x) =
µ− 1

2kx
2

c
=
ka2

2
c−1

(
1−

(x
a

)2
)

where 1
2ka

2 = µ and a is obtained from the condition:
´ a
−a n∗ (x) dx =

N which gives a =
(

3c
2kN

)1/3. An example of how well this DFT
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FIGURE 4.2.2. Diffusion Monte Carlo and the
DFT estimate of the density of N = 32 Bose
particles having unit mass in a harmonic well
with k = 1 and interacting through the poten-
tial u (r) = cδ (r), with c = 4. Under these
conditions a = 5.768 and the density maximum
is nmax = µ

c = 4.16.

approximation does is shown in Fig. 4.2.2 where the DFT den-
sity is seen to be close to an essentially exact diffusion Monte
Carlo calculation.

Non-interacting electrons. Non-interacting electrons are
Fermions which have a density n (r) in the ground state of a
single body potential well vs (r) (s stands for “single”) , i.e.
they are ground states of the Hamiltonian of the form: Ĥs =
T̂ +
´
v (r) n̂ (r) dr. The ground states of such non-interacting

electrons are Slater wave functions Φ [n] = det [φ1, . . . , φN ]

where φn (r) are the N lowest energy eigenstate ĥsφn (r) =

εnφn (r) of the single-particle Hamiltonian ĥs = −1
2∇

2+vs (r).
The kinetic energy of the non-interacting electrons in their
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ground states is thus

Ts [n] =
〈

Φ [n]
∣∣∣T̂ ∣∣∣Φ [n]

〉
=

N∑
n=1

〈
φn

∣∣∣∣−1

2
∇2

∣∣∣∣φn〉
From the HK minimum principle, we have

(4.2.9)
δTs
δn (r)

+ vs (r) = µs

The functional Ts defined in this way is defined for non-
interacting v-representable densities. We can extend its do-
main of definition by defining a LL extension:

Ts [n] = min
Ψ→n

〈
Ψ
∣∣∣T̂ ∣∣∣Ψ〉

where Ψ is a antisymmetric N-body wave function constraint
to reproduce the density expectation value n (r). In order to
perform the constraint minimization, we introduce Lagrange
multipliers v (r) to impose the constraints:

L [Ψ, v] =
〈

Ψ
∣∣∣T̂ ∣∣∣Ψ〉+

ˆ
v (r) [〈Ψ |n̂ (r)|Ψ〉 − n (r)] dr

The necessary condition for the minimum is that the following
equation be solved

(
T̂ +
´
vs (r) n̂ (r) dr

)
Ψs = 0 and then

Ts =
〈

Ψs

∣∣∣T̂ ∣∣∣Ψs

〉
. Here’s how to find Ψs. For any given v (r)

we first solve the single particle eigenvalue problem:

ĥφn (r) = εnφn (r)

ĥ = −1

2
∇2 + vs (r)(4.2.10)

We then vary vs (r) until we find the potential vs (r) and N
eigenstates φpn (r) (not necessarily the lowest energy) for which

(4.2.11) n (r) =
∑
n

φpn (r)2
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We then set Ψs = det [φp1 . . . , φpN ] and then
[
T̂ +
´ [

vKS (r)−
∑N

n=1 εpn

]
n̂ (r) dr

]
Ψs =

0. Clearly there are many such solutions. The minimal kinetic
energy we are looking for is then found by selecting the solu-
tion which gives the the smallest possible Ts =

〈
Ψs

∣∣∣T̂ ∣∣∣Ψs

〉
=∑N

n=1

〈
φpn

∣∣−1
2∇

2
∣∣φpn〉. The Lagrange multipliers vs (r) are

thus potentials of a non-interacting Schrodinger equation. The
main difference in this approach is that we do not select, neces-
sarily the lowest energy solution, but the lowest kinetic energy
ones. Finally the Lagrange multipliers are the derivative of the
Lagrangian L with respect to the constraint value n, analogous
to Eq. 4.2.9

(4.2.12)
δTS [n]

δn (r)
=
δL [ΨKS , vKS ]

δn (r)
= −vs (r)

4.3. The Kohn-Sham density functional theory

The HK functional can be approximated by two functionals
we can relatively easily calculate: the kinetic energy of non
interacting electrons Ts [n] and the Hartree energy. We thus
define a new functional Exc [n] which holds all other, as yet
unknown quantities in F :

(4.3.1) F [n] = Ts [n] + EH [n] + Exc [n] .

This formalism is based on the hunch thatExc [n] is expected to
be a small quantity and much easier to approximated than F [n].
The DFT equation (Eq. 4.2.7) becomes: δTs

δn(r)+vH (r)+vxc (r)+

v (r) = µ, where vH (r) = δEH
δn(r) and vxc (r) = δExc

δn(r) . Taking
Eq. 4.2.12 we find that the non-interacting potential is, up to
a constant:

(4.3.2) vs (r) = vH (r) + vxc (r) + v (r) .
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This equation leads to the following scheme for solving the
DFT equation Eq. 4.2.7: One solves the non-interacting parti-
cle eigenstate equation Eq. 4.2.10 with vs given in the above
equation and the density given in Eq. 4.2.11.

Linear response. Linear response of non-interacting elec-
trons. Linear response of interacting electrons.



CHAPTER 5

Time-dependent DFT
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APPENDIX A

Befriending Functionals

A.1. Functionals, linear functionals

DEFINITION 36. A mapping function n (r) of a given set to
a real number F [n] is called a functional. A functional is called
linear if for any two functions n (r) and m (r): F [n+m] =
F [n] + F [m] and if F [αn] = αF [n] for any number α.

EXAMPLE 37. Here are some examples:

(1) The simplest functional: F [n] = 0 maps any function
n (r) to the number zero. This functional is linear.

(2) A more interesting functional is one that maps any
function to its value at a given point r0:

(A.1.1) Fr0 [n] = n (r0) .

this functional is also linear.
(3) Next, consider the functional

(A.1.2) IV [n] =

ˆ
V
n (r) d3r

mapping each function to its average value on the
volume V . This functional is linear.

(4) Another familiar example is the kinetic energy func-
tional for a particle of massme in some wave function
ψ (r):

T1 [ψ] = − ~2

2m

ˆ
ψ (r)∗∇2ψ (r) dr

79



A.2. FUNCTIONAL DERIVATIVES 80

(5) The potential energy:

V [ψ] =

ˆ
|ψ (r)|2 V (r) dr

THEOREM 38. A linear functional is generally of the form:

(A.1.3) F [n] =

ˆ
f (r)n (r) dr

PROOF. Define:

(A.1.4) f (r) ≡ F [δr]

where
δr
(
r′
)
≡ δ

(
r′ − r

)
is the δ-function at r. Now write the functional n (r′) as a
linear combination of δ-functions δr (r′):

n
(
r′
)

=

ˆ
n (r) δr′ (r) dr

=

ˆ
n (r) δr

(
r′
)
dr

then, considering F as operating on functions of r′, from lin-
earity:

F [n] =

ˆ
n (r)F [δr] dr

=

ˆ
n (r) f (r) dr

�

DEFINITION 39. The function f (r) in Eq. (A.1.3) is called
the linear kernel of F .

A.2. Functional derivatives

The concept of functional derivative is highly analogous
to the concept of function derivatives. In functions, f (x) we
known that near a point x0 the function behaves very similar
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to a straight line, i.e. f (x0 + δx) − f (x0) is a linear function
and the slope of this function is the derivative

(
df
dx

)
x0

of f at
x0:

f (x0 + δx)− f (x0)→
(
df

dx

)
x0

δx (as δx→ 0) .

In functional analysis we want to achieve a similar feat. Hence
for some functional F [n] we take a function n0 (r) and we
want to explore all functions n = n0 + δn which are close to
this function:

DEFINITION 40. Given a functional F [n], we say it is deriv-
able with respect to n at the n0, where n0 (r) is given func-
tion, if for any function δn (r) for which ‖δn‖ goes to zero
the functional δFn0 [δn] ≡ F [n0 + δn] − F [n0] goes to a lin-
ear functional. Using the standard form of linear functionals,
Eq. (A.1.3) we write:

(A.2.1) δFn0 [δn]→
ˆ (

δF

δn (r)

)
n0

δn (r) dr (as ‖δn‖ → 0)

where
(

δF
δn(r)

)
n0

is the linear kernel of δFn0 [δn].

Since the function δn (r) is arbitrary (except for being very
small) it is often convenient to take it as a delta function at r,
i.e. δn (r) = εδ (r) (and use the L1 norm) where ε > 0 is as
small as needed. Then:

(A.2.2)
(

δF

δn (r)

)
n0

= lim
ε→0

ε−1δFn0 [εδr]
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EXAMPLE 41. The functional derivative of Iall space [n] (Eq. (A.1.2)):(
δF

δn (r)

)
n0

N = lim
ε→0

ε−1 (F [n0 + εδr]− F [n0])

= lim
ε→0

ε−1

ˆ
I

(
n0

(
r′
)

+ εδr
(
r′
)
− n0

(
r′
))
dr′

=

ˆ
I
δr
(
r′ − r

)
dr′ = 1.

EXERCISE 42. Find the functional derivative of the Hartree
energy functional:

EH [n] =
1

2

¨
n (r)n (r′)

|r − r′|
drdr′.

SOLUTION. We have applying Eq. (A.2.2) we find:

(
δEH
δn (r1)

)
n0

=
1

2

¨
δr1 (r)n0 (r′) + δr1 (r′)n0 (r)

|r − r′|
drdr′

=

ˆ
n0 (r′)

|r1 − r′|
dr′

A.3. Convex functionals and Legendre transforms

Convex functions. A function f (x) is said to be convex
if for any pair of abscissas x1 and x2 the curve (x, f (x)) de-
scribed by f (x) in the interval x1 ≤ x ≤ x2 is always be-
low the straight line connecting (x1, f (x1)) and (x2, f (x2)). A
more formal definition is

DEFINITION 43. A function f (x) is convex in a simply con-
nected region D 1 if for any two points x1, x2 in D and for any
0 ≤ λ ≤ 1 the following inequality holds:

f (λx2 + (1− λ)x1) ≤ λf (x2) + (1− λ) f (x1)

1In a simply connected domain D if x1, x2 ∈ D then the straight line
segment connecting the two points is also within D. In other words ∀λ ∈
[0, 1] : λx1 + (1− λ)x2 ∈ D.
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A useful interpretation of the above definition for convex-
ity is Jensen’s inequality which is stated in terms of averaged
quantities:

(A.3.1) f (〈x〉) ≤ 〈f (x)〉

where 〈x〉 =
∑N

n=1 cnxn is an average overN points x1, . . . , xN
in the interval and 〈f (x)〉 =

∑N
n=1 cnf (xn) an average of the

corresponding function values and theN non-negative weights
c1, . . . , cN sum to 1 (

∑
n cn = 1).

LEMMA 44. For a derivable convex function f (x) in a simply
connected domain D:
(A.3.2)

(x1 − x2) · ∇f (x2) ≤ f (x1)− f (x2) ≤ (x1 − x2) · ∇f (x1)

PROOF. Consider the equality

f (λx1 + (1− λ)x2) = f (λ (x1 − x2) + x2) .

Now take 0 < λ � 1. Then: f (x2) + λ (x1 − x2) · ∇f (x2) ≤
λf (x1)+(1− λ) f (x2) from which (x1 − x2)·∇f (x2) ≤ f (x1)−
f (x2). Now, switch 1←→ 2, so (x2 − x1) · ∇f (x1) ≤ f (x2)−
f (x1) and multiplication by−1 gives: f (x1)−f (x2) ≤ (x1 − x2)·
∇f (x1). The two inequalities are combined in Eq. A.3.2 �

LEMMA 45. A convex function which is twice derivable has a
positive definite Hessian derivative.

PROOF. Assume that for a some x, fij (x) is not positive
definite. Thus assume δxifij (x) δxj < 0 for some infinitesimal
δx. Now, for any 0 < λ < 1 use the identity f (x+ λδx) =
f ((x+ δx)λ+ (1− λ)x) to deduce:

f (x+ λδx) ≤ λf (x+ δx) + (1− λ) f (x)

Then, we expand in powers of δx and to second order we see
the left hand side equals to f (x)+λfi (x) δxi+

1
2λ

2δxifij (x) δxj
while the right hand side gives f (x)+λ

[
δxifi (x) + 1

2δxifij (x) δxj
]
,

hence the above inequality leads to λ2δxifij (x) δxj ≤ λδxifij (x) δxj .
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Since λ > 0, divide by the negative number λδxifij (x) δxj and
obtain λ > 1, which is a contradiction to the fact that λ is
smaller than 1. �

One of the important properties of a convex function is that
it cannot have a local minimum: either there is no minimum
(for example f(x) = ex) or there is just one global minimum
(for example f (x) = x2. The proof is that the derivative is al-
ways increasing as x increases. Thus if we are at a minimum,
where the derivative is zero, then moving away from this min-
imum in a certain direction the derivative will always increase
or decrease and will not be zero again.

Legendre transform of a functional.

DEFINITION 46. The Legendre transform of a functional
f (x) defined in some domain D ⊂ <N is

(A.3.3) f∗ (y) = sup
x∈D

{
yTx− f (x)

}
defined for y ∈ <N .

LEMMA 47. (Fenchel’s inequality) yTx ≤ f (x) + f∗ (y)

PROOF. By definition f∗ (y) ≥ xT y − f (x). �

LEMMA 48. The Legendre transform f∗ (y) of f (x) is a con-
vex function.

PROOF. Relies on the obvious fact that the maximum of
a sum is not larger than the sum of the maxima. Hence, for
0 ≤ λ ≤ 1:

f∗ (λy + (1− λ) z) = sup
x∈D

{(
λyT + (1− λ) zT

)
x− f (x)

}
≤ λ sup

x∈D

{
yTx− f (x)

}
+ (1− λ) sup

x∈D

{(
zTx− f (x)

)}
= λf∗ (y) + (1− λ) f∗ (z)

�
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LEMMA 49. Let f (x) be differentiable, Then the Legendre
transform f∗ (y) is differentiable. Furthermore, if x (y) maxi-
mizes yTx− f (x) then: fj (x (y)) = yj and f∗j (y) = xj (y).

PROOF. Suppose x (y) is the maximizer of yTx−f (x). Then
yj = fj (x (y)) and from f∗ (y) = yTx (y) − f (x (y)) we find:
f∗j (y) = xj (y). �

Note that if x (y) is the point maximizing the RHS we have(
∂f (x)

∂xi

)
x=x(y)

= yi

f∗ (y) = yTx (y)− f (x (y))

From this, we get a kind of symmetric relation:

∂f∗ (y)

∂yj
= xj (y)

Furthermore:

δij =
∂

∂yj
yi =

∂

∂xi

∂

∂yj
f (x (y))

=
∂

∂xi

∂

∂xl
f (x (y))

∂xl
∂yj

Showing that ∂xl∂yj
=
(
H−1

)
ij

is the inverse of the HessianHil =
∂
∂xi

∂
∂xl
f (x) at x = x (y).

EXAMPLE. Here are some examples:

(1) f (x) = 1
n |x|

n (n > 1). f∗ (y) = maxx∈D
{
yTx− 1

n |x|
n}

. The minimizing x∗ obeys: y = ∇f (x∗)
T = |x∗|n−2 x∗

thus: |y| =
√
yT y = |x∗|n−1. Hence: f∗ (y) =

(
1− 1

n

)
|x∗|n =(

1− 1
n

)
|y|

n
n−1 = 1

m |y|
m where 1

n + 1
m = 1.

(2) From this, the convex conjugate of f (x) = |x| is

f∗ (y) =

{
0 |y| ≤ 1
∞ |y| > 1

.
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(3) f (x) = ex. f∗ (y) = supx
{
yTx− ex

}
. Note that

for y = 0 then f∗ is the minimum of ex i.e. 0. If
y < 0 then by taking x→ −∞we obtain f∗ =∞. For
y > 0 the minimizing x∗ obeys: y = ex∗ and from this
x∗ = log y so f∗ (y) = y (log y − 1). Summarizing:

f∗ (y) =

 y (log y − 1) y > 0
0 y = 0
∞ y < 0

THEOREM 50. Given f (x) , f∗ (y) = supx∈D
{
yTx− f (x)

}
the

Legendre transform of f and f∗∗ (z) = supy
{
zT y − f∗ (y)

}
then

f (x) = f∗∗ (x) iff f (x)is a convex function.

PROOF. Let x (y) be the maximizing x in supx∈D
{
yTx− f (x)

}
.

Then yj = fj (x (y)). Also: f∗ (y) = yTx (y) − f (x (y)) so
f∗j (y) = xj (y). Finally, yj = f∗∗j (x (y)) yj = fj (x (y)). Clearly
δyj = fjk (x (y))xkl (y) δyl Also zk = f∗k (y (z)). Now, f∗ (y + δy) >

supx∈D
{
yTx− f (x)

}
+ supx∈D

{
δyTx− f (x)

}
Then f∗∗ (z) = zT y (z)−

(
y (z)T x (y (z))− f (x (y (z)))

)
=(

zT − x (y (z))
)
y (z) + f (x (y (z))) �

Convex functionals and Legendre transforms. A similar
definition of convexity can be applied to functionals. Func-
tional F [n] is convex if

F [λn2 + (1− λ)n1] ≤ λF [n2] + (1− λ)F [n1]

The following holds in analogy to Eq. A.3.2:

ˆ
(n1 (x)− n2 (x))

δF [n]

δn (x)

∣∣∣∣
n2

dx ≤ F [n1]− F [n2]

(A.3.4)

≤
ˆ

(n1 (x)− n2 (x))
δF [n]

δn (x)

∣∣∣∣
n1

dx(A.3.5)

A similar condition exists for the second functional derivative.
The Jensen inequality holds here as well: F [〈n〉] ≤ 〈F [n]〉.
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EXAMPLE 51. Consider the functionalQ [V ] =
´

Ω e
−βV (x)dx

where Ω is some finite spatial domain. This is convex inherit-
ing the property from f (V ) = eV :

Q [λV1 + (1− λ)V2] =

ˆ
Ω
e−β(λV1(x)+(1−λ)V2(x))dx

≤
ˆ

Ω

[
λe−βV1(x) + (1− λ) e−βV2(x)

]
dx

= λQ [V1] + (1− λ)Q [V2]

DEFINITION 52. The Legendre transform of a function F [n]
defined in some function domain is

(A.3.6) F ∗ [m] = max
n∈D

{ˆ
n (x)m (x) dx− F (n)

}
defined for functions m. We note that the domain of definition
of F ∗ may be much larger than D, the domain of definition of
F .

The Legendre transform F ∗ [m] is convex in its domain,
even if the functional F [n] is not. The proof is similar to that
of Lemma 48. Also, the Fenchel inequality becomes:

(A.3.7)
ˆ
m (x)n (x) dx ≤ F (n) + F ∗ [m]
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The virial theorem

B.1. Dilation relations

Consider the normalized wave function ψ (x) of a particle
of massme in a potential V (x). From it, we can define a family
of normalized wave functions:

(B.1.1) ψγ (x) = γ1/2ψ (γx) .

We can check that each member is indeed normalized by re-
placing variable in the normalization integral y = γx:

〈ψγ |ψγ 〉 =

ˆ
γψ (γx)2 dx

=

ˆ
ψ (y)2 dy

= 1.

This operation of "stretching" (γ < 1) or “compressing” (γ > 1)
the argument of a function is called a dilation. Dilations affect
functionals. Consider the kinetic energy functional:

T [ψ] = − ~2

2m

ˆ
ψ (x)∗ ψ′′ (x) dx

In order to calculate the effect of the dilation on the functional
prove that:

ψ′′γ (x) = γ5/2ψ′′ (γx)

Then, using this prove that:

T [ψγ ] = γ2T [ψ](B.1.2)

88
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This transform property of the kinetic energy carries over to
many body wave functions, where the dilation is uniform:

(B.1.3) Ψγ (x1,x2, . . . ,xN ) = γ3N/2Ψ (γx1, γx2, . . . , γxN )

Consider a potential which is a homogeneous function of order
M , i.e. has the property:

(B.1.4) V (γx1, γx2, . . . , γxN ) = γMV (x1,x2, . . . ,xN )

Then the corresponding potential functional

V [Ψ] =

ˆ
Ψ (x1,x2, . . . ,xN )2 V (x1,x2, . . . ,xN ) d3x1d

3x2 · · · d3xN

transforms under dilation in the following way:

V [Ψγ ] = γ−MV [Ψ](B.1.5)

For the Harmonic oscillators M = 2 and V [Ψγ ] = γ−2V [Ψ].
For Coulomb interaction M = −1 so V [Ψγ ] = γV [Ψ].

The Hamiltonian of Homogeneous potential then has the
interesting property:

(B.1.6) E [Ψ] = T [Ψ] + V [Ψ]

then:

(B.1.7) E [Ψγ ] = γ2T [Ψ] + γ−MV [Ψ]

B.2. The virial theorem - classical mechanics

First, let us define the virial. For a system with coordinate
xn collectively denoted as x the virial in classical mechanics is
the time average of x · F where F is the force vector:

virial = 〈x · F 〉 ≡ 1

τ

ˆ +τ/2

−τ/2
x (t) · F (t) dt

Here, x are the Cartesian coordinates of the system particles
and F the forces. The average is a long time trajectory. It
is assumed that the trajectory is so long that it has forgot it’s
starting point (except that the total energy and momentum
are preserved). An axiomatic assumption (called that is that
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the time average is equal to the thermodynamics average over
an ensemble. For example, if the kinetic energy is 〈T 〉 then
the ensemble average can be take as the Canonical ensemble
average at inverse temperature β = 3N

2〈T 〉 . For forces derived
from potentials:

F = −dV (x)

dx
The viral is the canonical average:

virial = 〈x · F 〉

=
1

Q (β)

ˆ
e−βV (x)

(
x · −dV (x)

dx

)
dx

where
Q (β) =

ˆ
e−βV (x)dx

EXERCISE 53. Prove by partial integration and using the
fact that lim|x|→∞ e

−βV (x) = 0 that

virial = −3Nβ−1

From this deduce that

virial = −2 〈T 〉 .
The virial is related to a dilations:

EXERCISE 54. Euler’s Lemma: Prove that for systems with
potential which is homogeneous of order M (see Eq. B.1.5)

x · dV (x)

dx
= MV (x)

Deduce from this that for such systems:

virial = −M 〈V 〉
It thus follows that:

THEOREM 55. The virial theorem (classical mechanics): For
systems with homogeneous potentials of order M

(B.2.1) 2 〈T 〉 −M 〈V 〉 = 0
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For purely Coulombic systems, M = −1 and one must have

(B.2.2) 2 〈T 〉 = −〈V 〉

B.3. The virial theorem - quantum mechanics

Consider a Hamiltonian Ĥ = T̂+V̂ where V̂ = V (x1, . . . ,xN )
is homogeneous of order M . Then the GS wave function ΨGS

minimizes the energy functional Eq. B.1.6. Thus the scaled
wave function, defined by

(B.3.1) Ψλ (x1, . . . ,xN ) = γ3N/2ΨGS (γx1, . . . , γxN )

has the energy functional Eq. B.1.6 given by (see Eq. B.1.7

(B.3.2) E [Ψγ ] = γ2T [ΨGS ] + γ−MV [ΨGS ]

Since the energy is minimized when γ = 1 we have

(B.3.3)
(
d

dγ
E [Ψγ ]

)
γ=1

= 0

and therefore:

(B.3.4) 0 = 2T [ΨGS ]−MV [ΨGS ]

which shows that Theorem 55 also holds in quantum mechan-
ics.

For Coulomb potentials M = −1 we have

EGS = T [ΨGS ] + V [ΨGS ](B.3.5)

=
V [ΨGS ]

2
(B.3.6)

= −T [ΨGS ] .(B.3.7)

A subtle but important issue: all energies and potentials
in the above expressions are absolute. We usually give energy
and potentials only to within an additive constant. However,
the fact that the potential is homogeneous, it cannot tolerate
addition of a constant (x2 is homogeneous of order 2 but x2+a
is not).
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B.4. Other Dilation Facts

Consider the Schrödinger equation:

(B.4.1) − ~2

2me
ψ′′ (x) + V (x)ψ (x) = Eψ (x) .

Evaluate at the point λx:

(B.4.2) − ~2

2me
ψ′′ (γx) + V (γx)ψ (γx) = Eψ (γx) .

Then define ψγ (x) = ψ (γx) and using ψ′′ (γx) = 1
γ2ψ

′′
γ (x):

(B.4.3) − ~2

2me
ψ′′γ (x) + γ2V (γx)ψγ (x) = γ2Eψγ (x)

We thus see that the SE is invariant under the dilation trans-
formation composed of three steps:

v (x)→ vγ (x) = γ2v (γx)(B.4.4)

E → Eγ = γ2E(B.4.5)

ψ (x)→ ψγ (x) = ψ (γx)(B.4.6)

Now, apply this for Coulomb systems, where the potential is
homogeneous of order M = −1. Then

v (x)→ vγ (x) = γv (x)(B.4.7)

E → Eγ = γ2E(B.4.8)

ψ (x)→ ψγ (x) = ψ (γx)(B.4.9)

In other words, we have:

THEOREM 56. In a purely Coulombic system if the potential
is scaled by a factor γ then the energy is scaled by a factor γ2

and the wave function is dilated by a factor γ. Furthermore the
kinetic energy is scaled by a factor γ2 as well.
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PROOF. The only thing left to prove is the last statement
concerning the kinetic energy. This follows from the fact thatE
scales as γ2 and from the virial theorem by which T = −E. �

EXERCISE 57. An application of the above discussion al-
lows an interesting exact conclusion concerning the ground-
state energy per particle ε (kF , κ) of the homogeneous electron
gas of density n. Here the parameter kF =

(
3π2n

)1/3 is the
Fermi momentum (see Eq. 2.1.7) and the Coulomb coupling
strength is κ = e2

4πε0
. Show that:

(B.4.10)
∂ log ε

(
kF , e

2
)

∂ log kF
+
∂ log ε (kF , κ)

∂ log κ
= 2

Hint: Start from ε (λkF , λκ) = λ2ε (kF , κ). Then take the
derivative with respect to λ.



APPENDIX C

Minimization Theory

The minimization of multidimensional functions is impor-
tant for electronic structure because of the variational theorem
of quantum mechanics and the variational theorem of density
functional theory. Here we outline the main results which are
used throughout the book.

C.1. Necessary conditions for minimization

We start with the problem of minimization of a simple 1D
function. Given a function f(x), we want to find a point x∗
such that the function is minimal. It is clear that the slope of
f (x) at x = x∗ must be zero. If the slope is positive then we
can go left (decrease x∗) and reduce f (x). Same logic (but
to right) if it was negative. Thus, a necessary condition for a
minimum is:

f ′ (x∗) = 0

Let us expand in a Taylor’s series the function around the point
x∗. Clearly, we have: f (x) = f (x∗) + 1

2f
′′ (x∗) (x− x∗)2 +

· · · where the linear term, proportional to f ′ (x∗) is zero. If
we assume that f ′′ (x∗) 6= 0 we find that when x is extremely
close to x∗ f (x) is nearly a parabola and it is “smiling” when
f ′′ (x∗) > 0, i.e. has a minimum and “sad” when f ′′ (x∗) < 0
i.e. has a maximum. Thus, the 2nd necessary condition for a
minimum is:

f ′′ (x) > 0.

94
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Now, let us consider the case of functions of two variables,

f (r) where r =

(
x
y

)
≡
(
x y

)T
. Notice that we use the

"transpose" symbol superscript-T to turn a column vector into
a row vector. Let us Taylor-expand f (r) around a point 2D
space r∗, using the notation ∇f (r∗) ≡

(
∂f
∂x

∂f
∂y

)
r∗
≡ gT∗ as

the gradient of f and ∇T∇f (r∗) =

(
∂2f
∂x2

∂2f
∂y∂x

∂2f
∂x∂y

∂2f
∂y2

)
r∗

= K∗

as the symmetric “Hessian” of f :

f (r) = f (r∗) +∇f (r∗) (r − r∗)

+
1

2
(r − r∗)T ∇T∇f (r∗) (r − r∗) + · · ·

= f (r∗) + gT∗ (r − r∗) +
1

2
(r − r∗)T K∗ (r − r∗) + · · ·

When r∗ is a minimum, moving infinitesimally away from it in
any direction will not change the function in a linear manner.
Why? If the function decreases moving from r∗ in some direc-
tion d, no matter how small the step size, then this contradicts
that r∗ is a minimum. If the function increases linearly in direc-
tion d then due to continuity it must decrease in the direction
−d, again, contradicting the assertion that r∗ is a minimum.
Hence the function does not change linearly in any direction.
In other words, the gradient g∗ must be zero. The the Taylor
expansion becomes: f (r) = f (r∗)+ 1

2 (r − r∗)T K∗ (r − r∗)+
· · · which when limited to a very small surrounding of r∗ is the
equation of a parabola. In order for f (r) to have a minimum
at r∗ the second term on the right hand side must always be
positive.

DEFINITION 58. A matrixK for which xTKx is always pos-
itive for any x 6= 0 is called a positive definite matrix in this
case we write ”K > 0”
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Since our Hessian is symmetric, we infer from the follow-
ing lemma that all its eigenvalues are positive:

LEMMA 59. A symmetric matrix is PD if and only if all its
eigenvalues are positive.

The necessary conditions for a minimum of multivariable
functions f (r) are:

gT∗ = ∇f (r∗) = 0,

K = ∇T∇f (r∗) > 0.

EXAMPLE 60. As an example, let us take the function f(x) =
x2 + y2. This function is zero at the origin and non-negative
elsewhere. So its minimum is at x = y = 0. The gradient is
∇f (x) = 2

(
x y

)
is indeed zero at the origin. The Hessian

is K = 2

(
1 0
0 1

)
, hence the eigenvalues are real and it is

PD.

C.2. Constrained minimization

Suppose we want to minimize f (x, y), under a constraint
that y = g (x). We can transform the problem into a minimiza-
tion of a function of single variable: minimize the function
F (x) ≡ f (x, g (x)). The derivative with respect to x must be
zero at x∗. We use the chain rule:

0 = F ′ (x∗) =

(
∂f

∂x

)
(x∗,g(x∗))

+

(
∂f

∂y

)
(x∗,g(x∗))

g′ (x∗)

and we can do a similar job for the second derivative. Finding
equations for x∗.

But sometimes it is not possible to write the constraint di-
rectly as y = g(x). A more general form is: h(x, y) = 0. This
is also more symmetric. Consider the situation of minimizing
f(x, y) under the constraint h(x, y) = 0. An example is shown
in Figure C.2.1 where contours of f and h are shown, includ-
ing the h = 0 contour. The minimum of f on this contour is
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depicted by a black point at r∗ = (x∗, y∗). This means that
moving from that point slightly along the h = 0 contour r∗
will not change f in a linear way, for if f decreases this is not
a minimum and if f increases we will move in the opposite
direction and f will necessarily decrease. Thus ∇f (r∗), must
be normal to the line h = 0. Furthermore, ∇h (r∗) must also
be normal to this contour. Thus, the necessary condition for
minimum is that both vectors point to the same direction and
so are proportional. We denote the proportionality constant by
λ∗:

∇f (r∗) = λ∗∇h (r∗)(C.2.1)

h (r∗) = 0(C.2.2)

Lagrange noted that both these equations are obtainable by
minimizing the function

(C.2.3) L (r, λ) = f (r)− λh (r)

with respect to r and maximizing it with respect to λ.

EXAMPLE 61. Consider minimizing f (x, y) = x + y under
the constraint function h (x, y) = x2 + y2 − 1 (i.e. find the
point on the unit circle for which x + y is minimal). Then the
Lagrangian is

(C.2.4) L (x, y) = (x+ y)− λ
(
x2 + y2 − 1

)
Then

(C.2.5) ∇L =
(
(1− 2λx) , (1− 2λy) ,

(
x2 + y2 − 1

))
Equating to (0, 0, 0) gives

(C.2.6) 1 = 2λ∗x∗ = 2λ∗y∗

and x2 + y2 = 1 from which we deduce that λ∗is finite and
x∗ = y∗ and so x∗ = y∗ = ± 1√

2
and λ∗ = 1

2x∗
= ± 1√

2
,.

Since these are necessary conditions, we need to consider
them further (they might correspond to a maximum of f).
The minimum corresponds only to the negative solution. The
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FIGURE C.2.1. Contours of the function
f (x, y) and the constraints h (x, y).The gradi-
ents ∇f and ∇g are orthogonal to the contours
and point in direction of function ascent. The
black point is the location of (x∗, y∗)which
minimize f (x, y) under the constraint that
h (x, y) = 0.

method of Lagrange multipliers is often more convenient to
work with than direct replacement. The problem is thus that
of finding a minimum of f(r1, . . . , rN ) under the M < N
constraints h(r1, . . . , rN ) = c, or hα(r1, . . . , rN ) = cα, α =
1, . . . ,M is: find r∗ such that:

h (r∗) = c(C.2.7)

∀r : f (r∗)h (r∗) ≤ f (r) , h (r) = c(C.2.8)

To facilitate such a search, we formulate the Lagrangian func-
tion:

(C.2.9) L (r,λ; c) = f (r)−
M∑
α=1

λα (hα (r)− cα) .
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Our plan is to find the position of r(λ) which minimizes L for
any choice of λ and then change λ until h (r (λ)) = c. At
λ∗ we have L assuming a minimum at a point r∗ = r(λ∗).
The necessary conditions for the constrained minimum to be
achieved at the point r∗ and with the Lagrange multipliers λ∗
are the so-called Euler-Lagrange equations:

0 =
∂

∂ri
L (r∗,λ∗; c) =

∂

∂ri
f (r)−

M∑
α=1

λα
∂

∂ri
hα (r)(C.2.10)

0 =
∂

∂λα
L (r∗,λ∗; c) = hα (r∗)− cα(C.2.11)

Note that λ∗ is not a minimizer of L. In fact the opposite is
true: λ∗ is its maximizer.

It is interesting now to ask how f(r∗) changes if we change
the value of the constraint cα. Indeed, when the constraints
are changed, the optimized point and Lagrange multiplier can
change, so the Lagrangian is changed:

∂L

∂cα
=
∂ri
∂cα

∂L

∂ri
+
∂λβ
∂cα

∂L

∂λβ
+
∂L

∂cα
(C.2.12)

The first two terms on the right are zero by the Euler-Lagrange
equations, Eq. (C.2.10) so

(C.2.13)
∂L

∂cα
=

∂L

∂cα
= λα

This equation reveals the meaning of the Lagrange multi-
pliers λα∗ at the optimal point: they are equal to the rate at
which the optimal value of the minimized function f changes
when cα, the value of the α constraint, is changed. This is an
important result which we use below whenever we want to
give physical significance to Lagrange multipliers.
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C.3. Minimization of functionals

The same considerations for functions apply for function-
als. Given a functional I [f ], a necessary condition for its min-
imum is:

(C.3.1)
δI

δf (r)
= 0.

For example, consider a 1D classical particle of mass m in a po-
tential well v(x). The action S is a functional of the trajectory
x (t) is the integral of the Lagrangian L = T −V along a trajec-
tory where T = 1

2mẋ (t)2 is the kinetic energy and V = v (x (t))
is the potential energy along the trajectory:

(C.3.2) S [x] =

ˆ tf

t0

[
1

2
mẋ

(
t′
)2 − v (x (t′))] dt′

For any trajectory x(t) between times t0 and tf , S[x] returns
a number. Lagrange showed that finding the trajectory that
makes L[x] stationary (although, not necessarily minimal), un-
der the condition that x(t0) = x0 and x(tf ) = xf are given and
thus not varied, is equivalent to solving Newton’s equations
under these same constraints. The functional differentiation
of the kinetic energy is performed with:

δT [x] =
1

2
m

ˆ tf

t0

[(
ẋ
(
t′
)

+ δẋ
(
t′
))2 − (ẋ (t′))2] dt′(C.3.3)

=
1

2
m

ˆ tf

t0

2ẋ
(
t′
)
δẋ
(
t′
)
dt′(C.3.4)

= −m
ˆ tf

t0

ẍ
(
t′
)
δx
(
t′
)
dt′(C.3.5)

and:
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−δV [x] = −
ˆ tf

t0

[
v
(
x
(
t′
)

+ δx
(
t′
))
− v

(
x
(
t′
))]

dt′(C.3.6)

= −
ˆ tf

t0

v′
(
x
(
t′
))
δx
(
t′
)
dt′(C.3.7)

Demanding δS = 0 we find:

(C.3.8) −mẍ (t)− v (x (t)) = 0

which is the Newton equation of motion.

EXERCISE 62. Use functional analysis and the Euler-Lagrange
equation to find the shape in a plane of a closed contour encir-
cling maximal area under the constraint of a given circumfer-
ence l0.

SOLUTION. Assume the origin is within the shape and the
perimeter is r (θ) = r (θ)

(
cos θ sin θ

)
. Then we want to

find r (θ).
(C.3.9)

r′ (θ) = r′ (θ)
(

cos θ sin θ
)

+ r (θ)
(
− sin θ cos θ

)
The area of a small arc between θ and θ+ δθ is δS = 1

2r (θ)2 dθ
hence the area is

(C.3.10) S [r] =

ˆ 2π

0

1

2
r (θ)2 dθ

The circumference is δL = |r′ (θ)| dθ so

(C.3.11) δL =

√
r (θ)2 + r′ (θ)2dθ

hence

(C.3.12) L [r] =

ˆ 2π

0

√
r (θ)2 + r′ (θ)2dθ

Now minimize S under the constraint that L = l0.



APPENDIX D

Spin states

D.1. Spin: The Stern-Gerlach experiment

A Stern-Gerlach device is a magnet with two non-equivalent
poles, N and S in the z direction through which a beam of
atoms of valence 1 shoots in the x direction. As a result of
the inequivalent poles the magnetic field is non-homogeneous
and the magnetization of each electron is either attracted or
repelled from the high magnetic field near the N pole. Stern
and Gerlach found that the beam splits into two well-defined

S

N
z

y

FIGURE D.0.1. A schematic depiction of a
Stern-Gerlach experiment. An atomic beam of
Ag atoms moves in the x direction between a
magnet with non-homogeneous magnetic field.
The atoms with spin up electrons are drawn to-
wards the high field and those with spin down
repelled by the strong field. Hence the beam
splits into two.
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beams. At first they rejoiced that they “proved” Bohr’s theory
of the H atom expecting that the angular momentum of the
electron in the atom is quantized. However, it was soon re-
alized that the l = 1 angular momentum predicts the beam
to split into three sub beams: an “up” magnetization beam, a
“down” magnetization beam and a unperturbed beam having
zero magnetization. Later it was understood that the situa-
tion was even more baffling as the valence electron of Ag is in
the s (l = 0) state, and no splitting should have been seen at
all! The correct interpretation of the Stern-Gerlach experiment
was given several years later by Uhlenbeck and Goudsmit, who
posited the existence of the “electron spin”, where the motion
has only two states of magnetization.

D.2. Spin operators

We assume that the two states of the electron are a spinor
of 2 components. For the SG device which splits the beam in
the z direction we designate the spin up and down orthonor-

mal states as αz =

(
1
0

)
and βz =

(
0
1

)
. The operators on

such spin states must be 2×2 matrices. For example, the oper-
ator corresponding to the spin component of spin in direction

z is: Ŝz = 1
2

(
1 0
0 −1

)
and it is easy to verify that αz and βz

are the eigenstates with eigenvalues of M = 1
2 and M = −1

2
respectively. This is analogous to the angular momentum, z
component Lz = i~ ∂

∂φ which has as eigenvalues m~ where m
can assume 2l + 1 integers m = −l, . . . ,+l and l is the total
angular momentum quantum number which is a non-negative
integer and ~2l (l + 1) is the eigenvalue of the total angular
momentum operator L̂2. Since in spin M has only 2 possibili-
ties then the total spin angular momentum S must be equal to
1
2 (since 2× 1

2 + 1 = 2).
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Just like there are angular momentum components in the
y and z directions, so does spin have such components. A
device which splits the incoming atomic beam into two sub-
beams moving in the x direction is the SGx apparatus and
experimental observation tells us that when a beam of “up”
electrons in the state αz is passed through such SGx device in
the the beam splits into exactly two beams of equal intensity.
Hence the state αz must be a linear combination Aαx + Bβx
with |A|2 = |B|2 = 1 of the states representing the spin-up
and spin-down of the SGx apparatus, The same goes for βz.
Hence we write αz = 1√

2
(αx + βx) and βz = 1√

2
(αx − βx).

From this we find αx = 1√
2

(
1
1

)
and βx = 1√

2

(
1
−1

)
with

Ŝx = 1
2

(
0 1
1 0

)
. Finally, we can define spin-up and -down

for the SGy apparatus and this time the linear combination

coefficients must involve imaginary numbers: αy = 1√
2

(
1
i

)
and βy = 1√

2

(
i
1

)
with Ŝy = 1

2

(
0 −i
i 0

)
.

It is quite straightforward to see that the spin operators
obey the angular momentum commutation relations:

[
Ŝa, Ŝb

]
=

iŜc where abc are a cyclic permutation of xyz. For angular mo-
mentum operators L2 has the eigenvalues l (l + 1) where l can
be any non-negative integer. Here, one has: Ŝ2 = Ŝ2

x + Ŝ2
y +

Ŝ2
z = 3

4

(
1 0
0 1

)
and since 3

4 = 1
2

(
1
2 + 1

)
we see once again

that the total spin quantum number is s = 1
2 . showing that the

total spin obeys Furthermore, one sees that ŜaŜb + ŜbSa = 0
(when a 6= b). In orbital angular momentum it is useful to de-
fine the raising and lowering ioperators L± == L)xx±iLy. The

same can be done for spin, with Ŝ+ = Ŝx + iŜy =

(
0 1
0 0

)
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and Ŝ− = Ŝx − iŜy =

(
0 0
1 0

)
. Notice that Ŝ+βz = αz

so indeed this operator raises the spin by 1. Furthermore,
Ŝ+αz = 0 because one cannot raise the spin beyond 1

2 . Notice

that
[
Ŝ2, S±

]
= 0, so S± cannot change the total spin state of

the system, only the spin component. It can be checked that:
Ŝ2 = Ŝ+Ŝ− + Ŝ2

z − Ŝz and Ŝ2 = Ŝ−Ŝ+ + Ŝ2
z + Ŝz.

D.3. Many electron spin states

The usefulness of these formal relations is evident when
we have more than one particle. For example, suppose we

have 2 particles. The total spin Ŝ2 =
(
~̂
S (1) +

~̂
S (2)

)2

of the
system can be written as

Ŝ2 = Ŝ2 (1) + Ŝ2 (2)

+ Ŝ+ (1) Ŝ− (2) + Ŝ− (1) Ŝ+ (2)(D.3.1)

+ 2Ŝz (1) Ŝz (2)

A simple example of 2 electrons isX (2, 1, 1; 1) = αz (1)αz (2) ≡
αzαz. It is immediate to see this state has N = 2 electrons and
M = 1. To show it has S = 1 We use Eq. D.3.1: Ŝ2X (2, 1, 1; 1) =
3
2αzαz + 21

4αzαz = 2αzαz i.e. S (S + 1) = 2 and so S = 1.
We now use the Ŝ− to lower the z component and obtain
X (2, 1, 0; 1) = Ŝ−X (2, 1, 1; 1) =

(
Ŝ− (1) + Ŝ− (2)

)
αzαz =

βzαz + αzβz. What about the S = 0 state of 2 electrons? Here
we show that X (2, 0, 0; 1) = αzβz − βzαz. Using Eq. D.3.1 we
prove that S = 0 this state: Ŝ2X (2, 0, 0; 1) = 3

2X (2, 0, 0; 1) −
X (2, 0, 0; 1)− 1

2X (2, 0, 0; 1) = 0 hence S = 0.
When we take two electrons their spins add up. The total

state has spin quantum number S which can be the sum of
the spin of each electron, i.e 1

2 + 1
2 = 1 or the difference 1

2 −
1
2 = 0. In general, when we add electrons can be in 4 states
|N1S1M1〉 |N2S2M2〉 → |N,SM〉 where N = N1 + N2, M =
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M1 + M2 and |S2 − S1| ≤ S ≤ S1 + S2. We can build the
Nelectrons spin states incrementally, building from N = 1 and
adding in each stage an electron. To get a N electron state of
spin S and component M we either start from a N−1 electron
state of spin S + 1

2 and then reduce the spin by 1
2 :

X (N,S,M, k) =

√
S +M + 1

2 (S + 1)
X

(
N − 1, S +

1

2
,M +

1

2
, k′
)
β (N)

(D.3.2)

−

√
S −M + 1

2 (S + 1)
X

(
N − 1, S +

1

2
,M − 1

2
, k′
)
α (N)(D.3.3)

or start from a N − 1 electron state of spin S − 1
2 and then

increase the spin by 1
2 :

X (N,S,M, k) =

√
S +M

2S
X

(
N − 1, S − 1

2
,M − 1

2
, k′
)
α (N)

(D.3.4)

+

√
S −M

2S
X

(
N − 1, S − 1

2
,M +

1

2
, k′
)
β (N)(D.3.5)

We can then count the number of states using the branching
diagram:

For example, let us construct the spin functions of N = 3
electrons and S = 1

2 . We start from the 4 2-electron states:
X (2, 1,−1) = ββ, X (2, 1, 0) = 1√

2
(αβ + βα), X (2, 1, 1) =

αα and X (2, 0, 0) = 1√
2

(αβ − βα). When a third electron is
added the states we have 4 states:

X

(
3,

1

2
,
1

2
, 1

)
=

√
1

6
(2ααβ − αβα− βαα)(D.3.6)

X

(
3,

1

2
,−1

2
, 1

)
=

√
1

6
(−2ββα+ βαβ + αββ)(D.3.7)
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and

X

(
3,

1

2
,
1

2
, 2

)
=

√
1

2
(αβα− βαα)(D.3.8)

X

(
3,

1

2
,−1

2
, 2

)
=

√
1

2
(αββ − βαβ)(D.3.9)

2-electron state was X (2, 0, 0), the 3 electron state must
have S = 1

2 , i.e. it is X
(
3, 1

2 ,
1
2

)
, X

(
3, 1

2 ,−
1
2

)
while if the 2

electron state was X (2, 1, 0), then the
resulting state can be:X

(
3, 1

2 ,
1
2

)
,X
(
3, 1

2 ,−
1
2

)
while if the

2 electron state was X (2, 1, 1) the new state can be X
(
3, 3

2 ,
3
2

)
or X

(
3, 3

2 ,
1
2

)
and three electron state is either 1 − 1

2 = 1
2 or

1 + 1
2 = 3

2 . Thus there are 2 S = 1
2 states and one S = 3

2 states.
The S = 3

2 has 4 states, M = −3
2 ,−

1
2 ,

1
2 ,

3
2 . The two S = 1

2
states has and the angular momentum, component M .

t are the possible spin states? For N electrons they are
written as |N,S,Mk〉 where S is the spin quantum number
M = −S,−S + 1, . . . , S− 1, S has 2S + 1values and k an addi-

tional index. In principle, for a given M there are
(
N
M

)
=

N !
M !(N−M)! different spin states (so

∑N
M=0

(
N
M

)
= 2N being

the total number of spin states for N electrons).
Let us take N = 5 electrons, for example, and M = 2.

There are 10 states. S = 2, 3, 4, 5 gives just 5 states X (5, S, 2)
so additional functions are needed with an additional index
(k) to distinguish between them.

The movement from the |N,S,M, k〉 notation to the ααβ · · ·α
notation is important for applying the Pauli principle. Given a
spin state X (N,S,M, k) and a spatial state ψ (1, . . . , N) we
can form a function obeying the Pauli by antisymmetrization:
(D.3.10)

ΨNSMk (1, . . . , N) = Âψ (r1, . . . , rN )X (N,S,M, k)
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where Â = 1√
N !

∑
P (−)P P is the Hermitean antisymmetriz-

ing projection operator and the sum is over all permutations of
the numbers 1, . . . , N , each permutation is symmetric (comes
with sign + or antisymmetric, comes with minus sign). As an
example, we take 2 electrons in the spin state X (2, 0, 0, 0) =
αβ − βα. In this case the antisymmetrizing operator is A =

1√
2

(1− P12) where P12 is the operator exchanging 1 and 2:
P12ψ (r1, r2) (αβ − βα) = ψ (r2, r1) (βα− αβ), leading to

Ψ2000 (1, 2) = Âψ (r1, r2)X (2, 0, 0, 0)

=
1√
2

(ψ (r1, r2) + ψ (r2, r1)) (αβ − βα)

we see that the symmetric part of ψ gets multiplied by the
antisymmetric spin function.
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