
Linear and Dynanaic Programming in
Markov Chains*
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Some essential elements of the N{arkov chain theory are revicwed, along
with programming of economic rnodels which incorporate }larkovian
matrices and rvhose objective function is the maximization of the present
value of an inffnite stream of income. The linear progr*mming solution to
these models is presented and compared to the dynarnic programming solu-
tion. Several properties of the solution are analyzed and it is sleown that
the elements of the simplex tableau contain information relevant to the
understanding of the prograrnmed system. trt is also shorvn that the rnociel
can be extended to cover, among other elements, multiprocess enterprises
and the realistic cases of programming in the {ace of probable deterioration
of the produetive capacity of the system or its total destruction,

D)ECENTLY there has been growing interest in programming of eco-

{\, noruic processes which can be formulated as Markov chain moclels.
One of the pioneering works in this field is Ho$,ard's Dynanzic Pragramming
and, lfarkoa Procosses [6], which paved the way for a series of interesting
applications. Programming techniques a.pplied to these problems had origi-
nall;, bEsn the d;rnamic, and more recently, the linear programming ap-
proach. Practically, a computer prograrn to execute the dynamic program-
ming calculation is simpler to prepare than one for the linear programuring
procedure. Cn the other hand, linear programming routines are readil;.
available and allow greal flexibility, as in parametric programming and
sensitivity analysis. These features can be introduced inio dynamic pro-
gramming routines, although at an increasing cost. In this article \i'e $,.ill
show the lines of similarity between the trvo techniques and investigate some
possible extensions and applications.

A finite Markov chain is a statistical model useftii in descriting various
economic phenorirena.l In this model, rre envisage a process which is in a
certain state i,'rv-here 'i:1, 2, . . . , n (ra finite), in a, partictilar .pariod or
stage, and is transformed in the next period to a state i U:i, is pernrissible).
The chain is described by an rz-order transition, or ]f arkaa rnatrix, whose ele-
ments ?)ij ate the probabilities that the process rvill go from state r to state
j. These protrabilities are independent of the past historl- of the process.

* \Ye are indebted to Hanna Lifson, nho read previous versions of this article and helped to
clarify many of its points, The article also benefited from discussions with Amnon Amir, Yakir
Plessner, and the late Yoseph Levi, and from comments by the Journal's readers. 'Ihe work
for the article was financed, in part, by a grant from the LTnil:ed States Department of Agri-
culture under P. L. 480.

1 For a rigorous and complete treatment oI }farkov chains see triemen;r and Snell [8].
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For example, let us consider a field whose state is defined by the level of
humidity of the soil (measured in discrete units). The field may be trans-
formed from one state to another with certain probabilities, depending on
crop and weather conditions [f ]. .taaitional illustrations might be a system
of pieces of equipment whose failures are a stochastic process [Z], or a
warehouse where the state is given by the level of inventory lZ, +,11.

In economic processes, with every state is associated a reward-or cost-
for example, yield of the field, repair of maehine, profits from sales of items
out of inventory. The interesting cases are those in which the transition
probabilities can be affected by action. A poli,cy will then be the rule which
dictates an action to be taken in every state. An optimal policy will be the
policy under which total expected income from the process is maximized.
In this framework, programming is the choice of an optimal policy from a
given set of alternatives. The choice can be made efficiently by either dy-
namic or linear programming methods. We will investigate the relations
between the two methods and interpret the results of the linear program-
ming calculations. We hope to show not only that linear programming is
applicable in this context, as has already been shown 13, 4, 7, 9], but also
that its interpretation throws light on the "anatomy" of the system and
clarifies understanding of its properties.

In order to simplify the discussion, we will make several assumptions to
be relaxed later in the article. First, we assume regular Markov chains, that
is, any state is probable far enough in the future. Also we explicitly assume

that the transition matrices are not decomposable, that is, that the process

cannot be split into two or more isolated chains. We further assume that a
series of processes has a unique maximum present value. The discussion is
limited to processes of indefinite duration-that is, an infinite economic
horizon is assumed.

fneome Streams

We start the discussion by noting the mathematical equivalence of three
analogous income streams2 and naming these parallel cases for future refer-
ence. As usual, an income stream is defined by its annuiLy-a, in period f.

The discounting case

Assume that a process yielding income lasts forever and that at:aofor
all l. Let r be the appropriate rate of interest and a:7/(l*r) be the dis-
counting factor. Then the worth of the source of income-its present
value-is

(1)

since 0(a(1.

z,:Lolas:ao/(1- ,,),
l:0

2 In the present context, the analogy was first introduced by D'Epenoux [4].
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The deterioration case

Assume now that income frorn the source is not constant, but deteriorates
at the rate 0, where B:a1,+rf a, and 0<B<1 (radioactive decay). 'Ihen the
present not discounted value of the source of income is

"u 
: Lo, : i g,&o : ao/(r - ts).

,:0 ,-o

The breakdown case

In this third case, consider a constant annuity, e0, as long as the source of
income exists. There is, however, a constant probability 1-7, at every
period f, that the source will be destroyed before the coming of the next
period. I{ence, 7 is the probability of survival. Here expected worth of the
income stream (not discounted) is

?., : L"y'ao: ao/(t - i.
,:0

These three cases are mathematically equivaient. Of course, they could
be consolidated into one general case which u,ould constitute a mixture of
the three. In the course of our discussion, we shall make use of the analogy
of the separate cases, as well as of the mixed casc.

It will also be useful if we note that the previous equations can be re-
written in a slightly diflerent form. Instead of (1), for example, write the
recurrence relation

(1) ?a : aoy oi o'a,
,:0

: ao* az,.

We have named this new form the two-steps form of (1). It emphasizes
that the present value of the infinite income stream is composed of an im-
mediate annuity, plus the present value of the same income stream started
one period later. Similar forms and interpretations can be given to (2) and
(3).

Markov Chains in Economic Systems

Consider a Markov chain with an n-order transition matrix P(nXn)
: [po,).Since the ?;r. elements are probabilities,

(3)

(4) X p,, :

Let the current ,t*t'" of tU"

I (i:7,2,...n).

process-state f-be denoted by a state aec-
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tor\ E,i (1 Xrz). E; is the unit row vector with the unit;r in position i. Given
a state vector E;, the vector .UrP is the probabiiity r.ector for the states of
the proeess in the sueceeciing stage. In the stage after that, tlee probabilities
will be (EIP)P:EtP2. In general, the probal-,iiities for the lth period con-
stitute the vector ErP'. .r\lso, Iet a rewa-rds row vector C(LXn): lc;] associ-
ate a,n irnmediate rewarda s,..ith every- state i. ?he present value of the next
period's reward is, therefore, aI);PC'. Thus, if the process conbinues

indefinitely, the expected present value of all future incornes-the worth of
the proeess currently- in state i-is

(b) ,,:LE;@P)tc'

:'iu, - aP)-tg,

where a is, as previousll,, the diseor-rnting factor.
Utilizing scalar notation, r-e ruay introduce the t'w,o-steps form of (5):

(5') ?.i : ci + of, pu,r,.
j:7

Starting from a state i, the worth of the process is the immediate reward
c;, plus the expected worths of the states of the next stage, discounted one
period.

To consicler all starting states, we replace E; by the unit matrix 1 and
write

(6) Z' : I(I - aP)-rgr : (1 - aP)-tC',

where Z is the (1 X ie) vector whose elements are the 3i !-alues of (5) .

In terms of the pre.,,ious section, the case presented here is the discount-
ing case, within the framen'ork of the Markovian modei. \{e shall norv rnake
use of the anaiogy to the breakdown case; this will linl< us directl;r to the
general theory of Markov chains and provide us with convenient terminol-
ogy and greater insight. Toward tiris end, considcr a process n'ith a transi-
tion matrix 7, of the order z*1, rvhich can be partitioned:

fQH'1T: | - t'L0 1l
ltnT,H(7Xn) is a probabiiityvector,0 a zero vector, sncl 1a scalar. The
Markov chain defined b;' 7 consists of two sets of states: one, transient,
lritlr the n states in Q, and one, the (rz*t) sLaLe-ergorllc. Once the process

a The assumption in the text is that thc rervard is associated s.ith the occupation of the
state. It is not difficult to incorporate thc alternative assuurption that the reward is due to a

particular transition from state i to statej [7, p. 460].
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reaches the ergodic state, it will bc rrbsorbed, there and will never re-enter
any of the transient state,s. The elemerrts of .[1 are, therefore, the probabili-
ties that the process rvould be transformed from each of the transient states
into the ergodic state. Q is the transition matrix of the transient states.

Associated with every transient set-with every rrratrix Q-is a funda-
mental square matrix, Y: lro,l.

v:(r-8)-'
The elements o;; indicate the expected number of times that a process, cur-
rently'in state i, wiil be in state 1' before being absorbed in the ergodic state
(including the current stage in the count of u.i,r). To complete the analogy,
let every transient state e carry a reward c6, &nd the ergodic state represent
total breakdown of the s;'sfism-zero income. Total expected income (reol

d,iscounted) for a process starting in state f, is

(8) ,,:ilnQ,c'
: ;), - e)-,c,

By defining Q of (7) and (8) as Q:op, we rettirn to the discounting case

and may treat the matrix aP as if it'vrere the transient part of a }farkov
process. Here we shall name tire o;i elements of Y : (I - aP)-t, Llne eapected,

discounted number of times that a process, currently in state f, will be in
state y. These numbers are finite, while physically the process will continue
for an infinite duration.

Since P is a transition matrix, the sum of every row of aP is a (see

equation 4), and thereforeall elementsof the corresponding 11 vector are
1-a, whir:h is also the sum of all rows in the rnatrix I-aP. Flence, total
discounted number of stages in any. state, starting from stater i, is b}' (A.2) in
the Appendix

n

(9) Zru:1/(r - a) (i,: r,2,'' ' ,n).
j:1

We can interpret this result, again utilizing the analogy to the breakdown
case, as follows: 1-a is the probability of breakdown of the system in any'
stage; therefore, a is the probability of survival. Hence, the total expected
number of stages before breakdown will be

(10) 1/(t - a).

The interpretation 1ve ga\re to the elements of the fundamental matrix Z
permits the rewriting of (8) as

i*,:
t:0
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(8') za:f,vaic; (i:L,2,...,n),
i-r

which can easily be verified algebraically and interpreted economically.
Frogramming will be meaningful in those cases in which a certain process

can be chosen from several alternatives. Instead of enumerating all possible
transition matrices, we consider an eapanded, matrix R (mXn):fpoid@f,
whiclr consists of /c; different probability rows for every state i, m: 16-1'ka.
The superscript d(z) indicates an action to take in state i where d(i):1,2,
. , ko.Generally, we shall eliminate, for brevity, the index i of d(i) and

wiile p4d. The action indicated by the superscript will affect the transition
probabilities (probabilities of failure of equipment, for example, can be af-
fected by actions of maintenance). The immediate reward of the state i is
also affected by the action; for example, cost of action is deducted from the
gross value of the reward. Thus, the vector C is also expanded and its ele-
ments are now c;d. An expanded probability matrix ,R of the dimension
6X2, with the corresponding immediate rewards vector C, is given in
Table 1. Thus, in the table, if in state l action or is taken, d(1)--1, the
transition probabilities are p;;1:0.20, pr21 :0.80 and the expected immedi-
ate reward is c1l : $5.00.

Table l. An expanded transition matrix with rewards

Immediate
rewards

(Vector C')

$s .00
4.50
0.00

$2 .00
2.30
0 .00

' Actions are listed by names. For example, ar is the name of the action in state 1 for
which d(1) : r.

The Markov process will be determined when a decision vector D(lXn)
is chosen, designating a d(i) value for every i, that is, specifying a policy-
an action to take in every possible state.s By deciding on a D, one chooses a
particuiar transition matrix P, out of R, for the process at hand and a corre-
sponding vector C of immediate rewards.

Programrning for maximal expected income can be performed by the
budgeting method-by listing all possible P square matrices out of E, cal-
culating, by (5), expected worth of each, and selecting the one with the

6 We shall regard the vector D, interchangeably, as either the vector consisting of the in-
dices d(i) or of the names ol the actions o1, fo, etc.

Probabilities of transition
(Matrix R)State Actionss

to state I to state 2

State 1
a1
a2
aB

0. 20
0 .00
1 .00

0.80
1 .00
0.00

State 2
br
bz
bs

0 .60
0.40
0 .00

0.40
0. 60
1 .00
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highest zr. This might be extremely laborious. Instead, dynamic or linear
programming methods may be applied.

Dynamic Programming

In this section we will follon'Hadley [2, pp. 454-460), who also provides
the proofs for the procedure described here.

To select an optimal decision vector D by the dynamic programming
method, start from an arbitrary D, call it D(1), thus sclecting a correspond-
ing matrix P(1) and a vector C(1). Now calculate a vector Z(1) of expected
present values for all starting states.

(1 1) Z(t)' : [r - "P(t)]-'C(1)': C(1)' * aP(1)Z(t)'

The last line-the two-steps form of (11)-is the matrix form of (5').
Next, check whether D(1) is optimal. This is done by the following recur-

rence procedure: define a test policy to be the policy D(1) for altr future
stages but not necessarily for the current one. For the current stage, the
test policy associates an alternative action d(z) -not necessarily in D(1)-
with state i. Now evaluate

(t2) (i:1,2,...,n).

A new decision vector D(2) emerges, consisting, foreveryi, of the d(z)x

element that maximizes the expression in (12). If ,l)(1) is an optimal policy,
then D(2):D(l). If not, calculate

(13) z(2)' : lt - "p(z)l-1c(2)"
and repeat (12) and (13) until D(k):D(k-1):fx.e D* is the optimal
policy which maximizes present value of expected incorne from the process.

In this procedure, all possible starting states are considered. Thus, D*
is invariant under different starting states-the set of optimal actions to
take in every possible state is independent of the current state of the pro-
cess,

Linear Programming

Our linear programming problem [s] will be

(14)

a. max CII'

subject to

b, MTI, : E;'

c.II)0.
6 The optimal policy need not be unique; several D vectors miglrt lead to the same maximal

present value, ft is, hon ever, not difficult to protect the computer program against cycling.

z, : max [r, * *i o,7",11)
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In (14), C is the expanded immediate rewards vector; fI is the solution
vector to the linear programming problem; ,Ea is, as previously, the unit
state vector with unity in position f . The matrix rr (nxm) is constructed of
the expanded transition matrix R by first expanding a unit matrix to a
matrix J (mxn) , rvhich consists of k6 identical .Ei unit row vectors f or every
i, and then

(15) nI : (J - oR),.

The matrices J, R, arrd XI, for a problem with two states and two actions
in each state, are illustrated below.

f_

T1AI:I
L

f oP";

oR: lon"'
I a,z|
Loprr'

_ apzrr

oPrz1lr

oPrr'l
aPzzl I

oPrr'Jill
-apul 1-oprr'

-apnr -apuz L-oprr,
- a?zf1

1 - oP"')

Table 2 is the simplex table for the example of Table 1. The matrix M
constitutes the bulk of the first section-the input-output coeffieients-to
which a unit matrix of slack variables (artificial activities) was added. The
assumption in the table is that the process is started in state 1.

lYe shall now show that the solution to the linear programrning problem
(14), like the dynamic programming solution, rvill select a policy that will
maximize expected present value of income from the process at hand.

Following the usual linear programming convention, we add slack vari-
ables and partition the vectors II and C and the matrix rll:
(16) n : [[" II, II,], C : lC, Cn 0], lt : lM, tf " Il,
where s is the index of the part in the basis, and o is the index of the part not
in the basis. By (14) and (16),

(17)

and

(18)

M"fr,',*Mofio',:9.'

II"' : 11"-tgt' - M"-lli[uTlo'
: Mr_!Et,

since fI,:S.
It was shown by Wolfe and Danzig [O] tUat the linear programming pro-

cedure assures that, in (18), M"-1: [{Z-"f";-r1', where P" is a transition
matrix selected from.R. This means that there will be exactl;, one column in
M, for every possible starting state. We repeat, for completeness, the es-
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sence of the proof: since E;)0 and II,:9, then (f4.c) and (17) can be
simultaneously maiutained only if every row of ,01, contains at least one

nonnegative element. The only positive elements in trl are of the form
L-ap1rd, of which there is one in every column. The matrix tr[" is of the
order z; it has n columns, each with exactly one element of the form
l-o?ooo. It also has n rows, and must, as stated, have at least one non-
negative element in ever}, row. Hence, it will have exactly one element of
tlre form 1-ap.t;d in every row. Therefore, there will be exactly one element
1 - op ooo in every row and column of trI 

", 
which completes the proof .

Equation (18) can now be written as

(1e)

and, therefore,

(20)

rI"' : [(1 - aP")-tf'E;',

cTt, : cl(I - aP")-11',81',.

Cornparing (20) to (5), we see that CfI' is the worth of a Markov process

currently in state f. The maximal value of CII'-the value of the objective
function in the solution to (14)-is the maximal worth of a system of
Markov processes.

The solution to (14) determines a policy vector, D,, which can be con-
structed by observing the vectors in the basis. It stems from Property 7 of
the next section that D" is not affected by the starting state of the process.

Thus, D, of linear prograrnming, like D* of the dynamic programming solu-
tion, is an optimal policy vector. The same expected maximal present value
is reached by the linear and the dynamic programming methods and, if
there is only one unique optimal policy vector, then D,:;)x.

In the next section we shall investigate some of the properties and possi-
ble interpretations of the simplex routine and elaborate further on the lines
of similarity between the dynamic and the linear programming rnethods.

Properties of the Simplex Solution

It will be convenient if we state here the criterion function of the simplex
routine-the Z-C row vector-
(21) Z _ C : C.MS-IIM" IW' I] _ [C" C' O]

: c,ll Mu-rM" M"-rf - [c" c, o]

: lo C,M;tMo - Co C"M"-r7.

Reference to the element of (21) is made in the discussion that follows.

Property I
As was previously explained, by programming for a D, we select a transi-

tion matrix Pu and M ,: (I-aP")'. Therefore, by (7),
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L[,-t-[(l-"r,1-,1'
: [1r - 4;-t1'
_V"

where / is the fundamental matrix associated with the "transient" matrix
aP". 'Ihus, in Table 2, consistent with the terminology introduced in the
section "Markov Chains in Bconomic Systems," the expected discounted
numher of times that a process, currently in state 2, will be in state 1 is
3.971, and in state 2 is 6.029.

Property 2

By equations (22) and (9), the sums of the columns of M"-1 are 1/(1- a).
In Table 2, a:o.9,1/(1 -a) :10, and the sums are

column d; 4'706 * 5'294 : 10

column cJu: 3.971 + 6.029 : 10.

Property 3

Let u;ro be the simplex table element for row i, state k, and o a value for
d(/c) outside the basis. Thus z;7.o is defined by M"-rM": [ur.']. Fo" exarn-
ple, in Table 2, column 62, last section, upz:0.132.

B;, Property 7, Ltr"-rMo:V'trf'. Therefore, in scalar notations a.nd

denoting by p,io the transition probabilities in M, (thus pt;' is the prob-
ability of transition from 'i to j N,ith action o),

(2:3) LL4yo : - \uiopr,i'* u*;(l - ap*to)
i*k

: t.)ki - ol pr;u1,
j

(k:1,2,. .,fl).

Examining the last line-the tw,o-steps form of (23)-one recognizes that
rii,r'is the di{Terence between (a) t}ie expected discounted nurnber of times
that a J)rocess, cumently in state fu, will be in sta.te i-if the present polic;,
is adopted (ooo), and (b) the expected discounted number of times that a

process starting in state /c rnill be in state i if the test policl,, vrith action
d.(k):o for the current stage and the basic policy for all future stages, is
adopted. Action o is taken once and the basic polir:y D, is follorved for all
other stages. Ilence, zl;ro is the marginal rate of suhstitution of the present
(ba.sic) policy to the alternatiae policy with a.ction o for state /c in all stages.

The substitution is in the decision veetor D, and it is "marginal" in that
ther alternative policy is adopted for only one stage-the current sta,ge.

Property 4

The sum of the elements in every eolumn of the simplex table is unity.
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For actions in the basis this is obvious-these columns are unit columns.
For actions not, in the basis, the sums of the elements of the matrix XI"-tlIo
are also unity. Since the burn of every colurnn of the matrix ,Lf is 1- a, there-
fore, b;, A.2 in the Appendix, the sums of the columns oI M,-r are all 1/
(1 -").Hence, by A.1 of the Appendix, the column sums in XI"-rl.Ioare

(r - q)/(1- a) : l.

For example, in Table 2, column a1, the sum is

1.133-0.133:1.0.

Making use of (23), we vrrite the column sum as

(k : 1,2, , n),

The sum in the right-hand side of the flrst line of (Za) is the difference in
the total discounted number of stages under the t'lr,o policies-the basic
policy and the test policy. In general, the total diseounted number of stages
is the same under any policy (Property 2). The difference in (P4), which is
unity, stems from the fact that the count of stages for the basic policy in-
cludes the current stage (the sum in equation 7, for example, goes from zero
to infinit1,), whereas for the test policy the count starts from the next stage
and omits the current one.

Property 5

The dual values, the elements of the row vector C"lfu-r, are the values of
the alternative objective function, under the basic policl., for all possible
starting states. If we write the element i; of this vector as zr8 and denote by
c;u the element of C", the dual values are

(25) zr"u : T.cf?tne (fu: 1,2,. ,h),

which is exactly (8/). In ,O" r*0r", 81":$34.118-the value of the objective
function for a process starting in state 1; a2,:$31.912-the objective func-
tion for a process starting in state 2.

Property 6

The elements in the Z-C row for actions not in thc basis (Zl) are
c "lr "-LM o- c o.

For a state /c and action o, we shall denote these elements in the criterion
function as zho-cko and write in scalar notation

:1
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(26) zlio - c1,o - - 4- z*"(L - ap*no) - cpo

: zk" - (* * *Z,prfr,') (h:1,2,...,n).

The term in the parenthesis in the second version of (26) is the two-steps

form of tlee objective function, for a process in state A, under the test policy.

The alternative poiicy-rvith action o for stete A-will be adopted through-

out all future periods if thc value of (26) is negative, that is, if the test

policy is superior to the basic polic3,. Since the process lasts forever, if
action o for state li is superior for the current state it will also be stiperior in

any futute sbate. 'Ihis principle is, of course, the rationale behind the dy-

namic programming procedure, outlined in the section, "I)ynamic Pro-

gou*-irrg.;' It is evident now that the criteria for changing a policy, from

ileration to iteration, are the same in the linea.r and in the d;rnamic pro-

gramming techniques. Tire one difference, holvever, is that in the simplex

methocl of linear programming one element of D is replaced at a time,

s,hereas in clynamic programrning a nery vector D is constructed at every

iteration, which can differ from the previous policy by several elements.

Froperty 7

The optimal policy is not affected ty the starting state of the process. To

see this, one must show that a change of Ea to Eirvill not alter the basis of the

linear programming solution. Denote a solution vecbor associated n'ith the

starting state i b1' rl"(i). \\re know [s, p' rsa] that

(27) II,(?) : l,[,-rgr' u 
'

is a feasible solution for a starting state z, and that a change of E.; to Ei will
not alter the optimal basis, -&{", if, in addition to (27),

(28) u,(J) : M"-181') A.

The condition in (2S) is maintained, since all elements in r11,-1-the ori

elements-are nonnegative.

Extensions and Applications

A multiprocess system

Generally an enterprise wiil not be a single process hut will constitute a

system of many processes-fields in a farrn, for exanaple, or nrachines in a

factory, or units of an operating army. trf i'i'e assume that these processes

are iniependent antl let al be the number of processes, at present in state

'i, in an enterprise, then the total worth of the enterprise is

I apxfzi"
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(2s) 6r:inp;,
d:1

where z;" is defined as in (28). w can be easily carculated from the dual
values of the linear programming solution.

Alternatively, a direct approach can be implemented: define a state
vector E(lxm) whose elements are the @i values (the vector .u; is now a
particular value of B), and instead of (f ) solve as follows:

(t4')

o max CII'
subject to

MfI' : E'
r)0.

The maximal value of the objective function in (I4l) will be Lhew of (e9).

A decomposable system

up to now' we have assumed a system that is not decomposabre. This
need not be the only case. rf the matrix M is decomposabre, and if, say,
D;:Et then (r4.b) will be

(30)

The elements of rrz in (30) must be zeros by the formulation of the prob-
lem. The second chain will not be programmed at all.

To avoid this difficulty, it has been suggested [], z] that, even in cases of
single-process systems, (r4') be solved with an arbitrary nonzero z-the
vector on the right-hand side. The optimal policy is not affected by this
device. The calculated value of the objective function depends, of course, on
the selected values [or E.

An inferior state

Another assumption was that chains were regular, that their fundamental
matrices had no zero entries, that all states were probable far enough in the
future. rn practice, one might encounter states which are economically
inferior and can be avoided-small inventories, for exampre, or old ma-
chinery. rf it is possible, and the appropriate actions are specified, a policy
will be selected that will avoid the inferior states. If the process is started in
such a state, it will leave that state in one or a few periods. As an example,
consider, in Table 3, a new expanded matrix construeted from Table iby
eliminating, for simplicit/, a3 and bs and adding a third state.

il[Ir 
'*,
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3. An expanded E matrix with an inferior state

Probabilities of transition Immediate
rewardsActions

State 2

0 .00
0.00
0.20

0.00
0.20

$s.00
4.50
0. 00

$2.00
2.30
1 .00

$4.00
4.50

State 3

Programming,T one finds that the optimal policy vector, D", of this pro-

cess consists of at, bt,and cr and the corresponding transition matrix is, there-

fore,

10.20 0.80 0-1

p,:lo.oo o.4o ol.
Lr.oo o,oo oJ

An absorbing state

As experience teaches, some policies may lead to irreversible, and

sometimes destructive, results. A particular crop rotation will not protect

the soil and a heavy rain may cause erosion and destroy all future possibil-

ity of cultivating the field. A monopolist may charge high prices that will
breed rival flrms. These are breakdown cases whose Nfarkov matrices are

tike ? of the section "Markov Chains in Economic Systems." Some reflec-

tion, and the example below, will show that "destructive" policies may

sometimes be optimal. In fact, whether they will tre chosen or rejected de-

pends, all other things being the same, on the discounting rate-the higher

ihe rate of interest, the more probable it is that a "suicidal" policy, which
yields high income until destruction, will be adopted.

As an example, consider the expanded R matrix given in Table 4. Note

that the reward for the third, absorbing state is zero and that no possible

action is attached to this state, which stands for the collapse of the economic

system. The optimal policies for this system are listed in Table 5. Also given

in Table 5 are the probabilities that a process starting in state 1 will be in
an), of the states at some specified I period. Once action or is introduced, the
process must end in state 3.

7 We took a:0.9 in this case too.

to state 1 i to state 2 i to state 3

0.20 I o. eoal

a4

bt
bz
b4

States

State I
0.00
0.00
1.00

0.60
0 .40
0 .80

0 .40
0 .60
0.00

ol
C2

1 .00
0.10

0.00
o.70
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Table 4. Expaniled ,aatrix with rewards, possibre breakdown case

Pro'oaL,ilities of transition

to state 1 to state 2 to state 3

Immediate
rewards

0.40
0.70

0 .30
o.40

0. 55
0 .30

0.50
0.60

0.05
0.00

0. 10
0.00

$6.00
4.00

$s.00
3.00

0. 00 I .00,, I Eo.oo _
The right-hand section of the table lists the expected number of tirnes

(not discounied) that the proeess wiil be in any of the states, under the
opt,imal policies. The nurnbers in the parentheses are the standard devia-
tions of these numbers [8, chap. s]. Thus, in Table d, in tire lorver section,
under policy trr&r, the numbcr of tirnes that a iirocess starting in state 1 wiir
be in state gis7.3i*7.49: the standard deviations are quiie high in rela-
tion to the expected r.alues. l-*ncier poiicy a2b2,Lhe process ri,ill never reach
the absorbing state and rvill be an infinite nuiriber of times in both states 1
and 2.

Depletion and deterioration

The Iast secticn deslt rn'ith a system with a possible breakdown case.
t{ore probable tiran the sudden "death" or collapse of the econouric process
is the possrbili'i:,1- of depletion or decay of prcductivity-the deterioration
case. A particular crop rota,tion wili gr*cluall;, i'rnovcrish the field; pump-
ing of coas'r;r1 groundx-ater damages the quality' of that source; a certain
nia"int,ellance routine results in a gradual reduct,ion of inccrle fron an asset.
rn soine respects depletion arrd deterioration are "historicai,, pher.romena,
alien to Liic }{a,rkovian assumption of indcpencence. I{owcr.er, by uti}izing
the analog;' of tlie dei,ericration case to the other i,wo cases (in tle section
"Incorne streams"), one rnay incorporate realistic tl,pes of these phenornena
into our moclel.

Assume, for simplicit.y, a zero rat,e of interest, namei;- a:1, and let in_
come, productivity, service, etc. fi'om the econoinic process deteriorate at a
rate 1-13(0<p<1) per period. Expected, not discounted, r,orth of trre in-
come stream is

(31) a: L Ed@p)tc,
t:0

: E"(I - pP),C'.

nfore interesting will be the case in which the rate of deterioration is not

States Actions

State 1 al
a2

State 2

State 3

br
bz

0.00
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just one rate for the process but differs from state to state. Now, at the
period in which the process occupies state i, its productivity deteriorates at
the rate B;. For example, expected income from the uext stage of a process,
currently in state i,is B;l.porci: Di|tp;ici, or, in matrix notation, EiBPC',
where B is a diagonal matrix with,6e on the diagonal and zeros elsewhere.

Expected value of an everlasting process is, therefore,

(32) Ei(BP)'C',

: Er(I - BP)-tg'.

It is easily seen now that to allow nonzero rates of interest, one simply
incorporates ain (32) to form

(33) z;: Ei(I - aBP)-rgr.

For alternative policies and programming, B is expanded to allow p.<di,)-
deterioration is a function of state and action.

Growth and appreciation

If deterioration is represented by 0,.( 1, growing productivity or apprecia-
tion can be represented by 0;) l. In fact, (33) applies to cases of apprecia-
tion so long as d/;d <1 for all i and. d. lf aB;d) 7 for some i and d, the exis-
tence of the inverse matrix of (33) is not assured; that is, z6 in (33) need not
be finite. Programming is, however, still possible by, for example, con-
sidering a finite horizon. We shall not pursue this subject ftrrther here.

Concluding Remarks

We have tried to show that the }farkov chain model may be used in a
variety of economic applications. The discussion of the linear programming
solution has facilitated, we trust, better understanding of the Markov
process and of the rival dynamic programming method. An unsolved prob-
lem is that of the incorporation of the regular linear programming limita-
tions and requirements into the present model. The difficulty lies in the fact
that the solutions to the Markovian systems are in terms of expected num-
bers, while the actual magnitudes will change from period to period and
may under- or overshoot limitations and requirements, if such exist. We
hope to return to this question in the future.

Z;: Z,
,:0

A. I
Let .

column
B:lbni ,rrd F: ffr]
. sums: I;btt:s (r: l,

Appendix

be n-order square matrices with constant
2,.- ., n) andLtoi:t (i:7,2, ' . ., n).If
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we let the matrix G: [soil be the product rnatrix of B and F(G:B.fl, then
the column sums of G are all sl.
Proof:

: EZu,rfo,
i/r

: f,.;*; f b,,
ki

: s I.i,
h

a.2
If we let H:ftr.q) be the inverse ruatrix of B(H:B'1), then lih;i:7/s

k:1,2, "',n).
Proof:

BH:I
E f, bi1hv,: L

ii

Ia"Ibii:r
ii

sfhro:1
i

Lhir: l/s'
i
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