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 A Stochastic Model of Applied Research

 Robert E. Evenson
 Agricultural Development Council, College, Laguna, The Phillippines

 Yoav Kislev
 The Hebrew University, Rehovot

 A mathematical model of applied research is formulated. It views applied
 research as a search in a given distribution; basic research shifts the

 distribution searched. The productivity of applied research effort is a
 function of the gap between technology in practice and basic knowl-
 edge. With constant basic and applied research a (stochastic) steady
 state emerges in which technological change is determined by the rate
 of progress of basic knowledge, and the technological gap by the level of
 applied research.

 Much of research work is experimentation, and often a technological

 development project consists of the testing of a collection of technologies

 (methods, formulas, timing, varieties of crops) to find the best one. At

 more basic levels of research, the scope of technologies available for testing

 is increased. Better theoretical understanding results in superior tech-

 nologies.

 This experimentation process is formulated mathematically in this
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 Foundation. Previous support by the International Bank of Reconstruction and Develop-
 ment and by the Economic Growth Center of Yale University is also acknowledged.
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 tion and Productivity in International Agricultural Research. We are indebted to Meir
 Kohn, Hanna Lifson, Richard R. Nelson, and the Journal readers for comments and
 important suggestions.
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 266 JOURNAL OF POLITICAL ECONOMY

 paper. The approach is illustrated mostly in terms of agricultural research

 but is of a wider applicability.

 The approach was first suggested by the study of the development

 of sugarcane varieties (Evenson and Kislev 1975, chap. 3). It is

 inspired by Stigler's work on "The Economics of Information" (Stigler

 1961) and is similar in some aspects to Nelson's treatment of R & D

 (Nelson 1961).'
 Four stages were identified in the sugarcane breeding history. First,

 sexual reproduction of the cane plant was not known, and improvements

 were very slow, based on the occasional and rare cases of "natural"

 sexual reproduction. The second stage was the discovery of the conditions

 necessary to induce flowering and sexual reproduction. Seedlings were

 drawn from random crossings, and plants with superior potential were

 selected and propagated vegetatively. The third stage introduced pur-

 poseful crossing, directed to augment desired traits. The fourth stage was

 marked by even more specific selection programs directed to produce

 varieties suited to local soil, climate, and technological conditions.

 Selection can be described in statistical terms as a process of random

 drawings from a distribution. The overall distribution in sugarcane is

 that of all possible genetic combinations and mutations of the species.

 In the first stage of the cane breeding, the distribution sampled was

 that of the vegetatively reproduced, and therefore identical, plants with

 only occasional crossing. Thus, the drawing was limited to very few

 distinct observations. The population sampled was heavily concentrated

 around the current yield level.

 In the second stage, drawing was from the distribution of all possible

 crossings. Compared with the first, this stage was marked by an enormous

 increase in the sample variance. The third and fourth stages were charac-

 terized by the development of techniques to affect the distributions

 searched, to limit it to the part of the population with the stronger desired

 characteristics, and thus to shift its mean.

 Diminishing returns set in as search continues within the same dis-

 tribution, and productivity of research increases when the search shifts

 to a new population. This was exemplified by the history of sugarcane

 varietal development in Barbados, British West Indies. Work on Stage II

 varieties was carried out from 1880 to 1939. The station released 10

 important commercial varieties from 1902 to 1912, one from 1914 to

 1928, and one important and three minor varieties from 1928 to 1939.

 I For recent important contributions to the theory of economic search see Kohn and
 Shavell (1974) and Rothschild (1974). A less known early contribution is Karlin (1962)
 (pointed out by an anonymous Journal reader). Binswanger (1974) utilized a similar
 framework (based on an earlier draft of the present paper) in constructing his model of the

 micro-theory of induced innovation.
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 Work on Stage III varieties started in 1929. Under this project, 14 com-

 mercially important varieties were released between 1929 and 1939.

 The diminishing returns to search in the same population are also

 demonstrated by the increasingly larger numbers of cane seedlings tested

 per successful "find" of a commercial variety. During the period 1929-39,

 the ratio of successful varieties to seedlings tested was 1: 1,800 for the first

 five and 1:2,700 for the next nine Stage III varieties. During the same

 period and in the same station, this ratio was 1: 13,000 in the older Stage

 II variety improvement program.

 Technological research in other fields can be described in similar

 terms (e.g., the development and selection of chemical compounds). In

 our model, applied research is seen as a search within a distribution of a

 random variable. Basic research or learning shifts the mean of the dis-

 tribution or discovers new distributions to search. An intermediate posi-

 tion is occupied by work aimed at increasing the variance of the samples.

 The model formulated is an economic one; it is assumed that the objective

 function of the system is to maximize the expected present value of future

 income, inclusive of research cost. The system modeled can be either an

 economy with a research sector, or limited section of the economy with

 a research team working to improve technology within the section.

 The main innovation of the study is in the treatment of applied research

 and testing, emphasis in the following discussion being given to this aspect

 of research work. The framework of the analysis is initially to set up a

 pure-search model and later to introduce the possibility of more basic

 research into the model.

 Applied Research (Testing)

 The scientist (the scientific team) is assumed, in this section, to be pre-

 sented with a given distribution of outcomes whose parameters he cannot

 directly affect; his work is strictly testing; no basic research is done. To

 be concrete, imagine a research project aimed at increasing the yield of

 a crop. To simplify, assume that net income is in direct proportion to

 yield. Work on the project is composed of a succession of experiments. In

 control theoretic language, the state of the system is the yield at any point

 in time, and the results of the experiments are the transition equations-

 changing the yield level. The control variable is the extent of experi-

 mentation at any stage or time period. Again for simplicity, assume that

 the only control variable is the number of trials in an experiment--the

 number of drawings from a random distribution.

 Since the transition equation is a random process, the state variable is

 random, but other sources of randomness and uncertainty, such as

 weather effects, are disregarded.
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 At any period t an experiment composed of n, trials is conducted. The
 following variables are defined as follows:

 Yt: yield, technology level, net income in time t
 (t = 0, 1, 2, ... ), the state variable;

 n: number of trials, n = 0, 1, 2,..., the control

 variable;
 c(n): cost of experimentation, with c(0) = 0, and

 assume that Tc(n) is increasing with n at an

 increasing rate;

 xi: yield in trial i, (i = 1, 2, .. ., n);
 a (x): probability density function of x;

 F (x): cumulative distribution of x;

 z: the largest value in a sample of the random

 variate x;

 o= : the discount factor with r the rate of interest;
 + r

 V: the objective function;

 E: expectation operator;

 Ay = yt - Yt1: yield increment;
 E{x}:mean ofx;

 Var (x): variance of x;

 D: first difference operator, e.g., Dc =c(n) -

 c(n - 1).

 The search process is a sequence of experiments, each composed of nt
 trials. A single trial can be a test of a technique one variety of a crop, a

 certain dose of fertilizers, one planting date. Because of the variability
 in experimental conditions, a trial is usually carried out in a number of

 replicas. This variability is, however, disregarded here, and it is assumed

 that a trial has a single outcome-an observation from the distribution of

 yields, in our example.

 Each trial results in an observation--one drawing from a random

 population. The outcome of the experiment is the best observation in the

 sample. The statistical process of choosing the best outcome from a set of
 random drawings is treated under the heading of the theory of extreme

 values (Gumbel 1958; Epstein 1960) in the general subject of order
 statistics.

 Utilizing the symbols introduced earlier, xi is the yield in trial i and
 z = xj, x; 2x i (i = 1, 2, ..., n).

 The cumulative distribution of z is

 Hn(z) = Pr (all xi < z) = Fn(z), (1)

 and the density function (if existing) is

 hn( ) = nF-(z)f (z). (2)
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 A STOCHASTIC MODEL OF APPLIED RESEARCH 269

 The analysis will be illustrated in terms of the exponential distribution:

 f(x) - -Ae(x-0) 0 < x; (3)

 F(x) = 1 e-"(x-o); (4)

 E(x) =0 + (5)

 Var (x) = (6)

 The cumulative distribution of the largest values is, employing (1),

 HII(z) = [1 - e (ZO)] n, (1')

 and the probability density function is

 h. (z) = An[l - e -A(z-0)]n- le-A(z-0) (2')

 See figure lwhereX = I;0 = O;n =1, 2,...,5.
 The expected value and the variance of z are (Gumbel 1958)

 E(z 1 n~ 1 (7) En(z) = 0 + - E .; (7

 Var(z 1I' 1 (8)
 Van (Z) - E i 2(8

 In each time period, an experiment consisting of n trials (n drawings
 from a random distribution) is conducted. The result of each trial is an
 observation, x, the yield level associated with the tested technique. If the
 outcome of the experiment is higher than, the yield under the current
 technique, the new technique is put to use andy increases. If not, y does
 not change. The search is then repeated, within the same distribution,
 perhaps with a different n.

 Formally,

 Ay = z-y ify < z (9)

 Ay = 0 otherwise.

 The expected value of the technology increment is2

 E (Ay) = (z -y)hn(z) dz = { [1 - Fn(z)] dz. (o0)
 Y Y

 2 Strictly speaking, the last integral in (10) exists for F such that Fn > 1 _ z-2 for
 large values of z, which holds for the exponential distribution. For a more general treat-
 ment of this case, see De Groot (1970, p. 246). We are indebted to a Journal reader for this
 reference.
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 FIG. 1.-The function h.(z) = n( -e-x)n-le-x. Source: Gumbel 1958

 As expected, the contribution of an additional trial is positive and

 diminishing:

 En(Ay) - En (Ay) = Fn-l(z)[ - F(z)] dz. (11)

 Since 0 < F(z) < 1 fory < z < oo, the difference En(Ay) - En (Ay)
 is positive and is a decreasing function of n.

 For the exponential distribution the expected value of Ay is

 En(Ay) = 1 - [1 - (12)
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 and its variance

 Var. (Ay) = 2EE(A) 2E(Ay). (13)

 Time Evolution and Optimization

 The search process proceeds over time, improving technology whenever

 possible. The present value of the system of production and technological

 research is

 V(y) = E [Yt - c(nt)]at}, (14)

 wherey is the present technology level (at t = 0). Let V*(y) denote the

 value of a system when an optimal research policy is followed; it can be
 written in the form of a recursion functional as

 V*(y) = max [y - c (n) + a V*(z) dFn(z) + cLFn(y)V*(y)1.

 (15)

 The last two terms on the right-hand side of (15) are the benefits B (y, n)

 due to the present experiment

 00

 B(y, n) = c V*(z) dFn(z) + acFnl(Y)V*(y),

 and they are, respectively, the expected value of a system starting next
 period from a better than current technology if such a technology is
 found -and the value of the current system weighted by the probability
 that the outcome of the experiment will not exceed the current yield.

 Incremental benefits from increasing the number of trials in an experi-

 ment are positive and diminishing:

 DnB B(y, n) - B(y, n - 1)

 = V*(z)[nfFn-1 - (n - I)fFn-2] dz (16)
 4~Y

 + aCV*(y)(Fn - F-n-l)

 Integrating by parts, we get

 D B = a V -(Fn-1 - Fn) dz ? 0, (17)
 az
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 since (aV*/az) > 0, as a discovery of a better technology can only
 improve the value of the system. This proves that incremental benefits are

 positive; they are diminishing;

 DnB - Dn r (2Fn-1 - Fn - Fn-2) dz < 0, (18)

 since 2Fn' < Fn + Fn2

 The cost function c(n) is, by assumption, increasing with n at an

 increasing rate:

 Dnc _ c(n) -c(n- 1) > 0; (19)

 Dnc - Dn 1 c > 0.

 Since incremental returns are decreasing, optimal n will be such that

 1Dn-1c - Dn-1BI ? IDnC - DnBI < IDn+lc - Dn+lBl. (20)

 This is illustrated in figure 2.3

 Economic Properties of Optimal Solutions

 1. The optimal number of experiments is a decreasing function of the

 rate of interest, as DnB in (16) decreases with r.
 Since the extent of experimentation, technological research, is a de-

 creasing function of the rate of interest, technological progress will also be

 a decreasing function of the rate of interest. This is one aspect in which

 the present model resembles Solow's embodiment model (Solow 1960).

 In our model, technical progress is the outcome of investment in research;

 in Solow's model it is embodied in new capital assets. In both cases, the

 rate of progress is a function of the rate of interest.

 2. It is useful to view technological research as filling a gap between

 basic knowledge and the level of technology in practice (Nelson and

 Phelps 1966). In the exponential distribution (3), the level of basic

 research can be represented by the parameter 0. The smaller the difference

 y - 0, the larger the technological gap and, in our model, the easier it is
 to improve the technology. The analytical difficulty here is that a change

 in 0 modifies the distribution searched and affects V* (y) by changing all

 3The present optimization framework can undoubtedly be expanded to include
 adaptive search, sequential experimentation with various stopping rules, and similar

 cases. This has not been done here in order to preserve simplicity and shortness. The
 qualitative results and the major characteristics of research systems focused upon in the
 present model would have remained unchanged. Note in this respect Rothschild's

 (1974, p. 689) conclusion that "not invariably, but in many instances, the qualitative
 properties of the optimal-search strategies . . . are the same [in the adaptive case] as in

 the simpler case when the distribution is assumed known."
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 Dnc

 1 ~~~~~~~DnB
 Dnc I

 no n

 FIG. 2.-Optimal n (n*)

 future (expected) steps. We therefore show explicitly the effect of a change

 in 0 on the expected value of a system in which only one experiment is

 conducted. The benefits of such a system are

 B ' (y, n) = znf (z) F (z) dz + -Fn(y) y, (21)
 r y r

 and in the exponential distribution [with the density function Xe-A(zO0)]

 aB aB

 therefore

 aB l -to ( 2Fn caFn

 00 r Y OZ a2 dz -- y.
 Integrating by parts

 OB

 ao' 1 [1 -Fn(y)] > 0. (22)

 Since (22) is true for any value ofy, current and future, an increase in 0
 will increase the value of B (y, n) for any unrestricted system.

 3. Economies of scale can be introduced by multiplying V in (14) and

 (15) by a scale factor. The larger this factor, the higher optimal n and the

 faster technological progress.

 This formulation will represent cases in which technology is identical

 throughout the volume of operation of a firm or an economy, for example,
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 if a new variety will raise yield equally in all fields or if a new chemical

 compound will increase productivity equally in all its applications. In

 other cases, however, scale represents, at least partially, variability in the

 conditions of production: the larger the area sown to a crop, the more
 variable growing conditions are; and this variability factor dampens the

 direct, proportional scale effect.

 4. The benefits are a decreasing function of y, since y is the lower
 bound of the integral in B (y, n). So also optimal number of trials, n, is a

 decreasing function of the level of technology, y. Eventually optimal
 n = 0 and technological research will stop. This will be the case when

 DnB < c(n) (23)

 for any n. Particularly,

 D1B < c(l), (24)

 or, written explicitly,

 00

 0I V*(Z)f (z) dz + ocF(y)V*(y) < c(l). (25)

 Thus after a certain level, technology will stagnate forever. This stagnation
 will not occur if basic science progresses continuously. This possibility is
 analyzed in the second part of the paper.

 5. The inequality in (25) is not only the condition for stopping a re-

 search project, it is also the condition for not starting one. A project will
 not be undertaken if the expected benefits of even a single trial in a single
 experiment will not exceed the corresponding cost:

 E1 (Ay) = [1 - 1 -e- (Y- )]
 r r i

 = I e-A(Y-0) < c(l). (26)
 r i

 If the system starts from a position represented by (26), then a change
 in one of the following three parameters can make technological research
 justifiable: (a) A reduction in the rate of interest; (b) An increase in the
 basic knowledge parameter 0, since

 EI (Ay) -A(Y-0) > 0;

 (c) A decrease in i, since

 aE1(Ay) = _ 1 + y - 0 < ?
 dA i i}
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 The last is an increase in variance of the population searched. This is an

 example of variance increasing research; for instance, the International

 Rice Research Institute in the Philippines accumulated a collection of

 15,000 rice varieties increasing substantially the variance of the rice

 varieties population searched for genetic material.

 Basic Research

 In terms of the present model, basic research can be classified into three

 categories: basic research can shift the mean of the distribution searched,

 it can change its variance, or it can create new technologies discover

 new distributions to search. The following discussion will analyze the

 first case; the last is treated in the concluding section of the paper.4
 With mean shifting basic research, 0 is no longer constant. Its per period

 growth, due to basic research, is AO, and it is assumed throughout the dis-

 cussion that AO is constant. It is shown below that optimal n converges, if

 AO is constant, to a constant level. But a constant level of applied research

 will not be limited to optimal system. Quite often a research organization

 is operated at a certain constant level determined by budgets and political

 circumstances. In such a case an interesting property emerges.

 Property (steady state). If both basic research and technological research

 proceed at constant rates, a stochastic steady state emerges at which

 technology in practice improves at a rate equal to the rate of advancement

 of basic research. Formally, if AO = constant, n = constant, then eventu-

 ally E.(Ay) = AO.
 Proof-For the analysis of the search process, the state variable is not

 y but, rather, 4 = y - 0, and we have to show that, if n = constant,

 AO = constant, then 4 = constant.

 Rewrite E,,(Ay) as

 E n eA E 1 - (1 -e 4)L En(Ay) Z

 now

 a E, (Ay) n ~)l.(7 __ = - Z ) E e-A4(1- e-A 4) i e (. (27)

 As 4 grows, En(Ay) decreases, and vice versa. There exists a steady-state
 value of 4, 4*, a function of n and AO, which will be maintained (stochas-

 tically); it is defined by

 En(A=*) iAO= (28)

 Q.E.D

 4The case of variance increasing research is discussed, in a similar framework, in

 Evenson and Kislev (1975, chap. 8).
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 n 5 ~ I n5~~ ~ r* S3 //1=
 2 0*/2

 I1 / O,

 1~~~~~~~~~~~~~~~~~- FX

 O . .4 .6 .8 1.0

 be

 FIG. 3.-Steady-state 4 for A = 1; n = 1, 2, . ,5; 0 < AO < I

 Steady-state 4 can be written as

 (* = 4* (n, AO). (29)

 Figure 3 illustrates equation (29) for ( * = 1, 2, 3; I ; n = I1, 2, . . ..
 5; 0 < AO < 1. The broken lines in the figure only connect steady-state
 (n, AO) pairs; other points on the lines are meaningless. We shall now
 investigate algebraically the properties of (29).

 For a given n, steady-state 4 is a decreasing function of AO. To see this,
 differentiate (28) with respect to AO

 , /(A _ I = 0;

 I /~~~( e e(0

 I 4 = -[I (I -e- if*)i-le- if 4* (31)

 I A -=

 The interpretation of this result is that in the steady state for a given level
 technological research (a given n), the higher the rate of basic knowledge,

This content downloaded from 132.64.29.173 on Thu, 14 Sep 2017 04:15:58 UTC
All use subject to http://about.jstor.org/terms



 A STOCHASTIC MODEL OF APPLIED RESEARCH 277

 the larger the gap between basic knowledge and technology in practice
 (the smaller 4*). This property stems from the fact that the bigger the gap,
 the more productive will technological research be. In the steady state
 this gap, represented by the variable 4*, is the only endogenous variable
 in the system; the bigger AO, the larger the gap which will maintain

 En (Ay) = AO.
 Steady-state 4 can even become negative. For example, if A = 1 and

 n = 1, ,* < 0 for AO < 1.0. This can readily be seen by rewriting (28)
 for AO = 1:

 E1(A,*) = e - 1 = 0. (28')

 Clearly, 0 = 0 in (28') and by (31) * < 0 for AO > 1.

 A negative 4* means that basic knowledge has advanced, relative to
 technology in practice, to such a level that any search will find (with
 probability one) superior technologies. It should not be surprising that
 such cases are not observed often in the real world. Technological research
 is an economic activity, perhaps not always conducted optimally, but

 surely directed into areas with obvious and safe gains and, thereby,
 eliminating these potential gains.

 To find the behavior of 4* as a function of n, approximate the sum in
 (28) by an integral

 E(AJ*)= 1di - AO = 0. (28")

 Differentiating (28") with respect to n and rearranging terms, we get

 ___ _ 1 - (1 - e *)n 0 (32)

 An noe - ( - e -*)i1 di

 The steady-state 4 grows with n-the more technological research is con-
 ducted, the smaller the steady-state gap between technology and basic
 knowledge.

 To find the optimal level of experimentation, note that the present
 value of the system in a steady state is

 00

 co = E [E(y,) - c(n)]t
 t=0

 o + E En En(AY)] _ c(n)

 00 ?,* -c(n) + O Eo tot. (33)
 r t=O
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 The only terms in the last line of (33) which are functions of n are 4* and

 c(n). Therefore, the problem of optimal n can be formulated, disregarding

 the other terms, as

 Max [4*(n, AO) - c(n)]. (34)
 n

 The maximization in (34) is not limited to t = 0, as one may erroneous-
 ly conclude from an examination of (33); any t can be viewed as t = 0.

 The problem is to find what constant level of technological research to

 maintain so as to reach an optimal (stochastically) constant level of 4*.

 In other words, in the steady-state situation, technological research does

 not determine the rate of progress of technology this rate is equal to the

 exogenously determined rate of progress of basic knowledge rather,

 technological research determines the level of technology in practice or,

 rather, the constant technological gap. ' In this respect, the present model
 is similar in character to the Nelson and Phelps (1966) model, where in a

 steady-state equilibrium schooling determines the technological gap,

 while the rate of technical progress is determined by the rate of advance-

 ment of basic science.

 From (32) it can be shown that

 2 < 0, (35)

 and since Dnc _ c(n) - c(n - 1) ? 0, optimal n will be the value for
 which

 Dn-l* - Dn-Icl ? JDn4* - DAcI < IDn+1* - Dn+1cl,
 (36)

 where Dn_* = 4*(n, AO) - ;*(n- 1, AO).
 What effect will the rate of basic research have on optimal n in the

 steady state? On the one hand, the faster the advancement of basic
 knowledge, the higher the productivity of applied research; on the other

 hand, in the steady state, the higher the level of basic research, the smaller

 the technological gap. In fact, as can be seen by differentiating (32) with

 respect to AO, the sign of 02 *1In DAO is indeterminate, and the magni-
 tude of this second derivate is very small. In the numerical example

 used in the illustration of figure 3, optimal n, over the range 0 < AO < 1,

 is almost always independent of AO. This can be realized by examining

 figure 4, where Dn4* is plotted against n for AO = .1, .5, .9. Note, for
 example, that if c(n) = .4n, (Dnc = .4), optimal n will be n = 3 for any
 AO at least over the range .1 < AO < .9.

 This tendency of the applied research to be a decreasing (at least, not

 5 An exception is the case of n = O-no technological research-in which technology
 in practice is stagnant and the technological gap constantly increases as basic research
 adds to the stock of basic knowledge.
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 Dn~~~~~~~~~~~~~~
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 .6Ae.
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 /Ae:.9
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 FIG. 4.-D,4* - 4*(n AO) - ,*(n - 1, AO) for 1 = 1,n = 1,2. 5

 an increasing) function of the rate of basic scientific advancement is a

 reflection of the steady-state conditions, where the faster basic knowledge

 accumulates, the larger the technological gap (the smaller 4*) and the

 smaller may be the optimal n. A different case is discussed in the following

 section.

 Exogenously given AO and the cost function c(n) determine the pair

 optimal n and 4* in the steady state. If the system starts with 4 < 4*,

 then marginal returns to experimentation will be larger than in the

 steady state and optimal n will tend to be larger than steady-state optimal

 n. With time, as - 4*, optimal n will approach its steady-state value. A
 similar convergence to equilibrium, in the opposite direction, will take
 place if initially 4 > 4*. The steady state is the long-run equilibrium

 stable position of an optimal system.

 Concluding Remarks on the Discovery of New Technologies

 Science creates a great variety of applicable technologies, from electricity

 to antibiotics, from atomic energy to genetic engineering. In terms of the

 present model, the discovery of new technologies is represented by the

This content downloaded from 132.64.29.173 on Thu, 14 Sep 2017 04:15:58 UTC
All use subject to http://about.jstor.org/terms



 280 JOURNAL OF POLITICAL ECONOMY

 opening up of new exponential distributions for search. For simplicity,

 assume that all technologies are characterized by identical distributional

 attributes: identical A and 0 parameters; moreover, assume that 0 = 0

 in all distributions. These are strong assumptions, but they permit focusing

 the discussion on some essential issues. The relaxation of these assumptions

 will complicate the analysis greatly and will have to be postponed to

 another occasion.

 Let k be the technology index; k is a vintage parameter: The more

 recent the technology, the higher its k value. The expected income from

 an experiment in technology k is

 n(k) 1 - [1 - -(kl

 Ei(k)[Ay(k)] =E (37)

 For newly discovered technologies, (37) reduces to

 n(k) 1

 En(k)[Ay(k)] = E , (37')

 sincey = 0 for new technologies.

 At any point in time there exists a spectrum of technologies in the

 economy. Technological research is now an industry with a rising supply
 function

 c(n), n = (k),
 k

 of factors of research. Experiments will be allocated to technologies

 according to their comparative standing in the current technological

 spectrum.

 The discussion that led to equation (20) can now be repeated, and

 again that equation is the condition for optimal allocation of experiments
 with one departure from the previous analysis. If there is a large number

 of distribution to search, then Dnc is now the incremental cost function
 for the industry; it is taken as datum when considering a single distribu-
 tion. In other words, with a very large number of technologies, the allo-
 cation of research efforts becomes analogous to the organization of a

 competitive industry with separate firms doing research in the separate

 distributions.

 In addition to ordering distributions by their vintage index k, they can

 now be ordered by theiry(k) value. There will be a strong (negative)

 correlation between y and the vintage index, but these will not be the
 same orderings. A break-even value ofy will bey* maintaining

 -- e - = c(1). (38)
 r A
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 The term on the left in (38) is identical to the present value of the

 incremental income due to an experiment of one trial. Distributions with

 y > y* will not be subject to search any more. These distributions are

 technologically exhausted. Exhaustion is an economic phenomenon; a reduc-

 tion in the cost function, for example, will cause the resumption of search

 in previously exhausted technologies.

 Technological exhaustion should be carefully distinguished from

 obsolescence. The last is a market phenomenon, reflecting changing com-

 parative advantages of technologies and not treated in the present study.

 The rate of progress of basic science is measured in the model by the

 number of new technologies discovered per time period. The larger this

 number, the higher the demand for research factors and the higher the

 rate of experimentation. At the same time, the higher the rate of advance-

 ment of basic science, the faster the rate of exhaustion of old technologies.

 In fact, in a steady state, the number of exhausted technologies will be

 equal to the number of newly discovered technologies, and the larger this

 number, the less search will be conducted in a typical technology before
 its exhaustion.
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