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Abstract 

Experimental studies of choice behavior document distinct, and sometimes contradictory, 

deviations from maximization. For example, people tend to overweight rare events in one-

shot decisions under risk, and to exhibit the opposite bias when they rely on past experience. 

The common explanations of these results assume that the contradicting anomalies reflect 

situation-specific processes that involve the weighting of subjective values and the use of 

simple heuristics. The current paper analyzes 14 choice anomalies that have been described 

by different models, including the Allais, St. Petersburg, and Ellsberg paradoxes, and the 

reflection effect. Next, it uses a choice prediction competition methodology to clarify the 

interaction between the different anomalies. It focuses on decisions under risk (known payoff 

distributions) and under ambiguity (unknown probabilities), with and without feedback 

concerning the outcomes of past choices. The results demonstrate that it is not necessary to 

assume situation-specific processes. The distinct anomalies can be captured by assuming high 

sensitivity to the expected return and four additional tendencies: pessimism, bias toward 

equal weighting, sensitivity to payoff sign, and an effort to minimize the probability of 

immediate regret. Importantly, feedback increases sensitivity to probability of regret. Simple 

abstractions of these assumptions, variants of the model Best Estimate And Sampling Tools 

(BEAST), allow surprisingly accurate ex ante predictions of behavior. Unlike the popular 

models, BEAST does not assume subjective weighting functions or cognitive shortcuts. 

Rather, it assumes the use of sampling tools and reliance on small samples, in addition to the 

estimation of the expected values. 

Keywords: experience-description gap, out-of-sample predictions, St. Petersburg paradox, 

prospect theory, reinforcement learning 
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From Anomalies to Forecasts: Toward a Descriptive Model of Decisions under Risk, under 

Ambiguity, and from Experience 

Behavioral decision research is often criticized on the grounds that it highlights 

interesting choice anomalies, but rarely supports clear forecasts. The main reason for the 

difficulty in deriving clear predictions is that the classical anomalies are explained with 

several descriptive models, and in many cases these models suggest contradicting behavioral 

tendencies. Thus, it is not easy to predict the joint effect of the different tendencies. Nobel 

laureate Alvin E. Roth (see Erev, Ert, Roth, et al., 2010) clarified this critique by asking 

authors of papers that explain some of the anomalies to add a 1-800 (toll-free) phone number 

and be ready to answer questions concerning the conditions under which their model applies.   

In a seminal paper, Kahneman and Tversky (1979) attempted to address this problem 

by first identifying four of the most important deviations from maximization (defined here as 

violations of the assumption that people maximize expected return), replicating them in one 

experimental paradigm, and finally proposing prospect theory, a model that captures the joint 

effect of all these phenomena and thus allows clear predictions. Specifically, Kahneman and 

Tversky replicated—and prospect theory addresses—the certainty effect (Allais paradox, 

Allais, 1953; see Row 1 in Table 1), the reflection effect (following Markowitz, 1952; see 

Row 2 in Table 1), overweighting of rare events (following Friedman & Savage, 1948; see 

Row 3 in Table 1), and loss aversion (following Samuelson, 1963; see Row 4 in Table 1). 

Importantly, the Kahneman and Tversky's replication, and prospect theory, focused on a very 

specific choice environment: choice between gambles with “at most two non-zero outcomes” 

(Kahneman & Tversky, 1979, p. 275).    
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Table 1   

Examples of Fourteen Phenomena and Their Replications in the Current Study 

 Classical Demonstration Current Replication 

Phenomenon Problems %B Choice Problems %B Choice 

Phenomena observed in studies of decisions without feedback 

1. Certainty effect/Allais paradox (Kahneman & Tversky, 1979, following Allais, 1953) 

 A: 3000 with certainty 

B: 4000, .8; 0 otherwise 

A’: 3000, .25; 0 otherwise 

B’: 4000, .20; 0 otherwise 

 

20% 

 

65% 

A: 3 with certainty 

B: 4, .8; 0 otherwise  

Aʹ: 3, .25; 0 otherwise 

Bʹ: 4, .20; 0 otherwise 

 

42% 

 

61% 

2. Reflection effect (Kahneman & Tversky, 1979) 

 A: 3000 with certainty 

B: 4000, .8; 0 otherwise 

A’: −3000 with certainty 

B’: −4000, .8; 0 otherwise 

 

20% 

 

92% 

A: 3 with certainty 

B: 4, .8; 0 otherwise  

Aʹ: −3 with certainty 

Bʹ: −4, .8; 0 otherwise 

 

42% 

 

49% 

3. Over-weighting of rare events (Kahneman & Tversky, 1979) 

 A: 5 with certainty 

B: 5000, .001; 0 otherwise 

 

72% 

A: 2 with certainty 

B: 101, .01; 1 otherwise  

 

55% 

4. Loss aversion (Ert & Erev, 2013, following Kahneman & Tversky, 1979) 

 A: 0 with certainty 

B: −100, .5; 100 otherwise 

 

22% 

A: 0 with certainty 

B: −50, .5; 50 otherwise  

 

34% 

5. St. Petersburg paradox/risk aversion (Bernoulli, 1738/1954) 

 A fair coin will be flipped until it 

comes up heads. The number of 

flips will be denoted by the letter k. 

The casino pays a gambler 2k. 

What is the maximum amount of 

money that you are willing to pay 

for playing this game? 

 

Modal 

response: 

less than 8 

A: 9 with certainty 

B: 2, 1/2; 4, 1/4; 8; 1/8; 16, 

1/16; 32, 1/32; 64, 1/64;  

128, 1/128; 256 otherwise 

 

38% 

6. Ellsberg paradox/Ambiguity aversion (Einhorn & Hogarth, 1986, following Ellsberg, 1961) 

 Urn K contains 50 red and 50 white 

balls. Urn U contains 100 balls, 

each either red or white, with 

unknown proportions.  

Choose between: 

A: 100 if a ball drawn from K is 

red; 0 otherwise 

B: 100 if a ball drawn from U is 

red; 0 otherwise 

C: Indifference 

 

 

 

 

 

47% 

 

19% 

 

34% 

A: 10 with probability .5; 

0 otherwise 

B: 10 with probability ‘p’;  

0 otherwise (‘p’ unknown 

constant) 

 

 

37% 

7. Low magnitude eliminates loss aversion (Ert & Erev, 2013) 

 A: 0 with certainty 

B: −10, .5; 10 otherwise 

 

48% 

A: 0 with certainty 

B: −1, .5; 1 otherwise 

 

49% 
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 Classical Demonstration Current Replication 

Phenomenon Problems %B Choice Problems %B Choice 

8. Break-even effect (Thaler & Johnson, 1990) 

 A: −2.25 with certainty 

B: −4.50, .5; 0 otherwise 

A': −7.50 with certainty 

B': −5.25 .5; −9.75 otherwise 

 

87% 

 

77% 

A: −1 with certainty 

B: −2, .5; 0 otherwise  

Aʹ: −2 with certainty 

Bʹ: −3 .5; −1 otherwise  

 

58% 

 

48% 

9. Get-something effect (Ert & Erev, 2013, following Payne, 2005) 

 A: 11, .5; 3 otherwise 

B: 13, .5; 0 otherwise 

A’: 12, .5; 4 otherwise 

B’: 14, .5; 1 otherwise 

 

21% 

 

38% 

A: 1 with certainty 

B: 2, .5; 0 otherwise  

Aʹ: 2 with certainty 

Bʹ: 3 .5; 1 otherwise  

 

35% 

 

41% 

10. Splitting effect (Birnbaum, 2008, following Tversky & Kahneman, 1986) 

 A: 96; .90; 14, .05; 12 .05 

B: 96; .85; 90, .05; 12, .10  

 

 

73% 

A: 16 with certainty 

B: 1, .6; 50, .4  

Aʹ: 16 with certainty 

Bʹ: 1, .6; 44, .1; 48, .1; 50, .2  

 

49.9% 

 

50.4% 

Phenomena observed in studies of repeated decisions with feedback 

11. Under-weighting of rare events (Barron & Erev, 2003) 

 A: 3 with certainty 

B: 32, .1; 0 otherwise 

A’: −3 with certainty 

B’: −32, .1; 0 otherwise 

 

32% 

 

61% 

A: 1 with certainty 

B’: 20, .05; 0 otherwise 

Aʹ: −1 with certainty 

Bʹ: −20 .05; 0 otherwise 

 

29% 

 

64% 

12. Reversed reflection (Barron & Erev, 2003) 

 A: 3 with certainty 

B: 4, .8; 0 otherwise 

A’: −3 with certainty  

B’: −4, .8; 0 otherwise 

 

63% 

 

40% 

A: 3 with certainty 

B: 4, .8; 0 otherwise 

Aʹ: −3, with certainty 

Bʹ: −4, .8; 0 otherwise 

 

65% 

 

40% 

13. Payoff variability effect (Erev & Haruvy, 2009, following Busemeyer & Townsend, 1993) 

 A: 0 with certainty 

B: 1 with certainty 

A’: 0 with certainty 

B’: −9, .5; 11 otherwise 

 

96% 

 

58% 

A: 2 with certainty 

B: 3 with certainty 

A': 6 if E; 0 otherwise 

B': 9 if not E; 0 otherwise 

  P(E) = 0.5 

 

100% 

 

84% 

14. Correlation effect (Grosskopf, Erev, & Yechiam, 2006, following Diederich & Busemeyer, 1999) 

 A: 150+N1 if E; 50+N1 otherwise 

B: 160+N2 if E'; 60 +N2 otherwise 

A': 150+N1 if E; 50+N1 otherwise 

B': 160+N2 if E; 60 +N2 otherwise 

  Ni ~ N(0,20), P(E) = P(E') = .5 

 

82% 

 

98% 

A: 6 if E; 0 otherwise 

B: 9 if not E; 0 otherwise 

A’: 6 if E; 0 otherwise 

B’: 8 if E; 0 otherwise 

  P(E) = 0.5 

 

84% 

 

98% 

Note. The notation x, p means payoff of x with probability p. In the classical demonstrations, choice rates are for 

one-shot decisions in the no-feedback phenomena and for mean of the final 100 trials (of 200 or 400) in the 

with-feedback phenomena. In current replications, choice rates are for five consecutive choices without 

feedback in the no-feedback phenomena and for the last five trials (of 25) in the with-feedback phenomena.  
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Tversky and Kahneman (1992; and see Wakker, 2010) presented a refined version of 

prospect theory (cumulative prospect theory, CPT) that clarifies the assumed processes and 

their relationship to the computations required to maximize expected value (EV).  To 

compute the EV of a prospect, the decision maker should weight each monetary outcome by 

its objective probability.  For example, the EV of a prospect that provides “4000 with 

probability 0.8, 0 otherwise” is 4000∙(.8) + 0∙(.2) = 3200. CPT assumes modified weighting. 

The subjective value of each outcome is weighted by its subjective weight.  For example, the 

attractiveness of the prospect “4000 with probability 0.8, 0 otherwise” under CPT is 

V(4000)∙π(.8) + V(0)∙(1−π(0.8)), where V(∙) is a subjective value function that is assumed to 

reflect diminishing sensitivity and loss aversion, and π(∙) is a subjective weighting function 

that is assumed to reflect oversensitivity to extreme outcomes.   

The success of prospect theory—and later of its successor CPT—has triggered three 

lines of follow-up studies that attempt to reconcile this model with other choice anomalies. 

One line of research (e.g., Rieger & Wang, 2006; Tversky & Bar-Hillel, 1983; Tversky & 

Fox, 1995; Wakker, 2010) focuses on classical choice anomalies originally observed under 

experimental paradigms not addressed by the original model: the St. Petersburg paradox 

(Bernoulli, 1954; see Row 5 in Table 1) and the Ellsberg paradox (Ellsberg, 1961; see Row 6 

in Table 1). This line of research suggests that extending prospect theory or CPT to address 

these classical anomalies generally requires additional non-trivial assumptions and/or 

parameters. For example, it is difficult to capture the four original anomalies and the St. 

Petersburg paradox with one set of parameters (e.g., Blavatskyy, 2005; Rieger & Wang, 

2006).  

A second line of research focuses on newly-observed choice anomalies documented 

within the limited setting of choice between simple fully described gambles, which prospect 

theory was developed to address. These studies highlight new anomalies that emerge in this 
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setting but cannot be captured with CPT. For example, Ert and Erev (2013; see Row 7 in 

Table 1) showed that low stakes eliminate the tendency to exhibit loss aversion; Thaler and 

Johnson (1990) documented a “break-even” effect (more risk seeking when only the risky 

choice can prevent losses; see Row 8 in Table 1); Payne (2005) documented a “get-

something” effect (less risk seeking when only the safe prospect guarantees a gain; see Row 9 

in Table 1); and Birnbaum (2008) documented a splitting effect (splitting a possible outcome 

into two less desirable outcomes can increase its attractiveness; see Row 10 in Table 1). 

Against the background of the difficulty in reconciling CPT with these new anomalies, an 

alternative approach has suggested that some anomalies might be more naturally explained as 

a reflection of simple heuristics rather than as a reflection of subjective weighting processes.  

For example, the get-something effect can be the product of the use of a Pwin heuristic, 

which implies choosing the option that maximizes the probability of gaining (e.g., 

Venkatraman, Payne, & Huettel, 2014).  Brandstätter, Gigerenzer, and Hertwig (2006) show 

that it is also possible to find a simple heuristic that can explain the anomalies that motivated 

prospect theory in the first place (see Rows 1 to 4 in Table 1).  

A third line of follow-up research focuses on the effects of experience. Thaler, 

Tversky, Kahneman, and Schwartz (1997) and Fox and Tversky (1998) presented natural 

generalizations of prospect theory to situations in which agents have to rely on their past 

experience, but subsequent research (Hertwig, Barron, Weber, & Erev, 2004) highlights 

robust phenomena that cannot be captured with these generalizations. This line of research 

has proven to be particularly difficult to reconcile with prospect theory, as it questions the 

generality of the very anomalies that motivate it. The availability of feedback was found to 

reverse some of the anomalies considered above. The clearest examples for the effects of 

feedback include underweighting of rare events (Barron & Erev, 2003; see Row 11 in Table 

1), a reversed reflection effect (Barron & Erev, 2003; see Row 12 in Table 1), a payoff 
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variability effect (Busemeyer & Townsend, 1993; see Row 13 in Table 1), and a correlation 

effect (Diederich & Busemeyer, 1999; see Row 14 in Table 1). Once again, for 

generalizations of prospect theory or CPT to capture anomalies in this line of research, 

additional non-trivial assumptions are necessary (see, e.g., Fox & Hadar, 2006; Glöckner, 

Hilbig, Henninger, & Fiedler, 2016).  Congruently, the leading explanations of the 

phenomena observed in decisions involving feedback assume a different underlying process, 

according to which decision makers tend to rely on small samples of their past experiences 

(Erev & Barron, 2005; Hertwig et al., 2004). 

The different studies that aimed to develop descriptive models that capture subsets of 

the 14 phenomena we have just described and  are summarized in Table 1, have led to many 

useful insights. However, they also suffer from a major shortcoming. Different modifications 

of prospect theory and models that assume other processes address different well-studied 

domains of problems. Thus, it is not clear how to use them outside the boundaries of these 

domains. For example, according to Erev, Ert, Roth, et al. (2010), the best models that 

capture behavior in decisions under risk assume very different processes than the best models 

that capture behavior in repeated decisions with feedback. But which type of model should 

we use if our goal is, for example, to design an incentive mechanism to be implemented in in-

vehicle data recorders aimed at promoting safe driving? The drivers of a car equipped with 

such devices would be informed of the incentives and would also gain experience using the 

system. In other words, which model should be used to predict the choice between fully 

described gambles following a few trials with feedback? And what if the gambles include 

many possible outcomes (as in the St. Petersburg paradox) or if one of these gambles is 

ambiguous (as in the Ellsberg paradox)? The existing models shed only limited light on the 

conditions that trigger different behavioral tendencies, so better understanding of these 

conditions is required in order to address Roth’s 1-800 critique.  
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The current research attempts to improve our understanding of the conditions that 

trigger the different anomalies by extending the focus of the analysis. Rather than focusing on 

a subset of the 14 anomalies presented in Table 1 (specifically, Kahneman & Tversky 

focused on a subset of size 4), we try to capture all 14 anomalies with a single model. Unlike 

the previous attempts to extend Kahneman and Tversky's (1979) analysis, discussed above, 

we build on their method rather than on their model. Like Kahneman and Tversky (1979), we 

start by trying to replicate the target anomalies in a single experimental paradigm, and then 

develop a single model that captures the behavioral results.  

The Problem of Overfitting and The Current Project 

As noted above, previous research suggests that choice behavior is possibly affected 

by three very different types of cognitive processes: processes that weigh subjective values 

by subjective functions of their probabilities; those that assume simple heuristics; and those 

that assume sampling from memory. It is also possible that one of these processes captures 

behavior better than the others, but it requires making different assumptions in different 

settings. An attempt to capture the interaction between several unobserved processes or to 

identify the boundaries of the settings in which different assumptions are necessary involves 

a high risk of overfitting the data. There are many feasible abstractions of the possible 

processes and their interactions, and with so many degrees of freedom, it is not too difficult to 

find abstractions that fit all 14 anomalies.  

The current research takes four measures to reduce this risk. The most important 

measure is the focus on predictions, rather than on fitting. Models are estimated here based 

on one set of problems, and then compared based on their ability to predict the behavior in a 

second, initially unobserved, set of problems. A second measure involves the replication of 

the classical anomalies in one standard paradigm (Hertwig & Ortmann, 2001; like Kahneman 

& Tversky, 1979). This replication eliminates the need to estimate paradigm-specific 
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parameters. A third measure involves the study of randomly-selected problems (in addition to 

the problems that demonstrate the interesting anomalies). This serves to increase the amount 

of the data used to estimate and evaluate the models. A fourth measure involves the 

organization of a choice prediction competition (see Arifovic, McKelvey, & Pevnitskaya, 

2006; Erev, Ert, Roth, et al., 2010). The first three co-authors of the current paper (Erev, Ert 

& Plonsky; hereinafter EEP) first presented the best model they could find, and then 

challenged other researchers to find a better model. The competition methodology is expected 

to reduce the risk of overfitting the data caused by focusing on a small set of models 

considered by a small group of researchers. That is, rather than putting forth the set of 

contender models themselves, EEP asked the research community to provide the contenders. 

In the first part of the current project, EEP developed a “standard” paradigm (Hertwig 

& Ortmann, 2001) and identified an 11-dimensional space of experimental tasks wide enough 

to replicate all 14 behavioral phenomena described above and illustrated in Table 1. Next, 

EEP conducted a replication study consisting of 30 carefully selected choice tasks.  The 

replication study shows that all 14 behavioral phenomena emerge in this 11-dimensional 

space. Yet, their magnitude tends to be smaller than it was in the original demonstrations.   

The second part of the current project includes a calibration study in which 60 

additional problems, randomly selected from the same 11-dimensional space of tasks that 

includes the replication problems, were investigated. The results clarify the robustness and 

the boundaries of the distinct behavioral phenomena. Based on the results of these 90 

problems (30 in the replication study and 60 in the calibration study), EEP developed a 

“baseline” model that presents their best attempt to capture behavior in the wide space of 

choice tasks. This model assumes that two components drive choice. The first is the option's 

expected value (and not a weighting of subjective values, as modeled by EUT and CPT). The 

second is the outcome of four distinct tendencies that are products of sampling “tools.”  
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The paper concludes with the presentation of the choice prediction competition. The 

organizers (EEP) posted the results of the first two experiments, as well as a description of 

the baseline model, on the web (at http://departments.agri.huji.ac.il/cpc2015). EEP then 

challenged other researchers (with emails to members of the popular scientific organizations 

in psychology, decision science, behavioral economics, and machine learning) to develop a 

better model. The competition focused on the prediction of the results of a third (“test”) 

experimental study that was run after posting the baseline model. The call for participation in 

the competition was posted in January 2015, and the competition study was run in April 2015 

(its results were published only after the submission deadline in May 2015). A famous Danish 

proverb (commonly attributed to Niels Bohr) states “it is difficult to make predictions, especially 

about the future.”  Running the competition study only after everyone submitted their models 

ensured that the competition participants actually dealt with this difficulty of predicting the 

future, and could not satisfy with fitting data that is already known. 

Researchers from five continents responded to the prediction competition challenge, 

submitting a total of 25 models. The submissions included three models that are variants of 

prospect theory with situation-specific parameters, 14 models that are similar to the baseline 

model and assume that behavior is driven by the expected return and four additional 

behavioral tendencies, and seven models that do not try to directly abstract the underlying 

process, but rely primarily on statistical methods (like machine learning algorithms). All 12 

highest ranked submissions were variants of the baseline. The “prize” for the winners was co-

authorship of this paper; the last two authors (Cohen & Cohen) submitted the winning model. 

Space of Choice Problems 

The previous studies that demonstrated the behavioral phenomena summarized in 

Table 1 used diverse experimental paradigms. For example, the Allais paradox/certainty 

effect was originally demonstrated in studies that examined choice among fully described 

http://departments.agri.huji.ac.il/cpc2015
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gambles (Allais, 1953; Kahneman & Tversky, 1979), while the Ellsberg paradox was 

originally demonstrated in studies that focused on bets on the color of a ball drawn from 

partially described urns (Einhorn & Hogarth, 1986; Ellsberg, 1961). In addition, within the 

same experimental paradigm, different payoff distributions give rise to different behavioral 

phenomena. In other words, the differences among the various demonstrations of the 

behavioral phenomena in Table 1 involve multiple dimensions, such as the framing 

manipulation, the number of possible outcomes, and the shape of the payoff distributions. 

Thus, it is possible to think of the classical demonstrations in Table 1 as points in a 

multidimensional space of “choice tasks.” This abstraction clarifies the 1-800 critique against 

behavioral decision research. The critique rests on the observation that the leading models 

were designed to capture specific sections (typically involving interesting anomalies) in this 

space of choice problems. Thus, different models address different points in the space, and 

the models’ boundaries are not always clear. Consequently, it is not clear which model should 

be used to predict behavior in a new choice task.      

Our research attempts to address this critique by facilitating the study of a space of 

choice tasks wide enough to give rise to all 14 phenomena summarized in Table 1. We began 

by trying to identify the critical dimensions of this multidimensional space. Our effort 

suggests that the main properties of the problems in Table 1 include at least 11 dimensions. 

Nine of the 11 dimensions can be described as parameters of the payoff distributions. These 

parameters include: LA, HA, pHA, LB, HB, pHB, LotNum, LotShape, and Corr. In particular, 

each problem in the space is a choice between Option A, which provides HA with probability 

pHA or LA otherwise (with probability 1 − pHA), and Option B, which provides a lottery (that 

has an expected value of HB) with probability pHB, and provides LB otherwise (with 

probability 1 − pHB). The distribution of the lottery around its expected value (HB) is 

determined by the parameters LotNum (which defines the number of possible outcomes in the 
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lottery) and LotShape (which defines whether the distribution is symmetric around its mean, 

right-skewed, left-skewed, or undefined if LotNum = 1), as explained in Appendix A. The 

Corr parameter determines whether there is a correlation (positive, negative, or zero) between 

the payoffs of the two options.  

The tenth parameter, Ambiguity (Amb), captures the precision of the initial 

information the decision maker receives concerning the probabilities of the possible 

outcomes in Option B. We focus on the two extreme cases: Amb = 1 implies no initial 

information concerning these probabilities (they are described with undisclosed fixed 

parameters), and Amb = 0 implies complete information and no ambiguity (as in Allais, 1953; 

Kahneman & Tversky, 1979).    

The eleventh dimension in the space is the amount of feedback the decision maker 

receives after making a decision. As Table 1 shows, some phenomena emerge in decisions 

without feedback (i.e., decisions from description), and other phenomena emerge when the 

decision maker can rely on feedback (i.e., decisions from experience). We studied this 

dimension within problem. That is, decision makers faced each problem first without 

feedback, and then with full feedback (i.e., realization of the obtained and forgone outcomes 

following each choice). 

The main hypothesis of the replication exercise described below is that this 11-

dimensional space is sufficiently large to give rise to all the behavioral phenomena from 

Table 1.1 That is, we examine whether all these phenomena can be replicated within the 

                                                 
1 Notice that the 11 dimensions were selected to ensure that certain value combinations would imply 

choice tasks likely to give rise to the 14 phenomena. The first six dimensions are necessary to allow for the 

Allais pattern. The LotNum and LotShape dimensions are necessary to allow for the St. Petersburg paradox and 

splitting pattern. The Ambiguity dimension is necessary to allow for the Ellsberg paradox. The correlation 

dimension is necessary to allow for the regret/correlation effect. And the feedback dimension is necessary to 

allow the experience phenomena. We also had to limit the range of values that each of the 11 dimensions could 

take, which inevitably added technical constraints to the space of problems we actually studied. For example, 
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abstract framing of choice between gambles (used, e.g., by Allais, 1953; Kahneman & 

Tversky, 1979), although some were originally demonstrated in different experimental 

paradigms, such as urns or coin-tosses. To facilitate this examination, we considered, in 

addition to the 11 dimensions, two framing manipulations (“coin-toss” and “accept/reject”) 

that were suggested by previous studies as important to two of the phenomena (to the St. 

Petersburg paradox, see Erev, Glozman, & Hertwig, 2008; and to loss aversion, see Ert & 

Erev, 2013, respectively). Under the “accept/reject framing,” Option B is presented as the 

acceptance of a gamble, and Option A as the status quo (rejecting the gamble). Under the 

“coin-toss framing,” the lottery is described as a coin-toss game similarly to Bernoulli’s 

description (1738/1954) in his illustration of the St. Petersburg paradox. Hence, each of the 

30 problems studied in our replication study (Appendix B) is uniquely defined by specific 

values in each of the 10 dimensions described above in addition to a framing manipulation 

(and, as noted, the eleventh dimension, feedback, is studied within the problems).  

Initially, we also planned to consider the role of the difference between hypothetical 

and real monetary payoffs. We chose to drop this dimension and focus on real payoffs, 

following a pilot study in which more than 30% of the subjects preferred the hypothetical 

gamble “−1000 with probability .1; +1 otherwise” over the status quo (zero with certainty). 

This pilot study reminded us that the main effect of the study of hypothetical problems is an 

increase in choice variance (Camerer & Hogarth, 1999).  

Replications of Behavioral Phenomena 

The current investigation was designed to undertake the following objectives: (a) to 

explore whether the current 11-dimensional space is wide enough to replicate the 14 choice 

                                                 
the manner in which the lottery parameters define its distribution limits the possible lottery distributions in the 

space (see Appendix A). Hence, the genuine hypothesis of the replication study is that even the limited 11-

dimensional space is sufficiently large to replicate all the classical phenomena from Table 1. 
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phenomena summarized on the left-hand side of Table 1; (b) to clarify the boundaries and 

relative importance of these phenomena; and (c) to test the robustness of two of the 

phenomena to certain framing manipulations, which, according to previous research, matter. 

To achieve these goals, we studied the 30 choice problems detailed in Appendix B.  

Method 

One hundred and twenty five students (63 male, MAge = 25.5) participated in the 

experimental condition of the replication study, sixty at the Hebrew University of Jerusalem 

(HU), and sixty-five at the Technion. Each participant faced each of the 30 decision problems 

presented in Appendix B for 25 trials (i.e. each participant made 750 decisions). The order of 

the 30 problems was random. Participants were told that they were going to play several 

games, each for several trials, and their task in each trial was to choose one of the two options 

on the screen for real money. The participants were also told that at the end of the study, one 

of the trials would be randomly selected and that their obtained outcome in that trial would be 

realized as their payoff (see examples of the experimental screen and a translation of the 

instructions in Appendix C). Notice that this payment rule excludes potential “wealth 

effects.” It implies that the participants could not “build portfolios,” e.g., by taking risks in 

some trials and compensating for losses in others. Furthermore, both rational considerations 

and the isolation effect (Kahneman & Tversky, 1979) imply independence between the 

choices in the problems without ambiguity.  

In the first five trials of each problem, the participants did not receive feedback after 

each choice, so they had to rely solely on the description of the payoff distributions. Starting 

at Trial 6, participants were provided with full feedback (the outcomes of each prospect) after 

each choice; that is, in the last 19 trials, the participants could rely on the description of the 



FROM ANOMALIES TO FORECASTS    16 

  

payoff distributions and on feedback concerning the outcomes of previous trials.2 The final 

payoff (including show-up fee) ranged from 10 to 110 shekels (M = 41.9, approximately 

$11).3  

In addition to the experimental condition, we ran two control conditions that used the 

same participant recruitment and incentive methods as the main condition. The first, referred 

to as “Single Choice”, used Kahneman and Tversky's (1979) paradigm. Each of 60 

participants faced each of the 30 problems only once and without any feedback. The second 

control, referred to as “FB from 1st” was identical to the main replication study with except 

that all choices, from the very first trial, were followed by feedback. This control condition 

included 29 participants. The results of both conditions are reported in the Control Conditions 

and Robustness Checks section.  

Results and Discussion 

The main results of the experimental condition, the mean choice rates of Option B per 

block of five trials and by feedback type (i.e., no-FB or with-FB) for each of the 30 problems 

                                                 
2 In addition, we compared two order conditions in a between-subject design. Sixty participants (30 in 

each location) were assigned to the “by problem” (ByProb) order: they faced each problem for one sequence of 

25 trials before facing the next problem. The other participants were assigned to the “by feedback” (ByFB) 

order condition. This condition was identical to the ByProb condition, with one exception: the participants first 

performed the five no-feedback trials in each of the 30 problems (in one sequence of 150 trials), and then faced 

the remaining 20 trials with feedback of each problem (in one sequence of 600 trials, and in the same order of 

problems they played in the no-feedback trials). Our analyses suggested almost no differences between the two 

conditions, therefore we chose to focus on the choice patterns across conditions, and report these subtle 

differences in the section Effects of Location and Order. 

3 The show-up fee was determined for each participant individually such that the minimal possible 

compensation for the experiment was 10 shekels. This was the maximum between 30 shekels and the sum of 10 

shekels and the maximal possible loss in the problem that was randomly selected to determine the payoff. For 

example, if Problem 12 was selected, the show-up fee was 60 shekels, but if Problem 1 was selected the show-

up fee was 30 Shekels. This procedure was never disclosed to participants and they only knew in advance their 

expected total payoff. Specifically, there was no deception. 
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are presented in Appendix B. The raw data (nearly 94,000 lines) is available online (see 

http://departments.agri.huji.ac.il/cpc2015).  In short, the results show that (a) all the 14 

phenomena described in Table 1 emerge in our setting, but most description phenomena are 

eliminated or even reversed after few trials with feedback; and (b) feedback increases 

maximization when the best option leads to the best payoff in most trials, but can impair 

maximization when this condition does not hold. Below we clarify the implications of the 

results for the 14 behavioral phenomena summarized in Table 1.   

The Allais paradox/certainty effect. The Allais paradox (Allais, 1953) is probably 

the clearest and most influential counterexample to expected utility theory (Von Neumann & 

Morgenstern, 1944). Kahneman and Tversky (1979) show that the psychological tendency 

that underlies this paradox can be described as a certainty effect: safer alternatives are more 

attractive when they provide gain with certainty. Figure 1 summarizes our investigation of 

this effect using variants of the problems used by Kahneman and Tversky (Row 1 in Table 1) 

to replicate Allais’ common ratio version of the paradox. Analysis of Block 1 (first 5 trials, 

without feedback, or “no-FB”) shows the robustness of the certainty effect in decisions from 

description. The safer prospect (A) was more attractive in Problem 1 when it provided a 

positive payoff with certainty (A-rate of 58%, B-rate of 42%, SD = 0.42), than in Problem 2 

when it involved some uncertainty (A-rate of 39%, B-rate of 61%, SD = 0.44). The difference 

between the two rates is significant, t(124) = −3.69, p < .001.4 However, feedback reduced 

this difference. The difference between the two problems across the four with-FB blocks (B-

rate of 60%, SD = 0.37 in Problem 1, and B-rate of 62%, SD = 0.39 in Problem 2) is 

insignificant: t(124) = −0.59.  

                                                 
4  We report significance tests to clarify the robustness of each finding in our setting, and use a weaker 

criterion to define replication. A phenomenon is considered to be “replicated” if the observed choice rates are in 

the predicted direction.  

http://departments.agri.huji.ac.il/cpc2015
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Prob. Option A Option B 

 

1 (3, 1) (4, .8; 0) 

2 (3, .25; 0) (4, .2; 0) 

 

Figure 1. Problems That Test the Allais Paradox/Certainty Effect in the Replication Study. The notation 

(x, p; y) refers to a prospect that yields a payoff of x with probability p and y otherwise. Option B’s choice 

proportions are shown in five blocks of five trials each (Block 1: “no-FB,” Blocks 2–5: “with-FB”). The 

experimental results are given with 95% CI for the mean. (The right-hand plot presents the prediction of the 

baseline model described below).  

The reflection and reversed reflection effects. A comparison of Problem 3 and 

Problem 4 in Figure 2 demonstrates the reflection effect (Kahneman & Tversky, 1979, and 

Row 2 in Table 1) in the no-FB block: risk aversion in the gain domain (B-rate of 35%, 

SD = 0.42 in Problem 4) and risk seeking in the loss domain (B-rate of 58%, SD = 0.42 in 

Problem 3).  The difference is significant, t(124) = −4.99, p < .001.  Feedback reduces this 

effect.  The B-rate across the four with-FB blocks (2 to 5) is 52% (SD = 0.37) in Problem 4 

and 59% (SD = 0.35) in Problem 3.  This difference is insignificant, t(124) = −1.59.  

A comparison of Problem 1 with Problem 5 reveals a weaker indication of the 

reflection effect. The results in the no-FB block show risk aversion in the gain domain (B-rate 

of 42%, SD = 0.42 in Problem 1) and risk neutrality in the loss domain (B-rate of 49%, 

SD = 0.42 in Problem 5); the difference is insignificant, t(124) = −1.24. Feedback reverses 

the results and leads to lower risk-taking rate in the loss domain (B-rate of 40%, SD = 0.37 in 

Problem 5) than in the gain domain (B-rate of 60%, SD = 0.37 in Problem 1). This reversed 

reflection pattern (Barron & Erev, 2003; see Row 12 in Table 1) across the four with-FB 

blocks, which suggests learning to maximize EV, is significant, t(124) = 3.90, p < .001. 
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Prob. Option A Option B 

 

3 (−1, 1) (−2, .5; 0) 

4 (1, 1) (2, .5; 0) 

Prob. Option A Option B 

 

5 (−3, 1) (−4, .8; 0) 

1 (3, 1) (4, .8; 0) 

Figure 2. Problems That Test the Reflection Effect in the Replication Study. The notation (x, p; y) refers to a 

prospect that yields a payoff of x with probability p and y otherwise. Option B’s choice proportions are shown 

in five blocks of five trials each (Block 1: “no-FB,” Blocks 2–5: “with-FB”). The experimental results are 

given with 95% CI for the mean. 

The weighting of rare events. Figure 3 summarizes our investigation of the 

weighting of rare events. An analysis of the no-FB block shows that the modal choice in 

Problem 10 reflects overweighting of the rare (probability .01) event.  Participants tend to 

prefer the long-shot gamble.  Yet, the magnitude of this effect is not large; the mean rate 

(55%, SD = 0.44) is not significantly different from 50%, t(124) = 1.15.  Moreover, problems 

7, 8, and 9 show no indication of initial overweighting of rare events. One explanation for the 

difference between these findings and Kahneman and Tversky’s (1979, and Row 3 in Table 

1) strong indications for overweighting of rare events in decisions from description focuses 

on the probabilities. The classical demonstrations examined a 1/1000 event, while we studied 

1/20 and 1/100 events.  It is possible that the tendency to overweight rare events increases 
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with their rarity.  This explanation is supported by the observation that our results for the 

positive rare outcomes reveal higher B-rate in the 1/100 case (mean of 51% in Problems 9 

and 10, SD = 0.38) than in the 1/20 case (B-rate of 39%, SD = 0.43, in Problem 8).  This 

difference is significant, t(124) = 3.32, p = .001.  

Prob. Option A Option B 

 

7 (−1, 1) (−20, .05; 0) 

8 (1, 1) (20, .05; 0) 

9 (1, 1) (100, .01; 0) 

10 (2, 1) (101, .01; 1) 

Prob. Option A Option B 

 

11 (19, 1) (−20, .1; 20) 

Figure 3. Problems That Test the Weighting of Rare Events in the Replication Study. The notation (x, p; y) 

refers to a prospect that yields a payoff of x with probability p and y otherwise. Option B’s choice proportions 

are shown in five blocks of five trials each (Block 1: “no-FB,” Blocks 2-5: “with-FB”). The experimental 

results are given with 95% CI for the mean. 

Another explanation for the weaker indication of overweighting of rare events in our 

no-FB block involves the possibility that the expectation that choice will be repeated (in the 

current paradigm) reduces the weighting of rare events.  An experiment that evaluates (and 

rejects) this “expected repetitions” hypothesis is presented in the section Control Conditions 

and Robustness Checks below. 
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Figure 3 also shows that the emergence of underweighting of rare events in decisions 

with feedback is robust (Barron & Erev, 2003; Lejarraga & Gonzalez, 2011; and see Row 11 

in Table 1).  Experience reduces sensitivity to the rare event in all five problems.  In the four 

equal expected value problems (7, 8, 9, and 10), the choice rate following feedback reflects a 

clear indication of underweighting of rare events: the choice rate of the prospect that leads to 

the best payoff most of the time is 63% (SD = 0.37), 67% (SD = 0.39), 61% (SD = 0.42), and 

57% (SD = 0.44) in problems 7, 8, 9, and 10 respectively (and all four values are significantly 

greater than 50%, t(124) = 3.82, 4.77, 2.90, 1.72 respectively). Problem 11 highlights one 

boundary of the underweighting of rare events. When the difference in expected value is 

sufficiently large (19 versus 16), experience does not eliminate the tendency to prefer the 

high expected value option over the risky alternative that leads to better payoff most of the 

time (90% of the trials).   

Loss aversion and the magnitude effect. The loss aversion hypothesis implies a 

preference of the status quo over a symmetric fair gamble (e.g., a gamble that provides equal 

probability of winning or losing x, Row 4 in Table 1).  Figure 4 summarizes our investigation 

of this hypothesis.  Evaluation of the no-FB block in Problem 12 shows that the status quo 

was preferred over equal chances to win or lose 50 in 66% (SD = 0.43, significantly more 

than 50%, t(124) = 4.25, p < .001) of the cases.  Problem 13 focuses on the same objective 

task as Problem 12, with a different framing. The results show that in the current setting, the 

difference between the accept/reject and the abstract framing is small: 64% (SD = 0.42, 

significantly more than 50%, t(124) = 3.66, p < .001) of the choices reflect rejection of the 

gamble in problem 13, similar to the rates observed in problem 12.5  Problem 14 replicates 

                                                 
5 Ert and Erev (2008, 2013) observed stronger support for loss aversion in the accept/reject framing 

manipulation than in the abstract presentation. We believe that the lack of difference here reflects the fact that 

our subjects were faced with many abstract problems, and this experience eliminated the format effect. 
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the finding that low stakes eliminate the initial loss aversion bias (Ert & Erev, 2013; Harinck, 

Van Dijk, Van Beest, & Mersmann, 2007; and see Row 5 in Table 1); the gamble was 

selected in 49% (SD = 0.44) of the cases. The difference between problems 14 and 12 in the 

no-FB block is significant, t(124) = −3.64, p < .001. The results for the last four blocks show 

that feedback eliminated the magnitude effect, but not the general tendency to select the 

status quo over the fair gamble.  

Prob. Option A Option B 

 

12 (0, 1) (50, .5; −50) 

13 Reject B Accept a game 

that gives equal 

chances to win or 

lose 50. 

14 (0, 1) (1, .5; −1) 

Prob. Option A Option B 

 

15 (7, 1) (50, .5; 1) 

16 (7, 1) (50, .5; −1) 

17 (30, 1) (50, .5; 1) 

18 (30, 1) (50, .5; −1) 

Figure 4. Problems That Test Loss Aversion and Magnitude Effects in the Replication Study. The notation 

(x, p; y) refers to a prospect that yields a payoff of x with probability p and y otherwise. Option B’s choice 

proportions are shown in five blocks of five trials each (Block 1: “no-FB,” Blocks 2–5: “with-FB”). The 

experimental results are given with 95% CI for the mean. 

We added Problems 15, 16, 17, and 18 (lower panel in Figure 4) to study one 

boundary of loss aversion, the observation that the addition of small losses to a dominant 

(EV-wise) option can increase its attractiveness (Yechiam & Hochman, 2013). Our results do 
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not reveal this so-called “loss attention” pattern. Rather, they show similar sensitivity to the 

expected values in all cases.  

St. Petersburg paradox. Our experimental paradigm differs from the St. Petersburg 

problem (Row 5 in Table 1) in many ways. Most importantly, we study choice rather than 

bidding, and avoid the study of hypothetical tasks (and for that reason cannot examine a 

problem with unbounded payoffs). Nevertheless, the robustness of the main behavioral 

tendency demonstrated by the St. Petersburg paradox, risk aversion in the gain domain, can 

be examined in our setting. Figure 5 summarizes our investigation. We studied two framings 

of a bounded variant of the St. Petersburg problem. In Problem 19, the participants were 

asked to choose between 9 with certainty, and a coin-toss game with the same expected 

value. In Problem 20, the game’s possible outcomes and their objective probabilities were 

listed on the screen. The results reveal a tendency to avoid the game that was slightly 

increased by experience. The B-rates in the no-FB Block were 36% (SD = 0.42), and 38% 

(SD = 0.43) in the “coin-toss” (St. Petersburg) and the “abstract” variants respectively. Both 

rates are significantly lower than 50%, t(124) = −3.61 and −3.22, both p < .001. In addition, 

the results across all five blocks show slightly lower B-rates in the coin format (34% vs. 

37%). This difference is in the direction of the mere presentation hypothesis suggested by 

Erev, Glozman, and Hertwig (2008), but the difference in the current setting is insignificant. 
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Prob. Option A Option B  

19 (9, 1) A fair coin will be 

flipped until it comes 

up heads but no more 

than 8 times. Denote 

the number of heads 

with k. You get 2k. 

20 (9, 1) (2, 1/2; 4, 1/4; 8, 1/8; 

16, 1/16; 32, 1/32; 

64, 1/64; 128, 1/128; 

256) 

Figure 5. Problems That Test the St. Petersburg Paradox in the Replication Study. The notation (x1, p1; 

x2, p2; …; y) refers to a prospect that yields a payoff of x1 with probability p1, a payoff of x2 with probability 

p2, …, and y otherwise. Option B’s choice proportions are shown in five blocks of five trials each (Block 1: 

“no-FB,” Blocks 2–5: “with-FB”). The experimental results are given with 95% CI for the mean. 

Ambiguity aversion/Ellsberg paradox. Ellsberg (1961, see Row 6 in Table 1) shows 

a violation of subjective expected utility theory that can be described as an indication of 

ambiguity aversion. Figure 6 summarizes our analysis of this phenomenon. The first block in 

Problem 21 reveals ambiguity aversion: the typical choice (63%, SD = 0.41) favors the 

prospect “10, .5; 0” over the ambiguous prospect “10 or 0 with unknown probabilities.”  This 

value is significantly greater than 50%, t(124) = 3.49, p < .001.  Problem 22 reveals that 

when gaining in the non-ambiguous option (A) occurs with low probability, people favor the 

ambiguous option (ambiguity rate of 82%, SD = 0.30). Problem 23 shows a strong tendency 

to avoid the ambiguous option when gaining in the non-ambiguous option is associated with 

high probability (ambiguity rate of 15%, SD = 0.30).  Both rates are significantly different 

from 0.5, t(124) = 12.0 and −13.1, both p < .001, and are in line with previous findings of 

studies in decisions in uncertain settings without feedback (e.g., Camerer & Weber, 1992).  

Evaluation of the effect of experience reveals that feedback eliminates these attitudes towards 
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ambiguity (see Ert & Trautmann, 2014, for similar findings).6  The average choice rate of the 

ambiguous option over the four with-FB blocks in these problems was 49%.  

Prob. Option A Option B 

 

21 (10, .5; 0) (10, p; 0) 

p = .5 unknown 

22 (10, .1; 0) (10, p; 0) 

p = .1 unknown 

23 (10, .9; 0) (10, p; 0) 

p = .9 unknown 

Figure 6. Problems that Test Ambiguity Attitudes in the Replication Study. The notation (x, p; y) refers to a 

prospect that yields a payoff of x with probability p and y otherwise. In these problems, the probabilities of the 

outcomes in Option B are undisclosed to participants (an ambiguous problem). Option B’s choice proportions 

are shown in five blocks of five trials each (Block 1: “no-FB,” Blocks 2–5: “with-FB”). The experimental 

results are given with 95% CI for the mean. 

The break-even effect. Thaler and Johnson (1990, see Row 8 in Table 1) noticed that 

people are more likely to take a risk in the loss domain when this risk can cover all their 

losses and lead to a break-even outcome. The results, summarized in Figure 7, document the 

break-even effect in the no-FB block. Our participants took significantly more risk in 

Problem 3 (B-rate of 58%, SD = 0.42) and Problem 5 (B-rate 49%, SD = 0.42) when the risk 

could eliminate the loss, than in Problem 24 (B-rate of 48%, SD = 0.44) and Problem 6 (B-

rate 38%, SD = 0.42) when the loss could not be avoided, t(124) = −2.01, p = .047 and 

t(124) = −2.12, p = .036 respectively. Feedback did not eliminate this difference in the first 

pair (3 and 24), but did eliminate it in the second (5 and 6). The B-rates over the four with-FB 

blocks are 59% (SD = 0.35) in Problem 3 and 48% (SD = 0.37) in Problem 24, and the 

                                                 
6 Note that the description informed the subjects that the probabilities are fixed throughout the choice 

task. Thus, the outcome observed in the early trials reduces the objective ambiguity. As previously noted (e.g., 

Epstein & Schneider, 2007; Maccheroni & Marinacci, 2005) there are situations, which go beyond the scope of 

our space (e.g., when the probabilities can change), in which experience cannot eliminate ambiguity. 
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difference is significant, t(124) = −2.76, p = .007. However, in both Problems 5 and 6, the B-

rates over the four with-FB blocks are 41%. The elimination of the break-even effect in the 

latter case can be a reflection of an emergence, with feedback, of underweighting of the 

relatively rare (20%) attractive no-loss outcome in Problem 5. 

Prob. Option A Option B 

 

3 (−1, 1) (−2, .5; 0) 

24 (−2, 1) (−3, .5; −1) 

Prob. Option A Option B 

 

5 (−3, 1) (−4, .8; 0) 

6 (−3, .25; 0) (−4, .2; 0) 

Figure 7. Problems That Test the Break-Even Effect in the Replication Study. The notation (x, p; y) refers to a 

prospect that yields a payoff of x with probability p and y otherwise. Option B’s choice proportions are shown 

in five blocks of five trials each (Block 1: “no-FB,” Blocks 2–5: “with-FB”). The experimental results are 

given with 95% CI for the mean. 

The get-something effect. Payne (2005) shows that people are more likely to take 

action that increases the probability of positive outcome than action that does not affect this 

probability (Row 9 in Table 1).  Our analysis of this tendency, summarized in Figure 8, 

focuses on the comparison of Problem 4 with Problem 25 and the comparison of Problem 9 

with Problem 10.  Both comparisons reveal that in the no-FB block, our participants took less 

risk when only the safer prospect (A) guaranteed a gain (B-rate of 35%, SD = 0.42 in 
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Problem 4, and B-rate of 47% SD = 0.44 in Problem 9) than they did in problems in which 

both options guaranteed a gain (B-rate of 41%, SD = 0.44 in Problem 25, and B-rate of 55%, 

SD = 0.44 in Problem 10).  The effect is not large, but the difference between the two pairs is 

significant in a one-tail test, t(124) = −1.87, p = .032.  Feedback eliminated this effect. 

Prob. Option A Option B 

 

4 (1, 1) (2, .5; 0) 

25 (2, 1) (3, .5; 1) 

Prob. Option A Option B 

 

9 (1, 1) (100, .01; 0) 

10 (2, 1) (101, .01; 1) 

Figure 8. Problems That Test the Get-Something Effect in the Replication Study. The notation (x, p; y) refers 

to a prospect that yields a payoff of x with probability p and y otherwise. Option B’s choice proportions are 

shown in five blocks of five trials each (Block 1: “no-FB,” Blocks 2–5: “with-FB”). The experimental results 

are given with 95% CI for the mean. 

The splitting effect.  Studies of decisions under risk show that splitting an attractive 

outcome into two distinct outcomes can increase the attractiveness of a prospect even when it 

reduces its expected value (see Birnbaum, 2008; Tversky & Kahneman, 1986; and see Row 

10 in Table 1). Figure 9 summarizes our effort to replicate this effect in our paradigm.  

Specifically, we examine the effect of replacing the outcome 50 (in Problem 26) with the 

outcomes 44, 48, and 50 (in Problem 27). The results of the no-FB block show a slight 
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increase in the predicted direction, from 49.9% (SD = .42) to 50.4% (SD = .42).  This 

difference is insignificant, but it should be noted that the expected value of the riskier option 

decreased, while its choice rate increased slightly. Feedback reverses the effect and moves 

behavior toward maximization.  

Prob. Option A Option B 

 

26 (16, 1) (50, .4; 1) 

27 (16, 1) (50, .2; 48, .1;  

44, .1; 1) 

Figure 9. Problems That Test the Splitting Effect in the Replication Study. The notation (x1, p1; x2, p2; …; y) 

refers to a prospect that yields a payoff of x1 with probability p1, a payoff of x2 with probability p2, …, and y 

otherwise. Option B’s choice proportions are shown in five blocks of five trials each (Block 1: “no-FB,” 

Blocks 2–5: “with-FB”). The experimental results are given with 95% CI for the mean. 

The payoff variability and correlation effects. Studies of decisions from experience 

demonstrate that payoff variability moves behavior toward random choice (Busemeyer & 

Townsend, 1993, see Row 13 in Table 1), and positive correlation between the payoffs of the 

different alternatives reduces the payoff variability effect and facilitates learning (Diederich 

& Busemeyer, 1999, see Row 14 in Table 1). Figure 10 summarizes our effort to replicate 

these effects in the current setting. A comparison of Problem 28 with Problem 29 documents 

the payoff variability effect: lower maximization rate in the high variability problem, 

although the expected benefit from maximization is higher in this problem. This difference 

was observed in the no-FB block (max-rate of 91%, SD = 0.21 in Problem 28 in comparison 

with max-rate of 97%, SD = 0.15 in Problem 29) and intensified in the with-FB blocks (max-

rate of 85%, SD = 0.19 in Problem 28 in comparison with max-rate of 99%, SD = 0.06 in 
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Problem 29).  Both reflections of the payoff variability effect are significant, t(124) = 3.56, 

and 8.56, both p < .001.   

A comparison of Problems 28 and 30 highlights the significance of the correlation 

effect. The positive correlation between the payoffs significantly increased the maximization 

rate in the with-FB blocks from 85% in Problem 28 to 97% (SD = 0.10) in Problem 30, 

t(124) = 7.39, p < .001. It should be noted that the correlation effect leads to the pattern 

predicted by regret theory (Loomes & Sugden, 1982). The negative correlation that impairs 

maximization implies regret in 50% of the trials. The current results suggest that feedback 

intensifies the impact of regret.  

Prob. Option A Option B 

 

28 6 if Event E;  

0 otherwise. 

0 if Event E;  

9 otherwise. 

p(Event E) = .5 

29 2 with 

certainty 

3 with certainty 

30 6 if Event E;  

0 otherwise.  

8 if Event E;  

0 otherwise.  

p(Event E) = .5 

Figure 10. Problems That Test the Payoff Variability and Correlation Effects in the Replication Study. The 

notation (x, p; y) refers to a prospect that yields a payoff of x with probability p and y otherwise. Option B’s 

choice proportions are shown in five blocks of five trials each (Block 1: “no-FB,” Blocks 2–5: “with-FB”). 

The experimental results are given with 95% CI for the mean. 

Control Conditions and Robustness Checks. 

In order to disentangle specific features of the replication experiment that might have 

an effect on the results, we ran two additional control conditions and robustness checks. This 

section reports briefly on each of the additional measures and their results.  

Single-choice condition. The analysis of “decisions under risk” in the current design 

focuses on behavior across the first five trials with no feedback.  While the results replicated 

most of the behavioral phenomena from the previous studies, we chose to run an additional 
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condition, using more common experimental design of decisions under risk. This condition 

used Kahneman and Tversky's paradigm. Each of the 60 participants faced each of the 30 

problems only once and without any feedback. Thus, they made one-shot decisions with no 

feedback for real money. A comparison of the results of this condition with the results of the 

first block of the replication experiment reveals very similar behavioral patterns. In particular, 

as noted above, we did not find stronger evidence for overweighting of rare events in the 

single choice condition. Appendix D shows the mean choice rates for each of the 30 problems 

in this condition. 

Repetition, feedback, and the “Feedback from 1st” condition.  The clearest effects 

of experience, described above (Figures 1, 2, 3, and 7), can be summarized with the assertion 

that experience reduces the weighting of rare events.  This effect of experience, in turn, can 

be either the product of the repetition of the choice process, or the product of the feedback, or 

both.  We compared these interpretations of the results by focusing on learning within the 25 

trials.  The light curve in Figure 11 shows the proportions of choices that reflect 

overweighting of rare events (in the nine full information problems, with up to two outcomes, 

in which the probability of the most extreme outcome is lower than .25; problems 1, 2, 5, 6, 

7, 8, 9, 10, and 11) across the 125 participants of the experimental condition. The results 

reveal an increase in the weighting of rare events during the five initial no-FB trials and a 

decrease during the 20 with-FB trials. Interestingly, the unpredicted increasing linear trend in 

the no-FB trails is significant, t(124) = 2.22, p = .028)   

To clarify this pattern, we ran another condition, “FB from 1st,” which was identical 

to the experimental condition except that the feedback was provided after each choice starting 

from the very first trial. This condition was run at HU and included 29 participants. The 

proportions of choices consistent with overweighting of rare events in this condition are 

presented by the dark curve in Figure 11.  The results show that in the “FB from 1st” 
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condition, the decrease in overweighting of rare events begins immediately after the first trial. 

The difference in the linear trends during the first five trials between the “FB from 1st” 

condition and the experimental condition is significant, t(152) = −2.99, p = .003 over all 

subjects, and t(87) = −2.41, p = .018 across the HU participants).  These results suggest that 

the effect of experience documented above is driven by the feedback.  For some reason, 

repetition without feedback yields the opposite effect. Appendix D exhibits the mean choice 

rates for all the 30 problems in this control condition too.  

 

Figure 11. The Choice Rates that Reflect Overweighting of Rare Events in the Nine “2-outcome, Full 

Information, with Rare Events” Problems. The light curve shows the results across the 125 participants in the 

replication study, in which feedback was given starting in Trial 6 (the vertical dashed line marks the 

transition from the No-FB to the With-FB trials in this study). The dark curve shows the results of the 29 

participants in Condition “FB from 1st,” in which feedback was given starting in Trial 1. Data is shown with 

95% CI for the mean.  

Individual differences. Analysis of individual differences (Appendix E) reveals that 

the proportion of participants who exhibit the distinct anomalies is larger than the rate 

expected under random (as well as under maximizing) choice in all 14 cases.  In addition, the 

results reveal relatively low correlations between the different anomalies.  For example, the 
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correlation between overweighting of rare events and the Allais pattern is 0.0008, and the 

correlation between loss aversion and risk aversion in the St. Petersburg problem is only 0.07 

(p = 0.46).  Most of the large correlations could be the product of a “same choices bias” (the 

same choice rates are used to estimate two anomalies).  The largest correlation free of the 

same choice bias involves the negative correlation (r = −0.39) between overweighting of rare 

events and risk aversion in the St. Petersburg problem, suggesting that the attitude toward 

positive rare events reflects a relative stable individual characteristic.   

Effects of location and order.  Recall that the experimental condition was run in two 

locations, the Technion and HU, under two orders (as explained in Footnote 2). Differences 

were found to be minor. The correlations between HU and the Technion and between the two 

orders were 0.92 or higher. Moreover, for the purposes of the current study, any existing 

differences were of little interest, as all the behavioral phenomena from Table 1 were 

reproduced in both locations and most emerged in both locations and order conditions.7 

Calibration: Randomly Selected Problems 

As noted above, the replication study focuses on 30 carefully selected points in an 

11-dimensional space of choice tasks. The results demonstrate that our space is wide enough 

to replicate the classical choice anomalies. However, our analysis also highlights the fact that 

the classical problems are a small non-random sample from a huge space. Thus, the attempt 

                                                 
7 Some behavioral phenomena, such as the splitting effect and loss aversion, were more common under 

the ByFB condition, and other phenomena, such as the break-even effect and the reversed reflection effect, were 

more common under the ByProb condition.  The largest effect of the order was observed in Trial 6. The ByProb 

subjects faced this trial immediately after Trial 5, and exhibited similar behavior to their behavior in that trial. 

The ByFB subjects faced many other tasks between Trial 5 and Trial 6 (they first completed the No-FB block in 

all problems, and typically also played some problems, 15 on average, with feedback).  This gap was associated 

with less overweighting of rare events by the ByFB group in Trial 6. Yet, in general, the qualitative differences 

are minor.  
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to develop a model based on the results of the replication study can lead to over-fitting the 

classical anomalies. The current study is designed to reduce this risk of over-fitting by 

studying 60 new problems selected randomly from the space of problems described above. 

Since the two framing manipulations did not reveal interesting effects in the replication study, 

the current study focuses only on the abstract representation. Appendix F shows the problem-

selection algorithm. This algorithm implies an inverse relationship between risks and rewards 

(correlation of −0.6), a characteristic of many natural environments (Pleskac & Hertwig, 

2014). Appendix G details the 60 problems selected.  

Method 

One hundred and sixty-one students (81 male, MAge = 25.6) participated in the 

calibration study.8 Each participant faced one set of 30 problems from Appendix G: 81 

participants faced Problems 31 through 60 and the rest faced Problems 61 through 90. The 

experiment was run both at the Technion (n = 81) and at HU. The apparatus and design were 

similar to those of the replication study. In particular, participants faced each problem for 25 

trials, the first five trials without feedback (no-FB), and the rest with full (including the 

forgone outcome) feedback (with-FB). Participants were paid for one randomly selected trial 

in one randomly selected problem in addition to a show-up fee (determined as in the 

replication study). The final payoff ranged between 10 and 144 shekels (M = 47.7).  

                                                 
8 Due to an experimenter error at the Technion, several participants of the current study also 

participated in the replication study and a few participated in the current study twice. Because this error was 

only revealed late into the competition, the published data includes these participants. However, we ran 

robustness checks to make sure that the results are unaffected by these participants: We compared the published 

mean choice rates with the rates that would be obtained had we excluded their second participation and found 

virtually no differences between the two. 
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Results and Discussion 

The mean choice rates per block and by feedback type (i.e., no-FB or with-FB) for 

each of the 60 problems are summarized in Appendix G. The raw data is provided in the 

online supplemental material (http:\\departments.agri.huji.ac.il/cpc2015). Below we 

summarize the main results. 

Full information problems. Analysis of the 46 full information (non-ambiguous) 

problems (i.e., those that do not involve ambiguity, Amb = 0) in which the two options had 

different expected values (EV) shows a preference for the option with the higher EV. The 

maximization rate (i.e., choice rate of the higher-EV option) in the no-FB trials was 64% 

(SD = 0.18). In 26 problems, this maximization rate differed significantly from 50% (at .05 

significance level, corrected for multiple comparisons according to the procedure by 

Hochberg, 1988), and in 24 of these, this rate was higher than 50%. In only two problems 

(Problem 44 and Problem 61, see Figure 12) the maximization rate in the no-FB trials was 

significantly lower than 50%. The initial deviation from maximization in both problems may 

reflect overweighting of rare events. Figure 12 shows that feedback reduced these deviations, 

but did not reverse them. 
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Prob. Option A Option B 

 

44 (23, 1) 

[EV=23] 

(−33, .01; 24) 

[EV= 23.43] 

 

61 (25, .75; 26) 

 

 

[EV= 25.25] 

(23, .025; 24, .95; 25, .0125; 

29, .00625; 37, .00313;  

53, .00156; 85, .00078;  

149, .00078) 

[EV= 24.25] 

Figure 12. Problems with Initial Low Maximization Rates in the Calibration Study. The notation (x1, p1; 

x2, p2; …; y) refers to a prospect that yields a payoff of x1 with probability p1, a payoff of x2 with probability 

p2, …, and y otherwise. Maximization rates are shown in five blocks of five trials each (Block 1: “no-FB,” 

Blocks 2–5: “with-FB”), and are given with 95% CI for the mean. 

Feedback increased maximization. Total maximization rate in the with-FB trials was 

67% (SD = 0.21). In 10 of the 11 problems in which choice rates in the no-FB and with-FB 

trials significantly differed; maximization rates were higher in the with-FB trials. Analysis of 

these ten problems reveals they have a property in common. In all ten problems, the option 

that maximizes expected value also minimized probability of immediate regret  by providing 

the higher payoff most of the time (see Erev & Roth, 2014). Congruently, in the only problem 

in which feedback significantly decreased maximization rates (Problem 39, see Figure 14), 

the maximizing option provided a better payoff in only 20% of the trials. Figure 13 confirms 

the generality of this finding. It examines all 46 relevant problems and shows that the higher 

the proportion of better payoffs generated by the maximizing option (i.e. the lower the 

probability of regretting a maximizing choice), the larger the increase in maximization rates 

brought about by feedback (and vice versa). The correlation between the two is 0.65, 95% CI 

[0.45, 0.79]. In other words, the addition of feedback increased the choice rate of the prospect 

that minimizes the probability of the regret a decision maker experiences after observing he 
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or she selected the option that generated the lower payoff in a particular trial (see related 

ideas in Hart, 2005; Loomes & Sugden, 1982; Sarver, 2008).  

  

Figure 13. Increase in Choice of the Maximizing Option between With-FB and No-FB trials as a Function of 

the Probability that the Maximizing Option Provides Higher Payoff than the Low EV Option in a Random 

Trial in the Calibration Study. Each data point represents one problem and is marked with the number of that 

problem (see Appendix G). The bold dark markers represent problems with maximization increase 

significantly different from zero. The correlation is .65.  

Figure 14 demonstrates this observation in four problems: two problems (36 and 70) 

in which feedback moved participants towards maximization and two problems (39 and 52) 

in which it moved participants away from maximization. The effect of experience in all four 

problems is consistent with the hypothesis that feedback increases the tendency to select the 

option that is better most of the time and minimizes the probability of immediate regret. Note, 

in addition, that the initial maximization rates in three of these problems are in the direction 

predicted by several phenomena given in Table 1 (loss aversion in Problems 36, 52, and 70; 

break-even effect in Problem 52; and the certainty effect in Problems 36 and 70). 
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Prob. Option A Option B P(Max. Better) 

 

36 (28, 1)  

  

[EV= 28] 

(−46, .4; 86, .3;  

88, .15; 92, .15) 

[EV= 34.4] 

60% 

39 (29, 1) 

  

[EV= 29] 

(6, .2; 31, .05; 32, .2; 

33, .3; 34, .2; 35, .05) 

[EV= 27.6] 

20% 

52 

 

(46, .2; 0) 

[EV= 9.2] 

(46, .25; −2) 

[EV= 10] 

25%  

(20% + 5% tie) 

70 

 

(18, 1) 

[EV= 18] 

(35, .75; −19) 

[EV= 21.5] 

75% 

Figure 14. Problems that Demonstrate the Typical Effect of Feedback in the Calibration Study. The notation 

(x1, p1; x2, p2; …; y) refers to a prospect that yields a payoff of x1 with probability p1, a payoff of x2 with 

probability p2, …, and y otherwise. P(Max. Better) is the probability that the maximizing option provides 

better payoff than the low EV option in a random trial. Maximization rates are shown in five blocks of five 

trials each (Block 1: “no-FB,” Blocks 2–5: “with-FB”) and are given with 95% CI for the mean.   

Figure 15 summarizes the results for the three full information problems that include 

two options with identical EVs. All three problems involve choice between a safe gain and a 

multi-alternative symmetric-distribution gamble with the same expected value. The observed 

choice rates in the no-FB trials (Block 1) suggest risk neutrality; the gamble’s choice rates 

were 50%, 54%, and 44% for problems 45, 49, and 50 respectively (SD = 0.45, 0.46, and 

0.44). In none of the problems is the difference from 50% statistically significant: 

t(80) = −0.07, 0.75, and −1.3 respectively. Moreover, in two of the three problems, feedback 

increased risk taking. These results differ from the common observation of risk aversion in 

the gain domain (e.g., Kahneman & Tversky, 1979) and are consistent with recent studies that 

demonstrated that feedback can lead to risk seeking in the gain domain (Ludvig & Spetch, 

2011; Tsetsos, Chater, & Usher, 2012). The initial risk neutrality could be the product of the 

multi-outcome symmetric distribution used here. Another feasible explanation involves the 
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fact that in Problems 45 and 49 (where we observe the higher risk-seeking rates) the worst 

possible outcome from the gamble is high relative to the safe alternative.  

Prob. Option A Option B 

 

45 (13, 1) (9, .00391; 10, .03125;  

11, .10938; 12, .21875;  

13, .27344; 14, .21875;  

15, .10938; 16, .03125;  

17, .00391) 

49 (23,1) (22, .25; 23, .5; 24, .25) 

50 (4, 1) (0, .00391; 1, .03125;  

2, .10938; 3, .21875;  

4, .27344; 5, .21875;  

6, .10938; 7, .03125;  

8, .00391) 

Figure 15. Problems with Identical Expected Values in the Calibration Study. The notation (x1, p1; 

x2, p2; …; y) refers to a prospect that yields a payoff of x1 with probability p1, a payoff of x2 with probability 

p2, …, and y otherwise. Proportions of the riskier choice are shown in five blocks of five trials each (Block 1: 

“no-FB,” Blocks 2–5: “with-FB”), and are given with 95% CI for the mean. 

Another contribution of the full information calibration problems is the suggestion 

that the loss aversion bias may be less robust to feedback than suggested by Problems 12, 13, 

and 14 (Figure 4) of the replication study.  For example, in Problem 75 (“13 with certainty” 

or “50, .6; −45”), experience increased the choice rate of the counterproductive mixed gamble 

(EV of 12) from 35% to 50%.  

Ambiguous problems. Results of the 11 ambiguous problems replicate the main 

findings from the replication study. Specifically, the results show that the initial behavior (no-

FB trials) reflects some pessimism and a tendency to maximize expected return assuming all 

outcomes of the ambiguous option are equally likely. Feedback tends to increase 

maximization; the choice rates of the ambiguous option tend to decrease when the ambiguous 

option is objectively inferior to the alternative and increase when the opposite is true. 
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Capturing the Joint Effect of the 14 Behavioral Phenomena 

The main goal of this section is to propose a model that can capture the joint effect of 

the 14 phenomena discussed above and the interactions between them. Specifically, the 

competition’s organizers (EEP) attempted to develop a simple model that could reproduce the 

initial choice rates and the effects of feedback in all 90 problems from the replication and 

calibration studies, and serve as a baseline model for a choice prediction competition.  

The relatively high maximization rates led EEP to assume the model should include 

high sensitivity to the expected value (EV) rule and focus their model development on the 

deviations from the prescription of this rule. This analysis shows that nearly all of the  

anomalies can be described as the product of (at least one of) the following four tendencies: 

(a) Equal weighting, a tendency toward the option expected to lead to the best payoff 

assuming that all the outcomes are equality likely. This tendency captures the Allais paradox, 

overweighting of rare events, and the splitting effect. (b) Payoff sign, a tendency toward the 

option that maximizes the probability of the best possible payoff sign. This tendency captures 

the reflection effect, the break-even effect, and the get-something effect. (c) Pessimism, a 

tendency to assume the worst. This tendency explains the Allais paradox, loss aversion, risk 

aversion in the St. Petersburg problem, and the Ellsberg paradox. (d) Minimization of regret, 

a tendency to select the option that minimizes the probability of immediate regret. This 

tendency captures the experience phenomena: underweighting of rare events, reversed 

reflection, the payoff variability effect, and the correlation effect. The results also suggest that 

the tendency to favor the option that minimizes the probability of regret increases with 

feedback. 

Integrating Expected Value and the Four Tendencies 

The observation that the main experimental results can be captured with the assertion 

that decision makers (a) are highly sensitive to the expected value and (b) exhibit four 
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behavioral tendencies, naturally raises the question of how these elements should best be 

integrated into one model. In answering this question, EEP made three main modelling 

decisions.  

The first decision involves the basic question of how the four tendencies should be 

implemented. The most popular approach for capturing behavioral tendencies of this sort 

assumes they are reflections of hard-wired subjective functions of values and/or probabilities. 

Expected utility theory and prospect theory are two prominent examples of this approach. For 

instance, prospect theory captures the tendency to prefer the status quo over a mixed gambles 

with the same EV (see problem 12) by assuming asymmetric subjective value function, 

whereas a tendency to overweight rare events and underweight medium-probability events is 

captured by assuming an S-shape weighting function. As discussed in preceding text, 

however, the main shortcoming of this popular approach is that it is difficult to find functions 

that capture all the anomalies addressed here with one set of assumptions and parameters. 

This shortcoming led EEP to follow an alternative approach for implementing the four 

tendencies. They assumed that the distinct tendencies reflect the use of specific cognitive 

strategies, or “tools,” which may be particularly useful in certain settings (Gigerenzer, Todd, 

& ABC Group, 1999). For example, a tendency to behave pessimistically can be useful when 

decision makers face adversarial settings. Yet, the use of the tool in settings in which it is 

inappropriate leads to the behavioral anomalies.  

A second modelling decision EEP made involves the output of the decision tools.  

Assuming that the tools are used to simplify the decision making process, it is natural to use 

their output to determine the final choice (i.e., prescribe choice of Option A, choice of Option 

B, or indifference; as in Dhami, 2003; Ert, Erev, & Roth, 2011; Gigerenzer et al., 1999; 

Payne, Bettman, & Johnson, 1993)  Under an alternative abstraction, the output of the tools is 

“just another estimate” of the expected benefit from a specific choice, and this estimate is 
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weighted with other estimates.  EEP chose the just-an-estimate abstraction.  Their choice 

reflects the observation that the results reveal sensitivity to the magnitude (and not only the 

direction) of the differences in expected values. For example, consider Problem 11 (“19 with 

certainty” or “20, .9; −20”, EV = 16) and Problem 75 (“13 with certainty” or “50, .6; −45”, 

EV = 12).  Both problems are similar in the sense that the tendency to minimize the 

probability of regret favors the gamble and contradicts the prescription of the EV rule (and 

the other three tendencies agree with the EV rule).  The results show stronger deviations from 

maximization in Problem 75 (50% in the last block), than in Problem 11 (21% in the last 

block). This difference suggests that the impact of the tendency to minimize probability of 

regret decreases with the expected cost of this behavior.  

The final modelling decision EEP made involves the question of whether the values 

the tools generate are deterministic or depend on the option’s payoff variability. Analysis of 

the current data shows that the latter possibility is the more reasonable one. For example, 

compare Problem 23 (“2 with certainty” or “3 with certainty”) with Problem 54 (“18 with 

certainty” or “64, .5; −33”, EV = 15.5). All four tendencies agree with the EV rule in both 

problems. Yet, the results show a large difference: high maximization rates in problem 23 

(97% without and 99% with feedback), and much lower rates in Problem 54 (68% without 

and 70% with feedback).  Thus, the results suggest more choice variability in the problem 

with higher payoff variability (see a similar observation by Busemeyer, 1985). To address 

this and similar observations, EEP abstracted the processes that underlie the four tendencies 

as “sampling tools” (rather than deterministic tools, which are similar to simple heuristics). 

Specifically, the use of a “sampling tool” implies that the decision maker mentally samples 

outcomes from payoff distributions that correspond to the underlying tendency. This 

abstraction is explained in more detail in the next section, which describes the baseline 

model.  
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Clearly, making the above three modelling decisions does not define a unique model. 

There are many possible abstractions that assume high sensitivity to the expected value in 

addition to four tendencies implemented as the product of sampling tools. We now turn to 

present the best such model EEP were able to find dubbed “Best Estimate And Sampling 

Tools” (BEAST).  

Baseline Model: Best Estimate And Sampling Tools (BEAST)  

BEAST assumes that the attractiveness of each prospect is the sum of the best 

estimate of its EV (estimated pessimistically in ambiguous gambles) and the mean value 

generated by the use of sampling tools that correspond to the four behavioral tendencies. 

Quantitatively, BEAST assumes that Option A is strictly preferred over Option B, after r 

trials, if and only if: 

[BEVA(r) − BEVB(r)] + [STA(r) – STB(r)] + e(r) > 0     (1) 

where BEVA(r) – BEVB(r) is the advantage of A over B based on the best estimation of their 

expected values, STA(r) – STB(r) is the advantage of A over B based on the use of sampling 

tools, and e(r) is an error term.9 In trivial choices, when one of the options dominates the 

other, e(r) = 0.10 In all other cases, e(r) is drawn from a normal distribution with a mean of 0 

and standard deviation of σi (a property of agent i).   

When the payoff distributions are known (as in the non-ambiguous problems in our 

study), the best estimations of the expected values are the actual objective ones. That is, 

BEVj(r) equals the expected value of option j, EVj (for all r). The value of option j based on 

                                                 
9 When the left-hand side of Inequality (1) equals exactly zero, we assume random choice between the 

options. 

10 In dominance, we mean either deterministic dominance or first-order stochastic dominance. In the first 

90 problems (i.e., the replication and calibration studies), the trivial problems are problems 28, 29, 30, 38, 43, 72, 

74, 81, 83, 84, and 89.  



FROM ANOMALIES TO FORECASTS    43 

  

the use of the sampling tools, STj(r), equals the average of κi (a property of i) outcomes that 

are each generated by using one sampling tool.11   

There are four possible sampling tools. Sampling tool unbiased was introduced to 

capture the tendency to minimize immediate regret that implies a preference for the option 

that produces a higher outcome most of the time (in one random trial, rather than on average). 

It can be described as random and unbiased mental draws, either from the options’ described 

distributions or from the options’ observed history of outcomes. Before obtaining feedback 

(decisions in Trials 1 to 6), the draws are taken from the objective distributions using a luck-

level procedure. First, the agent draws a luck-level, a uniform number between zero and one. 

Then, for each prospect, the agent uses the same luck-level as a percentile in the prospect’s 

cumulative distribution function and draws the outcome that fits that percentile.12 When the 

agents can rely on feedback (Trials 7 to 25), they first sample one of the previous trials (all 

with-FB trials are equally likely to be sampled), and the drawn outcomes for both options are 

those observed in that trial.   

The other three sampling tools are “biased.” They can be described as a mental draw 

from distributions that differ from the objective distributions. The probability of choosing one 

of the biased tools, PBias, decreases when the agent receives feedback. Specifically, 

PBias(t) = βi / (βi + 1+ tθi), where βi > 0 captures the magnitude of the agent's initial tendency 

to use one of the biased tools, t is the number of trials with feedback, and θi > 0 captures 

                                                 
11 For example, consider an agent with κi = 3 who faces Problem 17 (“30” or “50, .5; -1”) based on the 

following sampling tools results {30, 50}, {30, 50}, and {30, -1} and the error term e(r) = -2. The left-hand side 

of Inequality (1) yields (30 − 24.5) + (90/3 − 99/3) − 2 = 0.5.  Thus, the model implies an A choice. 

12 That is, the outcome drawn is the result of F-1(x), where x is the luck-level and F-1 is the prospect’s 

inverse cumulative distribution function. For example, in Problem 2 (“3, .25; 0” or “4, .2; 0”), a luck level of .67 

yields the draw {0, 0}, a luck level of .77 yields the draw {3, 0}, and a luck level of .87 yields the draw {3, 4}. 
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agent i's sensitivity to feedback.13 The assumption that the probability of using the unbiased 

tool increases with feedback was introduced to capture the observation that the main 

deviations from maximization after obtaining feedback—the four “experience” phenomena in 

Table 1—suggest increased sensitivity to the probability of regret. 

The three biased tools are each used with equal probability, PBias(t)/3. The sampling 

tool uniform yields each of the possible outcomes with equal probability (see a related idea 

by Birnbaum, 2008) using the luck-level procedure described above (the draws are made 

from the uniform cumulative distribution function even after feedback is obtained). This tool 

corresponds to the tendency “equal weighting” and therefore helps the model capture the 

Allais paradox, overweighting of rare events, and the splitting effect.  

The sampling tool contingent pessimism is similar to the priority heuristic 

(Brandstätter et al., 2006); it depends on the sign of the best possible payoff (SignMax) and 

the ratio of the minimum payoffs (RatioMin). When SignMax > 0 and RatioMin ≤ γi 

(0 < γi < 1 is a property of i), this tool yields the worst possible payoffs for each option (MINA 

and MINB). It corresponds to the tendency to be pessimistic, and helps the model capture loss 

aversion, the certainty effect, and risk aversion in the St. Petersburg paradox. When one of 

the two conditions is not met, the current tool implies random choice among the possible 

payoffs (identically to the uniform tool). RatioMin is computed as: 

 
 

A B

A B

A B A B

A B

1, if 

Min ,
, if  and sign( ) sign( )

Max ,

0, otherwise

MIN MIN

MIN MIN
RatioMin MIN MIN MIN MIN

MIN MIN





  




 (2) 

                                                 
13 For example, assuming βi = 3, and θi =.5, the probability of using one of the biased tools in each of 

the κi simulations is 3/(3+1) =.75 when t = 0 (Trials 1 to 6), 3/(3+1+1) = .6 when t = 1 (Trial 7), and 

3/(3+1+3.36) = .407 when t = 19 (Trial 25).    
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For example, RatioMin = 0 in Problem 9 (“1” or “100, .01; 0”), and 0.5 in Problem 10 (“2” or 

“101, .01; 1”). The contingencies capture two regularities. The sensitivity to SignMax implies 

less pessimism (less risk aversion) in the loss domain, hence the reflection effect. The second, 

RatioMin contingency, implies less pessimism when the minimal outcomes appear similar 

(have the same sign and are close in magnitude). This implies that the addition of a constant 

to all the payoffs decreases risk aversion in the gain domain. In addition, it implies higher 

sensitivity to rare events in problems like Problem 10 and Problem 61 (large RatioMin) than 

in problems like Problem 9 and Problem 25 (small RatioMin).  

The sampling tool sign implies high sensitivity to the payoff sign (Payne, 2005). It is 

identical to the tool unbiased, with one important exception: positive drawn values are 

replaced by R, and negative outcomes are replaced by −R, where R is the payoff range (the 

difference between the best and worst possible payoffs in the current problem; e.g., 100 in 

Problem 9 and Problem 10).14 It enables the model to capture the reflection effect, the break-

even effect and the get-something effect. 

When the probabilities of the different outcomes are unknown (as in the problems 

with ambiguous Option B), they are initially estimated with a pessimistic bias (Gilboa & 

Schmeidler, 1989). The initial expected value of the ambiguous option is estimated as a 

weighted average of three terms: EVA, MINB, and UEVB, the latter being the estimated EV 

from Option B, under the assumption that all the possible outcomes are equally likely. The 

model assumes the same weighting for EVA and UEVB and captures the weighting of MINB 

with 0 ≤ φi ≤ 1, an ambiguity aversion trait of agent i. That is, 

BEVB(0) = (1 − φi)(UEVB + EVA)/2 + φi∙MINB,     (3) 

                                                 
14 For example, in Problem 9 (“1” or “100, .01; 0”), all the positive outcomes are replaced by +100 (the 

value of R), and the 0 remains 0. 
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For example, assuming φi = 0.05, BEVB(0) in Problem 22 (“10, .1; 0” or “10, p; 0”) equals 

.95(5+1)/2 + .05(0) = 2.85. In decisions made prior to receiving feedback (Trials 1 to 6) the 

probabilities of the m possible outcomes are estimated under the assumption that the 

subjective probability of the worst outcome, SPMINB, is higher than 1/m, and each of the other 

m − 1 subjective probabilities equals (1 − SPMINB)/(m − 1). Specifically, SPMINB is computed 

as the value that minimizes the difference between BEVB(0) and the estimated expected value 

from Option B based on the subjective probabilities: SPMINB∙MINB + (1 − SPMINB)∙UBh, where 

UBh = (m∙UEVB − MINB)/(m − 1) denotes the average of the best m − 1 outcomes. This 

assumption implies that  

 

 

 

B

B B

B

B

0, if 0  > 
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,otherwise
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


 

      (4) 

That is, in Problem 22 with φi = 0.05, SPMINB = (10 − 2.85)/(10 − 0) = 0.715. 

Each trial with feedback in the ambiguous problems moves BEVB(t) toward EVB. 

Specifically, 

BEVB(t + 1) = (1 − 1/T)∙BEVB(t) + (1/T)∙OB(r)     (5) 

where T is the expected number of trials with feedback (20 in the current setting) and OB(r) is 

the observed payoff generated from the ambiguous Option B at trial r.15   

The six properties of each agent are assumed to be drawn from uniform distributions 

between 0 and the model's parameters: σi ~ U(0, σ),  κi ~ (1,2, 3, ..., κ), βi ~ U(0, β), 

θi ~ U(0, θ), γi ~ U(0, γ), and φi ~ U(0, φ). That is, the model has six free parameters: σ, κ, β, 

γ, φ, and θ. Note that only four of these parameters (σ, κ, β, and γ) are needed to capture 

                                                 
15 For example, in Problem 22 with φi = 0.05, observing OB(6) = 0 implies that 

BEVB(1) = (1 − 1/20)∙2.85 + (1/20)∙0 = 2.707.   
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decisions under risk without feedback (the class of problems addressed by prospect theory). 

The parameter φ captures attitude toward ambiguity, and θ abstracts the reaction to feedback.  

BEAST’s parameters were estimated using the mean squared deviation (MSD) 

measure and 14 additional constraints that correspond to the 14 qualitative phenomena 

summarized in Table 1. Specifically, we used a grid search procedure to find the set of 

parameters that minimizes the MSD over the 450 B-rates (90 problems times 5 blocks) and 

also reproduces the 14 qualitative phenomena. Best fit was obtained with the parameters 

σ = 7, κ = 3, β = 2.6, γ = .5, φ = .07, and θ = 1. The MSD score is 0.0073. The right-hand 

graphs in Figures 1 through 10 present the predictions of BEAST with these parameters.  

BEAST, individual differences, and inertia. Notice that under BEAST, each choice 

is affected by at least 6 + κi independent draws from the uniform distribution [0, 1], and one 

draw from a normal distribution.  The first six draws determine the agent's properties (the 

values σi, κi, βi , θi, γi, φi), κi uniform draws determine the sampling tools used (and, in most 

cases, the outcomes these tools imply are determined by additional independent uniform 

draws, e.g., for the luck levels), and the normal draw is the error term.  The timing of these 

draws does not affect the model's aggregate predictions, but it does affect the predicted 

individual differences and inertia statistics.  The basic version of BEAST assumes that the six 

properties are drawn before the experiment starts (when the virtual agent is “born”), and the 

other draws are taken before each choice.  Appendix E shows that with this assumption the 

model under-predicts the magnitude of the correlations among the different phenomena. 

Additional analysis shows that the basic version of BEAST also under-predicts the inertia 

level (the tendency to repeat the last choice).  The observed inertia level is 0.87 before 

feedback and 0.83 with feedback, and BEAST predictions are below 0.65.   

These results remind us that BEAST can be improved, and also suggest a natural way 

to improve it.  Stronger individual differences and higher inertia rates can easily be captured 
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by changing the assumptions concerning the timing of the random draws (e.g., the sampling 

tools used or luck levels) that underlie the predictions of BEAST.  Since changes of this type 

cannot affect the aggregate predictions of BEAST, which are the focus of the current paper, 

we chose to leave the refinement of the abstraction of the individual difference statistics to 

future research. 

A Choice Prediction Competition 

The experimental results summarized above suggest that the main deviations from 

maximization presented in Table 1 can be reliably observed in our 11-dimensional space of 

problems. In addition, the above analysis suggests that the coexistence of distinct deviations 

in contradicting directions (e.g., over- and under-weighting of rare events) can be captured 

with a single quantitative model that assumes sensitivity to the expected return and four 

additional behavioral tendencies (the product of using sampling tools), one of which, regret 

minimization, becomes more prominent when decision makers can use feedback. 

The main shortcoming of this analysis is the fact that BEAST, the quantitative model 

EEP proposed, lives up to its name: it is not elegant in the sense that the exact 

implementation of the different sampling tools includes some post-hoc assumptions that were 

introduced to capture the current results. Thus, it is possible that it over-fits the data, and 

better models exist or can be easily developed. Moreover, in developing BEAST, EEP made 

three major modelling decisions that narrowed the space of possible models they considered, 

potentially ignoring better descriptive models. In particular, the fact that EEP did not find it 

easy to develop a useful and elegant model using “subjective functions” of values and 

probabilities (like prospect theory, and most other decision making models) does not mean 

that it is impossible to find one. To explore these possibilities, EEP organized a choice 

prediction competition (see Arifovic et al., 2006; Erev, Ert, Roth, et al., 2010; Erev, Ert, & 
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Roth, 2010; Ert et al., 2011; and a recent review of this approach in Spiliopoulos & Ortmann, 

2014) using a generalization criterion (Busemeyer & Wang, 2000). Specifically, EEP ran a 

third, test study, using the design of the calibration study, and challenged other researchers to 

participate in an open competition that focuses on the prediction of the results of this 

experiment. It should be noted that the use of a generalization criterion (which is similar to 

cross validation, except that the validation is tested on new experimental designs) for model 

comparisons greatly reduces the risk of choosing an overly complex model because it “puts 

the models on equal footing in the generalization stage, despite the fact that the more 

complex model has an unfair advantage in the calibration stage” (Busemeyer & Wang, 2000, 

p. 179).  

The participants of the prediction competition were asked to send the organizers a 

model implemented in a computer program that reads the 10 parameters of each problem as 

input and provides the predicted mean B-rates in five blocks of five trials as output. The 

choice problems of the test set were only revealed, together with the main results, a day after 

the submission deadline. Yet, it was common knowledge that the problems would be sampled 

from the same space of problems studied in the replication and calibration studies, and that 

subjects would be drawn from the same student population (Technion and HU). The potential 

competition participants knew that the winning model would be the one with the lowest mean 

squared deviation score over the five blocks of trials in the test set. Additionally, to facilitate 

accumulation of knowledge, the submitted models had to replicate the 14 phenomena from 

Table 1. Moreover, to facilitate the models’ usability for future research they had to be 

accompanied by a clear, concise verbal description. This latter requirement signifies a 

distinction between our competition (and most competitions organized in the social sciences) 

and most tournaments or prediction markets aimed at practical applications (primarily of 

interest in computer science), which are not interested in interpretability of the successful 
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models (Spiliopoulos & Ortmann, 2014). The winning participants (Cohen & Cohen) were 

invited to co-author the current paper. Appendix H presents the call for the competition and 

its detailed requirements.  

Competition Criterion: Mean Squared Deviation (MSD) 

The current competition focused on the prediction of the mean B-rates in each of five 

blocks of trials for each choice problem. As in previous competitions (Erev, Ert, Roth, et al., 

2010; Erev, Ert, & Roth, 2010; Ert et al., 2011), the accuracy of the predictions was evaluated 

using MSD scores. We first computed the squared difference between the observed and 

predicted rates in each block of five trials for each of the 60 problems, and then computed the 

mean across the 300 scores. 

The MSD criterion has several advantages over other model estimation criteria (e.g., 

likelihood criteria). In particular, the MSD score underlies traditional statistical methods (like 

regression and the t-test), is a proper scoring rule (Brier, 1950; Selten, 1998), and can be 

translated to the intuitive Equivalent Number of Observation (ENO) score explained below. 

Note that the use of a proper scoring rule is particularly important in prediction competitions 

such as ours, and serves to incentivize participants to nominate “truthful” models rather than 

biased ones, from which it is more difficult to derive theoretical insights.  

Relationship to Previous Competitions 

The current competition addresses the critique of previous choice prediction 

competitions (Spiliopoulos & Ortmann, 2014), which asserted that since competitions are 

typically run as single implementations, they might be susceptible to auxiliary assumptions. 

Therefore “before running a tournament it is important to very carefully select the 

implementation details based on prior studies and knowledge” (Spiliopoulos & Ortmann, 

2014, p. 243). The starting point of the current competition, which focused on the replication 
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of 14 well-known behavioral phenomena, follows this proposition. Furthermore, we believe 

that the requirement that submitted models be clear in their description so other researchers 

can easily use them should facilitate the models’ parsimony and usability. 

Another relationship to previous competitions involves the similarity of BEAST to the 

model that won the learning-in-games competition (Erev, Ert, & Roth, 2010). This model 

(Chen, Liu, Chen, & Lee, 2011) assumes high sensitivity to the estimated expected value 

(average payoff), some initial biased tendencies, and reliance on small samples of past 

experiences that  implies immediate regret minimization. The main difference between 

BEAST and the 2010 competition winner is the nature of the initial biased tendencies. Hence, 

these tendencies appear to be situation-specific. 

Competition Submissions  

Fifty-three teams of researchers registered for the competition. Twenty-five of these 

teams, with members from five continents, submitted models. The submissions can be 

classified into three main categories. The first class, which contains three submissions, builds 

primarily on the traditional research approach assuming behavior can be well described by 

subjective functions of values and probabilities. Specifically, the typical model in this class 

uses a variant of prospect theory that assumes that the parameters of the underlying subjective 

functions are situation-specific.  

The second class, which consists of 14 submissions, includes models that can be 

described as variants of BEAST. In particular, all these models assume high sensitivity to the 

expected value and four behavioral tendencies that can be captured by assuming the use of 

four sampling tools. Moreover, all but one of these models also share with BEAST the three 

modelling decisions EEP made and are discussed above. 

The third class, which includes seven submissions, involves models that do not 

attempt to directly identify the underlying processes, but rather use machine learning or 
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similar statistical approaches. Three of the models in this class rely on theoretical insights 

taken from the decision making literature as input (explanatory variables, or “features”) for 

the models. The four other models in this class can be considered theory-free in the sense that 

the features used in these models include primarily the structure of the task (the dimensions 

that define it), in the hope that the model can predict the choice rates based on these basic 

features.  

One submission does not fit in any of these three categories. It is a variant of instance- 

based learning (IBL; Gonzalez, Lerch, & Lebiere, 2003) that uses the described payoff 

distributions to create mental instances prior to obtaining feedback and then applies an IBL 

model as usual.  

The Test Set  

As noted above, the test set includes 60 problems selected randomly from the space 

we study, using the algorithm described in Appendix F. As implied by the wide space of 

problems and the random drawing mechanism, the test set included different problems than 

those examined in the replication and calibration studies. The selected problems are shown in 

Appendix I. 

Method. One-hundred and sixty (72 male, MAge = 24.5) students from the Technion 

(n = 80) and HU participated in the competition study. Half the participants faced problems 

91 through 120 and the others faced problems 121 through 150 (see Appendix I). The 

apparatus and design were identical to those of the calibration study. The final payoff ranged 

between 10 and 149 shekels (M = 38.9).  

Results. The main experimental results are summarized in Appendix I. The results 

appear to be similar to those of the calibration study. First, where relevant, the maximization 

rate of the full information problems was 68% (SD = 0.17) in the no-FB trials and 72% 

(SD = 0.19) in the with-FB trials. Second, Figure 16 (cf. Figure 13) shows the robustness of 
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participants’ tendency to minimize experienced regret by learning to choose the option that is 

better most of the time. The correlation between the measures in Figure 16 is 0.71, 95% CI 

[0.55, 0.82]. Third, in the only non-ambiguous problem in which both options had identical 

EVs (Problem 129), participants seem to exhibit risk neutrality: B-rates are 46% in the no-FB 

trials and 51% in the with-FB trials. The difference from 50% is insignificant in every block 

of trials. Finally, behavior in the ambiguous problems reflects an initial tendency to assume 

uniform probabilities with some ambiguity aversion, and learning toward maximization.  

 

Figure 16. Increase in Choice of the Maximizing Option between With-FB and No-FB trials as a Function of 

the Probability that the Maximizing Option Provides Higher Payoff than the Low EV Option in a Random 

Trial in the Competition Study. Each data-point represents one problem and is marked with the number of 

that problem (see Appendix I). The bold dark markers represent problems with maximization increase 

significantly different from zero. The correlation is .71.  

Performance of the Baseline Model, BEAST 

Figure 17 presents the correlation between the observed B-rates (Y-axis) and the 

predictions of the baseline model BEAST (X-axis) in the no-FB and in the with-FB blocks. 

Each point presents one of the 60 problems (using the problem numbers, see Appendix I). 

The correlations are 0.95 in both the no-FB and with-FB blocks. Correlations in each block 

separately are above 0.94 each. The figure also presents the problems in which BEAST 

deviates most from the observed rates. Notice that the failure of BEAST in Problem 122 
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implies less overweighting of rare events than predicted by BEAST. We discuss the other 

large misses (Problems 93, 126, and 137) below.   

  

   B-rate 

Problem Option A Option B No-FB With-FB 

93 5 with certainty −9, p1; 92, p2; 100, p3; 104, p4; 106, p5  

(p1 = .9, p2 = .0125, p3 = .0125, p4 = .025, p5 = .05 unknown) 

.56 .39 

122 −14, .95; 68, .05 −36, .1; −11, .9 .36 .42 

126 −8 with certainty −18, .8; 77, .00313; 78, .0188, 79, .0469; 80, .0625;  

81, .0469; 82, .0188; 83, .00313 

.53 .51 

137 3 with certainty 2, p1; 3, p2; 4, p3; 5, p4; 6, p5 

(p1 = .025, p2 = .7, p3 = .15, p4 = .1, p5 = .025 unknown) 

.73 .89 

 

Figure 17. BEAST Predictions vs. Observed B-rates by Problem in the Competition Study. Each data point 

represents one problem and is marked with the number of that problem (see Appendix I). The diagonal is the 

best possible prediction. The red markers represent four problems in which BEAST deviates the most from the 

observed choice rates. The table below details these problems and their observed choice rates.  

The MSD score of BEAST, across the five blocks and 60 problems, is 0.0098. 

Although this value is larger than the corresponding value in Studies 1 and 2 (0.0073), 

considering the fact that the parameters were estimated to fit the replication and calibration 

studies, the difference is not large. To clarify the implication of the MSD score, we computed 

the implied Equivalent Number of Observation (ENO) score (Erev, Roth, Slonim, & Barron, 
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2007). The ENO of a model is an estimation of the number of subjects that has to be run until 

the mean choice rate in each problem provides a better prediction for the behavior of the next 

subject than the prediction of the model. The ENO of BEAST in the current setting is 12.07. 

That is, the average error of BEAST, over the 60 problems, is smaller than the average error 

when predicting the next subject based on the mean choice rates of the first 12 subjects.  

The Winning Model and the Performance of Other Submissions. 

Twenty-five models were submitted to the competition, and were tested together with 

the baseline model, BEAST. Four models failed to replicate at least one of the phenomena in 

Table 1 (i.e., failed to comply with the “replication” criterion, detailed in the competition’s 

website, as explained in appendix H).16 The other 21 models were ranked according to their 

predictions’ MSD on the test set. All 12 top models were variants of the BEAST model. 

These models’ MSDs ranged between 0.0089 and 0.0114. Seven of these models had better 

MSDs than the baseline BEAST. The other nine models achieved MSDs ranging between 

0.0124 and 0.0501.  

The winning model, referred to as Cohen’s BEAST (see Appendix J for details) is a 

version of BEAST that includes a tendency to avoid “complex prospects” that include 

multiple outcomes and/or ambiguity when the payoff range is large, as in Problems 93 and 

126. The model also includes a tendency to favor such complex prospects when the payoff 

range is narrow, as in Problem 137. Cohen’s BEAST achieved MSD of 0.0089 and ENO of 

13.51. It also outperformed all other variants of BEAST in fitting the calibration data (MSD 

of 0.0059).  

                                                 
16 Nevertheless, we tested these models on the test set as well. The results revealed that had these 

models participated in the competition, they would have been ranked relatively low compared to the other 

submissions. 
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To examine the robustness of the competition’s ranking, we performed a bootstrap 

analysis on the submitted models’ scores compared to the competition’s winner. Specifically, 

we simulated 1,000 sets of 60 test problems each by randomly sampling from the original test 

set (with replacement) and computed the MSD of each submitted model in each simulated 

set. Then, we computed the 1,000 differences between each model’s MSDs and the winner’s 

MSDs. By removing the 25 smallest MSD differences and the 25 largest MSD differences, 

we constructed for each model a 95% confidence interval around its performance relative to 

the competition’s winner. This procedure allows for a more robust estimate of the relative 

model performance, reducing the dependency on the exact (random) selection of the test set.  

The results of this exercise show that the performance of 12 submitted models does 

not differ significantly from the performance of the winner: Those ranked 2 through 9 and 11 

through 14 in the competition. (The model ranked 10 was similar to Cohen’s BEAST in many 

problems, but consistently less accurate in many other problems.) These results merit 

additional examination of the similarities and differences among these 12 models and the 

winner. Our examination reveals that these 13 models share more similarities than 

differences. Specifically, 11 of the 13 models (including the winner) are close variants of 

BEAST, whereas the two models that are not close variants of BEAST (ranked 13 and 14 in 

the competition) share many of BEAST’s assumptions. In particular, all 13 models assume 

relatively high sensitivity to the difference between the actual expected values (or their best 

estimates). Moreover, all 13 models assume sensitivity to the probability that one option 

generates a better outcome than the other. That is, they assume a tendency to minimize 

immediate regret by preferring the option better most of the time. Finally, all 13 models also 

reflect additional “biased” behavioral tendencies that BEAST aims to abstract, such as 

pessimism.  



FROM ANOMALIES TO FORECASTS    57 

  

The main differences among the 13 models are much subtler. In particular, most of 

the BEAST-like successful models only differ by assuming different implementation details 

of the sampling tools, different likelihoods of using the various sampling tools, or one 

additional behavioral tendency or cognitive strategy. Importantly, only three of the 13 models 

assume sensitivity to a subjective expected utility construct similar to that assumed by CPT 

(in addition to assuming sensitivity to the actual EV). Incidentally, these three models were 

ranked at the bottom of the successful models list (12, 13, and 14 in the competition).17 These 

three models include the two most successful non-BEAST variants, both of which use 

statistical approaches that integrate theoretical insights in order to choose the underlying 

features. Appendix K provides more details regarding the 12 successful models that did not 

win the competition.  

Machine learning and the abstraction of the process  

Of the seven submissions that did not aim to identify the underlying processes but 

relied on statistical or machine learning methods, four were ranked lowest of all 25 

submissions according to their prediction MSD, whereas two did not predict significantly 

worse than the competition’s winner. We believe that the main difference between the 

successful and the less successful submissions in this category is the choice of building 

blocks (features, x-variables) that the machine learning algorithm or statistical method uses to 

derive predictions. Indeed, many of the features used by the more successful submissions 

were similar to the building blocks assumed by BEAST.  

                                                 
17 We also considered a stochastic expected utility model as a benchmark. It assumes that the utility 

from each outcome x is: U(x) = (α + x)β, where α is a free parameter that captures initial wealth, and β is the risk 

aversion parameter. In addition, this model assumes a noisy term as in BEAST. The prediction MSD of this 

model is 0.0183. Next, we examined the statistical significance of this benchmark relative to other models 

(using a bootstrap analysis), and found that all 13 top models (and the baseline BEAST) significantly 

outperform it.  
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In order to evaluate this hypothesis, we performed a post hoc analysis focused around 

the importance of the features a machine learning algorithm is supplied with. In this analysis, 

we used one of the most successful machine learning algorithms available, Random Forest 

(Breiman, 2001; and see Strobl, Malley, & Tutz, 2009 for a review), trained it on the 90 

replication and calibration problems and then tested its predictive performance on the 60 test 

problems. This procedure was conducted twice, and each time the algorithm was supplied 

with a different set of features. First, we supplied it with the dimensions that define the 

problems (i.e. without any theory-grounded features). The algorithm then implies extremely 

poor performance (it would have come out last in the competition).  

In the second run, we supplied the random forest algorithm with features that capture 

the main psychological constructs underlying the baseline BEAST. Specifically, we designed 

13 features that capture the assertion that choice is driven by sensitivity to the expected return 

and four behavioral tendencies that are the result of sampling tools (see Appendix L for 

details). The prediction MSD implied by this analysis was found to be identical to that of 

BEAST. Therefore, supplying the machine learning algorithm with theory-based features is 

fundamental to facilitating its performance.  

It should be noted that, although both the random forest algorithm and BEAST use the 

same underlying psychological constructs, the observation that they imply similar 

performance is non-trivial. The random forest algorithm structures these constructs in a 

complex manner, aiming at pure prediction. That is, random forest simultaneously examines 

many possible complex interactions among the assumed BEAST components and produces 

the best dynamics that the algorithm can find to account for the training data. Notably, it does 

not assume a cognitive and/or a learning process. Rather, it produces predictions based on the 

observed choice rates of similar problems from the training data (and the complex interaction 

among the constructs defines similarity). BEAST, in contrast, assumes a very specific 
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interpretable interaction among the psychological constructs, one that can potentially shed 

light on the underlying process.  

Of course, the fact that both methods imply the same predictive performance in the 

current data does not mean that they produce the same model dynamics (in fact, this is highly 

unlikely). However, it does suggest that it is not easy to find a model that significantly 

outperforms BEAST, at least not without adding more (or using different) “building blocks.” 

The competition results corroborate this statement by suggesting that the many attempts to 

amend BEAST in some way did not result in significantly better performance.  

The current method of using random forest with BEAST-inspired features also makes 

it possible to test whether removal of some of BEAST’s underlying psychological constructs 

impairs performance meaningfully. Specifically, we ran the random forest algorithm with 

various subsets of the 13 features that BEAST assumes. Appendix L provides details of this 

exercise. The main results show that removal of the sensitivity to the best estimates of the 

expected values, as well as removal of the features that capture the tendency to minimize 

regret lead to poor predictive performance. In contrast, removal of features that capture each 

of the other three behavioral tendencies assumed by BEAST only slightly detracts from the 

performance in the current data (but recall they are necessary for replication of known 

anomalies). Yet, removal of the all features that capture these three tendencies also 

significantly impairs performance. 

General Discussion 

Experimental studies of human decision making reveal robust deviations from 

maximization that appear to suggest contradictory biases. For example, people tend to 

overweight rare events in decisions under risk (Kahneman & Tversky, 1979), but to 

underweight rare events in decisions from experience (Hertwig et al., 2004). Previous 
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research addressed the contradictory results by presenting different models to capture 

different experimental paradigms. For example, prospect theory (Kahneman & Tversky, 

1979) focuses on four choice anomalies that emerge in one-shot decisions under risk (no 

feedback) among numerically described prospects with up to two nonzero outcomes.  

Similarly, the choice prediction competitions presented in Erev et al. (2010) favor very 

different models for decisions from description and for decisions from experience.  

The effort to find the best model for each paradigm led to many interesting insights, 

but it also entails important shortcomings. It sheds limited light on the relationship between 

the different behavioral phenomena and the distinct underlying processes. Thus, it cannot 

provide clear predictions of behavior in situations that fall between the well-studied 

paradigms (e.g., cases where people receive some description and have some experience, 

such as the safer driving vehicle system mentioned above), and, for that reason, cannot 

resolve Roth's 1-800 critique.  

The current research aimed to address this critique by facilitating the development and 

comparison of models that address larger sets of situations and phenomena. Specifically, we 

used Kahneman and Tversky’s method (“replicate several behavioral phenomena in one 

paradigm and then capture them with a descriptive model”), but increased the number of 

anomalies we try to capture from 4 to 14. To reduce the risk of overfitting the data, the 

current project also studied randomly selected problems, focused on predictions, and used a 

choice prediction competition methodology. The results of this exercise highlight the 

following observations.   

The Interaction between the Different Behavioral Biases  

The current results demonstrate that the existence of contradictory deviations from 

maximization does not imply that the different deviations cancel each other out and/or that it 

is impossible to develop a descriptive model with high predictive value. Indeed, the main 
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interactions between the different biases are not complex. For example, when people can use 

both description and experience, they initially exhibit overweighting of rare events, but 

feedback leads them to exhibit the opposite bias. The results suggest high sensitivity to the 

expected values and four additional tendencies: pessimism, a bias toward the option that 

maximizes the probability of the best payoff sign, a bias toward the option that leads to the 

best payoff assuming that all the outcomes are equally likely, and an effort to minimize the 

probability of immediate regret. In addition, the results show an increase in the tendency to 

select the option that minimizes the probability of immediate regret with experience. 

Subjective Weighting, Simple Heuristics, and Sampling Tools  

The leading models of human decision-making generalize the expected value rule by 

assuming maximization of weighted subjective values. For example, prospect theory 

(Kahneman & Tversky, 1979; Wakker, 2010) assumes the weighting of subjective values 

(utilities) by a subjective function of their objective probabilities. The current research 

highlights one shortcoming of this approach. It shows that it is not easy to find subjective 

function models that can capture the classical deviations from maximization with a single set 

of parameters. The attempt to submit models of this type to our competition revealed that 

they need different parameters to reproduce the 14 anomalies, and that they do not provide 

good predictions.  

Most previous attempts to present alternatives to the subjective functions approach 

focused on the role of simple heuristics (Brandstätter et al., 2006; Payne et al., 1993). The 

basic assumption of this research is that people simplify the decision task by using simple 

rules that lead to satisficing choices. The main shortcoming of this approach is the 

observation that people behave as if they are weighing the expected value considerations with 

other considerations. Thus, assuming decision makers indeed use rules, the outputs of these 
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rules are abstracted better as “just-additional-estimates” than as “simple determinants of final 

choices.”  

These shortcomings of the popular subjective functions, and simple heuristics 

approaches led EEP to consider a third theoretical approach. Specifically, they assumed that 

decisions makers weigh the best estimate of the expected values with the output of several 

sampling tools. The results of the current competition suggest that this approach outperforms 

the more popular approaches. The main observations (high sensitivity to expected return and 

four tendencies) are naturally abstracted with models like BEAST that assume best estimate 

and sampling tools.   

The Experience–Description Gap. 

The current results show that the existence of a large difference between the 

deviations from maximization in decisions from description and decisions from experience 

(e.g., Barron & Erev, 2003; Hertwig & Erev, 2009; Weber, Shafir, & Blais, 2004) does not 

necessarily imply a large difference between the underlying cognitive processes. The 

coexistence of overweighting of rare events in decisions from description and the opposite 

bias in decisions from experience can be captured with the hypothesis that the availability of 

feedback increases the tendency to rely on unbiased draws from the relevant payoff 

distributions. This hypothesis implies that feedback increases sensitivity to the probability of 

immediate regret.  

Overgeneralization, overdiscrimination, and Skinner's critique 

Skinner (1985) has criticized the early study of judgment and decision making on the 

ground that the popular cognitive explanations are descriptions of specific generalizations, 

and are not likely to capture robust features of human behavior.  Under Skinner's critique, 

organisms always generalize from similar past experiences (behavior is selected by the 
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contingencies of reinforcements), and the classical deviations from maximization are 

reflections of situation specific overgeneralizations that emerge when the subjects face 

confusing new problems.  

We believe that the current research takes two steps toward addressing this critique.  

First, it shows that it is not necessary to assume different generalizations to capture each of 

the classical deviations from maximization. In particular, the four behavioral tendencies 

assumed by BEAST can be described as generalizations that capture behavior in wide sets of 

situations, and their abstraction allows predictions of the initial overgeneralizations in new 

settings.  This interpretation of BEAST's sampling tools assumes that they approximate 

common generalizations of past experiences that occurred before the beginning of our 

experiment.  For example, contingent pessimism could reflect generalizations from 

descriptions provided by salespersons that were found to be too optimistic in retrospect (see 

Ert & Erev, 2008).  Since the descriptions in our studies were accurate, this reasonable 

tendency implies an overgeneralization in the current context. 

In addition, our analysis demonstrates that not all the deviations from maximization 

reflect overgeneralizations that are eliminated by experience.  Specifically, our analysis 

suggests that feedback increases the tendency to behave as if relying on small samples of 

experiences in the current task (which is abstracted by BEAST as an increased use of the 

unbiased sampling tool). This observation is naturally described as overdiscrimination among 

relevant trials in the current task.  According to this account, feedback leads the subjects to 

rely on small samples of past experiences in the current task because they attempt to respond 

to patterns (Plonsky, Teodorescu, & Erev, 2015). That is, they believe that the state of nature 

changes from trial to trial, and select the option that was found to be the best in (the small set 

of) past experiences that are most similar to the current trial. This attempt approximates the 
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optimal strategy in dynamic settings, but leads to a bias toward the option that minimizes the 

probability of immediate regret in the current setting.  

An alternative, and perhaps simpler, explanation for an increased use of unbiased 

sampling (and less use of biased tools) with feedback involves the observation that the 

unbiased sampling tool is likely to be the most effective of all tools. Although it still implies 

certain deviations from maximization (such as underweighting of rare events), in most cases 

feedback reinforces its use. Specifically, a strategy selection learning (SSL; Rieskamp & 

Otto, 2006) framework that assumes the selection of cognitive strategy (or tool) is based on 

reinforcement learning would predict, in the current setting, transition from the biased tools 

to the unbiased tool with feedback.  

The Potential and Limitations of Choice Prediction Competitions 

The current project highlights the potential of the choice prediction competition 

methodology, but also reveals some of its shortcomings. The potential lies in the fact that it 

facilitates studies that focus on wide spaces of problems, can clarify the relationship between 

different phenomena and different theoretical approaches, and reduce the risk of overfitting 

the data. Competitions can also help satisfy the goal, commonly attributed to Albert Einstein, 

that “everything should be made as simple as possible, but not simpler”. Specifically, we 

believe that a paper that presented the current investigation and baseline model (BEAST) 

without the competition would be criticized on the grounds that the model is too complex. 

The competition demonstrates that it is not easy to find a simpler model that allows useful 

predictions. At least 25 teams have tried already with no success.  

  One shortcoming of the prediction competition methodology is the observation that 

the winning model is not significantly better than 12 of the other models. This observation 

suggests that the main contribution of the current analysis is the clarification of the common 

features of the leading models, rather than the identification of a single “correct” model. Yet, 
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it should also be noted that the relative high proportion of successful models among those 

submitted does not mean that it is easy to find a successful model. The set of submitted 

models suffers from a selection bias. Specifically, models that were found by their developers 

to perform poorly on the calibration data are not likely to be submitted in the first place. 

Indeed, 28 additional groups of researchers registered for the competition but did not submit, 

and it is very possible that some of them indeed attempted to develop a successful model, but 

found this task more challenging than they first thought it would be. 

Throughout the paper we have discussed the risk of overfitting data in the social 

sciences and the need of studying a large space of tasks. A related risk, which received less 

focus in the current examination, might be overgeneralizing results obtained from a specific 

sample of participants (Israeli undergraduates in our example) to broader populations. As 

such, future competitions should examine diverse populations of interest to increase 

confidence in the generalizability of their results.   

Summary 

The current analysis questions the existence of qualitative differences between 

decisions from description and decisions from experience.  It shows that both classes of 

decisions can be captured with a model that assumes a single process. Yet, it also shows that 

the quantitative effect of experience can be very large.  Importantly, feedback changes 

behavior in predictable ways, even when the decision makers can rely on complete 

description of the incentive structure, and the feedback does not add relevant information. 

Most of the well-known deviations from maximization in decisions from description, 

examined here, are eliminated or reversed by feedback.   

In addition, our analysis questions the value of assuming that choice behavior reflects 

the weighting of subjective values by subjective functions of their probabilities, and/or 

situation specific cognitive shortcuts. It suggests that the initial (reaction to description) 
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deviations can be captured as reflections of four tendencies: pessimism, maximizing payoff 

sign, equal waiting, and minimizing the probability of immediate regret.  Experience was 

found to decrease the first three tendencies, and increase the impact of the probability of 

regret.  The results also show high sensitivity to the expected values.  This pattern clarifies 

the conditions under which people are likely to respond to economic incentives: Before 

gaining experience, high maximization rate is predicted when all four tendencies agree with 

the prescription of the EV rule.  Reliable increase in maximization with experience is 

predicted when the prospect that maximizes expected return also minimizes the probability of 

immediate regret (that is, leads to the best ex-post payoff most of the time).  
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Appendix A: Derivation of Lotteries in Multi-Outcome Problems 

When LotNum is larger than 1, Option B includes more than two possible outcomes.  

Simple, but longer, descriptions of the payoff distributions in these cases (list of possible 

outcomes and their probabilities) appear in the figures of the main text and in 

http://departments.agri.huji.ac.il/cpc2015. The derivation of the exact distributions follows 

the following algorithm: When LotNum > 1 the high outcome in Option B (HB) implies a 

lottery with LotNum outcomes. There are three types of lottery distributions (defined by 

LotShape). “Symm”, “R-skew,” and “L-skew”, and all have expected value equal to HB (i.e., 

the lottery maintains the original expected value of Option B).  

In problems with LotShape = “Symm,” the lottery’s possible outcomes are generated 

by adding the following terms to HB: −k/2, −k/2+1, …, k/2-1, and k/2, where k = LotNum − 1 

(hence the lottery includes exactly LotNum possible outcomes). The lottery’s distribution 

around HB is binomial, with parameters k and ½. In other words, the lottery’s distribution is a 

form of discretization of a normal distribution with mean HB. Formally, if in a particular trial 

the lottery (rather than LB) is drawn (which happens with probability pHB), Option B’s 

generated outcome is:  
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In problems with LotShape = “R-skew,” the possible outcomes are generated by 

adding the following terms to HB: C+ + 21, C+ + 22, …, C+ + 2n, where n = LotNum and 

C+ = −n − 1. In problems with LotShape = “L-skew,” the possible outcomes are generated by 

adding the following terms to HB: C− − 21, C− − 22, …, C− − 2n, where C− = n + 1 (and 
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n = LotNum). Note that C+ and C− are constants that keep the lottery’s distribution at HB. In 

both cases (R-skew and L-skew), the lottery’s distribution around HB is a truncated geometric 

distribution with the parameter ½ (with the last term’s probability adjusted up such that the 

distribution is well-defined). That is, the distribution is skewed: very large outcomes in 

R-skew and very small outcomes in L-skew are obtained with small probabilities. For 

example, if LotShape = “R-skew” and LotNum = 5 (in which case, C+ = −6), the lottery’s 

implied distribution is:  
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If LotShape = “L-skew” and LotNum = 5 (i.e. C− = 6), the implied distribution is: 

16 2, with probability
2

16 4, with probability
4

16 8, with probability
8

16 16, with probability
16

16 32, with probability
16

  

  



 


 

  


B

B

B

B

B

H

H

H

H

H

 



FROM ANOMALIES TO FORECASTS    78 

  

Appendix B: The Choice Problems and Main Results in the Replication Study 

           B-rate 

 Option A Option B Lottery   No-FB With-FB 

Prob. H pH L H pH L Num Shape Corr. Amb 1 2 3 4 5 

1 3 1 3 4 0.8 0 1 - 0 0 .42 .57 .57 .60 .65 

2 3 0.25 0 4 0.2 0 1 - 0 0 .61 .62 .62 .64 .62 

3 -1 1 -1 0 0.5 -2 1 - 0 0 .58 .60 .60 .58 .56 

4 1 1 1 2 0.5 0 1 - 0 0 .35 .51 .54 .50 .54 

5 -3 1 -3 0 0.2 -4 1 - 0 0 .49 .46 .42 .38 .36 

6 0 0.75 -3 0 0.8 -4 1 - 0 0 .38 .40 .40 .42 .41 

7 -1 1 -1 0 0.95 -20 1 - 0 0 .48 .63 .62 .62 .64 

8 1 1 1 20 0.05 0 1 - 0 0 .39 .38 .33 .34 .29 

9 1 1 1 100 0.01 0 1 - 0 0 .47 .40 .39 .39 .39 

10 2 1 2 101 0.01 1 1 - 0 0 .55 .45 .43 .42 .42 

11 19 1 19 20 0.9 -20 1 - 0 0 .13 .22 .21 .20 .21 

12 0 1 0 50 0.5 -50 1 - 0 0 .34 .41 .43 .44 .38 

13a 0 1 0 50 0.5 -50 1 - 0 0 .36 .37 .40 .37 .36 

14 0 1 0 1 0.5 -1 1 - 0 0 .49 .45 .42 .41 .38 

15 7 1 7 50 0.5 1 1 - 0 0 .78 .84 .88 .83 .85 

16 7 1 7 50 0.5 -1 1 - 0 0 .71 .79 .81 .83 .83 

17 30 1 30 50 0.5 1 1 - 0 0 .24 .33 .33 .30 .29 

18 30 1 30 50 0.5 -1 1 - 0 0 .23 .33 .40 .33 .33 

19b 9 1 9 9 1 9 8 R-skew 0 0 .37 .39 .36 .31 .30 

20 9 1 9 9 1 9 8 R-skew 0 0 .38 .38 .39 .36 .36 

21 10 0.5 0 10 0.5 0 1 - 0 1 .37 .42 .47 .48 .51 

22 10 0.1 0 10 0.1 0 1 - 0 1 .82 .84 .78 .71 .66 

23 10 0.9 0 10 0.9 0 1 - 0 1 .15 .16 .26 .33 .32 

24 -2 1 -2 -1 0.5 -3 1 - 0 0 .48 .52 .48 .48 .45 

25 2 1 2 3 0.5 1 1 - 0 0 .41 .50 .46 .46 .49 

26 16 1 16 50 0.4 1 1 - 0 0 .50 .65 .61 .60 .55 

27c 16 1 16 48 0.4 1 3 L-skew 0 0 .50 .57 .60 .58 .57 

28 6 0.5 0 9 0.5 0 1 - -1 0 .91 .87 .83 .85 .84 

29 2 1 2 3 1 3 1 - 0 0 .97 .98 .99 .99 1.0 

30 6 0.5 0 8 0.5 0 1 - 1 0 .94 .97 .96 .98 .98 

Note. B-rates are mean choice rates for Option B, presented in five blocks of five trials each: no-FB is the block 

without feedback, and with-FB are the blocks with feedback. Simpler but longer descriptions of the payoff 

distributions appear in Figures 1 through 10 of the main text and in http:\\departments.agri.huji.ac.il/cpc2015.   
 aAn accept/reject type problem (the problem is replaced with a proposal to accept or reject a game of chance 

with Option B’s outcomes). bA coin-toss type problem (Option B is construed as a game of chance similar to 

that used by Bernoulli, 1738/1954). Its implied payoff distribution is described in Row 6 of Table 1 in the main 

text. c The implied payoff distribution is described in Row 10 of Table 1 in the main text.  
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Appendix C: Translated Instructions and Examples of the Experimental Screen 

The instructions for participants under the ByProb condition (see Footnote 3 in main text) 

were:  

“This experiment consists of many games, which you will play one after the other.  

In every game, there are multiple trials and in every trial you will have to choose 

between two options presented on the screen. The choice will be made by clicking on 

the button that corresponds with the option you have selected, which will be located 

below that option.  

Following some of the trials, there will appear on the selected button the outcome you 

obtained by selecting that option (this outcome will appear in black font).  

On the other button, there will appear the outcome you could have obtained had you 

selected the other option (the forgone outcome will appear in dull font). 

At the end of the experiment, one trial will be selected at random from all the 

experiment’s trials and your obtained outcome in that trial will be your payoff for the 

performance in the experiment. Trials in which outcomes did not appear on the screen 

may also be selected to count as your payoff.  

Please note: The more trials you have with larger obtained outcomes, the greater the 

chance you will receive a larger sum of money at the end of the experiment.” 

The initial instructions for participants under the ByFB condition were: 

“This experiment consists of many games, which you will play one after the other.  

In every game there are multiple trials, and in every trial you will have to choose 

between two options presented on the screen. The choice will be made by clicking on 

the button that corresponds with the option you have selected, which will be located 

below that option. 
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At the end of the experiment, one trial will be selected at random from all the 

experiment’s trials and your obtained outcome in that trial will be your payoff for the 

performance in the experiment. 

Please note: The more trials you have with larger obtained outcomes, the greater the 

chance you will receive a larger sum of money at the end of the experiment.” 

After completing all (150) no-FB trials (five per problem), the participants in the ByFB 

condition were shown the following instructions: 

“The first part of the experiment is over. 

In the second part of the experiment, there will appear on the selected button the 

outcome you obtained by selecting that option (this outcome will appear in black 

font).  

On the other button, there will appear the outcome you could have obtained had you 

selected the other option (the forgone outcome will appear in dull font). 

The rest of the instructions remain unchanged.” 

Screenshot examples of the experimental paradigm appear in Figures C1 through C5.  Figure 

C1 demonstrates a problem with abstract representation and Amb = 0; Figure C2 

demonstrates a problem with abstract representation and Amb = 1; Figure C3 demonstrates 

the coin-toss framing manipulation; Figure C4 demonstrates the accept/reject framing 

manipulation; and Figure C5 demonstrates the feedback given to participants following a 

choice. Note that the location of each option on the screen was counterbalanced and the 

information regarding correlation between options (bottom row on the screen) only appeared 

if both options had more than one possible outcome (i.e., when correlation information was 

relevant).   
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Figure C1. Example of a translated experimental screen in an abstract problem with Amb = 0.  

 

 

Figure C2. Example of a translated experimental screen in an abstract problem with Amb = 1 

(ambiguous problem). 
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Figure C3. Example of a translated experimental screen in a problem framed with a “coin-toss” 

manipulation. 

 

 

Figure C4. Example of a translated experimental screen in a problem framed with an 

“accept/reject” manipulation. 
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Figure C5. Example of a translated experimental screen when full feedback is given (blocks 2–5). 

The participant here chose Option B.  
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Appendix D: The Main Results in the Control Conditions for the Replication Study 

           Condition 

 Option A Option B Lottery   Single 

choice 

(n = 60) 

FB from 1st (n = 29) 

Prob. H pH L H pH L Num Shape Corr. Amb 1 2 3 4 5 

1 3 1 3 4 0.8 0 1 - 0 0 .48 .54 .61 .66 .63 .66 

2 3 0.25 0 4 0.2 0 1 - 0 0 .52 .56 .56 .58 .66 .62 

3 -1 1 -1 0 0.5 -2 1 - 0 0 .63 .64 .52 .46 .48 .57 

4 1 1 1 2 0.5 0 1 - 0 0 .47 .50 .50 .50 .40 .44 

5 -3 1 -3 0 0.2 -4 1 - 0 0 .62 .46 .31 .28 .31 .31 

6 0 0.75 -3 0 0.8 -4 1 - 0 0 .43 .37 .32 .28 .34 .35 

7 -1 1 -1 0 0.95 -20 1 - 0 0 .42 .71 .74 .77 .73 .68 

8 1 1 1 20 0.05 0 1 - 0 0 .35 .17 .19 .18 .20 .24 

9 1 1 1 100 0.01 0 1 - 0 0 .38 .30 .28 .28 .24 .23 

10 2 1 2 101 0.01 1 1 - 0 0 .43 .34 .37 .32 .28 .32 

11 19 1 19 20 0.9 -20 1 - 0 0 .20 .15 .23 .21 .22 .23 

12 0 1 0 50 0.5 -50 1 - 0 0 .37 .46 .43 .46 .43 .46 

13a 0 1 0 50 0.5 -50 1 - 0 0 .33 .50 .39 .39 .39 .35 

14 0 1 0 1 0.5 -1 1 - 0 0 .72 .44 .38 .36 .31 .32 

15 7 1 7 50 0.5 1 1 - 0 0 .82 .69 .72 .68 .72 .70 

16 7 1 7 50 0.5 -1 1 - 0 0 .82 .68 .74 .70 .72 .74 

17 30 1 30 50 0.5 1 1 - 0 0 .25 .32 .37 .30 .31 .26 

18 30 1 30 50 0.5 -1 1 - 0 0 .25 .37 .37 .37 .38 .39 

19b 9 1 9 9 1 9 8 R-skew 0 0 .42 .58 .48 .35 .48 .43 

20 9 1 9 9 1 9 8 R-skew 0 0 .33 .51 .46 .44 .36 .36 

21 10 0.5 0 10 0.5 0 1 - 0 1 .27 .43 .50 .55 .48 .50 

22 10 0.1 0 10 0.1 0 1 - 0 1 .87 .77 .68 .60 .61 .59 

23 10 0.9 0 10 0.9 0 1 - 0 1 .15 .23 .26 .22 .21 .26 

24 -2 1 -2 -1 0.5 -3 1 - 0 0 .60 .51 .46 .35 .48 .45 

25 2 1 2 3 0.5 1 1 - 0 0 .53 .50 .53 .54 .54 .48 

26 16 1 16 50 0.4 1 1 - 0 0 .55 .48 .53 .57 .59 .52 

27c 16 1 16 48 0.4 1 3 L-skew 0 0 .40 .60 .57 .50 .50 .53 

28 6 0.5 0 9 0.5 0 1 - -1 0 .97 .85 .81 .74 .79 .79 

29 2 1 2 3 1 3 1 - 0 0 .97 .98 .97 .98 .99 .98 

30 6 0.5 0 8 0.5 0 1 - 1 0 .93 .88 .92 .93 .97 .98 

Note. Values in the six right-most columns are are mean choice rates of Option B. In the single choice condition, 

participants made one-shot decisions in each problem. In the FB from 1st condition, participants made 25 

repeated decisions of each problem with full feedback following each choice. The choice rates in this condition 

are presented in five blocks of five trials each. Simpler but longer descriptions of the payoff distributions appear 

in Figures 1 through 10 of the main text and in http:\\departments.agri.huji.ac.il/cpc2015.   

 aAn accept/reject type problem. bA coin-toss type problem cThe implied payoff distribution is described in Row 

10 of Table 1 in the main text.  
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Appendix E: Observed and Predicted Correlations among Individual Tendencies to 

Exhibit 14 Behavioral Phenomena 

Phenomenon 1 2 3 4 5 6 7 8 9 10 11 12 13 14 M 

1. Allais paradox – 0.39† −0.07 0.00 0.03 0.02 −0.13 0.00 0.00 −0.07 0.12 0.02 −0.01 −0.14 0.33 

2. Reflection effect 0.32† – −0.25† 0.07 0.08 0.17 0.10 0.08 0.05 −0.10 −0.03 0.15 0.11 0.11 0.59 

3. Reversed 

reflection 
−0.04 −0.05 – 0.08 0.04 −0.15 −0.13 −0.18* 0.06 0.09 −0.05 −0.04 −0.03 0.15 0.66 

4. Overweighting 

of rare events 
−0.03 0.03 −0.08* – −0.48† 0.10 0.09 −0.39* −0.08 0.06 0.04 0.03 −0.13 0.16 0.54 

5. Underweighting 

of rare events 
0.02 −0.01 0.04 −0.15† – 0.04 0.05 0.27* 0.08 −0.17 0.08 −0.08 0.04 −0.15 0.58 

6. Loss aversion 0.01 0.03 0.04 0.04 −0.01 – 0.51† 0.07 0.14 0.04 −0.02 0.10 0.24* −0.03 0.67 

7. Magnitude effect 

of LA 
0.03 0.01 0.03 0.01 0.01 0.32† – −0.08 −0.04 0.08 −0.22* 0.11 −0.13 0.06 0.60 

8. Risk aversion in 

St. Petersburg 
0.00 −0.03 0.05* −0.09* 0.06* −0.01 −0.01 – 0.20* −0.09 −0.01 0.06 0.05 −0.17 0.61 

9. Ambiguity 

aversion 
0.02 −0.02 0.04 −0.01 0.05* 0.00 0.01 0.05* – 0.10 −0.04 0.06 0.20* −0.14 0.63 

10. Break-even 

effect 
0.04 0.04 0.03 0.00 0.01 0.00 0.00 −0.01 −0.01 – −0.10 0.00 0.05 0.05 0.56 

11. Get-

something  
0.02 0.01 0.00 −0.01 0.03 −0.01 −0.02 0.01 0.01 0.03 – −0.04 −0.09 −0.02 0.52 

12. Splitting 

effect 
−0.02 0.01 0.01 0.03 0.01 −0.01 −0.03 −0.01 0.01 0.01 0.01 – 0.20* 0.08 0.54 

13. Payoff 

variability 
0.01 0.00 0.04 −0.12* 0.09* 0.00 −0.03 0.06 0.03 0.01 0.01 −0.02 – 0.07 0.91 

14. Correlation 0.05* 0.02 0.05* 0.06* 0.07* −0.00 −0.00 0.08 0.03 0.04 0.03 0.00 0.1 – 0.74 

M 0.31 0.55 0.56 0.54 0.62 0.66 0.55 0.61 0.55 0.53 0.54 0.55 0.71 0.65  

Note. Observed intercorrelations are presented above the diagonal, and predicted intercorrelations are presented 

below the diagonal. Means represent the proportion of agents who exhibit the behavioral phenomenon: The 

observed proportions are shown in the vertical column, and the predicted proportions are shown in the 

horizontal row. In all cases, agents who exhibit the behavior consistent with the phenomenon are coded as 1, 

agents who exhibit the opposite behavior are coded as 0, and agents who do not exhibit any bias in their 

behavior are coded as .5. Predictions are based on 2500 virtual agents of the baseline model BEAST.    

* p < .05 

† p < .05, but the two measures are based on the same problems. 
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Appendix F: The Problem Selection Algorithm 

The 60 problems in Experiment 2 were generated according to the following 

algorithm. (This algorithm was also used to determine the problems in the competition 

study.)  

1. Draw randomly EVA’ ~ Uni(-10, 30) (a continuous uniform distribution) 

2. Draw number of outcomes for Option A, NA: 1 with probability .5; 2 otherwise. 

2.1. If NA = 1 then set LA = HA = Round(EVA’); pHA = 1 

2.2. If NA = 2 then draw pHA uniformly from the set {.01, .05, .1, .2, .25, .4, .5, .6, .75, .8, 

.9, .95, .99, 1} 

2.2.1.  If pHA = 1 then set LA = HA = Round(EVA’) 

2.2.2.  If pHA < 1 then draw an outcome temp ~ Triangular[-50, EVA’, 120]  

2.2.2.1. If Round(temp) < EVA’ then set LA = Round(temp);  

HA = Round{[EVA’ – LA(1 – pHA)]/pHA}  

2.2.2.2. If Round(temp) > EVA’ then set HA = Round(temp);  

LA = Round[(EVA’ – HA ∙ pHA)/(1 − pHA)] 

2.2.2.3. If HA > 150 or LA < -50 then stop and start the process over 

3. Draw difference in expected values between options, DEV: 

5

i

i = 1

1
U

5
 DEV , where 

Ui ~ Uni[-20, 20]  

4. Set EVB’ = EVA + DEV, where EVA is the real expected value of Option A. 

5. Draw pHB uniformly from the set {.01, .05, .1, .2, .25, .4, .5, .6, .75, .8, .9, .95, .99, 1} 

5.1. If pHB = 1 then set LB = HB = Round(EVB’) 

5.2. If pHB < 1 then draw an outcome temp ~ Triangular[-50, EVB’, 120] 

5.2.1. If Round(temp) < EVB’ then set LB = Round(temp);  

HB = Round{[EVB’ – LB(1 – pHB)]/pHB}  
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5.2.2. If Round(temp) > EVB’ ten set HB = Round(temp);  

LB = Round[(EVB’ – HB ∙ pHB)/(1 – pHB)]  

5.2.3. If HB > 150 or LB < -50 then stop and start the process over 

6. Set lottery (see Appendix A):  

6.1. With probability 0.5 the lottery is degenerate. Set LotNum = 1 and LotShape = “-” 

6.2. With probability 0.25 the lottery is skewed. Draw temp uniformly from the set  

{-7, -6, … ,-3, -2, 2, 3, … , 7, 8}  

6.2.1. If temp > 0 then set LotNum = temp and LotShape = “R-skew” 

6.2.2. If temp < 0 then set LotNum = -temp and LotShape = “L-skew” 

6.3. With probability 0.25 the lottery is symmetric. Set LotShape = “Symm” and draw 

LotNum uniformly from the set {3, 5, 7, 9} 

7. Draw Corr: 0 with probability .8; 1 with probability .1; -1 with probability .1 

8. Draw Amb: 0 with probability .8; 1 otherwise. 

In addition, in the following cases the generated problem was not used for technical 

reasons: (a) there was a positive probability for an outcome larger than 256 or an outcome 

smaller than -50; (b) options were indistinguishable from participants’ perspectives (i.e., had 

the same distributions and Amb = 0); (c) Amb = 1, but Option B had only one possible 

outcome; and (d) at least one option had no variance, but the options were correlated. 
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Appendix G: The Choice Problems and Main Results in the Calibration Study 

           B-rate 

 Option A Option B Lottery   No-FB With-FB 

Prob. H pH L H pH L Num Shape Corr Amb B1 B2 B3 B4 B5 All 

31 4 1 4 40 .6 -44 1 - 0 1 .23 .31 .34 .41 .37 .36 

32 24 .75 -4 82 .25 3 1 - 0 0 .68 .68 .67 .67 .69 .68 

33 -3 1 -3 14 .4 -22 1 - 0 0 .33 .28 .31 .25 .22 .26 

34 7 1 7 27 .1 4 3 Symm 0 0 .39 .45 .43 .41 .40 .42 

35 -5 1 -5 47 .01 -15 1 - 0 0 .18 .09 .04 .03 .05 .05a 

36 28 1 28 88 .6 -46 4 R-skew 0 0 .39 .55 .56 .60 .57 .57a 

37 23 .9 0 64 .4 -7 1 - 0 0 .38 .41 .42 .37 .37 .39 

38 24 1 24 34 .05 28 1 - 0 0 .91 .98 .99 1.0 1.0 .99 

39 29 1 29 33 .8 6 5 Symm 0 0 .50 .69 .70 .68 .66 .68a 

40 3 .8 -37 79 .4 -46 7 L-skew 0 0 .49 .54 .61 .60 .56 .58 

41 29 1 29 44 .4 21 5 Symm 0 0 .68 .73 .74 .68 .68 .71 

42 -6 1 -6 54 .1 -21 1 - 0 1 .61 .48 .25 .23 .20 .29a 

43 14 1 14 12 .9 9 1 - 0 0 .13 .04 .00 .00 .01 .01a 

44 23 1 23 24 .99 -33 1 - 0 0 .27 .44 .47 .49 .47 .47a 

45 13 1 13 13 1 13 9 Symm 0 0 .50 .56 .59 .53 .52 .55 

46 37 .01 9 30 .6 -37 1 - 0 0 .20 .27 .27 .31 .30 .29 

47 11 1 11 57 .2 -5 6 L-skew 0 0 .22 .20 .21 .16 .15 .18 

48 -2 1 -2 24 .5 -24 1 - 0 1 .39 .49 .52 .45 .42 .47 

49 23 1 23 23 1 23 3 Symm 0 0 .54 .50 .49 .48 .48 .49 

50 4 1 4 4 1 4 9 Symm 0 0 .44 .66 .60 .57 .57 .60 

51 42 .8 -18 68 .2 23 1 - 0 0 .79 .71 .74 .72 .70 .72 

52 46 .2 0 46 .25 -2 1 - 0 0 .36 .26 .25 .22 .22 .24 

53 28 1 28 42 .75 -22 1 - 0 0 .36 .43 .42 .42 .42 .42 

54 18 1 18 64 .5 -33 1 - 0 0 .32 .30 .31 .32 .29 .30 

55 43 .2 19 22 .25 17 9 Symm -1 0 .21 .16 .09 .07 .07 .10 

56 -8 1 -8 -5 .99 -34 1 - 0 0 .76 .88 .91 .90 .89 .90 

57 49 .5 -3 33 .95 17 9 Symm -1 0 .77 .71 .70 .73 .75 .72 

58 85 .4 -7 40 .25 24 1 - 0 0 .60 .51 .52 .54 .56 .53 

59 17 .25 16 43 .4 2 1 - 0 0 .51 .52 .52 .49 .49 .51 

60 51 .1 21 38 .6 1 1 - 0 0 .37 .38 .34 .29 .30 .33 

61 26 .25 25 29 .05 24 7 R-skew 0 0 .67 .62 .62 .60 .56 .60 

62 25 1 25 45 .2 17 1 - 0 0 .32 .32 .35 .34 .34 .34 

63 17 1 17 60 .1 15 5 Symm 0 0 .68 .70 .67 .66 .69 .68 



FROM ANOMALIES TO FORECASTS    89 

  

64 52 .1 -8 5 .9 -43 1 - 0 1 .35 .55 .70 .72 .68 .66a 

65 12 .4 -16 -5 1 -5 1 - 0 0 .33 .40 .44 .45 .45 .43 

66 45 .6 2 54 .1 20 5 L-skew 0 0 .43 .35 .40 .44 .43 .40 

67 85 .25 4 54 .25 11 1 - 1 0 .45 .47 .46 .48 .43 .46 

68 12 1 12 102 .2 -14 1 - 0 0 .39 .27 .29 .32 .31 .30 

69 49 .5 11 31 .95 21 3 Symm 0 1 .39 .29 .37 .40 .45 .38 

70 18 1 18 35 .75 -19 1 - 0 0 .38 .55 .58 .60 .58 .58a 

71 13 .6 -20 76 .2 -26 1 - 0 0 .38 .25 .29 .23 .28 .26 

72 -9 1 -9 13 .25 -8 1 - 0 0 .82 .96 1.0 1.0 1.0 .99a 

73 2 1 2 51 .05 0 7 Symm 0 0 .37 .38 .39 .39 .41 .39 

74 44 .05 16 14 .9 10 3 Symm 0 1 .13 .05 .02 .00 .00 .02a 

75 13 1 13 50 .6 -45 1 - 0 0 .35 .44 .42 .44 .50 .45 

76 35 .01 16 20 .5 13 5 Symm 0 1 .68 .71 .71 .68 .64 .68 

77 1 1 1 38 .4 -9 1 - 0 0 .65 .66 .65 .60 .63 .64 

78 19 1 19 44 .05 9 1 - 0 0 .11 .12 .11 .14 .12 .12 

79 32 .01 19 65 .01 9 1 - 0 0 .14 .07 .04 .02 .02 .03a 

80 3 1 3 50 .4 -36 1 - 0 0 .47 .37 .41 .41 .43 .40 

81 10 .25 2 -1 .9 -32 1 - 0 1 .14 .04 .01 .01 .01 .02a 

82 25 1 25 26 .01 25 7 Symm 0 1 .55 .72 .77 .81 .82 .78a 

83 9 1 9 64 .01 9 1 - 0 0 .87 .96 .98 .98 .99 .98a 

84 27 1 27 22 .99 -7 1 - 0 0 .08 .02 .00 .00 .00 .01 

85 20 1 20 70 .25 6 1 - 0 0 .43 .45 .49 .46 .44 .46 

86 71 .5 -11 61 .75 -49 1 - 0 1 .13 .23 .30 .32 .25 .28a 

87 -2 1 -2 4 .99 -34 7 Symm 0 0 .81 .96 .98 .96 .98 .97a 

88 17 .05 -7 13 .25 -15 1 - 0 1 .68 .57 .51 .44 .37 .47b 

89 17 1 17 44 .1 17 1 - 0 0 .88 .96 .99 1.0 1.0 .99a 

90 10 1 10 31 .75 -49 1 - 0 0 .42 .55 .53 .56 .55 .55 

Note. B-rates are mean choice rates for Option B, presented according to blocks of five trials each or according 

to availability of feedback: no-FB (no feedback) or with-FB (with feedback). The rightmost column shows the 

mean B-rate across all four with-FB blocks. Values in bold (in the no-FB and all-with-FB columns)) are 

significantly different from .5 at .05 significance level (corrected for multiple testing according to the procedure 

in Hochberg, 1988). Simpler but longer descriptions of the payoff distributions appear in Figures 12, 14, 15 and 

16, and in http:\\departments.agri.huji.ac.il/cpc2015   

a Difference between rates in the no-FB and the with-FB trials is significant at a .05 significance level (corrected 

according to Hochberg, 1988). 
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Appendix H: Call for Competition Submissions and Competition Requirements 

The following call was distributed over the mailing lists of leading scientific societies 

focused on decision research and experimental and behavioral economics in January 2015: 

Ido Erev, Eyal Ert, and Ori Plonsky (henceforth “we”) invite you to participate in a 

new choice prediction competition. The goal of this competition is to facilitate the derivation 

of models that can capture the classical choice anomalies (including Allais, St. Petersburg, 

and Ellsberg paradoxes and loss aversion) and provide useful forecasts of decisions under 

risk and ambiguity (with and without feedback). 

The rules of the competition are described in 

http://departments.agri.huji.ac.il/cpc2015. The submission deadline is May 17, 2015. The 

prize for the winners is an invitation to be a co-author of the paper that summarizes the 

competition (the first part can be downloaded from 

http://departments.agri.huji.ac.il/economics/teachers/ert_eyal/CPC2015.pdf). 

Here is a summary of the basic idea. We ran two experiments (replication and 

estimation studies, both are described in the site), and plan to run a third one (a target study) 

during March 2015. To participate in the competition you should email us (to eyal.ert at 

mail.huji.ac.il) a computer program that predicts the results of the target study. 

The replication study replicated 14 well-known choice anomalies. The subjects faced 

each of 30 problems for 25 trials, received feedback after the 6th trial, and were paid for a 

randomly selected choice. The estimation study examined 60 problems randomly drawn from 

a space of problems from which the replication problems were derived. Our analysis of these 

90 problems (see http://departments.agri.huji.ac.il/cpc2015) shows that the classical 

anomalies are robust, and that the popular descriptive models (e.g., prospect theory) cannot 

capture all the phenomena with one set of parameters. We present one model (a baseline 

model) that can capture all the results, and challenge you to propose a better model. The 

http://departments.agri.huji.ac.il/cpc2015
http://departments.agri.huji.ac.il/economics/teachers/ert_eyal/CPC2015.pdf
http://departments.agri.huji.ac.il/cpc2015
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models will be compared based on their ability to predict the results of the new target 

experiment. You are encouraged to use the results of the replication and estimation studies to 

calibrate your model. The winner will be the acceptable model (see criteria details in the site) 

that provides the most accurate predictions (lowest mean squared deviation between the 

predicted choice rates and the choice rates observed in the target study). 

 In addition to the call, the competition’s website included, among other things, the 

raw data from the replication and calibration studies, a summary of this data, examples of 

acceptable submissions (specifically, using BEAST as an example), and the submission rules 

and requirements. These rules stated that each submission must include its written verbal 

description and its implementation (coded using either SAS, Matlab, or R). Three 

requirements were imposed on the submitted models. First, the model was required to have 

replicated the 14 qualitative phenomena described in Table 1 in the main text (the exact 

replication criteria were detailed on the competition’s website). Second, the verbal 

description was required to be no more than 1500 words long in addition to up to 300 words 

of footnotes. Third, the verbal description was required to be clear. The clarity of the model’s 

description was evaluated by asking skilled behavioral modelers to reproduce the model and 

its output (using a programming language of their choice) based only on the verbal 

description.  
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Appendix I: The Choice Problems and the Main Results in the Test Set 

           B-rate 

 Option A Option B Lottery   No-FB With-FB 

Prob. H pH L H pH L Num Shape Corr Amb B1 B2 B3 B4 B5 All 

91 7 1 7 16 .1 10 1 - 0 0 .92 .96 .99 .99 1.0 .99 

92 8 .8 -37 102 .2 -29 1 - 0 0 .39 .28 .35 .31 .32 .32 

93 5 1 5 103 .1 -9 4 L-skew 0 1 .56 .48 .44 .33 .30 .39a 

94 7 1 7 6 .75 1 1 - 0 0 .10 .04 .02 .03 .02 .03 

95 -3 .05 -9 42 .4 -24 6 L-skew 1 0 .72 .60 .57 .57 .57 .58a 

96 35 .5 -47 -10 .75 -15 1 - 0 0 .30 .34 .37 .34 .31 .34 

97 10 1 10 45 .2 -5 1 - 0 0 .22 .14 .27 .24 .21 .22 

98 94 .5 -40 36 .75 -21 7 Symm 0 0 .51 .45 .43 .44 .45 .44 

99 22 1 22 44 .4 15 5 Symm 0 0 .65 .74 .75 .71 .71 .73 

100 18 .6 -29 -1 1 -1 1 - 0 0 .54 .46 .50 .54 .53 .51 

101 28 1 28 73 .05 27 3 Symm 0 0 .83 .83 .79 .77 .76 .79 

102 11 1 11 25 .5 -3 3 Symm 0 1 .39 .51 .59 .62 .59 .58a 

103 27 .8 -4 77 .1 22 6 R-skew -1 0 .83 .82 .73 .78 .77 .78 

104 -6 1 -6 3 .99 -27 1 - 0 0 .85 .95 .98 .97 .98 .97a 

105 30 1 30 90 .01 36 1 - 0 0 .90 .97 1.0 1.0 1.0 .99 

106 2 1 2 34 .05 -5 5 Symm 0 0 .20 .14 .15 .15 .12 .14 

107 25 1 25 65 .25 9 5 Symm 0 0 .39 .4 .40 .37 .32 .37 

108 16 1 16 91 .2 -11 1 - 0 0 .27 .17 .23 .19 .18 .19 

109 11 1 11 26 .5 -9 1 - 0 0 .33 .41 .47 .38 .40 .42 

110 12 1 12 29 .8 -35 2 L-skew 0 0 .56 .72 .71 .70 .77 .73a 

111 28 1 28 47 .6 -13 1 - 0 0 .25 .41 .41 .40 .39 .40a 

112 -7 1 -7 28 .2 -18 7 Symm 0 0 .51 .36 .31 .29 .26 .31a 

113 9 .95 0 37 .25 -3 6 R-skew 0 0 .35 .37 .37 .38 .37 .37 

114 72 .01 -2 112 .25 -33 1 - -1 0 .44 .45 .40 .42 .32 .40 

115 50 .4 5 20 .8 -17 7 Symm 0 0 .17 .19 .23 .20 .20 .21 

116 2 1 2 45 .05 3 5 Symm 0 0 .95 .99 1.0 1.0 1.0 1.0 

117 -6 1 -6 7 .5 -30 1 - 0 0 .33 .39 .36 .35 .34 .36 

118 26 1 26 46 .5 10 6 L-skew 0 0 .47 .56 .62 .59 .57 .59 

119 19 .4 12 100 .25 -12 2 R-skew 0 0 .33 .32 .34 .34 .35 .34 

120 -9 .95 -26 -1 .1 -11 1 - 0 0 .57 .41 .43 .46 .42 .43 

121 -8 1 -8 21 .01 0 3 Symm 0 0 .79 .95 .99 1.0 .99 .98a 

122 68 .05 -14 -11 .9 -36 1 - 0 0 .36 .39 .42 .46 .40 .42 

123 28 .75 -13 57 .1 16 1 - 0 0 .74 .64 .66 .70 .63 .66 
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124 15 .95 7 42 .01 19 1 - 0 0 .85 .96 .97 .97 .98 .97a 

125 28 1 28 41 .4 12 1 - 0 0 .29 .36 .33 .33 .36 .35 

126 -8 1 -8 80 .2 -18 7 Symm 0 0 .53 .52 .51 .49 .52 .51 

127 4 1 4 29 .6 -40 1 - 0 1 .26 .33 .44 .46 .44 .42a 

128 -3 1 -3 32 .4 -16 1 - 0 0 .64 .57 .56 .57 .56 .57 

129 -2 1 -2 -2 1 -2 9 Symm 0 0 .46 .53 .51 .48 .53 .51 

130 72 .4 -41 16 .01 1 1 - 0 0 .61 .60 .56 .54 .54 .56 

131 18 1 18 45 .01 11 1 - 0 0 .19 .09 .08 .08 .06 .08a 

132 11 1 11 20 .99 4 7 Symm 0 0 .81 .94 .97 .97 .98 .97a 

133 3 1 3 8 .99 -17 9 Symm 0 0 .71 .91 .92 .92 .94 .92a 

134 27 .05 24 31 .5 10 3 Symm 0 0 .34 .34 .38 .38 .37 .37 

135 6 1 6 8 .5 -1 1 - 0 0 .25 .32 .31 .29 .29 .30 

136 4 1 4 25 .01 -5 1 - 0 0 .16 .07 .07 .05 .05 .06 

137 3 1 3 4 .4 3 5 Symm 0 1 .73 .86 .90 .90 .90 .89a 

138 23 1 23 21 .8 16 1 - 0 0 .13 .07 .01 .02 .02 .03a 

139 14 1 14 35 .6 -9 7 Symm 0 0 .48 .67 .70 .64 .65 .67a 

140 -2 1 -2 9 .25 8 1 - 0 0 .91 .98 .98 .99 .98 .98 

141 28 .8 -26 22 .75 2 1 - 0 0 .77 .70 .62 .60 .62 .64 

142 23 1 23 29 .8 -8 1 - 0 0 .30 .44 .43 .51 .54 .48a 

143 67 .5 -39 93 .25 -15 1 - 0 0 .53 .58 .54 .60 .63 .59 

144 16 .8 12 15 1 15 9 Symm 0 0 .42 .50 .44 .42 .42 .45 

145 17 .5 -27 3 .75 -35 7 Symm 0 0 .42 .43 .42 .34 .34 .38 

146 45 .2 3 75 .05 13 5 Symm 0 0 .79 .82 .84 .87 .84 .84 

147 29 1 29 36 .1 32 7 Symm 0 0 .88 .96 .99 .98 .97 .98a 

148 65 .01 1 12 .01 3 1 - -1 1 .73 .81 .82 .84 .85 .83 

149 12 1 12 31 .1 12 3 Symm 0 0 .86 .90 .92 .91 .94 .92 

150 16 1 16 24 .05 12 3 L-skew 0 0 .35 .25 .22 .19 .17 .21a 

Note. B-rates are mean choice rates for Option B, presented according to blocks of five trials each or according 

to availability of feedback: no-FB (no feedback) or with-FB (with feedback). The rightmost column shows the 

mean B-rate across all four with-FB blocks. Values in bold (in the no-FB and all-with-FB columns) are 

significantly different from .5 at .05 significance level (corrected for multiple testing according to the procedure 

in Hochberg, 1988).  

a Difference between rates in the no-FB and the with-FB trials is significant at a .05 significance level (corrected 

according to Hochberg, 1988) 
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Appendix J: The Winning Model’s Additions to BEAST  

The full verbal description submitted by the winning team, as well as the model’s 

code, are presented on the competition’s website. Below, we only explain how Cohen’s 

BEAST differs from the baseline BEAST. 

Cohen and Cohen (hereinafter, CC) observed that the BEAST model predictions 

deviate systematically from the actual choices reported, in two different cases: (1) Option B 

includes more than two outcomes (i.e., LotNum > 1); (2) The payoff distribution of option B 

in unknown (ambiguous problems, i.e., Amb = 1) 

CC’s model adds an additional criterion that decides the direction of the deviations 

from the actual choices made by participants. This criterion is the difference between the 

lowest possible outcome of option A (LA) and the expected value of the lottery option B (HB; 

i.e. the criterion is |LA−HB|). To correct for this deviation, CC added a new parameter, 

Diffbias, dependant on the two cases and criterion above.  

CC employ these two cases after BEAST has produced its prediction of B choice rates 

for each of the problems. Then, for each problem, CC’s model checks the following: If option 

B in the current problem has more than two possible outcomes (i.e. LotNum > 1), the Diffbias 

parameter is added to each of BEAST’s block predictions in the following manner: when 

|LA−HB| > 16, (−Diffbias) is subtracted from the predicted choice rate. When |LA−HB| ≤ 16, 

(+Diffbias) is added. Similarly, if the payoff distribution of option B is unknown (Amb = 1), 

then when |LA−HB| > 20, (−Diffbias) is added to BEAST’s final prediction for a given 

problem (across all 5 blocks), and when |LA−HB| ≤ 20, (+Diffbias) is added.  
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If a problem has more than two possible outcomes and is also an ambiguous problem, 

Diffbias is added and/or subtracted (depending on the level of the criterion) both times. Thus, 

the process of adding or subtracting the parameter is serial and independent. For example, in 

Problem 69, LotNum > 1 and Amb = 1. Because for this problem |LA−HB| = |11−31| = 20, the 

first rule subtracts (−Diffbias) and then the second rule adds (+Diffbias).  

The parameter Diffbias is a property of the agent, and is assumed to be drawn from a 

uniform distribution between 0 and Diffbias: Diffbiasi ~ Uni(0, Diffbias). Best fit of the 

Calibration set was obtained with Diffbias = 0.07.  
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Appendix K: Descriptions of models not statistically inferior to the winner  

Model 

ID 

Rank Prediction 

MSD 

Problems 

Better 

Short description 

DB49 2 0.0093 28 BEAST with the additional assumptions that (a) 

in trivial problems the error term is small but 

positive, (b) pBias does not change after more 

than 10 trials with feedback, (c) the Sign tool is 

used twice as often as the other biased tools, 

and (d) the estimates of the model’s parameters 

are slightly different (smaller Κ and ψ, larger σ 

and β). 

EK8 3 0.0093 28 In the absence of feedback, uses BEAST. When 

feedback is available, uses IBL with initial 

expectations (“prepopulated instances”) based 

on BEAST. 

DS24 4 0.0096 27 BEAST with increased attractiveness for the 

option with the higher maximal gain in the gain 

domain, or the lower minimal loss in the loss 

domain. Additionally, slightly delayed effect for 

feedback, increased aversion for symmetric 

mixed gambles compared to certain outcomes, 

and some noise in the first two blocks when 

predictions are extreme. 

NS50 5 0.0096 27 BEAST, with faster convergence towards using 

the unbiased tool. Additionally, replacement of 

the uniform tool with a pessimistic heuristic 

likely to give more weight to minimal 

outcomes, and changes to relative probabilities 

of using the biased tools. 

MK51 6 0.0096 24 BEAST with changes to relative probabilities of 

using biased tools (usually less use of the 

uniform tool) 

BEAST NA 0.0098 24 See main text 

DA45 7 0.0098 26 BEAST with increased pessimism for 

ambiguous problems. 

BS53 8 0.0103 30 BEAST with a chance of using mental draw 

(luck-level) for the unbiased tool even after 

obtaining feedback. Additionally, sensitivity to 

sequences of outcomes in ambiguous problems 

and small but positive error in trivial problems. 

MS20 9 0.0106 25 In the absence of feedback, uses BEAST. When 

feedback is available, uses a weighted average 
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of BEAST and win-stay-lose-shift strategy. 

OY42 11 0.0107 18 In the absence of feedback, uses BEAST. When 

feedback is available, uses either BEAST or a 

strategy selecting the option providing higher 

payoff in a few recent trials (equally likely). 

Additionally, uses diminishing sensitivity for 

outcomes in all cases.  

SH23 12 0.0115 22 BEAST, with changes to sampling tools: (a) the 

unbiased tool replaced with draw from 

distribution function with probabilities 

transformed as in CPT; (b) with feedback, the 

uniform tool draws from actual observed 

outcomes (as in BEAST’s unbiased); and (c) 

with feedback, contingent pessimism sometimes 

becomes optimism (maximin). Additionally, Κ 

= 1 and the probability of using the new 

“unbiased” tool converges slower.    

GN27 13 0.0124 26 A support vector regression with 24–28 features 

per block per problem including: most of the 

problem’s defining parameters; the differences 

between the EVs assuming unbiased 

distributions, assuming outcomes are equally 

likely, assuming the outcomes are sign-

transformed, and assuming the distributions are 

transformed as in CPT; the probability of one 

option generating better outcome than the other; 

SignMax and RationMin (as in BEAST); the 

prediction of a stochastic version of CPT; the 

difference between the options’ variances; the 

difference between the options’ entropies; the 

sign of the majority of the possible outcomes; 

and the model’s predictions for the previous 

blocks. In ambiguous problems, where relevant, 

uses BEAST mechanisms to get features’ 

values. Additionally, the prediction is weighted 

with that of stochastic CPT when the problem is 

considered particularly difficult or with perfect 

maximization when it is particularly easy 

(trivial).  

WH9 14 0.0127 28 A weighted average of two models. One first 

classifies the problem into one of seven classes 

and then provides predictions based on a log-

linear model. A problem’s class depends on the 

number of outcomes in each option and on their 

sign. In each class, the log-linear model uses 
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one or more of the following as explanatory 

variables: the EV; the probability of the option 

generating better outcome than the other; the 

value, sign, and probability of the maximal 

outcome; the sign of the minimal outcome; the 

expected rank of an obtained outcome relative 

to all possible outcomes; the sum of cues in 

which the option is better than the other (cues 

are EV, expected rank, maximal and minimal 

outcomes, possible regret, and probability of 

maximum). The second model is a stochastic 

version of CPT where probabilities in 

ambiguous problems are considered equally 

likely, very small probabilities are neglected, 

probabilities are slightly skewed towards 

uniform, and updating of probabilities to be 

perceived as more extreme with feedback. 

Additionally, dominant options are 

automatically chosen.   

Note. Only submitted models for which a bootstrap analysis of the test set problems suggests they are not 

statistically inferior (according to their MSD) to the competition’s winner are listed. Rank refers to the official 

ranking in the competition, based on the prediction MSD. Problems Better refers to the number of problems in 

the test set (of 60 possible) in which the model provides a better prediction than the competition’s winner.   
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Appendix L: Analysis of BEAST’s Features Using Random Forest  

We have identified 13 features that capture the essence of the baseline model BEAST 

(see Plonsky, Erev, Hazan, & Tennenholtz). The first two features, dBEV0 and dBEVFB, 

capture the differences between the two options’ BEVs (best estimate of expected values) as 

implied by BEAST. Two features are required because BEAST assumes an ambiguous 

option’s BEV changes with feedback. Specifically, 
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Two additional features capture the logic of sampling using the unbiased tool. It 

should be noted that the average outcome drawn using this tool is already captured by the 

first two features, but using this tool also implies sensitivity to the probability that one option 

will generate a higher outcome than the other (i.e., probability of immediate regret in 

choosing the alternative). Again, two features are required because BEAST assumes different 

abstractions of this tool before and with feedback. The first feature, pBetter0, equals the 

difference between the probability that Option B generates the better outcome when sampling 

according to the luck-level procedure and the probability that Option A generates the better 

outcome with this procedure. The second feature, pBetterFB, equals the same difference, 

except that instead of using luck-level, the draw is made from the observed outcomes (thus, it 

is sensitive to the correlation between the outcomes). 

The next two features capture the use of the uniform sampling tool. The first feature, 

pBetterUni, equals the difference between the probability B generates the better outcome when 

sampling using the uniform tool and the probability that A generates the better outcome when 

sampling using this tool. The second feature, dUniEV, captures the average outcomes drawn 
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using this tool. It equals the difference between the options’ EVs after their distributions are 

transformed to uniform distributions.  

Three other features capture sampling using the sign tool. dSignEV equals the 

difference between the options’ EVs after they are transformed according to the sign tool. 

The two other features, pBetterSign0 and pBetterSignFB, capture the differences between the 

probabilities of drawing a better outcome in B and those of drawing a better outcome in A, 

before and with feedback (similarly to the pBetter0 and pBetterFB). 

The next three features capture the contingent pessimism tool. The first, dMins, equals 

the difference between the options’ minimal outcomes. The other two features capture the 

conditions under which BEAST assumes this tool is not used. Specifically, RatioMin is 

computed as in Equation (2) in the main text, whereas SignMax equals the sign of the 

maximal possible outcome in that problem. The final feature captures the sensitivity of 

BEAST’s error term to the presence of dominant options. The feature Dom equals 1 if Option 

B dominates Option A, -1 if A dominates B, and 0 otherwise.  

In addition to these 13 features, a block feature (equals 1,2,…5) was supplied as input 

to the Random Forest algorithm. This was done to allow the algorithm to differentiate 

between the five different blocks generated by each of the 90 problems of the training set, 

and to allow it to produce different predictions for the different blocks in the test set. 

Implementing the algorithm with all these features implies an MSD score of 0.0098 on the 

test set, virtually identical to the MSD of BEAST.  

Next, we ran the algorithm 13 additional times, each time removing one of the 

psychological features described above. The results suggest that all 13 algorithms have 

similar predictive power on the test set. Their MSDs ranged between 0.0093 and 0.0113. 

Notice, however, that many of the features are very highly correlated (e.g., the correlation 

between dBEV0 and dBEVFB is 0.93) and therefore removal of one of the features may not 
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have greatly affected the algorithm’s performance because another feature compensated for 

its absence.  

To obtain a clearer picture of the importance of BEAST’s mechanisms, we re-

evaluated the algorithm’s performance after removing sets of features, each capturing a 

different mechanism of BEAST. Specifically, running the algorithm without either dBEV0 or 

dBEVFB – that is without assuming sensitivity to the best estimates of the expected values – 

implies an MSD score of 0.0168, a 72% decrease in the predictive performance relative to the 

baseline that includes this mechanism. Running the algorithm without either pBetter0 or 

pBetterFB – that is without assuming a tendency to minimize immediate regret – implies an 

MSD score of 0.0156, a 59% decrease in the algorithm’s relative predictive performance. 

These results highlight the importance of including both mechanisms for a model to provide 

useful predictions for the current data.  

In contrast, removal of each of the three sets of features that capture the use of each of 

the biased sampling tools does not lead to a great decrease in predictive performance. 

Specifically, removal of the two uniform features leads to MSD of 0.0104; removal of the 

three sign features leads to MSD of 0.0109; and removal of the three contingent pessimism 

features leads to MSD of 0.0105. However, this does not mean that the use of biased 

sampling tools is unwarranted. Indeed, removal of all eight features that capture the use of 

these biased tools implies an MSD score of 0.0162, a 66% decrease in the model’s relative 

predictive performance. Therefore, while it may be possible to provide useful predictions 

with different abstractions of biased sampling tools (that correspond to certain behavioral 

tendencies), BEAST correctly captures the importance of incorporating such biases. One 

advantage of BEAST over the abstractions implied by the various Random Forest algorithms 

is its relative interpretability. 
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Finally, running the algorithm without the Dom feature leads, surprisingly, to slightly 

better predictive power: It implies MSD of 0.0094. It seems that BEAST’s assumption of a 

completely different error mechanism for “trivial” games is too strong.  

 


