This paper describes the evolution of our understanding of the biological role played by synthetic and natural antimicrobial cationic peptides and by the highly basic nuclear histones as modulators of infection, postinfectious sequelae, trauma, and coagulation phenomena. The authors discuss the effects of the synthetic polymers of basic poly α amino acids, poly l-lysine, and poly l-arginine on blood coagulation, fibrinolysis, bacterial killing, and blood vessels; the properties of natural and synthetic antimicrobial cationic peptides as potential replacements or adjuncts to antibiotics; polycations as opsonizing agents promoting endocytosis/phagocytosis; polycations and muramidases as activators of autolytic wall enzymes in bacteria, causing bacteriolysis and tissue damage; and polycations and nuclear histones as potential virulence factors and as markers of sepsis, septic shock, disseminated intravasclar coagulopathy, acute lung injury, pancreatitis, trauma, and other additional clinical disorders
Experimental studies of choice behavior document distinct, and sometimes contradictory, deviations from maximization. For example, people tend to overweight rare events in 1-shot decisions under risk, and to exhibit the opposite bias when they rely on past experience. The common explanations of these results assume that the contradicting anomalies reflect situation-specific processes that involve the weighting of subjective values and the use of simple heuristics. The current article analyzes 14 choice anomalies that have been described by different models, including the Allais, St. Petersburg, and Ellsberg paradoxes, and the reflection effect. Next, it uses a choice prediction competition methodology to clarify the interaction between the different anomalies. It focuses on decisions under risk (known payoff distributions) and under ambiguity (unknown probabilities), with and without feedback concerning the outcomes of past choices. The results demonstrate that it is not necessary to assume situation-specific processes. The distinct anomalies can be captured by assuming high sensitivity to the expected return and 4 additional tendencies: pessimism, bias toward equal weighting, sensitivity to payoff sign, and an effort to minimize the probability of immediate regret. Importantly, feedback increases sensitivity to probability of regret. Simple abstractions of these assumptions, variants of the model Best Estimate and Sampling Tools (BEAST), allow surprisingly accurate ex ante predictions of behavior. Unlike the popular models, BEAST does not assume subjective weighting functions or cognitive shortcuts. Rather, it assumes the use of sampling tools and reliance on small samples, in addition to the estimation of the expected values. (PsycINFO Database Record (c) 2017 APA, all rights reserved)
Bitter taste elicits an aversive reaction, and is believed to protect against consuming poisons. Bitter molecules are detected by the Tas2r family of G-protein-coupled receptors, with a species-dependent number of subtypes. Chickens demonstrate bitter taste sensitivity despite having only three bitter taste receptors—ggTas2r1, ggTas2r2 and ggTas2r7. This minimalistic bitter taste system in chickens was used to determine relationships between in-vitro (measured in heterologous systems) and in-vivo (behavioral) detection thresholds. ggTas2r-selective ligands, nicotine (ggTas2r1), caffeine (ggTas2r2), erythromycin and (+)-catechin (ggTas2r7), and the Tas2r-promiscuous ligand quinine (all three ggTas2rs) were studied. Ligands of the same receptor had different in-vivo:in-vitro ratios, and the ggTas2r-promiscuous ligand did not exhibit lower in-vivo:in-vitro ratios than ggTas2r-selective ligands. In-vivo thresholds were similar or up to two orders of magnitude higher than the in-vitro ones.
Bitter taste elicits an aversive reaction, and is believed to protect against consuming poisons. Bitter molecules are detected by the Tas2r family of G-protein-coupled receptors, with a species-dependent number of subtypes. Chickens demonstrate bitter taste sensitivity despite having only three bitter taste receptors-ggTas2r1, ggTas2r2 and ggTas2r7. This minimalistic bitter taste system in chickens was used to determine relationships between in-vitro (measured in heterologous systems) and in-vivo (behavioral) detection thresholds. ggTas2r-selective ligands, nicotine (ggTas2r1), caffeine (ggTas2r2), erythromycin and (+)-catechin (ggTas2r7), and the Tas2r-promiscuous ligand quinine (all three ggTas2rs) were studied. Ligands of the same receptor had different in-vivo:in-vitro ratios, and the ggTas2r-promiscuous ligand did not exhibit lower in-vivo:in-vitro ratios than ggTas2r-selective ligands. In-vivo thresholds were similar or up to two orders of magnitude higher than the in-vitro ones.
in Honour of F.A.M. Wiggermann. Alter Orient und Altes Testament 441 (Münster: Ugarit-Verlag).
Afia Ali ו Werner, Shirli . 2017. “From The Guest Editors”. Journal Of Mental Health Research In Intellectual Disabilities, 10, Pp. 51–54. doi:10.1080/19315864.2017.1294850.
Tomato (Solanum lycopersicum) diageotropica (dgt) mutants, containing a single mutation in the Cyclophilin1 (SlCyp1) gene, are auxin-insensitive, exhibiting a pleiotropic phenotype including lack of geotropism, abnormal xylem structure, lack of lateral roots (LRs), and elevated shoot-to-root ratio. SlCyp1 is a putative peptidyl-prolyl isomerase that can traffic from shoot to root, where it induces changes in auxin response, LR formation, and xylem development, suggesting it has a role as a long-distance signaling molecule. Here, we explored the mechanism underlying SlCyp1 function in the phloem. Expression of SlCyp1 under a phloem-specific (AtSuc2) promoter in dgt plants partially restored the wild-type phenotype, including lateral root development, root branching, and xylem morphology. The observed developmental changes were associated with physiological alternations at the whole-plant level, including a reduction in shoot-to-root ratio, enhanced transpiration, and elevated photosynthetic rates. Conversely, phloem-specific expression of SlCyp1 active-site mutants did not restore the wild-type phenotype. Local inhibition of cyclophilin functioning in the target tissue reduced auxin sensitivity, suggesting that its enzymatic activity in the distant organ is required for its action as a long-distance signalling agent. The data presented suggest that SlCyp1 is a signal molecule trafficking from shoot to root where its activity is required for auxin-mediated lateral root development.
In anti-NMDA receptor (NMDAR) encephalitis, antibody-mediated dysfunction of NMDARs causes severe neuropsychiatric symptoms, including psychosis, memory deficits, and movement disorders. However, it remains elusive how antibody-mediated NMDAR dysfunction leads to these symptoms, and whether the symptoms arise from impairment in specific brain regions and the interactions between impaired regions.
METHODS:
In this observational study, we recruited 43 patients with anti-NMDAR encephalitis from a tertiary university hospital and 43 age-matched and sex-matched healthy controls without a history of neurological or psychiatric disorders, who were recruited from the general population of Berlin. We used structural and resting-state functional MRI to investigate alterations in connectivity in all participants. We did functional connectivity analyses, including large-scale network analysis, whole-brain pair-wise connectivity, and machine-learning classification, and compared the results with patients' functional impairment.
FINDINGS:
Although structural MRI was normal in 31 (72%) of the 43 patients, we observed widespread alterations of functional connectivity that correlated with clinical measures. These alterations included impaired hippocampal functional connectivity, decoupling of the medial temporal and the default-mode networks, and an overall impairment of frontotemporal connections. Furthermore, functional connectivity was impaired within distributed large-scale networks, including sensorimotor, frontoparietal, lateral-temporal, and visual networks. Memory impairment correlated with hippocampal and medial-temporal-lobe network connectivity, whereas schizophrenia-like symptoms were associated with functional connectivity changes in frontoparietal networks. Machine-learning analyses corroborated these findings and identified frontoparietal and frontotemporal connections as reliably discriminating features between patients and controls, yielding an overall accuracy of 81%.
INTERPRETATION:
This study reveals a characteristic pattern of whole-brain functional connectivity alterations in anti-NMDAR encephalitis that is well suited to explain the major clinical symptoms of the disorder. These observations advance the pathophysiological understanding of NMDAR dysfunction in the human brain and could be similarly relevant for other neuropsychiatric disorders, such as schizophrenia.
The Atlantic and Pacific Oceans represent different biogeochemical regimes in which the abundant marine cyanobacterium Prochlorococcus thrives. We have shown that Prochlorococcus populations in the Atlantic are composed of hundreds of genomically, and likely ecologically, distinct coexisting subpopulations with distinct genomic backbones. Here we ask if differences in the ecology and selection pressures between the Atlantic and Pacific are reflected in the diversity and genomic composition of their indigenous Prochlorococcus populations. We applied large-scale single-cell genomics and compared the cell-by-cell genomic composition of wild populations of co-occurring cells from samples from Station ALOHA off Hawaii, and from Bermuda Atlantic Time Series Station off Bermuda. We reveal fundamental differences in diversity and genomic structure of populations between the sites. The Pacific populations are more diverse than those in the Atlantic, composed of significantly more coexisting subpopulations and lacking dominant subpopulations. Prochlorococcus from the two sites seem to be composed of mostly non-overlapping distinct sets of subpopulations with different genomic backbones-likely reflecting different sets of ocean-specific micro-niches. Furthermore, phylogenetically closely related strains carry ocean-associated nutrient acquisition genes likely reflecting differences in major selection pressures between the oceans. This differential selection, along with geographic separation, clearly has a significant role in shaping these populations.
P. Mlcochova, Sutherland, K. A. , Watters, S. A. , Bertoli, C. , de Bruin, R. A. , Rehwinkel, J. , Neil, S. J. , Lenzi, G. M. , Kim, B. , Khwaja, A. , Gage, M. C. , Georgiou, C. , Chittka, A. , Yona, S. , Noursadeghi, M. , Towers, G. J. , ו Gupta, R. K.. 2017. “A G1-Like State Allows Hiv-1 To Bypass Samhd1 Restriction In Macrophages”. Embo J, 36, Pp. 604-616. תקציר
An unresolved question is how HIV-1 achieves efficient replication in terminally differentiated macrophages despite the restriction factor SAMHD1. We reveal inducible changes in expression of cell cycle-associated proteins including MCM2 and cyclins A, E, D1/D3 in macrophages, without evidence for DNA synthesis or mitosis. These changes are induced by activation of the Raf/MEK/ERK kinase cascade, culminating in upregulation of CDK1 with subsequent SAMHD1 T592 phosphorylation and deactivation of its antiviral activity. HIV infection is limited to these G1-like phase macrophages at the single-cell level. Depletion of SAMHD1 in macrophages decouples the association between infection and expression of cell cycle-associated proteins, with terminally differentiated macrophages becoming highly susceptible to HIV-1. We observe both embryo-derived and monocyte-derived tissue-resident macrophages in a G1-like phase at frequencies approaching 20%, suggesting how macrophages sustain HIV-1 replication in vivo Finally, we reveal a SAMHD1-dependent antiretroviral activity of histone deacetylase inhibitors acting via p53 activation. These data provide a basis for host-directed therapeutic approaches aimed at limiting HIV-1 burden in macrophages that may contribute to curative interventions.
Summary Emission of volatiles at advanced stages of flower development is a strategy used by plants to lure pollinators to the flower. We reveal that GA negatively regulates floral scent production in petunia. We used Agrobacterium-mediated transient expression of GA-20ox in petunia flowers and a virus-induced gene silencing approach to knock down DELLA expression, measured volatile emission, internal pool sizes and GA levels by GC-MS or LC–MS/MS, and analyzed transcript levels of scent-related phenylpropanoid-pathway genes. We show that GA has a negative effect on the concentrations of accumulated and emitted phenylpropanoid volatiles in petunia flowers; this effect is exerted through transcriptional/post-transcriptional downregulation of regulatory and biosynthetic scent-related genes. Both overexpression of GA20-ox, a GA-biosynthesis gene, and suppression of DELLA, a repressor of GA-signal transduction, corroborated GA's negative regulation of floral scent. We present a model in which GA-dependent timing of the sequential activation of different branches of the phenylpropanoid pathway during flower development may represent a link between the showy traits controlling pollinator attraction, namely color and scent.
A game of threats on a finite set of players, $N$, is a function $d$ that assigns a real number to any coalition, $S subseteq N$, such that $d left( S right) = - d left( N setminus S right)$. A game of threats is not necessarily a coalitional game as it may fail to satisfy the condition $d left( emptyset right) = 0$. We show that analogs of the classic Shapley axioms for coaltional games determine a unique value for games of threats. This value assigns to each player an average of the threat powers, $d left( S right)$, of the coalitions that include the player.
Francesco Filippi, Anania, Maria Pia, Brentegani, E , Biagioni, A , Cianchi, A , Chiadroni, E , Ferrario, Massimo , Pompili, Riccardo , Romeo, Stefano , ו Zigler, Arie . 2017. “Gas-Filled Capillaries For Plasma-Based Accelerators”. בתוך Journal Of Physics: Conference Series, 874:Pp. 012036. IOP Publishing.