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1. Introduction

Suppose a crop can be produced by either of two sets of cultural

practices. One promises a higher yield if growing conditions turn out

to be favorable; yield under the second will be higher if unfavorable

conditions are encountered. An expected utility maximizing, risk

averse producer is allocating his acreage between the two regimes. We

are particularly interested in how the allotted acreages respond to

changes in the price of the crop.

Questions of this kind sometimes arise in developing economies.

If the less variable technology is in common use, but the more variable

technology is associated with higher average yield, then partial

adoption of the more variable system increases supply over time and

exerts downward pressure on prices. Will lower prices create additional

incentives to adopt the more variable system or will lower prices reduce

incentives to change? This was the primary question which led to the

present investigation. One example of alternative technologies is the

choice between chemical and organic fertilizers. With ample rainfall

chemical fertilizer should be more productive. If there is little rain,

organic will turn out better.

In this paper price of output is regarded as known when the

production decision is made. This corresponds to forward contracting
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or to a controlled price announced in advance. Models involving a random

price will be explored later.

The following notation is used:

W represents yield per acre from the more variable technology.

V represents yield per acre from the more stable technology.

W and V are random variables on an underlying probability space

(0,~’~~jP) where u c O is a possible sequence of growing conditions.

y is price of output

~ is the decision maker’s utility of gain function

b is total acreage on the farm in question ~~’~t-lla acres cultivated

in the more variable way and (b - a) in the less variable way.

~ is the expected utility function and the decision problem is

(1.1) max n(a;y) = E~[yQ(a)] y > 0 where
a~[o, b]

Q(a) is a random variable representing prospective total yield when

a acres are cultivated by the more variable method.

(1.2) Q(a) =aW+(b-a)V=a(W- V)+bV.

The semicolon separating the arguments of n is

that a is the decision variable while y is regarded

inserted to recognize

as a parameter by the

decision maker. The following assumptions are used:

(1.3) (a) $’ >0, $’’<0,+’” >0

(b) limo’(x) = o
X*

(c) Let Z=W-V. For all.asR, y > 0 the following random

22’ 2
variables have finite means W, V, W , V , Zt’(yaZ), Z 4“(yaZ).
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(a) and (b) have been commonly assumed by economists, +’ > 0 expresses

preference for larger gains rather than smaller, 4“ < 0 represents risk

aversion, ~’” > 0 is implied by (but weaker Chan) decreasing absolute risk

aversion, (b) is more difficult to assess since it involves what would

happen as potential gains became arbitrarily large and, therefore, outside

our normal experience and contemplation. It has, however, seemed reasonable

to other analysts (e.g. Leland [6], Bertsekas [2]) as well as the present

authors.

(c) also seems reasonable and is assumed for mathematical tractability.

It will hold providing tails of the distributions of W, V are not too fat;

for example if W, V are bounded.

If n(~) > n(a) for all real numbers a, then ~ will be called an

unrestricted maximizer of n. If O ~ ~ f b and n(~) ~ n(a) for all a c [o, b]

than $will be called a restricted maximizer of rI.

Assumptions (1.3), which are maintained throughout this paper, have

the following implications:

(1.4) (i) continuous first and second derivatives of n exist and may

be obtained by differentiation under the expectation.

(ii) n is strictly concave in a and has, for each y, a unique

unrestricted maximizer.

(iii) ~<0+~ =O;~>b+;=b;O~~ ~b++=;.

(iv) (~ - a) ~ Dan(a;y) acR.
,,:,,

means ‘hgrees in sign

with”.

A proof of (i) is indicated in the third section of this paper.

(ii) is proved in Hildreth [4], pp. 9, 10 (note that p(W - V ‘ 0)>0,

P(w - V<o)> o). (iii), (iv) are simple consequences of the fact that,
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for given y, ~ is single peaked and everywhere strictly concave.~’ Thus

the contemplated decision problem (summarized in 1.1) has a unique

solution ~ and the associated unrestricted problem has a unique solution

a. It will be convenient to examine the relation between ~ and y and to

write

(1.5) a = a(y) y>o.

Assentation (iii) above connects ~ with ~.

In the next section a particular specification of a possible relation

between W and V is introduced. It is shown that, under the specification,

response of more variable acreage to a change in price has sign opposite

to the derivative of the decision makerts relative risk aversion function.

This is the paper’s main result and it adds to the importance of finding

empirical evidence on how decision makers’ , and particularly entrepreneurs’ ,

relative risk aversion responds to increases in gain.

One expects that per acre costs of the two regimes will differ in

most applications. It is convenient to think of gain as being measured

after deducting the costs of cultivating the entire acreage

way is more expensfve. One regards these cultivation costs

when the decision

be added to gross

for lower costs.

is contemplated. Any savings in per acre

in whichever

as prepaid

costs can then

receipts under the less expensive procedure to allow

This enables one to regard W, V, Q as non-negative

random variables and does not change the interpretation of the model.

Before introducing the specification, it is perhaps worth reminding

some readers that if risk neutrality were assumed we could write O(x) = x

——-

~/ If (iii), (iv) are not immediately obvious, the reader can draw
a peaked, smooth, strictly concave function and compare a, 2.,~ for various
values of a.
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and the decision problem (1.1) would have the following trivial solution.

(1.6) EW>EV+~=+=b

EW<EV+~=-m, :=()

EW = EV =)~, ~ indeterminate.

2. Derivation of Principal Result

The notion that one procedure will be advantageous if favorable

circumstances are encountered while another will be better if developments

in the decision maker’s environment are adverse can be made more precise

in many ways. Such notions are relevant in many ,f’!’lsxts--riskyversus

less risky securities, uninsured versus insured ventures, etc. We hope

the specification (s) below represents some production problems reasonably

well. It is assumed that for some intermediate events, yields under the

two regimes are equal (W = V = k). If experience is better, acreage

under the less variable technology benefits somewhat but acreage under

the other technology benefits more. Conversely, under less favorable

experience yield on acreage under the more variable technology declines

more. This can be stated

(s) w-v ~V-k.

Since ~ is differentiable and strictly concave, 2 may be obtained

for given y by solving Dan(a; Y) = 0. As shown in the final section this

yields

Dan(a; y) = y E(W - V) $’[ya(W - V) - ybV] = O

Not much can be said about ~ without further assumptions. One may note
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(2.1) ~an(o; Y) = YE(W - V) $’(ybV)<yf(W - V) $’(ybk) + yj(w - V) ~’(ybk)
w>v W<v

= y 0’(ybk) E(W - V) ~ E(W - V).

Thus, by (1.4 - iii),

(2,2) E(W - V) LO+~<Oand~=O.

No acreage will be devoted to the more variable method unless its average

yield is higher, and one clearly could have ~ < 0, ~ = O even though EW

were somewhat larger than EV. More precise statements would depend on

making further assumptions about ~, W, V.

The main interest here is in the response of ~ and ~ to changes in

Y. It will be convenient to discuss the relation (1.5) & = a(y) and let

the reader note possible responses of ~ using (1.4 - iii).

Since iIEC2 (is twice continuously differentiable), the implicit

function theorem may be applied to investigate the sign of Dya, namely

(2.3) Dya = -(Daa~(L3; y))-l D@yq(~; y).

Differentiation under the expectation yields

(2.4) Daa~(~; y) = y2 E(W - V)2 ~“(yQ(~)) < 0

so, using (2.3),

(2.5) Dya ~ DayV(~; y).

Again differentiating under the expectation,

(2.6) Dayn(~; y) = E(W - V) $’(yQ(~)) + E(W

The first term on the right equals y‘1 Da(~; y)

of a. Let

- V) yQ(5) v“(yQ(~)).

and vanishes by definition
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(2.7)
l)”(x)

r(x) = - —————
+’ (x)

R(x) = -
xl)”(x)

4’ (x)

be the Pratt-Arrow indices of

(2.8) Dayq(5; y) = -E(W -

absolute and relative risk aversion. Then

V) ~’(yQ(~)) R(yQ(~))

= j-(v_ W) 0’(yQ(2)) R(yQ(~)) + J(V - W) v’(yQ(~)) R(YQ(A))
W>v W<v

If $J< 0 or ~> b, then small changes in y will not affect ~ so assume

o~~<b, Then under (S), Q(2) > Q(ybk) in the first integral and

Q(a) < Q(ybk) in the second integral. Thus, if R is an increasing

function,

(2.9) Dayn(~; Y) < J(V - W) ~’(yQ(~)) R(ybk) + J(V - W) 4’(yQ(~)) R(ybk)
W>v W<v

= R(ybk) f(V - W) ~’(yQ(~)) = R(ybk) [-y-l Da~(~; y)] = O

If R is a decreasing function, the inequality in (2.9) is reversed. Clearly

R constant implies Dayrl(~; Y) = O. Putting these together

(2.10) Dya(y) ~ D ~(~; y) ~ - DXR(X).
ay

Thus the acreage response to price turns on how, for the relevant decision

maker, relative risk aversion responds to an increase in gain. If relative

risk aversion increases with gaj.n,as initially suggested by Arrow [1],

then acreage using the more variable technology declines as price increases.

If relative risk aversion is a decreasing function of gain than the

indicated acreage moves in the same direction as price.
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However, existing evidence on relative risk aversion is

clear (see Stiglitz [7] and [81). There are also many other

not entirely

contexts,

e.g. Diamond and Stiglitz [3], in which optimal choice depends on the

behavior of relative risk aversion. The present result adds to our need

to obtain firmer empirical evidence on this point.

One fragment of recent evidence is furnished by a study of farmer’s

utility functions by Hildreth and Knowles [5]. Utility functions were

fitted to responses of 13 Minnesota farmers to a series of questions on

hypothetical decisions under uncertainty. Of several forms of utility

functions tried, substantially the best fits were obtained using

-Alx -a2x
(2.11) v(x) = - e - Be A

1’ ‘2’
~>o,

‘1>A2”

For such utility of gain functions, differentiation and rearrangement

of terms and factors yields

(kl+A2)x
($’)2e

A;
(2.12) R’(x) = (Al + ~2) + + ‘l;’x - .2X

ala26 A2BJX

where u =
‘1

.-A2>0.

Since coeff R’(x) > 0

~2fielJx
A2+2

(2.13) R’(x) = Y(X) = (xl + 12) + - lJ2x .

A2f3eux al

The first three terms of y(x) are positive. Clearly y(x) > 0 for

Al + A2
x<

2
and y(x) > 0 for x sufficiently large. For some parameter

u
sets (11, A2, 6), Y(x) > 0 for all x therefore R’(x) > 0 for all x.
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However, in the study cited, 11 of 13 of the estimated utility functions

showed an intermediate interval of x for which relative risk aversion was

decreasing (R’ < O). Also, if we look at “typical” parameter values obtained

in this study by taking approximate medians of the 13 estimated values,

these approximate medians are xl = .!, ~ = .003, E = 50. For a utility
2

function with these parameters, R(x) is decreasing for 15.2 < x < 43.5 and

increasing for x < 15.2, x > 43.5 (X was measured in thousands of dollars).

This suggests that it may

about R’(x) and that this

studied in each empirical

be difficult to establish broad generalizations

important property may have to be carefully

application.

3. Differentiability and Continuity

Application of the implicit function theorem in Section 2 required

tl(a;y) to have continuous first and second

differentiation under the expectation. Two

derivatives are involved. Arguments in the

similar that it does not seem worthwhile to

we shall illustrate proofs by showing that,

(i) Da n(a; Y) = yEZ lj’(yaZ+ ybV)

(ii) Day n(a; Y) = EX 4’(yaZ + ybV)

+ yaEZ(aZ + bV) ~“(yaZ + ybV)

(iii) Dayn(a; y) is continuous.

~. Recall n(a; y) = E@(yaZ + ybv). If Da

derivatives obtainable by

first and three second

several cases are sufficiently

present all of them. Instead

under Assumptions (1.3),

n exists. then

(3.1) Darl= lim#n(a + h; Y) - n(a,y)]
h-@

= lim~[EV(yaZ + ybV + yhZ) - E 4(yaZ + ybV)]
h+o
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By the mean value theorem

(3.2) 4(yaZ + ybV + yhz) = $(yaZ +ybV) +YZ $’(yaZ +ybV+hGyZ)

where O < G < 1.--

Substituting into (3.1) yields

(3.3) Dan = y lim EZ ~’(ya Z -tybV i-hGyZ).
h+o

Without loss of generality assume Ihl < 1.

Let Z+ = max {Z, O}, Z- = max {-Z, O}. Then, since~’ is a decreasing

function and V > 0,

(3.4) lZ~’(yaZi- ybV+hGyZ)l = lZ+~’(yaZ +i-ybV+hGyZ+)

_Z-~l(-YaZ- + ybV - hGyZ-l < \Z+~’((y-l)a Z+l

The right side is integrable by (1.3c) so, by the dominated convergence

theorem, the order of lim and E may be interchanged in (3.3) producing

(3.5) Dan = yE[lim Z~’(yaZ + ybV + hGyZ)] = yEZ~’(yaZ + ybV).
h+o

(ii). If DayrIexists then

(3.6) Day~ = lim~ [(y + h) EZ ~’(y +h)aZ + (y +b)bV)
h+()

- yEZ$’(yaZ -t-ybV)]

By the mean value theorem

(3.7) ~’(yaZ+ ybV+h(aZi-bV)) = 4’(yaZ+ybV)

+ h(aZ -tbV) ~“(yaZ -tybV + hG(aZ + bV))

where ()<G<~-_
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Substituting from (3.7) to (3.6),

Day~ = limj$hEZ$’(yaZ
h+Q

+ hyEZ(aZ + bV) ~“(yaZ

+ h2EZ(aZ + bV) ~“(yaZ

= EZ$’(yaZ + ybV) + ya

+ ybV)

+ ybV 1-hG(aZ

+ y~V -thG(aZ

lim EZ2~’’(yaZ

-I-bV))

+ bV))]

+ ybV +hG(aZ + bV))
h+O

+ yb lim EZV ~“(yaZ + ybV + hG(aZ + bV))
h-+()

+ a lim hEZ2 ~“(yaZ + ybV + hG(aZ + bV))
h+o

+ b lim hEZV ~“(yaZ + ybV f-hG(aZ + bV)).
h+()

Without loss of generality let lhl < 6 < y. By (1.3a) ~“ is negative

and increasing so

(3.9) \Z2$’’(yaZi-ybV+hG(aZ+bV))l < l(Z+)2~’’(y-6) aZ+ I

+ ~(Z-)2$’’(-(yi-6)aZ-)1.

The right side of (3.9) is integrable by (1.3c) so, again using the

dominated convergence theorem, lim may be taken before E in the second

*ls~/
and fourth terms of the final expression for Dayrlin (3.8).

(3.10) lZV~’’(yaZ+ybV+hG(aZ+bV)l < \Z+Vv’’((y- d)aZ+)l

—

2_/ Note that EZ2$” integrable implies EZVY” integrable.
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so lim and E may be reordered in the third and final terms, Simplifying

then gives

(3.11) Dayn = 13Z~’(yaZ+ ybV) + yaEZ2v’’(yaZ + ybV)

+ ybEZV~’’(yaZ + ybV)

= EZv’(yaZ -t-ybV) + yEZ (aZ + bV)~’’(yaZ + ybV).

(iii) Let (yn, an) + (y, a). Without loss of generality assume

[Yn-Y\ ‘~<mi-n{y, a, l}and Ian-al <~.

(3.12) Dayn(an; yn) = EZt’(ynanZ + ynbV)

+ ynanEZ2$’’(ynanZ + ynbV) + ynbEZV~’’(ynanZ + ynbV).

Because of the continuity of products it is sufficient to show continuity

of the three expectations. Note

(3.13) lZ$’(ynanZ-tynbV)\ < lZ+~’(yn -d) (a -6) Z+)l
n

lZ2t’’(ya Z+ynbV)l < l(Z+)21J’’(yn-6) (an-d) Z+l
nn

+ l(z-)2 $“(-(yn + 6) (an + 6)Z)I

]W’’(ynanz+ynbv)l < lZ+WJ’’((Yn- 6) (an- 6) Z+l

-+ IZ-VIJJ”(-(yni- 6) (an+ 6)Z-)1.

Again, the dominating random variables are integrable by (1.3c) so lim

as (yn, an) + (y, a) of each expectation is the expectation of its limit

and the sum of these with appropriate coefficients is D
ay

q(a; y).
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