Iron transport in cyanobacteria – from molecules to communities

Citation:

Guo-Wei Qiu, Coco Koedooder, Bao-Sheng Qiu, Yeala Shaked, and Nir Keren. In Press. “Iron transport in cyanobacteria – from molecules to communities.” Trends in Microbiology. Publisher's Version

Abstract:

Iron is an essential micronutrient for the ecologically important photoautotrophic cyanobacteria which are found across diverse aquatic environments. Low concentrations and poor bioavailability of certain iron species exert a strong control on cyanobacterial growth, affecting ecosystem structure and biogeochemical cycling. Here, we review the iron-acquisition pathways cyanobacteria utilize for overcoming these challenges. As the molecular details of cyanobacterial iron transport are being uncovered, an overall scheme of how cyanobacteria handle and exploit this scarce and redox-active micronutrient is emerging. Importantly, the range of biological solutions used by cyanobacteria to increase iron fluxes goes beyond transport and includes behavioral traits of colonial cyanobacteria and intricate cyanobacteria?bacteria interactions.Iron is an essential micronutrient for the ecologically important photoautotrophic cyanobacteria which are found across diverse aquatic environments. Low concentrations and poor bioavailability of certain iron species exert a strong control on cyanobacterial growth, affecting ecosystem structure and biogeochemical cycling. Here, we review the iron-acquisition pathways cyanobacteria utilize for overcoming these challenges. As the molecular details of cyanobacterial iron transport are being uncovered, an overall scheme of how cyanobacteria handle and exploit this scarce and redox-active micronutrient is emerging. Importantly, the range of biological solutions used by cyanobacteria to increase iron fluxes goes beyond transport and includes behavioral traits of colonial cyanobacteria and intricate cyanobacteria?bacteria interactions.

Notes:

doi: 10.1016/j.tim.2021.06.001
Last updated on 06/24/2021