AN APPLICABLE LINEAR PROGRAMMING MODEL
OF INTER-TEMPORAL EQUILIBRIUM
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The problem of consumption over time in a world of certainty
in which funds can be borrowed and lent, has been treated in a general
fashion by Hirshleifer [6], whose analysis is an extension of the Fi-
sherian theory. Basically, Hirshleifer's model consists of the consu-
mer’s time preference function in its most general form and a return-
on-investment function. Of these only the second, of course, lends
itself to direct application.

Baumol and Quandt (BO) [1] presented a linear programming
reformulation of Hirshleifer’'s model. While very constructive, their
approach is not practical since it assumes knowledge of the utility
function (and that it is linear). Further sources of illumination are
provided by the studies of Charnes, Cooper and Miller (CCM) [3]
and Ophir [10] who, ignoring consumption and using a profit function
as their objective in place of the utility function, demonstrated the
richness of information obtainable from a linear programming ap-
proach.

Two types of attempts to introduce consumption into multi-
period linear programming, without impairng applicability i.e.,
without resorting to unmeasurable utility functions, should be mentio-
ned. The first, used by Loftsgard and Heady [8], was to impose pre-
determined consumption outlays which are thus independent of in-
come, interest rates, etc. Basically, this is the CCM model with a neu-
tral « tax » on the program. The second approach reintroduces consum-
ption via the Keynesian, linear, consumption function. While feasible
from the standpoint of applicability, it raises a set of problems which
Boehlje and White [2] and Cocks and Carter [4] failed to realize.
The essence of these problems lies with the fact that consumption,
which constitutes no part of the objective, plays the role of an income
tax, and this leads to a « distorted » solution, The distorsion reveals
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itself in two major ways: first, the internal rate of return will be un-
dervalued; second, the pricing of production factors will be incorrect.
As long as the programmed unit is a family firm, this may not pose
a grave problem, since the program can be physically implemented
regardless of the pricing system. When dealing with a sector or a
region of a free economy, however, central imposition of the program
is not usually possible, and the guidence is provided by the price
system. An incorrect one will hardly serve the purpose.

The objective of this article is to present an applicable scheme for
the proper use of the Keynesian consumption function, avoiding in-
correct pricing. The core of the argument is a proposition proved in
Section B, which yields the correct programming procedure. In
section A, we briefly review some results obtained in the absence of
consumption, illuminating in the process some points which seem to be
of particular interest. Section C reviews an application of the model
to the planning of the agricultural sector in a region in Israel.

A. Inter-Temporal Equilibrium

A detailed mathematical formulation of the model would involve
extremely cumbersome notation. It thus seems easier to describe the
model in stages. Consider a period of T years for which a program of
production and investment is to be constructed. The economic unit
involved can both borrow to finance its operations, andlend if it has
no better alternatives, and is interested in maximizing its net worth
(equity assets), o, at the programming horizon. The interest rate
charged on money borrowed during year ¢, ¢,, is assumed to exceed
the rate paid on deposists, 7,. Since it is assumed that the unit may
borow unlimited sums at the going rate, one may view all loans as
one-year loans. This approach does not cause any loss of generality
and simplifies the exposition.

Problem I is to find non-negative x', zt,¢t=71,2,.., T

(T being the programming horizon) which maximize o subject to
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In (1), matrices are denoted by capital letters, vectors by lower
case letters and scalars by Greek letters; a null matrix and null vector
of any dimension are denoted by @ and o, respectively, and the real
zero 1s 0 ; transposition indicators are omitted, since only the last
column of the matrix in (1), the variable vector and the right hand
side, contain column vectors,

The matrix in (1), except for the last column, is composed of pro-
duction, financial and investment activities. The set of columns ha-
ving k't as its first non-zero row, describes production and financial
operations, which can be undertaken in year £ . Here, k't is the vector
of cash requirements, A4t is the matrix of input coefficients of pro-
duction factors and &'+ is the revenue vector. The only exception
are borrowing activities, which have the element (— 1) in k! and
(1 4 #,) in kit

An investment activity is defined as an operation which augments
availability of production resources at some time after its initiation.
The set of columns having m!t as its first non-zero row, represents
investment projects which can commence in year £, The matrix B¢,
v=1¢,.., T will have positive elements for inputs required and
negative ones for outputs forthcoming.

We denote by $7 the vector whose elements represent contributions
to (if negative) or claims against (if positive) terminal wealth, which
result from production or financial operations in year 7. Similarly,
st is the vector of value residues contributed to terminal wealth by
investment projects, which started in year ¢ .

The vectors x! and z* are, respectively, the levels of activation of
production and investment activities. The scalar p, is the initial
endowment of cash and ¢' plays the same role for real production
factors. Fort > 1, 1, and ¢' represent exogenously supplied resources.
For some ¢ , we may have u, = o, while ¢* will be, in general, the non-
obsolete remainder of ¢* . Finally, Q is the value of the non-obsolete
portion of ¢* at the horizon. |

In order to indicate the main properties of the solution to Pro-
blem I, we associate with p,, Q and ¢ the shadow prices A,, Ar.; and
ut, respectively. The solution to Problem I will be denoted by {(x*,
20, o, A, w), t=1,.., T, hrs}. Also, for convenient referen-
ce, we refer to the set of columns in (1) having & and m* as their
first non-zero rows, as A¢ and B?, respectively.

1. The shadow price 2, is the value to the program of an additional
cash unit made available in year ¢, in terms of terminal wealth.

That is, 2, is the value of an additional dollar in year ¢, compounded



to the horizon. Thus, a dollar added at the horizon is worth one dol-
lar. This can be seen, assuming a non-trivial solution, from the fact

that at optimum_)\;-.{_1 =473

The annual discount factor p,, which is the program’s annual
equilibrium rate of return, is computed by

o] Y
(2) [ere e X e fas e
li-i"l
so that
2 T 1
(3) A = ‘fr(l + Pr)

Inspection of the dual equations corresponding to B! shows, that
if in year ¢ money is borrowed, p, = 7., while if lending takes place,
p¢ = 7,. In general,

(4) =< Hi;sﬂ e,

since money can always be lent in the absence of superior activities,
or borrowed in unlimited amounts (*).

The same rate of return applies to all activities. For instance, let
a'; be any column of A such that ¢, >0 . Then by duality,

kjtt '_7_\1 + a;tt ! = Rttt i:u =45
It follows, that
by — Bttt — (1fh4) (st )

(5) SR
g1 kjtt

The right hand side of (5) is a « natural » definition of the rate of feturn,
while the left hand is, by (2), T + p:. Note the division by 2., in
the numerator of (5). It is a result of the fact that ut is a vector of
compounded shadow prices, and 2., rediscounts them to year ¢ .

The rates of interest discussed above are money rates. It is, of
course, most convenient to take money as the numeraire. From a
strict theoretical point of view, however, this is an arbitrary conven-
tion. Rates of interest can be calculated in terms of any good. The
alternative rates will not, in general, be equal to the money rate (?).

(1) See Hirshleifer [6].
(¢) See Malinvaud [9 p. 146].
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The interpretation we gave to our model is dynamic, intertemporal.
However, one could conceive of an instantaneous programming pro-
blem that will be formally identical to ours. It is only the meaning
we attributed to the magnitudes and indices that made the model
into an inter-temporal program. Bearing this point in mind helps
to overcome some of the difficulties in interpretation.

3. [Itis very rare that long range programs are followed to the last
year. In most cases changing economic circumstances will force re-
planning. Multiperiod programming is undertaken in order to optimize
short-rum actions, taking into account their long-run effect. It should
therefore be interesting to investigate the effects of changing the
length of the time span to which the program refers. To this end a
comparison between a single-period and a multiperiod analysis is
carried out. It will be shown that if the parameters in the single-pe-
riod program are appropriately specified. the single-period program
will yield a solution identical to the first period of the multiperiod
solution,

Consider the problem of finding non-negative ', 2!, which maxi-
mize wl,; subject to

RM om0 21 hy
(6) A e BUlsiy il =i by
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Here, w, is equity wealth at the end of the first year; Q, is the end-of-
year I value of the non-obsolete part of ¢* ; p and s are equivalent to
pT and s in (1), Letting (¥'*, 2'*, w*,) be the optimal solution to
the first year subproblem of Problem I, one can prove easily that if

(7) A=

(8) s = 2Ty, (mf X, + B2 ut) + s _ '

where ~ denotes transposition, then :
(e, 2 = (@, )

The last finding amounts to a restatement of the recursive nature
of dynamic production processes: (}) given the appropriate prices,
the economy can move from one period to the next, optimizing short
run behavior within each period and, at the same time, following the
long-rum optimal path. This is also a demonstration of Pontryagin’s
Maximum Principle (see e. g. Dorfman [4]).

(?) In discussing this point we benefited considerably from Jorgenson’s
« Lecture Notes on Capital Theory », Hebrew University, 1967 (mimeo).
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The above discussion has practical implications centered on the
terminal value of assets. These values are, as is evident from (8),
the streams of income generated by these assets beyond the program-
ming horizon. It also follows from (8) that in order to evaluate these
streams correctly, one has to use the elements of u* which, by (5),
contain a compunding factor. For years beyond the horizon the cor-
rect compounding factor is not known and can only be guessed. One
is thus liable to introduce mistakes which are compounded by each
other. Hence, it stands to reasson that the closer the programming
horizon — the larger the error, and hence its effects on the first year
solution are more profound.

B. Consumption

Consumption in year ¢, ¢,, is introduced via the Keynesian cori-
sumption function,

) o= a+ By, T

where v, is income in year ¢, to be defined below, and o, 0 <p < I,
are parameters. Consumption in year 7" is not explicitly introduced
— it is contained in the terminal wealth.

In order to formulate the new programming problem, the elemnts
comprising net income, y, , have to be defined. Two principal catego-
ries of income — cash income from production and financial activities,
and income in the form of appreciation of assets — are distinguished.
Income vectors in the first category, g*, are defined by

(IO) gt = 1S o L— 3 1)

Note, that for a lending activity j , gt = 7., while if j is a borrowing
activity, g; = —4,. The rationale underlying the definition in (x0)
is established as follows: assume for the sake of exposition that x* >0.
Then by duality,

(11) ktt i;—l—;{“ ;r_i_kw 1t _lt-u:Q
Using the definition in (r0), it follows from (3) and (11)‘ that
AT e o
(12) g = [A% uilx (T 4 pe)] + pe i
T =441

The right-hand side of (12) is the current value return to equity as-
sets employed in A¢, and thus constitutes a natural definition of net
income.

Income due to appreciation (if positive) or depreciation (if nega-
tive) of assets, is the difference in the value of these assets between



successive years. Let w*, v =1{,.. T, be the value-vector of assets
whose construction began in year £. Then @ is defined

T
(13) wt=— (/A ) [ (m¥ ng + BY u®) - st]
T+t 0 =141

In view of the role played by %, and #!, (13) is the net stream of bene-
fits produced by investment projects from t onwards, discounted to 1.

Appreciation (or depreciation) is now defined by

(14) U = @t vl gyt =T T ks )

In order to establish the logic of the definition in (14), assume z*> o .
Then

T
(15) o (m N 4 BY ) 4 st =0

o=t

Dividing (15) by A, and ., and using the resulting equations together
with (13) and (14), one obtains

T——1

(16) v = (1/Acss) B uv + o0 ¥t 4 (o /h) = (%% + B v )

D=1

The first term on the right hand side of (16) represents the change in
value due to truncation of the income stream by one period; the second
term is the return on cash investments during year « and the third
term expresses returns to equity assets invested in the project up to,
and excluding, year =,

As equation (16) indicates, appreciation and depreciation dre fun-
ctions of the optimal solution and thus cannot be known when the
problem is set up. This fact prohibits us from directrapplication of
the proposition proved below which, nevertheless, is of economic in-
terest and quite useful, as will be indicated.

Rewriting (9) in the constraint form
(17) — 6+ Py s —ua,

Problem II is to find non-negative x!, 2t, ¢t which maximize

T—1

(x8) f=2Z 8¢+ w

=1
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where 8§, are as yet unspecified parameters.
Let Problem Ila be Problem II with
(20) 3, =0 t=1,.,T—1

and denote the optimal solution, and the shadow prices associated with
it, by {x*, z', ¢!, w} and {%,, u*, n,}, respectively, where {7} are
the shadow prices of the consumption constraints. Assuming

(21) >0, Ao g e D |
it follows that
(22) e >0,

since consumption plays the role of a mere income tax. This imposes
a burden whose magnitude, per marginal dollar, is given by the values
of .. The distortion which results from the imposition of consumption
is best reflected in the fact, that the internal rate of return to which
the system now adjusts itself is mef of consumption expenditures.
This can be best seen if one assumes, for simplicity, that in ryear ¢
borrowing takes place. Then, by duality, we have instead of (2)

X :

=T RS+ e

so that o, = (1 — @) g+ < p:. As a result, one has instead of (5)

7\: [t k}_t-}-li e (I/)\Hl) (a;” .ut) g“c

(54) Atsa i Ryt P _ka'—““

where the last term in (5a) represents the effect of consumption on the
internal rate of return. It indicates, that the solution « tries to avoid »
activities with a high ratio of income (or revenue) to expenditure.



The elimination of these difficulties can be achieved only through
a «correct » selection of the 8, values. Technically, the selection pro-
cedure can be effected via a search scheme invclving parametric pro-
gramming. The search procedure is terminated when a set {§,*} and
a corresponding primal-dual solution {x‘* , z*, ¢'*, w*, k,*, u'*, 7'}
are reached such that

(23) e\t A8 iy T e |
(24) —c Py =—ua, =t
Looking at the consumption column in (19g), it is obvious that
(25) — %+ Aa = 8, t=1,.,T—1I
Thus, an immediate consequence of (23) is

(26) 7t =0, b= Yo ile= T

Equations (24) and (26) imply that we are looking for a so-called
degenerate solution.

Under (23) one can show, that if {%,, #'} in (16) is replaced with
{»*,, ut*}, then (3) and (5) hold for x+, and by (26) consumption is
no longer a burden to the system.

Before continuing with the analysis, some remarks are in order.
As is well known, the optimum quantities consumed by an individual
who maximizes a Fisherian utility function are such that the marginal
rates of substitution in consumption between successive years equal
the respective marginal rates of return to assets. Our solution is thus
consistent with the individual’s equilibrium. This consistency should,
however, be put in the appropriate perspective: the Keynesian consum-
ption function cannot be derived from a general Fisherian utility
function. That is, there is no theoretical basis for suggesting that
individual consumption behavior can be described by the Keynesian
function. On the other hand, that function does describerather well
aggregate behavior and the weights attached to' consumptlon
outlays in our solution, which are derived from aggregate behavior,
also satisfy the optimality condition for the individual. These weights,
the 3, values, are equal, by (23), to the marginal contributions of funds
reinvested in the program (4).

It is shown in [7], that the search procedure referred to above is
finite. Practically speaking, however, it may take considerable time

(1) Note, that we have arrived at a BQ-type model, except that now the
coefficients in the « utility function » are based on the observable consumption
function.
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and be quite expensive. Thus, the objective of the analysis from here
on is to suggest instead a simpler procedure. It is based on the relation
between the solution of Problem IIa and the solution which sati-
sfies (26), a relation which is derived below, avoiding the tedious
search procedure.

Suppose, then, that Problem Ila has been solved under the stipu-
lation that in (16), {A, u} is replaced with {3, u'*}; i.e., it is assumed
for the time being that the sought solution values are known in advan-
ce, so that appreciation and depreciation can be calculated without
errors. Let D be the basic matrix of the solution. Noting that the
problem is cast in the so-called revised form, assume for convenience
that the first row of D=1 is the «pricing vector» (the shadow price
vector). Further, let 2 = (T A, ! Ay 22 .. A 6T) , € = (1 7a ... N71)s
Then D' may be written as

=

Thoiais
D= pu Dz
Dz Do

where D?? contains the elements common to the consumption rows
and columns,

Next, let d = (8, 8, ... 8r.,) and compute d° from
(27) deDy = —¢

Insert d = d° in the objective (18), without resolving the problem.
This will give rise to a new set of shadow prices, (4 ¢?). For d = o,
we have

(28) (i E) Sl §§) D1,
and for d = d°,

(29) (fo %) = (1 G &) D .
From (28) and (29), ; )

o (3 — (9 + (05 &) D

which implies, together with (27),

(31) e = 0,

which is equivalent to (26). That (24) is satisfied by ¢, is obvious,
Moreover, by (21) and (31)

{32) 80: T 7\";1.1



which is equivalent to (23). It is thus evident, that if the solution of
Problem Ila is optimal with respect to d°, then (30) indeed provides
a simple way for calculating the correct shadow prices. The optima-
lity of the solution is established below.

Equation (30) gives us the usual sensitivity analysis technique to
solve for he. It can be verified, that in this case the relation between
h and %° is given by

N ] Lo Bpra =ty T
(33) )\‘—)\ETE’[I.—I—PPEE'_- A=A , I—I
e
(34) W= (1 —p) ut t:‘cﬂ[x Sy ] T e e
(35) A = Ap
ul = uTe
(36) w't = (1—p) ulT—1e

where g is computed from (2) with 2, = 2, .

Proposition: If vt in (16) is computed using {A*,, ui*}, then D
is an optimal basis for Problem II with d = d- .

Proof: To prove the proposition, one must show that the pricing
vector (h° e°) and its dot product with any column of the matrix in (19),
are non-negative. Starting with the former, it follows from (33) that

Be his1
3 A= A2, (1 o —.-—) Sk
(37) : I+ p% Aipy
From (2) and (37), :
Ay
M= [(1—B) 2t BAua] —m
A
which gives, rarranging terms,
A° A
(38) e e vl e
N i

Taking now the lending activity of year f{ and noting that in view
of (21) 0, = A4y, we have

A

(39) >14(1—p)#>1

A



Letting ¢, satisfy

(40) —=—=1+ (1—0)¢,

it follows from (38), (39) and (40) that
)\Gf

NI

(41) =Labipe= Tl 1

This implies, together with g < 1,

e’
2 I—————>0
(42) T

Using (35), (42) and applying (33) recursively, it follows that
(43) ry>o0, b=l
Using now (36), (42) and applying (34) recursively we also have
(44) w°>o0, e e b
which, recalling (31), concludes the first part of the proof.

For any submatrix A, we have by the optimality of the solution
to Problem Ila

(45) E(x1) =kt n A At ut — B (R RU) hpyy + RN, 2 0
Using (31), (33) and (34) together with (45), we find

6 k” )\ﬂf ::].“ u"” 'i" kt+“ )u.ag.-rl = (I — E x! 2 Q.
4 5 c
i

By the same reasoning underlying (45), we have for any submatrix B!

LY

L 1 8

U Mg 8520
t

L
(47) ¢@) =%  (w* A4 B'w)+pY
¢ T

Using now (3), (16), (33), (34), (35), (36) and (46), it is not difficull to
verify that

T

(48) & (Z‘) = X (4};,“ 2o, 4+ ﬁr: ”19) 4+ st,

Te=}

and since ¢ (z!) is non-negative, so is the right-hand-side of (48). Q.E.D,
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The economic rationale underlying the property just established
is, that the combination of activities which contributes most to ter-
minal wealth, contributes most to consumption and terminal wealth
provided these contributions are correctly measured.

Correct computations of appreciation and depreciation, necessary
for the validity and direct applicability of the above proposition,
cannot be effected at the formulation stage of the problem, since they
involve solution values. In application, net income elements are com-
puted by common accounting procedures, and will usually differ
from the correct values. This will result in a situation in which inve-
stment activities with lower appreciation (higher depreciation) values
will contribute more to the terminal wealth than to consumption as
compared with investment actvities with higher appreciation or
lower depreciation values. Thus, the primal solution to Problem IIa
will not, in general, remain unaffected by the insertion of d° in (18).
It is, however, our experience that applying the proposition, despite
the practical shortcomings, reduces very considerably the compu-
tations involved in achieving a solution satisfying (23) and (24).
This procedure was applied in the practical example illustrated in
the next Section.

C. [llustration

The model discussed in Section B was applied to the agricultural
sector of a region in nothern Israel. The program spans ten years and
comprises a total of 360 production and investment activities, g con-
sumption, 55 financial and 60 other activities - 484 in all. The con-
straint set consists of 459 constraints, of which 1go relate to limited
production factors.

Some of the results are given in Tables 1 and z. Table 1 contains
part of the solution to Problem IIa. From this solution d° was compu-
ted in the manner indicated by (27) and Problem II was resolved
with 4 =d°. Although the second solution did not satisty (31),
the elements of e¢° were so small that no further iterations seemed
required. Ascould be expected, the two primal solutions are somewhat
different, owing to errors in appreciation and deprectation of assets.
In particular, most consumption elements in the second solution are
higher than the corresponding ones in the first solution.

A few comments regarding the numerical results are in order.
First, the high rates of interest, up to 13%, are not too high in a coun-
try where annual inflation rates are between 5%, and 109%,. Next,
the impression that consumption is being programmed should not
stay unamended. What is programmed is the amount of funds diverted
from the production to the consumption sector. Some of these funds
may be invested in durable consumer goods and thus need not increase



TaBLE I. - Solution of Problem Ila.

wai | Eysrnad | oo S| e ol s e
1 1.258 1.252 16.057 | 650 | 495
2 1.252 1.236 17.234 650 | 173 48
3 1.236 1.221 16.772 650 142 —
4 1.221 1.203 15.974 650 108 433
5 1.205 1.190 15.100 | 650 23 2674
6 1.190 1.175 16.717 | 553 A 5107
7 1.175 1.160 Y7332 5 |13 5g - 5806
8 1.160 I.144 17.712 | 260 — 6335
9 1.144 I.130 18.657 170 4558

10 I.130 — 22 2l Lt 969

TABLE 2. - Second solution of Problem 11,

| A One year
Year t 5 2% W% ! & ch-o’I‘)‘ 5“5::::{11 p:::;r“s"f:::i-s ”mégo
1 2.977 | 3.150 024 | .058 | 16.525 | 650 650 —
2 2.634 | 3.001 024 {3 17.146 | 650 650 1051
3 2.352 | 2.658 | 0.0 12 16.386 | 650 625 1271
4 2,081 | 2.352 .00T .13 15.354 | 650 100 3767
5 1.842 | 2.082 | 0.0 13 16.776 | 6s0 | 66 7957
6 1.630 | 1.842 | o0 a3 | 1%.872 650 ¢ [nin— 15202
7 1.443 | 1.630 | 0.0 .13 19.422 | 650 | — 21123
8 1.277 | 1.443 | 0.0 I3 20.204 o501 | Ei— 17804
9 I1.129 | I.257 .00T I3 20871 | 649 | — 13936
10 s I.130 — 13 - — — 9496
1 I

monotonically. This clearly merits a separate tle'ltmeut but falls
without the scope of the present discussion.
WA

Related to the last remark is the relatively low rate of annual con-
sumption increase which proceeds at an average pace of 39, in the
second solution. It is particularly low in Israel, where a rate of 89,
is not uncommon. This is probably due to the fact that we did not
take into account technological progress.
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