Linear and Dynamic Programming in
Markov Chains*

Yoav KisLEV AND AMOTZ AMIAD

Some essential elements of the Markov chain theory are reviewed, along
with programming of economic models which incorporate Markovian
matrices and whose objective function is the maximization of the present
value of an infinite stream of income. The linear programming solution to
these models is presented and compared to the dynamic programming solu-
tion. Several properties of the solution are analyzed and it is shown that
the elements of the simplex tablean contain information relevant to the
understanding of the programmed system. It is also shown that the model
can be extended to cover, among other elements, multiprocess enterprises
and the realistic cases of programming in the face of probable deterioration
of the productive capacity of the system or its total destruction.

ECENTLY there has been growing interest in programming of eco-
nomiic processes which can be formulated as Markov chain models.
One of the picneering works in this field is Howard’s Dynamic Programming
and Markov Processes [6], which paved the way for a series of interesting
applications. Programming techniques applied to these problems had origi-
nally been the dynamic, and more recently, the linear programming ap-
proach. Practically, a computer program to execute the dynamic program-
ming calculation is simpler to prepare than one for the linear programming
procedure. On the other hand, linear programming routines are readily
available and allow great flexibility, as in parametric programming and
sensitivity analysis. These features can be introduced into dynamic pro-
gramming routines, although at an increasing cost. In this article we will
show the lines of similarity between the two techniques and investigate some
possible extensions and applications.

A finite Markov chain is a statistical model useful in describing various
economic phenomena.! In this model, we envisage a process which is in a
certain state ¢, where ¢=1, 2, - - -, n (n finite), in a particular period or
stage, and is transformed in the next period to a state j (j=1 is permissible).
The chain is described by an n-order transition, or M arkev matrix, whose ele-
ments p,; are the probabilities that the process will go from state 7 to state
j. These probabilities are independent of the past history of the process.

* We are indebted to Hanna Lifson, who read previous versions of this article and helped to
clarify many of its points. The article also benefited from discussions with Amnon Amir, Yakir
Plessner, and the late Yoseph Levi, and from comments by the Journal’s readers. The work
for the article was financed, in part, by a grant from the United States Department of Agri-

culture under P. L. 480.
! For a rigorous and complete treatment of Markov chains see Kemeny and Snell [8].
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For example, let us consider a field whose state is defined by the level of
humidity of the soil (measured in discrete units). The field may be trans-
formed from one state to another with certain probabilities, depending on
crop and weather conditions [1]. Additional illustrations might be a system
of pieces of equipment whose failures are a stochastic process [2], or a
warehouse where the state is given by the level of inventory [3, 4, 7].

In economic processes, with every state is associated a reward—or cost—
for example, yield of the field, repair of machine, profits from sales of items
out of inventory. The interesting cases are those in which the transition
probabilities can be affected by action. A policy will then be the rule which
dictates an action to be taken in every state. An opitmal policy will be the
policy under which total expected income from the process is maximized.
In this framework, programming is the choice of an optimal policy from a
given set of alternatives. The choice can be made efficiently by either dy-
namic or linear programming methods. We will investigate the relations
between the two methods and interpret the results of the linear program-
ming calculations. We hope to show not only that linear programming is
applicable in this context, as has already been shown [3, 4, 7, 9], but also
that its interpretation throws light on the “anatomy” of the system and
clarifies understanding of its properties.

In order to simplify the discussion, we will make several assumptions to
be relaxed later in the article. First, we assume regular Markov chains, that
is, any state is probable far enough in the future. Also we explicitly assume
that the transition matrices are not decomposable, that is, that the process
cannot be split into two or more isolated chains. We further assume that a
series of processes has a unique maximum present value. The discussion is
limited to processes of indefinite duration—that is, an infinite economic
horizon is assumed. .

Income Streams

We start the discussion by noting the mathematical equivalence of three
analogous income streams? and naming these parallel cases for future refer-
ence. As usual, an income stream is defined by its annuity—a. in period ¢.

The discounting case
Assume that a process yielding income lasts forever and that a;=a, for

all £. Let r be the appropriate rate of interest and «=1/(1+7) be the dis-
counting factor. Then the worth of the source of income—its present
value—is

-]
1) 2o = 2 a'ao = ao/(1 — a),

t=0
since 0 <a<1.

2 In the present context, the analogy was first introduced by D’Epenoux [4].
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The deterioration case

Assume now that income from the source is not constant, but deteriorates
at the rate 8, where 8=a.1/a; and 0<B<1 (radicactive decay). Then the
present not discounted value of the source of income is

(2) 2 = i a; = i Blas = a¢/(1 — B).

=0 i=0

The breakdown case

In this third case, consider a constant annuity, a, as long as the source of
income exists. There is, however, a constant probability 1—v, at every
period ¢, that the source will be destroyed before the coming of the next
period. Hence, v is the probability of survival. Here expected worth of the
income stream (not discounted) is

3) Zy = f:, Yiao = ao/(1 — 7).

These three cases are mathematically equivalent. Of course, they could
be consolidated into one general case which would constitute a mixture of
the three. In the course of our discussion, we shall make use of the analogy
of the separate cases, as well as of the mixed case.

It will also be useful if we note that the previous equations can be re-
written in a slightly different form. Instead of (1), for example, write the
recurrence relation

-]
(1) Ze =i+ a E alag
t=0
= Qo + A2y

We have named this new form the #wo-steps form of (1). It emphasizes
that the present value of the infinite income stream is composed of an im-
mediate annuity, plus the present value of the same income stream started
one period later. Similar forms and interpretations can be given to (2) and

(3).
Markov Chains in Economic Systems

Consider a Markov chain with an n-order transition matrix P(nXmn)
= [ps;]. Since the p;; elements are probabilities,

@ Xpi=1 (=12 n).

Let the current state of the process—state i—be denoted by a state vec-
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tor’ E; (1Xn). E; is the unit row vector with the unity in position 7. Given
a state vector K, the vector I,P is the probability vector for the states of
the process in the succeeding stage. In the stage after that, the probabilities
will be (E:P)P=E,P?. In general, the probahilities for the tth period con-
stitute the vector B Pt Also, let a rewards row vector C(1Xn) = [e;] associ-
ate an immediate reward* with every state 7. The present value of the next
period’s reward is, therefore, aF;PC’. Thus, if the process centinues
indefinitely, the expected present value of all future incomes—the worth of
the process currently in state 1—is

(5) 7y = i Ei(aP)‘C’

£=0
= H,(I — aP) '

where « is, as previcusly, the discounting factor.
Utilizing scalar notation, we may introduce the two-steps form of (5):

GY) z=ci+a Z PijZs.
J=1
Starting from a state 7, the worth of the process is the immediate reward
¢i, plus the expected worths of the states of the next stage, discounted one
period.
To consider all starting states, we replace E; by the unit matrix I and
write

(6) 7' =1I(I — aP)7'C" = (I — aP)7(",

where Z is the (1 X#n) vector whose elements are the z; values of (5).

In terms of the previous section, the case presented here is the discount-
ing case, within the framework of the Markovian model. We shall now make
use of the analogy to the breakdown case; this will link us directly to the
general theory of Markov chains and provide us with convenient terminol-
ogy and greater insight. Toward this end, consider a process with a transi-
tion matrix T, of the order n+1, which can be partitioned:

H/
T - [Q } '
0 1
In T, H{1Xn) is a probability vector, 0 a zero vector, and 1 a scalar. The

Markov chain defined by 7' consists of two sets of states: one, transient,
with the n states in @, and one, the (n+1) state—ergodic. Once the process

3 E; can be regarded as a particular case of a state probability vector.

4 The assumption in the text is that the reward is associated with the occupation of the
state. It is not difficult to incorporate the alternative assumption that the reward is due to a
particular transition from state 7 to statej [7, p. 460}.
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reaches the ergodic state, it will be absorbed there and will never re-enter
any of the transient states. The elements of H are, therefore, the probabili-
ties that the process would be transformed from each of the transient states
into the ergodic state. @ is the transition matrix of the transient states.

Associated with every transient set—with every matrix @—is a funda-
mental square matrix, V= [v,;].

@) V= -Q= ; Q-

The elements v;; indicate the expected number of times that a process, cur-
rently in state 7, will be in state j before being absorbed in the ergodic state
(including the current stage in the count of v;;). To complete the analogy,
let every transient state 7 carry a reward c¢;, and the ergodic state represent
total breakdown of the system—zero income. Total expected income (not
discounted) for a process starting in state ¢, is
®) 2= Y EQC
=0

= E,(I — Q)~(C".

By defining @ of (7) and (8) as Q =aP, we return to the discounting case
and may treat the matrix «P as if it were the transient part of a Markov
process. Here we shall name the v;; elements of V= (I —aP)™, the expected
discounted number of times that a process, currently in state ¢, will be in
state 5. These numbers are finite, while physically the process will continue
for an infinite duration.

Since P is a transition matrix, the sum of every row of aP is a (see
equation 4), and therefore all elements of the corresponding H vector are
1—q, which is also the sum of all rows in the matrix I—«P. Hence, total
discounted number of stages in any state, starting from state 1, is by (A.2) in
the Appendix

© Seu=1/0-a) (=12,

We can interpret this result, again utilizing the analogy to the breakdown
case, as follows: 1—« is the probability of breakdown of the system in any
stage; therefore, « is the probability of survival. Hence, the total expected
number of stages before breakdown will be

0

(10) Z al=1/(1 — a).

t=0

The interpretation we gave to the elements of the fundamental matrix V
permits the rewriting of (8) as
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CP) =2 v (G=1,2---,m),
i=1
which can easily be verified algebraically and interpreted economically.
Programming will be meaningful in those cases in which a certain process
can be chosen from several alternatives. Instead of enumerating all possible
transition matrices, we consider an erpanded matrix R (mXn)=[p;#?],
which consists of k; different probability rows for every state ¢, m = Z¢=1" k.
The superscript d(z) indicates an action to take in state 7 where d(9) =1, 2,
-+ +, ki. Generally, we shall eliminate, for brevity, the index 7 of d(7) and
write p;;%. The action indicated by the superscript will affect the transition
probabilities (probabilities of failure of equipment, for example, can be af-
fected by actions of maintenance). The immediate reward of the state < is
also affected by the action; for example, cost of action is deducted from the
gross value of the reward. Thus, the vector C is also expanded and its ele-
ments are now ¢;%. An expanded probability matrix R of the dimension
6X2, with the corresponding immediate rewards vector C, is given in
Table 1. Thus, in the table, if in state 1 action @, is taken, d(1)=1, the
transition probabilities are pu!=0.20, pi2! =0.80 and the expected immedi-
ate reward is ¢;' = $5.00.

Table 1. An expanded transition matrix with rewards

Probabilities of transition .
§ Immediate
State Actions® (Matrix R) rewards
J
to state 1 to state 2 (Vector C')
ax 0.20 0.80 $5.00
State 1 as 0.00 1.00 4.50
as 1.00 0.00 0.00
by 0.60 0.40 $2.00
State 2 b: 0.40 0.60 2.30
bs 0.00 1.00 0.00

& Actions are listed by names. For example, a; is the name of the action in state 1 for
which d(1) =1.

The Markov process will be determined when a decision vector D(1Xn)
is chosen, designating a d(z) value for every 1, that is, specifying a policy—
an action to take in every possible state.® By deciding on a D, one chooses a
particular transition matrix P, out of R, for the process at hand and a corre-
sponding vector C of immediate rewards.

Programming for maximal expected income can be performed by the
budgeting method—Dby listing all possible P square matrices out of R, cal-
culating, by (5), expected worth of each, and selecting the one with the

§ We shall regard the vector D, interchangeably, as either the vector consisting of the in-
dices d(z) or of the names of the actions aj, b, ete.
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highest z;. This might be extremely laborious. Instead, dynamic or linear
programming methods may be applied.

Dynamic Programming

In this section we will follow Hadley [7, pp. 454-460], who also provides
the proofs for the procedure described here.

To select an optimal decision vector D by the dynamic programming
method, start from an arbitrary D, call it D(1), thus sclecting a correspond-
ing matrix P(1) and a vector C'(1). Now calculate a vector Z(1) of expected
present values for all starting states.

(1) Z()' = [I = «P()]CQ)
= C(1) + «P(1)Z(1)".
The last line—the two-steps form of (11)—is the matrix form of (5').
Next, check whether D(1) is optimal. This is done by the following recur-
rence procedure: define a fest policy to be the policy D(1) for all future
stages but not necessarily for the current one. For the current stage, the

test policy associates an alternative action d(¢) —not necessarily in D(1)—
with state . Now evaluate

(12) 2; = max [ci" + o Z pijdz,-(l)] =12 ---,n).
d F=1

A new decision vector D(2) emerges, consisting, for every s, of the d(9)*
element that maximizes the expression in (12). If D(1) is an optimal policy,
then D(2)=D(1). If not, calculate

(13) Z@) = [I - aP@)]02),

and repeat (12) and (18) until D(k)=D(k—1)=D** D* is the optimal
policy which maximizes present value of expected income from the process.
In this procedure, all possible starting states are considered. Thus, D*
is invariant under different starting states—the set of optimal actions to
take in every possible state is independent of the current state of the pro-
cess.
Linear Programming

Our linear programming problem [5] will be
a. max CII’
subject to
b. MII' = E/
c I >0.

(14)

¢ The optimal policy need not be unique; several D vectors might lead to the same maximal
present value. It is, however, not difficult to protect the computer program against cycling.
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In (14), C is the expanded immediate rewards vector; II is the solution
vector to the linear programming problem; E; is, as previously, the unit
state vector with unity in position 7. The matrix M (nXm) is constructed of
the expanded transition matrix R by first expanding a unit matrix to a
matrix J(mXn), which consists of k; identical E; unit row vectors for every
%, and then

(15) M= (J — aR)'.

The matrices J, R, and M, for a problem with two states and two actions
in each state, are illustrated below.

1 0 ['ozpul apiz’
J = 10 oR = apy? aplzz‘l
01 apal  apest
o 1l apa®  aps?
u = [1 ~apn! 1 — apy?® - apail - apzlz}
—~ ape! —ape? 1 — apae’ 1 — apast

Table 2 is the simplex table for the example of Table 1. The matrix M
constitutes the bulk of the first section—the input—output coefficients—to
which a unit matrix of slack variables (artificial activities) was added. The
assumption in the table is that the process is started in state 1.

We shall now show that the solution to the linear programming problem
(14), like the dynamic programming solution, will select a policy that will
maximize expected present value of income from the process at hand.

Following the usual linear programming convention, we add slack vari-
ables and partition the vectors IT and € and the matrix M ;

(16) I=[m, W, m), C=I[c, C 0, M=I[M M I

where s is the index of the part in the basis, and o is the index of the part not
in the basis. By (14) and (16),

(17) MsHs, + McHoI = Eil

and

(18) o/ = M-E! — MM a0,
= Me_lEil

since I1,=0.

It was shown by Wolfe and Danzig [9] that the linear programming pro-
cedure assures that, in (18), M, "= [(I—aP,)!]’, where P, is a transition
matrix selected from R. This means that there will be exactly one column in
M, for every possible starting state. We repeat, for completeness, the es-
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sence of the proof; since E;>0 and II,=0, then (14.c) and (17) can be
simultaneously maintained only if every row of M, contains at least one
nonnegative element. The only positive elements in M are of the form
1—apd, of which there is one in every column. The matrix M, is of the
order n; it has n columns, each with exactly one element of the form
1—ap;? It also has n rows, and must, as stated, have at least one non-
negative element in every row. Hence, it will have exactly one element of
the form 1—ap;? in every row. Therefore, there will be exactly one element
1—apy? in every row and column of M ,, which completes the proof.
Equation (18) can now be written as

(19) I/ = [I — aP,)"tVE/,
and, therefore,
(20) CIl' = C[(I — oP,)"'|'E/.

Comparing (20) to (5), we see that CII’ is the worth of a Markov process
currently in state . The maximal value of CII'—the value of the objective
function in the solution to (14)—is the maximal worth of a system of
Markov processes.

The solution to (14) determines a policy vector, D,, which can be con-
structed by observing the vectors in the basis. It stems from Property 7 of
the next section that D, is not affected by the starting state of the process.
Thus, D, of linear programming, like D* of the dynamic programming solu-
tion, is an optimal policy vector. The same expected maximal present value
is reached by the linear and the dynamic programming methods and, if
there is only one unique optimal policy vector, then D,=D*.

In the next section we shall investigate some of the properties and possi-
ble interpretations of the simplex routine and elaborate further on the lines
of similarity between the dynamic and the linear programming methods.

Properties of the Simplex Solution

It will be convenient if we state here the criterion function of the simplex
routine—the Z—C row vector—

(21) Z—C=CM[M, M, I] - [C, C, 0]
= C[I MM, M,] - [C, C, 0]
= [0 ¢.MM, — C, C.M,1].

Reference to the element of (21) is made in the discussion that follows.

Property 1

As was previously explained, by programming for a D, we select a transi-
tion matrix P, and M,= (I —aP,)’. Therefore, by (7),
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(22) M= [ - aP)t)
= [ - Q)

where V is the fundamental matrix associated with the “transient’” matrix
aP,. Thus, in Table 2, consistent with the terminology introduced in the
section “Markov Chains in Economic Systems,” the expected discounted
number of times that a process, currently in state 2, will be in state 1 is
3.971, and in state 2 is 6.029.

Property 2

By equations (22) and (9), the sums of the columns of M, are 1/(1—a).
In Table 2, «=0.9, 1/(1 —a) =10, and the sums are

column d;: 4.706 4+ 5.294 = 10
column d: 3.971 + 6.029 = 10.

Property 3

Let ui° be the simplex table element for row 1, state k, and o 2 value for
d(k) outside the basis. Thus u:° is defined by MM ,= [us°]. For exam-
ple, in Table 2, column b,, last section, u1,2=0.132.

By Property 1, M, 'M,=V'M, Therefore, in scalar notations and
denoting by p;;° the transition probabilities in M, (thus p;° is the prob-
ability of transition from ¢ to j with action o),

(23) Ui = — Z VP + vri(l — ape®)

Jztk

=7)k~.‘"‘azpkjovji k=1,2---,n).
)

Ixamining the last line—the two-steps form of (238)—one recognizes that
12 is the difference between (a) the expected discounted number of times
that a process, currently in state k, will be in state ¢—if the present policy
is adopted (v.), and (b) the expected discounted number of times that a
process starting in state k& will be in state ¢ if the test policy, with action
d(k) =0 for the current stage and the basic policy for all future stages, is
adopted. Action o is taken once and the basic policy D, is followed for all
other stages. Hence, u;° is the marginal rate of substitution of the present
{(hasic) policy to the alternative policy with action o for state k in all stages.
The substitution is in the decision vector D, and it is “marginal” in that
the alternative policy is adopted for only one stage—the current stage.

Property 4

The sum of the elements in every column of the simplex table is unity.
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For actions in the basis this is obvious—these columns are unit columns.
For actions not in the basis, the sums of the elements of the matrix M, M,
are also unity. Since the sum of every column of the matrix M is 1 —«, there-
fore, by A.2 in the Appendix, the sums of the columns of M, are all 1/
(1—a). Hence, by 4.1 of the Appendix, the column sums in M, , are

1—-a)/1—0a =1
For example, in Table 2, column a4, the sum is
1.133 — 0.133 = 1.0.

Making use of (23), we write the column sum as

(24) Z Ui’ = Z <U}ﬂ' -« Z pkj"l?ﬁ)

i

-1 (k=1,2,--,n).

The sum in the right-hand side of the first line of (24) is the difference in
the total discounted number of stages under the two policies—the basic
policy and the test policy. In general, the total discounted number of stages
is the same under any policy (Property 2). The difference in (24), which is
unity, stems from the fact that the count of stages for the basic policy in-
cludes the current stage (the sum in equation 7, for example, goes from zero
to infinity), whereas for the test policy the count starts from the nest stage
and omits the current one.

Property 5

The dual values, the elements of the row vector C.34,~%, are the values of
the alternative objective function, under the basic policy, for all possible
starting states. If we write the element k of this vector as 2* and denote by
¢;* the element of C,, the dual values are

(25> 2t = Z CiVri ([0 = 1, 2’ P ,n),

which is exactly (8'). In the table, 2;°=$34.118—the value of the objective
function for a process starting in state 1; 2,°=$31.912—the objective func-
tion for a process starting in state 2.

Property 6

The elements in the Z—C row for actions not in the basis (21) are
CMM,—0,.

For a state k and action o, we shall denote these elements in the eriterion
function as z;,°—¢x° and write in scalar notation
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(26) g’ — 6’ = — E oPri’2i® -+ st(l — Otpkk”) - Cx°

ik

= z° — <Cko + «a Z pkﬂf) (k =1,2 - )n)~

J

The term in the parenthesis in the second version of (26) is the two-steps
form of the objective function, for a process in state k, under the test policy.
The alternative policy—with action o for state k—will be adopted through-
out all future periods if the value of (26) is negative, that is, if the test
policy is superior to the basic policy. Since the process lasts forever, if
action o for state k is superior for the current state it will also be superior in
any future state. This principle is, of course, the rationale behind the dy-
namic programming procedure, outlined in the section, “Dynamic Pro-
gramming.” Tt is evident now that the criteria for changing a policy, from
iteration to iteration, are the same in the linesr and in the dynamic pro-
gramming techniques. The one difference, however, is that in the simplex
method of linear programming one element of D is replaced at a time,
whereas in dynamic programming a new vector D is constructed at every
iteration, which can differ from the previous policy by several elements.

Property 7

The optimal policy is not affected by the starting state of the process. To
see this, one must show that a change of E; to E;will not alter the basis of the
linear programming solution. Denote a solution vector associated with the
starting state 7 by IL,(¢). We know [5, p. 183] that

(27) LG = M,ES >0

is a feasible solution for a starting state ¢, and that a change of E; to E; will
not alter the optimal basis, M., if, in addition to (27 )s

(28) (5 = M, 'E/ > 0.
The condition in (28) is maintained, since all elements in M, —thew;
elements—are nonnegative.
Extensions and Applications
A multiprocess system

Generally an enterprise will not be a single process but will constitute a
system of many processes—fields in a farm, for example, or machines in a
factory, or units of an operating army. If we assume that these processes
are independent and let ¢; be the number of processes, at present in state
i, in an enterprise, then the total worth of the enterprise is
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(29) W =2 ez,

i=]

where z: is defined as in (25). W can be easily calculated from the dual
values of the linear programming solution.

Alternatively, a direct approach can be implemented: define a state
vector E(1Xm) whose elements are the e; values (the vector E; is now a
particular value of E), and instead of (14) solve as follows:

a. a max CHI’
subject to
b. MI! = E'
¢. I >0.
The maximal value of the objective function in (14/) will be the W of (29).

(14°)

A decomposable system

Up to now, we have assumed a system that is not decomposable. This
need not be the only case. If the matrix M is decomposable, and if, say,
E;=E;, then (14.b) will be

M1 0 Hll 1

0

(30) = |-
0 M, Loy 0

The elements of II; in (30) must be zeros by the formulation of the prob-
lem. The second chain will not be programmed at all.

To avoid this difficulty, it has been suggested [4, 7] that, even in cases of
single-process systems, (14’) be solved with an arbitrary nonzero E—the
vector on the right-hand side. The optimal policy is not affected by this
device. The calculated value of the objective function depends, of course, on
the selected values for E.

An inferior state

Another assumption was that chains were regular, that their fundamental
matrices had no zero entries, that all states were probable far enough in the
future. In practice, one might encounter states which are economically
inferior and can be avoided—small inventories, for example, or old ma-
chinery. If it is possible, and the appropriate actions are specified, a policy
will be selected that will avoid the inferior states. If the process is started in
such a state, it will leave that state in one or a few periods. As an example,
consider, in Table 8, a new expanded matrix constructed from Table 1 by
eliminating, for simplicity, a; and b; and adding a third state.
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Table 3. An expanded R matrix with an inferior state

Probabilities of transition .

States Actions Ir:xer‘r;;(i?;e

to state 1 to state 2 to state 3

a; 0.20 0.80 0.00 $5.00
State 1 a? 0.00 1.00 0.00 4.50
at 0.00 0.00 1.00 0.00
b 0.60 0.40 0.00 $2.00
State 2 bs 0.40 0.60 0.00 2.30
bt 0.80 0.00 0.20 1.00
State 3 ci 1.00 0.00 0.00 $4.00
[ 0.10 0.70 0.20 4.50

Programming,” one finds that the optimal policy vector, D, of this pro-
cess consists of ay, by, and ¢; and the corresponding transition matrix is, there-
fore,

020 080 O
P,=]|060 040 0 ].
100 0.00 O

An absorbing state

As experience teaches, some policies may lead to irreversible, and
sometimes destructive, results. A particular crop rotation will not protect
the soil and a heavy rain may cause erosion and destroy all future possibil-
ity of cultivating the field. A monopolist may charge high prices that will
breed rival firms. These are breakdown cases whose Markov matrices are
like T of the section “Markov Chains in Economic Systems.” Some reflec-
tion, and the example below, will show that “destructive” policies may
sometimes be optimal. In fact, whether they will be chosen or rejected de-
pends, all other things being the same, on the discounting rate—the higher
the rate of interest, the more probable it is that a “suicidal” policy, which
yields high income until destruction, will be adopted.

As an example, consider the expanded R matrix given in Table 4. Note
that the reward for the third, absorbing state is zero and that no possible
action is attached to this state, which stands for the collapse of the economic
system. The optimal policies for this system are listed in Table 5. Also given
in Table 5 are the probabilities that a process starting in state 1 will be in
any of the states at some specified ¢ period. Once action a; isintroduced, the
process must end in state 3.

7 We took e=0.9 in this case too.
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Table 4. Expanded matrix with rewards, possible breakdown case

Probabilities of transition 1 diat
States Actions r::rnzr ds ¢

to state 1 to state 2 to state 3 cwarcs
State 1 ai 0.40 0.55 0.05 $6.060
as 0.70 0.30 0.060 4.00
State 2 by 0.30 0.50 0.10 $5.00
by 0.40 0.60 0.60 3.00
State 3 0.00 0.00 1.00 $0.00

The right-hand section of the table lists the expected number of times
(not discounted) that the process will be in any of the states, under the
optimal policies. The numbers in the parentheses are the standard devia-
tions of these numbers [8, Chap. 8]. Thus, in Table 5, in the lower section,
under policy aibs, the number of times that a process starting in state 1 will
be in state 2 is 7.35 1:7.49: the standard deviations are quite high in rela-
tion to the expected values. Under policy asbs, the process will never reach
the absorbing state and will be an infinite number of times in both states 1
and 2.

Depletion and deterioration

The last section dealt with a system with a possible breakdown case.
More probable than the sudden “death” or collapse of the economic process
is the possibility of depletion or decay of productivity—the deterioration
case. A particular crop rotation will gradually impoverish the field; pump-
ing of coastal groundwater damages the quality of that source ; & certain
maintenance routine results in a gradual reduction of income from an asset.
In some respects depletion and deterioration are “historical’ phenomena,
alien to the Markovian assumption of independence, However, by utilizing
the analogy of the deterioration case to the other two cases (in the section
“Income Streams”), one may incorporate realistic types of these phenomena
into cur model.

Assume, for simplicity, a zero rate of interest, namely a=1, and let in-
come, productivity, service, ete. from the economic process deteriorate at a
rate 1—5(0<8<1) per period. Expected, not discounted, worth of the in-
come stream is

31) =3 B(P)C

= E(I — gP)(".

More interesting will be the case in which the rate of deterioration is not
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just one rate for the process but differs from state to state. Now, at the

period in which the process occupies state 1, its productivity deteriorates at

the rate ;. For example, expected income from the next stage of a process,

currently in state ¢, is 8; Y PiiCi= > B:pjcj, or, in matrix notation, E;BPC’,

where B is a diagonal matrix with 8; on the diagonal and zeros elsewhere.
Expected value of an everlasting process is, therefore,

(32) 2 = i E,(BP) tCI

= E,(I — BP)~'(".

It is easily seen now that to allow nonzero rates of interest, one simply
incorporates « in (32) to form

(33) 2 = E,(I - aBP)_ICI.

For alternative policies and programming, B is expanded to allow 8,@9—
deterioration is a function of state and action.

Growth and appreciation

If deterioration is represented by 8:< 1, growing productivity or apprecia-
tion can be represented by $8;>1. In fact, (83) applies to cases of apprecia-
tion so long as «8,4<1 for all 7 and d. If «B8,2>1 for some 7 and d, the exis-
tence of the inverse matrix of (83) is not assured; that is, z; in (83) need not
be finite. Programming is, however, still possible by, for example, con-
sidering a finite horizon. We shall not pursue this subject further here.

Concluding Remarks

We have tried to show that the Markov chain model may be used in a
variety of economic applications. The discussion of the linear programming
solution has facilitated, we trust, better understanding of the Markov
process and of the rival dynamic programming method. An unsolved prob-
lem is that of the incorporation of the regular linear programming limita-
tions and requirements into the present model. The difficulty lies in the fact
that the solutions to the Markovian systems are in terms of expected num-
bers, while the actual magnitudes will change from period to period and
may under- or overshoot limitations and requirements, if such exist. We
hope to return to this question in the future.

Appendix
A1

Let B=[b;;] and F=|[f;;] be n-order square matrices with constant
column sums: ) bs;=s(j=1,2, - - -, n) and D fs;=¢ (j=1,2, - - -, n). If



LINEAR AND DyNamic ProcraMMING / 129

we let the matrix G= [g:;] be the product matrix of B and F(G=BF), then
the column sums of G are all st.

Proof:
2 9= 2 2 bafs
[ 3 k
= 2 fui 2 ba
k )
=8 ka
k

= g8,

A. 2

If we let H= [h;] be the inverse matrix of B(H =B-), then D hi;=1/s
(j=1,2, - -, n).
Proof:

BH =1

Z.Z.bijhjk =1
t 7
;hjkzi:bq =
SZhJ‘k =1
Fi
Zhjk = 1/6
J

J
—
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