Overestimates of Returns to Scale in Agriculture—
A Case of Synchronized Aggregation®

Yoav KisLEV

Past studies of the aggregate production function of American agriculture
indicate very high returns to scale. These findings are not supported by farm-
level analysis. It is suggested that the aggregate estimates are biased, even if
the assumption that all farms operate on the same function is accepted, due
to grouping synchronized with regional effects which are not included in the
analysis. An algebraic analysis of synchronized grouping is presented, and
the use of covariance analysis is suggested as at least a partial correction of
the bias. Empirical findings, production functions fitted to the 1949 and 1959
Census of Agriculture data, support the hypothesis of overestimates of re-
turns to scale.

&RICULT URAL production functions estimated from aggregate data
have indicated very high returns to scale. As reported by Walters
[17, p. 26], Tintner estimated the sum of the coefficients in a Cobb-Douglas
function at the division level (10 divisions in the United States) to be 2.51;
and Johnson [7] reported a value of 1.26. Recently Griliches reported values
of 1.852 to 1.362, estimated at the productivity region level (68 in the
country) [3], and 1.192 to 1.282 at the state level [2].

At the farm level, however, the picture is quite different. Heady and Dil-
lon [5, Table 20] summarized the results of eleven studies conducted at the
farm level in the United States. In seven cases, the sum of the coefficients, in
the Cobb-Douglas production function, was higher than unity; in only four
cases were the sums significantly different from one. The values of those four
estimates were 1.17, 1.27, 1.10, and 1.15. In private communication with
Professor Griliches, J. G. Elterich of Michigan State University reported
the results of 56 production function estimates at the farm level. In 20
cases, decreasing returns to scale were estimated; in 24 cases, the sum of the
coefficients was between 1.0 and 1.2; and in 12 cases, it was larger than 1.2.
The highest value reported was 1.256. There was no information available
regarding the standard errors of the estimates.

In general there is no reason to expect farm-level and aggregate analysis to
yield the same results. If farms operate on different microproduction func-
tions, then aggregate estimates of the structural parameters will be biased,
as Theil has shown [15], in unknown directions and to unknown extents. To
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be sure, such biased estimates are not necessarily useless. In a slowly chang-
ing world like ours, they can help to forecast future economic trends [11],
and in many cases aggregate analysis will yield better predictions than indi-
vidual-level data [4,]. But such biased estimates cannot tell anything
about the structure of the farm-level production process.

There are, however, cases in which aggregate analysis will yield unbiased
estimates of the micro parameters. One such case, discussed by Prais and
Aitchison [13], is that of grouping—aggregation of individual observations
operating on the same function. Here, however, the absence of bias depends
on a completely specified and accurately observed model, conditions which
are rarely met. In the circumstances under which most empirical work in
economics is done, incomplete models will yield biased estimates at the indi-
vidual as well as at the aggregate level. It is argued in this article that an
important specification error in agricultural production function analysis 1s
the omission from the regression of regional effects, and that grouping into
regions, where the grouping process is synchronized with the omitted vari-
ables, can be the reason for the differences between aggregate and farm-level
estimates.

In the terminology of covariance analysis [16], returns to scale in farming
should be estimated from the “within group” regression. Omitting the re-
gional effect, we estimate the overall (biased) regression at the farm level; the
aggregate analysis is the “between group” regression. I will show here that
the specification bias of the between-group regression is larger than that of
the overall regression coefficients, but that, at the same time, aggregation
eliminates biases due to the omission of variables which vary only within the
groups. Empirical evidence presented seems to support the hypothesis that
the net effect of aggregation, in agricultural production function estimates,
is to increase the specification bias and, as a result, to overestimate returns to
scale.

The Algebraic Analysis

Grouping as such does not introduce any bias into the estimated coefli-
cients. Consider the simple model,

ey vij = a -+ 8%y -+ wj,

where
j is the group index and
i(i=1,2 - - - I)) is the index of the individual unit within the group.

Assume the classical regression conditions to prevail, that is, Xgm is uncor-
related with g and
0 k=m
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(k and m run through all the observations).
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At the group level we estimate the between-group regression,
2) §i=a+Db% + G

where a bar, here and throughout, indicates that averaging was done on the
missing index. b is an unbiased estimate of 3:

EE;—-0Fi — ) _ 2% —0E -
(& — %)? =5 — %)

E(b) = 8,

since
E(ﬁjij) = E(ui,-x“) = (.

Homoscedasticity is maintained, however, only if the groups are of equal
size, since

0 i # k
®) (a0 = { )

a2/1; =k
This was the Prais and Aitchison case. But let us consider now the model
4) Vii = a + BXij + v&i; + Wi

Let us assume again that the classical conditions prevail but that the model
is estimated by the regression

() Vi = a + bxjj 4 vi;.
As is well known, b is now biased:
(6) E(b) = 8+ vp,

where p is, in the terminology suggested by Theil [14, p. 326], the coefficient
of the auxiliary regression of z;; on x;;.
At the group level, the estimated equation is

M §i = a+ bg; + v,
and
(8) E() = 8+ 7p,

where P is the coefficient of the regression of z; on %;. Our goal is to compare
the magnitudes of p and p.

It is useful to assume that the groups are of equal size (I;=1, for all j’s)
and to introduce two identities and efficient symbols:

Z Z (xi; — %) (215 —2) = Z Z (xi; — %) (255 — %))

+ 1 Z & — %)(z; — B,
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or, for brevity,
C = Cij "]" ICJ
Similarly,

ZZ (i —x)? = Q = Qi + 1Q;.

In these symbols,

) C Gy + IC
9) p=_—= —

Q Qi+ 1Q;
and
(10) p=

p=—-

Q;

The ratio between the two coeflicients is
(11 P _I&.Qis +1Q;  IG _Qﬁ + IQ:"

p IQ Cy+IC; Cy+IC;  IQ

In general, (11) will differ from unity, i.e., pp, and the bias in b will not be
the same as the bias in b.

Several cases can be distinguished:

(a) z;=1z, for all j’s. The unobserved variable varies only “‘within” the
groups and has no “between” groups variance. Here C;=0 and p=0—a case
of “good aggregation”; the grouping process eliminates the bias altogether.

(b) Grouping is done at random and the group lines are not correlated
with the variables in the model. Here E(Q;)=Q/I and E(C;)=C/I. Thus
plim (p) =plim (p). Random grouping into large groups does not change the
specification bias.

(¢) In our uncontrolled economic experiments, the omitted variables are
usually correlated with the grouping method; we seldom, if ever, group
randomly. An extreme case of synchronized aggregation will be the case in
which the omitted variable is a group effect that varies only from group to
group. Now (4) is a covariance model, in which

(12) z;; = %;, forall s and j’s,
which, in turn, means that c¢;;=0 and

p i+ IQ; ij
(13) b _ u =1+ & .
P IQ; IQ;

Qy; and Q;, being sums of squares, are positive; (13) thus indicates that the
omission of the group effect causes a larger bias in the “between group” re-
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gression coefficient than in the overall coefficient. This increase in the bias
is due to aggregation synchronized with the omitted group effect and is,
therefore, called here the Synchronization Effect. It is demonstrated
graphically in Figure 1, in which auxiliary regressions of z on x are depicted.
The dots mark three observations for each group at a different z level, and
the between-group regression slope (line 1) is larger than the overall slope
(line 2).
1. z., = a + px. + u.
J T J

N
-
i}
N
1}

a + px,. + u,

Figure 1. Auxiliary regressions, overall and between groups

(d) In most cases, however, the omitted variable, even if correlated with
the group lines, is likely to vary within the groups too. Grouping combines,
then, the effects of the cases discussed under (a)—elimination of within-
group variance—and under (c)—synchronization effect; p may be smaller
or larger than p. To make this point clear, we may rewrite (11) as

P 1 y
PG ;

IC;




972 OVERESTIMATES OF RETURNS TO SCALE IN AGRICULTURE

Seldom will C;; and C; differ in sign. Seldom will one variable be positively
correlated with another within groups and negatively correlated between
them, or vice versa. If they are, then (14) may be larger than (18). More
likely C;; and C; will have the same sign and (14) will be smaller than (13).
Equation (14) may even be smaller than unity; if the elimination of the
within-group variance dominates the synchronization effect, the specifica-
tion bias will then be smaller at the group level than at the individual level
of analysis.

In Appendix I it is shown that the conclusions for the multiple regression
case are similar to those derived here. With respect to one point, however,
the two cases differ. While in the simple regression the synchronization
effect (equation 13) always increases the absolute value of the specification
bias, the result is not predictable in a multivariant model. The reason is that
the bias in any one variable is affected by the synchronization effects of all
the variables included in the calculations, and of these variables some may
be positive and some negative, a condition which makes the a priori determi-
nation of the result impossible. There is, however, one exception to this rule.
The synchronization effect increases the absolute value of the bias in every
one of the estimated coefficients if all the covariances among the included
and the omitted variables are positive. In economic data, such positive co-
variance matrices are common.

Aggregate regressions would not have synchronization bias if models were
completely specified and accurately and fully observed. This condition is,
however, practically unattainable. If one is willing, on the other hand, to
accept specification biases at the individual-unit level but wants to elimi-
nate any changes in the biases resulting from aggregation, random grouping
will be appropriate. In most cases, however, aggregation of data available in
individual form has been suggested in order to economize in computations.
With the prevalence of high-speed electronic computers today, it seems that
the saving in computation effort is not worth the reduction in the efficiency
of the estimates that results from any aggregation [13].

A partial correction of the specification errors is to allow for the group
effects by a covariance analysis. This approach has already been suggested
by Mundlak {12] and Hoch [6] for the elimination of specification biases at
the individual level. The covariance analysis requires more than one obser-
vation per group; thus, at the aggregate level, at least two cross sections,
from different time periods, will have to be utilized. Then, on the assump-
tion that the structural parameters are constant over a period of time, the
equation estimated, instead of (5), will be

(15) Fie = &; + bXy + ¥,

where t stands for the cross section.
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Production Function Estimates

The empirical analysis proceeds on the assumption that the farms (the
individual units) within regions (the groups) operate on a Cobb-Douglas
production function of the form

k
(]6) y=AH %0t (I’=1, 2,"'yk)z

where y stands for output and x, for the input r. Farm and regional indices
were omitted from (16), which was estimated by a linear regression in its
logarithmic form.

Let the kth variable represent productivity characteristics of the region:
soil and climatic conditions, availability of professional information, quality
of roads, and similar factors. To apply the results of the previous analysis,
we let the equation

(17) €= i B:

be the true indicator of returns to scale. The sum in (17) does not include
By since the question is what change will be caused in farm output by an
equiproportional change in all inputs, and not what change will occur as we
move from one region to another.

If the only specification error is the omission of xx, then b;, the estimate of

B:, 1s biased:
(18) E(br) = Br + ﬁkpr)

where p;, is the coefficient of the variable r in the auxiliary regression of the
group variable on all the observed inputs. eis estimated by

and is biased:
k—1 k—1
(19) E@e) = >, B:+Bx 2 p-

The hypothesis offered is that e is biased upward at the farm level and
that synchronized aggregation increases the bias.

The estimate of returns to scale (e) will be biased upward at the farm level
if B and the p,’s are positive. Sy is positive by definition. Positive p;’s mean
that the omitted effect is complementary to the inputs in production, that
the higher the level of this effect, the larger will be the doses of factors of
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production employed. The multicollinearity prevalent in farm production
data (e.g., Table 8) indicates general complementarity among inputs, and
there 1s no theoretical or practical reason to expect the group effect to be the
exception to this rule.

Positive synchronization effects in the multifactor production function,
which contribute to an increase in the bias at the group level, result from
positive covariances among inputs and regions. Again, Table 8 (similar
correlation coefficients were obtained at the regional level) and the comple-
mentarity of factors discussed above are consistent with such positive co-
variance matrices.

The resulting synchronization effects can be of substantial magnitudes.
In Table 1, simple regression synchronization effects are reported for a
sample of 351 farms in 16 counties in Texas. This is equation (13) applied
successively to six inputs, assuming each time a single-factor production
function and aggregation into counties. The values found range from 8.7 to
18.7. These effects, however, are likely to be overestimated, since the sample
was taken from a rather homogeneous area where the between-counties
sum-of-squares deviations are probably smaller than those for a sample of
counties taken at random from the country as a whole.

The synchronization effect was also calculated for the number of acres per
farm in 148 counties in the conterminous United States.! The ratio of the
within- to the between-counties sum-of-squares deviation was 2.566, and the
synchronization effect was 8.556. This is likely to be an underestimate, since
the variable considered is the number of acres, instead of the value of land.
The latter is the variable which should have been included in the production
function, since the value of land probably varies less among counties than
the number of acres.

These findings indicate the possibility that synchronized aggregation may
increase the specification bias substantially. For example, let us assume a
case of constant returns to scale; let us assume also, however, that the sum
of the coefficients in a Cobb—Douglas farm-level regression, in which only
the observable inputs are included, is not unity but 1.1—a bias of 0.1 in the
scale coeflicient. Let us assume further that the magnitude of the synchroni-
zation effect is 6.0—well within the range of our estimates—and that it is
equal for all regression coeflicients (p;= 6.0, for all r’s). Now, even if half the
specification bias is eliminated in aggregation (case d on page 971) the aggre-
gate estimate will still be of the order of 1.8. And if the bias at the farm level

! Data on frequency distribution of farm sizes are from the 1959 Census of Agriculture,
County Table 2. All parts of Volume I of the Census were ordered by numbers and every nine-
teenth county was included. The calculations were made on the assumption that all farms in a
class were the size of the class midpoint. The farms in the “less than ten” class were considered
to be 5 acres each, and those classified as “two thousand or more” were taken as 3000 acres
each.
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Table 1. Synchronization effects*—Texas sample

Sums of squares Synchronization
(in logarithms) effect
Variables? |
within counties between counties
1 i .

Land 66.37 5.24 13.67
Farm expenditure 194 .37 17.57 12.06
Hired labor 73.08 9.49 8.70
Equipment 401.24 39.75 11.09
Livestock 385.15 40.05 10.61

Source: part of the sample used in William G. Adkins, Income of Rural Families in
the Blackland Prairies, USDA MP-659, College Station, Agricultural and Mechanical
College of Texas, in cooperation with United States Department of Agriculture, May
1963.

s Equation (13). For explanation of computations, see text.

b The definition of variables (according to the source):

Land—rvalue cf land operated.

Hired labor—total man-work equivalents of hired labor.

Livestock—value of livestock on hand, December 1959.

Farm expenditure—current farm expenditures.

is not 0.1 but 0.2, the sum of the coefficients at the aggregate level will,
under the same assumption, be 1.6.

Actual production function estimates were consistent with the hypothesis
offered. Such estimates were conducted on two cross sections, one for 1959—
Tables 2 and 3—and one for 1949—Table 4. County data for the 1959 study
were from the Census of Agriculture for the conterminous United States.
The production function was calculated once by the factor-share method,?

Table 2. Simple correlation coefficients at the county level, 1959 data

Variables Y Xy X, X3 X, X5 X Xq
Y Value of
output 1.00
X; Machinery .805 | 1.00
X, Farmers .627 .653 | 1.00
X; Hired labor .589 .241 .204 | 1.00
X, Livestock .654 .546 .340 .204 1 1.00
X5 Fertilizers .373 .239 .237 .384 .141 | 1.00
X Land and
buildings .861 .787 .503 .492 .531 .236 | 1.00
X7 Other .612 .538 .404 .304 .431 .183 .595 | 1.00

For source and definition of variables, see Appendix IT A.

2 Tor reference to the factor-share method, see Klein [10, pp 193-194]. It can be shown [1]
that factor-share estimates are biased, but in a study such as the present one, with close to
3000 observations, the bias, which is inversely proportional to the size of the sample, can be
safely ignored.
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Table 3. Cobb-Douglas production function, 1959 cross section®

County | Productivity region
. Geo- Factor
Variables metric shares Regressions?
average
1 2 3 4 5

R2 .907 .934 .999 .973 .974

Y (Output) 7,446
X: (Machinery) 1,935 .260 .241 .239 .401 .333 .258
(.011) | (.014) | (.059) | (.053) | (.051)
X, (Farmers) .254 .230 .051° .219 .276
3,080 415 1 (.012) | (.013) | (.078) | (.085) | (.073)
X (Hired .176 .170 .201 .224 .194
labor) L (.005) | (.006) | (.029) | (.027) | (.021)
X, (Livestock) 982 .125 171 .178 .134 .141 .128
(.005) (.006) (.034) (.031) (.028)
X; (Fertilizers) 187 .025 .045 .048 .085 .102 .076
(.004) (.005) (.036) (.024) (.024)
X (Land and 27,390 .283 .254 .166 .425 .093 .153
buildings) (.010) (.012) (.064) (.055) (.055)
X; (Other) 768 .103 .026 .022 |—.085 .157 .153
(.003) | (.003) | (.043) | (.044) | (.041)
Sum of 1.211 1.167 1.053 1.212 1.269 1.238
coefficients (.028) | (.033) (.056)

For source and definitions of variables, see Appendix II A.
a Values in parentheses are standard errors of estimates.
b Regressions:
1. Without regional dummy variables.
2. With regional dummies.
3. Logarithmic aggregation.
4. Arithmetic aggregation, unweighted.
5. Arithmetic aggregation, weighted by the number of farms in the region.
¢ Not significant at usually accepted levels.

and regressions were computed at the county and the productivity region
level.?

The sum of the coeflicients at the county level (regression 1) is 1.167. Co-
variance analysis—the inclusion of dummy variables for the 68 productivity
regions—contributed significantly to the explanatory power of the regres-
sion (F%545;=18.33 for the test of the hypothesis that the dummy variables
did not contribute to the explanation) and reduced the sum of the coeffi-
clents to 1.053.

The 1949 analysis (Table 4) was conducted at the productivity-region
level only. Two sets of variables were prepared. One is the set used by
Griliches [3] in his study of the same data (regression 6 is, apart from

# The delineation of the 68 productivity regions was done according to the source of the 1949
data. See Appendix IT B.
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Table 4. Cobb-Douglas production function, 1949 cross section—pro-
ductivity-region level®

Regressions
Variables
6 7 8 9 10
R .976 .975 .976 .973 .986
X, (Machinery) .359 .306 .298 .196 .157
(.051) (.050) (.042) (.064) (.047)
X, (Family labor) .296 .349
(.180) (.133)
X3 (Hired labor) 134 117
(.027) (.020)
X (Livestock) .168 .128 .154 .131 175
(.023) (.024) (.022) (.025) (.020)
X (Fertilizers) —.064" —.093
(.040) (.030)
X; (Land and buildings) .380 .281
(.046) (.036)
X; (Other) 122 .102 111 .229 .277
(.033) (.034) (.029) (.071) (.053)
X; (Land) 174 .232 .186
(.033) (.029) (.026)
Xy (Buildings) .102 116 .093
(.045) (.045) (.038)
X0 (Workers) .441 472 .380
(.074) (.076) (.066)
Xu (Regional effect) 472 .603
(.093) (.085)
Sum of coefficients 1.366 1.356 1.222 1.302 1.263
(.070) (.018) (.062) (.045)

For source and definition of variables see Appendix II B,

* For explanation of regressions, see text. Values in parentheses are standard errors of
estimates.

b Not significant at usually accepted levels.

rounding errors, his U17); the other is as close as possible in its definition to
our 1959 set. Regressions 6, 7, and 8 belong to the first set, 9 and 10 to the
second. Since there was only one observation per region, an ordinary co-
variance analysis could not be made. Instead, the coefficients of the regional
dummies from regression ¢ in Table 8 were included in regressions 8 and 10
of Table 4. This procedure is identical to a covariance analysis under the
assumption that the structure of the regional effect did not change from
1949 to 1959 and that it was estimated correctly in the 1959 study. The
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coefficients of the regional effects are significant, and again the estimates of
the scale coefficients in regressions 8 and 10 (1.222 and 1.263) are smaller
than their counterparts in regressions 7 and 9 (1.356 and 1.302), in which
the regional effects were not included.

The inclusion of regional dummies in regression 2 is not a full-scale covari-
ance analysis and cannot be expected to eliminate all the synchronization
biases. To clarify this statement, let us consider the separation of the
omitted effects into farm, county, and regional effects. The county effect is
so defined as to be measured from the regional effect, and the farm effect
from the county effect. Thus there are no within-region variations in the
regional effect and no within-county variations in the county effect. In this
form there are three sources of bias at the farm level—the omission of each
of the three effects. A covariance analysis at the county level, in which the
regional effect is allowed for, eliminates the biases due to the farm effects
(case a) and to the omission of the regional effect. The county effect is not
allowed for and the part of the bias due to it is even increased—compared to
the farm-level regression—as a result of synchronized aggregation. The
availability of more than one observation per county will permit us to allow
for the county effect, as well as for the other two.

Two additional points should be noted. First, since counties and regions
do not have equal numbers of farms, homoscedasticity is not maintained
(equation 8 and Appendix I), and the regressions have to be weighted by the
number of farms in the county or region [8, pp. 207-211]. Regression 5 in
Table 3 is weighted, and in Table 4, regressions 7 and 10 are weighted. If we
compare regression 5 with regression 4, and regression 7 with regression 6, we
can see that the weighting process reduces the coefficients of machinery and
livestock and increases those of land and family labor in 1959 and of all
workers in 1949.

Another point that has not been discussed hitherto is the form of aggrega-
tion. In the framework of the Cobb—~Douglas function, arithmetical averag-
ing constitutes an aggregation error. Logarithmic aggregation is tried, from
the county to the regional productivity level, in regression 3, but the coeffi-
cients are “unreasonable,” perhaps because of the fact that aggregation into
counties was arithmetic. The differences between logarithmic and arithmetic
aggregation are functions of the variance. Furthermore it can be shown [9]
that, if the distribution of the farm data is log-normal, then arithmetic ag-
gregation can be corrected by inclusion of county variances in the regression.
The log-normal hypothesis was tested on the Texas sample of Table 1 and
had to be rejected, but further attempts to fit a theoretical distribution to
farm data are warranted, particularly since the Census of Agriculture con-
tains information on frequency distributions of factors of production which
can be used to approximate the variances.
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Summary

Aggregation, even grouping—aggregation of economic units operating on
the same function—alters the specification bias if, as is usually the case, it is
synchronized with the errors in the model. This effect can be quite substan-
tial and is perhaps the reason for the very high aggregate estimates of re-
turns to scale in agriculture. Covariance analysis was suggested as a solution
and tried on two cross sections. This method reduced the estimated scale
coefficients.

Appendix I
The Multiple Regression Case

To express grouping as a matrix operation, define G(mXn)(m<n) as a
grouping matrix, exemplified by

"
|
. |y2‘
5 L1 1 0 (0
<31)=<3 3 3 >|y31=GY.
v/ \0 0 0 % 3/
v
i_st

There are n!{(m!(n—m)!} ways to group n observations in m groups.
Consider the family of all the distinct G matrices possible (each one is a
permuted version of every other). Random grouping can be represented as a
selection at random of one matrix G (or, alternatively, as a selection of a
permutation of matrix M, of the order n, followed by the multiplication
operation GMY). The complete model at the ungrouped level is

(LD Y =Xs5+4 U.
Estimating 8 (now a vector), we may write

b = XX)X'Y
and
{1.2) Eb) = (X'X)"X'XB = 8.
Grouping, we get
(1.3) GY = GX8 + GU.

E(GU)=0 since E(U)=0, if the classical regression conditions are main-
tained in (I.1), so that

(1.4) E() = (X’G'GX)"'XG'GXB
ey 6‘
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Grouping as such does not bias the estimated coefficients.
Homoscedasticity is not maintained. If, at the ungrouped level, U'TJ
=¢? is assumed, then after grouping,

(1.5) (GUY(GU) = U'G'GU = GG’
In case of specification error, a matrix, R, is observed instead of the true
data matrix, X, Estimating, we write
(1.6) EMb) = (R'R)"'R'X3 = Pg
and, at the group level, we have
(L.7) E(®) = (R'GGR)R'G'GX8 = .

If the specification error is an omission of some variables, the correct
matrix X can be written, without loss of generality, as X = [X!Z]. Now,

P = (R'R)"'R/[R: Z]
= [I:(R'R)R'Z]
= [1:2],
and
= (R'G'GR)"'R'G’G|R:Z]
= [I:(R'G'GX)~'R'G'GZ]
= [I:Z].
In comparing P to P, it will be sufficient to compare = to £. This comparison
shows the following: ,

(a) No between-group variations in Z; thatis, GZ=0,2=0,P=[1:0]. No
bias at group level.

(b) Random grouping; that is, plim (P) =plim (P). In large samples and
groups, random grouping does not alter the specification bias.

(¢) No within-group variations in Z. R'G'GZ=R’Z; that is, all the varia-
tions are between the groups; but (R'R)™'# (R'G'GR)~l. Moreover, in
multiplying the matrices which create Z, the elements in the rows of
(R'G’'GR)™! operate as weights in the summation of the columns of R'G'GZ.

Some of the weights can be negative and some positive, and the net result
cannot be predicted.

(d) All covariances in = and £ are positive. Then, since R'R=R'R
—R'G’'GR)4-(R'G’'GR), and all weights are positive, R'R<R'G’GR and
therefore T < £, a clear synchronization effect.

(e) Nonzero within- and between-group variances in Z; that is, the re-
sults are inconclusive, as in the simple regression case in the text.
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Appendix II
The Data for the Production Function Estimates

A, 1959 cross section

Source: 1959 Census of Agriculture county tables (on punched cards),
unless otherwise specified.

Y (Output) is the total value of farm products sold or intended to be sold

in 1959, plus state average of rental value of farm dwellings and value of
home consumption, plus value of farm products sold, times state ratio of
government payments and changes in inventory to cash value of farm mar-
keting. Source for data on nonmarket output: U. 8. Department of Agricul-
ture, Agricultural Marketing Service, Farm Income Situation, FIS-179
supplement (1961), Table 4.
X; (Machinery) is defined as 22 percent of the value of machines and equip-
ment on farms, plus expenditures on gasoline and oil. The values of the
different pieces of machinery were taken from unpublished data prepared
by Professor Griliches.

X, (Farmers) is the number of farmers by occupation as given by the Census
of Population (on magnetic tapes) for 1960. Females are counted as 65 per-
cent.
X; (Hired labor) is the expenditures on hired labor divided by the state wage
rate per day. Source: U. S. Department of Agriculture, Agricultural Market-
ing Service, Crop Reporting Board, Farm Labor, LA-1, 1959, Quarterly data
on wage rates per day, without room and board, were used to calculate sim-
ple annual averages for 1959. For Washington, Oregon, and California, the
per hour wage rate was multiplied by 90 percent of the number of hours
worked.
X, (Livestock) is defined as 10 percent of the value of livestock on farm
plus expenditures on feed.
X; (Fertilizers) is the value of fertilizers and lime, weighted by state prices.
Prices were calculated by dividing the 1954 expenditures on fertilizers by
the quantities, and correcting for changes in price level. Source: 1959 Cen-
sus of Agriculture, State Table 5, and U. S. Department of Agriculture, Sta-
tistical Reporting Service, Agricultural Prices, 1961 Annual Summary, Pr
1-3 (62).
X, (Land and buildings) is the value of land and buildings.
X7 (Other) is the purchases of livestock and poultry, machines hired, seeds,
bulbs, plants, and trees.

All observations are county totals. A few counties with fewer than 100
farms or with otherwise insufficient information were not used. Variables in
the regressions were logarithms of the per farm averages in each county.
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B. 1949 cross section

Source (except Xyp): E. G. Strand, E. O. Heady, and J. A. Seagraves,
Productivity of Resources Used on Commercial Farms, USDA Tech. Bul.
1126, Nov. 1955.

Y (Output) is the sum of the values of farm products sold and those used in
household (Table 4 in source).

X1 (Machinery) is the interest on machinery, depreciation of machinery, ex-
penditures on gasoline and oil, repairs of machinery, and machine hire (Ta-

ble 27).

X, (Family labor) is the expenditures (imputed) on unpaid family and
operator labor (Table 27) divided by the annual wage rate (Table 7).

X; (Hired labor) is the expenditures on hired labor (Table 27), divided by
average annual wage rate (Table 7).

X, (Livestock) is the livestock purchased, interest on livestock, and expendi-
tures on feed (Table 27).

X (Fertilizers) is the expenditures on fertilizers and lime (Table 27).
X; (Land and buildings) is the value of land and buildings (Table 14).

X (Other) is the expenditures on seeds and plants, fertilizers and lime (Ta-
ble 27), and irrigation (Table 28).

X (Land) is the interest on land (Table 27).
X (Buildings) is the interest on buildings (Table 27).
X0 (Workers) is the average number of workers per farm (Table 7).

X1 (Regional effect) is the regional coefficients of regression 2, Table 3.
Variables in the regressions were logarithms of the per farm averages in
each productivity region.
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