In 2009, Xu et al. and Chaput et al. in Nature Medicine had argued that the main cause of death in sepsis is the release from neutrophil nets of nuclear histone, highly toxic to endothelial cells and that these polycations are major and unique virulence factors. Since 2009, numerous researchers have also suggested the involvement of histones in the pathophysiology of many clinical disorders. If histones are indeed major unique virulence toxic agents, then heparin, activated protein C and antibodies to histone should prove excellent antisepsis agents. However, this is provided that these agents are administered to patients early enough before the activation of the cytokine storms, immune responses and the coagulation cascades are irreversibly unleashed. This may not be practical, since a diagnosis of sepsis is usually made much later. Future identifications of novel early markers are therefore needed and a compilation of cocktails of antagonists may replace the faulty single antagonists tried for many years, but in vain, to prevent death in sepsis.
Noam Mizrahi. 2016. “The Numeral 11 And The Linguistic Dating Of P”. בתוך The Formation Of The Pentateuch: Bridging The Academic Cultures Of Europe, Israel And North America, Pp. 361–379. Tübingen: Mohr Siebeck.
Stabilized laser lines are highly desired for myriad of applications ranging from precise measurements to optical communications. While stabilization can be obtained by using molecular or atomic absorption references, these are limited to specific frequencies. On the other hand, resonators can be used as wide band frequency references. Unfortunately, such resonators are unstable and inaccurate. Here, we propose and experimentally demonstrate a chip-scale multispectral frequency standard replication operating in the spectral range of the near IR. This is obtained by frequency locking a microring resonator (MRR) to an acetylene absorption line. The MRR consists of a Si3N4 waveguides with microheater on top of it. The thermo-optic effect is utilized to lock one of the MRR resonances to an acetylene line. This locked MRR is then used to stabilize other laser sources at 980 nm and 1550 nm wavelength. By beating the stabilized laser to another stabilized laser, we obtained frequency instability floor of 4×10-9 at around 100 s in terms of Allan deviation. Such stable and accurate chip scale sources are expected to serve as important building block in diverse fields such as communication and metrology.
A single electron dynamic memory is designed based on the non-equilibrium dynamics of charge states in electrostatically defined metallic quantum dots. Using the orthodox theory for computing the transfer rates and a master equation, we model the dynamical response of devices consisting of a charge sensor coupled to either a single and or a double quantum dot subjected to a pulsed gate voltage. We show that transition rates between charge states in metallic quantum dots are characterized by an asymmetry that can be controlled by the gate voltage. This effect is more pronounced when the switching between charge states corresponds to a Markovian process involving electron transport through a chain of several quantum dots. By simulating the dynamics of electron transport we demonstrate that the quantum box operates as a finite-state machine that can be addressed by choosing suitable shapes and switching rates of the gate pulses. We further show that writing times in the ns range and retention memory times six orders of magnitude longer, in the ms range, can be achieved on the double quantum dot system using experimentally feasible parameters, thereby demonstrating that the device can operate as a dynamic single electron memory. Published by AIP Publishing.
The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia13 81). Nuclear spins associated with the 13C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc.38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis.
We study the reclamation process of a sodic soil by irrigation with water amended with calcium cations. In order to explore the entire range of time-dependent strategies, this task is framed as an optimal control problem, where the amendment rate is the control and the total rehabilitation time is the quantity to be minimized. We use a minimalist model of vertically averaged soil salinity and sodicity, in which the main feedback controlling the dynamics is the nonlinear coupling of soil water and exchange complex, given by the Gapon equation. We show that the optimal solution is a bang–bang control strategy, where the amendment rate is discontinuously switched along the process from a maximum value to zero. The solution enables a reduction in remediation time of about 50%, compared with the continuous use of good-quality irrigation water. Because of its general structure, the bang–bang solution is also shown to work for the reclamation of other soil conditions, such as saline–sodic soils. The novelty in our modeling approach is the capability of searching the entire “strategy space” for optimal time-dependent protocols. The optimal solutions found for the minimalist model can be then fine-tuned by experiments and numerical simulations, applicable to realistic conditions that include spatial variability and heterogeneities.
Semiconductor-metal hybrid nanostructures offer a highly controllable platform for light-induced charge separation, with direct relevance for their implementation in photocatalysis. Advances in the synthesis allow for control over the size, shape and morphology, providing tunability of the optical and electronic properties. A critical determining factor of the photocatalytic cycle is the metal domain characteristics and in particular its size, a subject that lacks deep understanding. Here, using a well-defined model system of cadmium sulfide-gold nanorods, we address the effect of the gold tip size on the photocatalytic function, including the charge transfer dynamics and hydrogen production efficiency. A combination of transient absorption, hydrogen evolution kinetics and theoretical modelling reveal a non-monotonic behaviour with size of the gold tip, leading to an optimal metal domain size for the most efficient photocatalysis. We show that this results from the size-dependent interplay of the metal domain charging, the relative band-alignments, and the resulting kinetics.
A vast theoretical literature shows that inefficient market structures may arise in free entry equilibria. Previous empirical work demonstrated that excessive entry may obtain in local radio markets. Our paper extends that literature by relaxing the assumption that stations are symmetric, allowing instead for endogenous station differentiation along both (observed) horizontal and (unobserved) vertical dimensions. We find that, in most broadcasting formats, a social planner who takes into account the welfare of market participants (stations and advertisers) would eliminate 50%-60% of the stations observed in equilibrium. In 80%-94.9% of markets that have high quality stations in the observed equilibrium, welfare could be unambiguously improved by converting one such station into low quality broadcasting. In contrast, it is never unambiguously welfare-enhancing to convert an observed low quality station into a high quality one. This suggests local over-provision of quality in the observed equilibrium, in addition to the finding of excessive entry.