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INTRODUCTION

An area of approximately 40,000 dunams (10,000 acres) of swamps and a
lake in the northern part of the Jordan Basin in upper Galilee was re-
claimed in the mid 1950’s when the first stage of the Hula Drainage
Project was completed. The area has since been under cultivation. However,
substantial parts of it suffer from winter floods and additional drainage
projects are now being considered. The new project, now under planning
and economic evaluation, is a complex system composed of several multi-
stage subprojects. This paper develops the framework for the economic
analysis of one of these subprojects, namely, the drainage of the peat
soils area.

Peat soils form approximately one half of the drained area. These soils
are very rich in organic materials—in some cases over 90 9; by volume—and
cultivation created conditions favorable to their decomposition. This
results in a gradual sinking of the soils which progresses faster in some
parts of the valley than in others due to local conditions. The average rate
is estimated to be in the order of 10 cm per annum. This loss of topographic
elevation leads to an increase in the area which is lower than the winter
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level of water in the main drainage canals and is consequently subject to
flooding. The lower the area, the higher the probability of winter floods
and the damage to crops. It is expected that the sinking process will continue
for several decades, lowering the area by several meters.

The sinking process can be controlled, to some extent, by special agri-
cultural methods but these are considered expensive in terms of foregone
income, and will probably not be used. On the other hand, the drainage
canals, cutting through the area, can be deepened to prevent water from
overflowing during the winter. This is the essence of the flood control
projects now under consideration. Without going into technical details,
we make the simplifying assumption that the larger the investment the
deeper the canals and the smaller the flood damages.

The peat areas have been surveyed and maps prepared showing the
available information on the composition of soil material. The sinking
process can thus be forecast. We shall be able to estimate future floods
with the existing drainage system or any new one.

The economic problem that emerges is that of determining optimum
size and timing of the drainage project. Since the sinking process is gradual
and large projects have to be built in stages—for technical and financial
reasons—we shall discuss not only the optimum size and timing of a single
project but also projects whose rate of construction is adapted to the rate
of sinking of the peat soils. Therefore, the model developed is an invest-
ment process whose puvpose is to mitigate worsening economic conditions.
One can take as additional examples the rate of construction of highways
as a function of e\}erincreasing congestion costs, or investment in adver-
tising to remind the market of the existence of products which it otherwise
slowly forgets [5].

As the foregoing discussion indicates, the investment projects are
regarded as preventive measures and their contribution to the economy
is a rising function of the damage or loss they prevent. This connects our
analysis to Marglin’s [3], who considered investment projects when
demand for their product is rising. At this stage, our analysis is, like his,
deterministic; which implies, for example, that we use expected values of the
flood damages, instead of their distributions, or assume complete know-
ledge of the investment projects and their effects. It will become clear
below that to some extent we also follow the model of capital accumulation
developed by Eisner and Strotz [2]. The theoretical part of the article is
general and applies to any case of capital accumulation with rising marginal
product of capital. We prefer, however, to keep the discussion specific
and to restrict it to the case of our particular flood control project. General-
ization should follow easily.

The following section presents notation and our assumptions. Section 2
analyzes a single-stage drainage project, Section 3 deals with the m. -
stage possibility. A continuous investment process is introduced in
Section 4 and an application in Section 5.
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1 Notations and Assumptions

Derivatives are indicated by primes, time derivatives by dots.

t calendar time;

r rate of interest.

The state of the area is characterized by the following variables (see Fig. 1):

A maximum potential income from the area (in dollars). In the
present study, this is assumed to be independent of time. The
assumption of a rising potential income can easily be incor-
porated [3].

g(t) deterioration of income due to sinking. Since detericration is a
continuing process, we assume g = 0. Decomposiicn reduces
the peat soil area, uncovering mineral soil. The area t*:at sinks
is thus diminishing. We assume, therefore, that § £ 6.

A — g (¢) actual income if no flood-control measures are taken. This
value can become negative but then, unless drainage i im-
proved, the area should probably be abandoned.

The project is constructed gradually, investment adding to its size. The
flow of investment is, therefore, a measure of the rate of construction. The
size of the project is measured in terms of accumulated investment. This
creates a difficulty since the cost of construction will usually depend on the
rate of investment. We shall distinguish between net and gross cost ([2],
p. 471). Only the first is added to the project and can serve as a measure of
its growth. This is the amount of *“bricks” laid in the project, measured in
money terms. The gross cost depends in addition on the rate of construction.
This cost is the cost of laying the *“bricks”, including the value of the
“bricks” themselves. It should be emphasized that the distinction drawn is
artificial although the problem is real—very slow or very fast construction
will generally be more expensive than investment at some optimum pace.*

* The optimum rate of construction depends on two components: (a) The sinking
rate—the demand component, and (b) the cost of investment as a function of the rate of
construction—the supply aspect.
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Thus let

w(t) be the rate of construction (net cost) measured in dollars per
unit of time (a year, say).
Without loss of generality we assume that we start from a zero
size project, so that the size of the project at time ¢ is

t
w(t) = [ w(t) dr.
0
(W) is the gross cost of construction. As explained above, we assume
that p(w) = w.

The income of the area is a function of time and of the size of the
project:

P(t,w) income in dollars (per year).

In this work we assume (as did Marglin [3]) that the effect of the project
can be expressed by a function h(w), such that income is separable in the
form '

P(t,w) = A — g(t) K(w),

where

h(w) is the effective flood control capacity of a project of size w and it is
assumed that

Oshw) =1, H(O)=1, KW <0, h"(w)>0.

The assumptions on the signs of the first and second order derivatives of
h(w) are the usual production function assumptions. Engineers agree with
these too, although in practice one may encounter regions of decreasing costs
and it is not always easy to arrange subprojects in stages so that A”(w) > 0.
The effect of the function A(w) is illustrated graphically, for a special case,
in Fig. 1.

We assume in the following that a flood-control project, once constructed,
will last foreover. As service life of projects of this kind, if properly main-
tained, is very long, this seems a reasonable assumption. Maintenance costs
are usually taken by engineers as a fixed percentage of investment outlays
and as such they may be included in the construction costs and need not
be treated separately.
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Special notation is adopted for the discrete multi-stage cases:
t, date of construction of stage i(i = 1,2, ..., n), t, =0,

w, size of project after the construction of stage i,

i
x; investment of stage i, so that w, = Y xx.
k=1

For simplicity, we assume a gross cost function of the form x, + ¢ (where
¢ is fixed cost per stage) for discrete cases.

2 A Single-Stage Project

Valuable insight is gained by starting the discussion with a single stage case.
A single stage project of size w, will be constructed at time 7, . Present value
of net income from the area is given by

(31 o]

y=[[d~g®led+ [ [4 - g)hw)ledt = (xy + )™ ()
¢} 59

Note that w, = x,.

y in (1) is to be maximized with respect to 7; and to w;. Since A 1s the
maximum annual income, y is bounded for positive r. The necessary c¢ou-
ditions for optimum timing and size are Jy/0t; = dyjow; = 0. Seccna
order conditions can be shown to hold.

dy

=0 r(x; + ¢ = g(t) [1 — Awy)l- 2

aty

That is, investment will take place when the (annual) interest cost will be
equal to the (annual) value of the damage prevented.

8
RCANPEY R Jg(t)h’(wl) etdt = —e ", (3)
0w,

11

The integrand in (3) is the annual value of the damage prevented by the
marginal dollar. The integral is thus the marginal value of the investment.
It equals, at the optimum, 3 1 discounted from ¢,.

3 Avi-Itzhak II
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There still remains the question whether to build or not and for this pur-
pose it will be useful to define:

D= j'l [4 — g()] e dt;
0
E= jw[A —g®)] e dt;

F = [ 4 = g() howp)] e dr:

G=(x; +c)e™,

The economic rent of the project R is the value of the damage prevented,
R=F—-E—-G=|{g®)[l — h(w)] — r(x, + o)} e dr. 4
1

Two cases can be distinguished. In one of them—perhaps the flooding of
residential areas—the project should be constructed whenever the rent, R,
is positive. This will happen if in the solution of @)and 30 < ¢, < o,
since by (2} the integrand in (4) is zero for t = 7, and non-negative for
t>t, since ¢ = 0. However, in our case there exists the alternative of
abandoning the area. Here the criterion for construction should be
F — G > 0 {note that £ may be negative). If D < 0, the area will not be
cultivated until the completion of the project at .

Construction may have 1o start immediately (perhaps for political rea-
sons); optimum size is then determined by solving (3} for #; = 0. Similarly
if the solution of (2) and (3) yields #; £ 0 (in this case g(r) should be defined
for negative values of 1), construction should be immediate and of the same
size as if #; = 0 was forced.

3 Multi-Stage Projects

If division is possible, construction in stages may increase the efficiency of
the system. Net income from an n-stage project is

n—1 ti4g oo

y= 2% § 14 = g(t) h(w)] e dr + J 14 = g how) e e

n

- X G+ e )

n=1
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For convenience we define here w, = 0

Remember, w, — wi_; = x,(i=1,...,n), H(0) = 1,1, = 0.

Again,
¢y ,
5T 0—g(r)[A(wie)) —Hw)l =r(x, +¢) (=12,..,m. (6
o
(Since 7, = 0, this variable cannot be included among the parameters of
maximization.)
fit s
Cy

r
—— =0 | g(O)H(w)e™dt = e+ — ™ (i=1,2,..,n~ 1)
th J

23 (73‘}
% _o0- j e W(w) e dt = —etn, (7
Fw,

ia

The system (6} and {7) is a set of simultaneous equaticns. In practice one
may encounter cases which will make their “step-wise” solution possibic.
Some examples will illustraie this point,

A} Assume thart the size of the stages is predetermined (this will be the situ-
ation in the application illustrated below). Then optimum timing is deter-
mined by (6). starting from t,. Equation (6) may be written in the more

general form ) ) .
P, wi) = Plt;, wiey) = rix; + ¢), (67

which emphasizes that a stage will be added to the project when the addi-
tional income due to the prevention of damage is equal to the interest cost
of the capital invested at this stage.

b) In another case, the sequence 1#;} may be predetermined, perhaps in the
form #; = 7, or by any other pattern. Then the set (6) is void and {7) can be
solved equation after equation, from w, to w,.

Zquations (6) and (7) show that the optimum size of the project at point ;
depends, in general, on the planning horizon. It is instructive to note that
when either {w,} or {r,} is predetermined, the optimum size or timing of
investment is independent of the planning horizon.*

* This conclusion holds only for linear cost functions and not for the general func-
tion g(#¥).

3‘
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An intuitive explanation for this is connected to the fact that a project
of size w; contributes by preventing damage during period (4, t;,,) and also
“delivers” a project of size w; at #,,,.

¢) Another interesting case might be the one in which only the date of com-
pletion of the project, t,, is predetermined. Then one can go “backwards”
from t,, first determining w, then Wp_1, In-1, €tc. This method of solution as
well as the previous ones can be interpreted as a dynamic programming
algorithm [1]. The recurrence relation for the present case (¢) is

fitsy w) = max { § [4 — g0) how)] e dt = (x, + ) =™ + (1,11, wia),
ty,wWy 1§ (8)

where ji:;, wy) is the maximum present value of income if the multi-stage
project starts at ¢,, and is constructed in n — 7 stages.

Dynamic programming can be applied to the numerical solution of the
system (6) and (7) even if these equations must be solved simultaneously and
not step-wise in the sense of points (a)-(c) above.

If the date of the final stage is predetermined, the number of stages is
dictated by the solution. If, on the other hand, n is given exogeneously, one
could search for the corresponding ¢,.

Consider the simplest of the multi-stage projects—the two-stage case, The
single-stage project of Section 2 can be obtained as the limit of the two-stage
project as ¢, — co. Thus, if the solution to the maximization of income from
the two-stage project yields £, < o0, income from this project will be larger
than income from the single-stage case. This can be generalized to the
multi-stage case.

We may consider a multi-stage process with an infinite number of stages.
Then (6) and (7), expressing the necessary conditions for optimal invest-
ment, will form infinite sets of equations.

4 Continuous Construction

Within the context of flood control projects, a continuous construction
model is perhaps only of theoretical interest. However, it will be an appro-
ximate description of a multi-stage discrete model with small intervals
between the stages. The solution of the continuous investment case is concise
and one may wish to calculate it to gain more insight into the solution of
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discrete models. In other cases (consider advertising) it may be a closer
description of reality then the discrete model.

In the continuous case, we do not speak of fixed costs, ¢, as in the discrete
case, but permit outlays associated with construction to be larger than net
investment and depend on the rate of investment. Thus ¢(w) = w. We
start, however, with the case ¢(3) = w and mention the more generai, and
complicated, case later.

Present value of net income, if ¢(W) = w, is

= |14 — g(t) hw) — w(D)] =" do. ©
0

Maximizing y in {9), we use the calculus of variation ({1], p. 40). Let H
stand for the integrand in (9), then by the Euler-Lagrange equation
cH d ¢H
=0

cw dt ow

we obtain

-r
Aw) = —-. (m
g()
The end point condition reduces in this case to

lime™ =0,

00

which is automatically satisfied.

From (10)—since A'(w) is a monotonic function—one can deduce the rate
of investment w(z), once the explicit forms of the functions g(t) and A(w) are
given. Equation (10) thus indicates the optimum path of the project’s future
history.

Some further observations are noted below:

a) Condition (10) can also be obtained from (6)—the first order condition

for optimum timing in the discrete case—which can be rewritten as (re-
member that ¢ = 0)

h(wy_y) — h(w,) -

Wi — Wy

g() (1D

Taking the limit of (11) as w,_, - w,, we get (10). For a similar approach
in the context of dynamic programming see ([4], p. 231).
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b) The optimum initial size of the project, wo at t, = 0, is given by (10)
and it is such that

r
glto)
Thus, the process will start with an initial investment of w, and then con-
tinue in the path dictated by (10).*t

K(wo) = —

c) It is important to remember that we found in this and other sections
the conditions for maximum net income or minimum losses. Denoting by y*
the value of the integral in (9) when investment follows the optimum path
dictated by (10), the project will be economically justified only if
y¥—we20.

Note also that the element of the construction cost in (9) is

(== (=]
fwedt = —wo + | (rw) e dr. (12)
0 0

The right hand side of (12), obtained by integration by parts, is the dif-
ference between the service cost of capital invested in the project and the
initial investment, w,.

d) Differentiating (10) with respect to time one gets
. rg
W= e,
(s h"(w)

By assumption g = 0, A”(w) > 0. So long as 4"(w) < o0 and g > 0 we
have w > 0. That is, construction will proceed continuously. However, it
will stop when g = 0.

The result, stating that w = 0, is welcome, since the project cannot be
scrapped at a price, disinvestment—that is w < 0, is meaningless.

13

¢) In general, income from the area will not be constant. Differentiating
A — g(t) (w) with respect to time, assuming (10), we obtain the rate of
change of income along the optimum path
d[4 — g(t) h(w)] _
dt -
It is not clear what the sign of (14) is.

v — gh(w). (14)

* Note that initial adjustment is here instantaneous. This is due to the assumption
of ¢(W) = W (compare with Eisner and Strotz [2]).

t Remember that we do not assume that a project of any size exists beforehand.
This point can easily be modified.
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f)Part of the foregoing discussion indicates that this is a somewhat
degenerate case. Due to the linearity of the cost function in (9), the deri-
vative w does not appear in (10), and there is only one optimum path of
investment (see also point (b) in Section 3).

In the more general case, where ¢(W) is not a linear function of w, the
present value of the income is

- f [4 = g(t) h(w) — $(0)) e du. (15)

The necessary condition for optimum path is
—¢ (W) W + r¢’ (W) + g(t) ¥(w) = 0, (16)
with the end condition
lim¢'(w)e™ = 0. an

—00

Further investigation of Eq. (16) has been deferred to a later work.

5 An Example

The example presented in this section is based on preliminary datz from
the Hula project and on some arbitrary assumptions. The analysis should
not be taken as a recommendation of any sort.

The planned flood control project is divided into five stages (see Table i}.
The first stage, if constructed, will reduce the expected flooded area in
1969 from 4,999 dn to 1,589 dn. Cost of construction is* IL 1,540,000 or
IL 452 per dunam. Stage 2, if carried out in 1969, will reduce the expected
flooded area by 883 dn in that year, at a cost of IL 2,264 per dunam. The
marginal cost increases from stage to stage. This is consistent with our
assumption of 2"'(w) > 0.

We assume a rate of interest of 109 (8 9; capital cost and 29, mainte-
nance). At this rate, the present value of a dunam of land “saved” from
the floods (in terms of expected value) is IL 1,282. Thus, according to the
last column of Table 1, only stage 1 should be constructed in 1969.

Information similar to that given in Table 1 was projected for the period
1969-2000 from technical data. Thus we could estimate future values of the

*TL3.5=81;1dn = 0.25 acres.
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TABLE1 PROJECT DESCRIPTION (1969)

Stage Identi- Cost of Cost of  Expected Change in Marginal
Stage fication in Project (w;) Stage (x;) Valueof Area Flooded Cost
Hula Project (IL 000)  (IL '000) Flooded Area (dn) (IL/dn)
(dn)
0 Present state 4,999
1 59.15 1,540 1,540 1,589 3,410 452
2 5865 3,539 1,999 706 883 2,264
3 5865—0.5 4,963 1,424 570 136 10,471
4 58.65— 0.5+ 7,888 2,925 363 207 14,130
5 58.65— 0544 11,110 3,222 303 60 53,700

Notes:

Costs are based on 1969 data;

Project’s effect, in terms of area flooded, is for 1969;
1 dunam = 0.25 acres;

Fixed costs ¢ = 0.

$1 =1L 3.50.

functions g(z) and g(r) h(w). At this point, Eq. (6) was utilized to calculate
optimum ¢, values. This analysis is carried out in Table 2. Potential income
from the project area is IL 6,691,000 per annum. If the project is not carried
out, the damage in 1969 will be IL 640,000. Construction of stage 1 in 1969
will contribute IL 437,000 of damage prevention at an interest cost of
IL 154,000. It should therefore be constructed immediately.

Stage 2 is to be constructed in 1977. This is the first year in which the
annual value of the damage prevented by stage 2 will be higher than the
interest cost on the investment at this stage. Stage 3 will be constructed in
1987. The calculations were followed up to the year 2000, showing that
stage 4 will not be constructed in this period. The resulting income flows
were plotted in Fig. 1.

6 Concluding Remarks

This paper has presented a theoretical framework for the analysis of flood-
control projects in the Hula peat soils, and, we trust, for some other cases
as well. It serves as a starting point for further research and as a guide to the
empirical work which is now in progress.
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TABLE 2: CONSTRUCTION PROCESS (IN THOUSANDS OF ISRAELI POUNDS)

Year (1) 1969 1977 1987 2000

Present state——no construction

Net income {4 — g(1)] 6,051 5,557 4,852 4,129
Damage [g(1)] 640 1,134 1,839 2,562

Stage 1

Net income [4 — g(1) i{w,)] 6,488 6,301
Damage [g(t) A(w1)] 203 390
Damage prevented if stage constructed 437

Interest cost (rx,) 154

Stage 2

Net income [4 — g(¢) h(w;)] 6,500 ,
Damage [g(t) A(w3)] 191 AR
Damage prevented if stage constructed 199

Interest cost {rxz) 200

s
b e
[
«

Stage 3

Net income [4 — g(1) (w3)] 6,109 5,075
Damage [g(¢) /i(w3)] 592 1,616
Damage prevented if stage constructed 141

Interest cost (rx3) 142

Stage 4

Net income [A4 — g(#) h(ws)] 5.07%
Damage [g(z) h{wy)] 1,6:2
Damage prevented if stage constructed 4
Interest cost (rxs) 293
Optimum size of project (w;) 1,540 3,539 4,963 4,963

Notes:

Potential income: A = 1L 6,691,000;

Damage prevented: P(t;, w;) — P(t;, wi_y) = g@t) [A(wi_y) — A(wpl;
Column headings show construction dates, except for 2000,

A rate of interest r = 0.10 is assumed.

Further work in this study will be in three directions: a) The integration
of the analysis of the peat soils project with the analysis of tie rest of the
Hula Basin drainage system; b) The incorporation of elements of uncer-
tainty and accumulated information in the analysis; ¢) Extension of the
analysis of Section 4 to a more general cost function.
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Fig. 1. Future income flows in project area
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