Publications

2016
Lerner, E., Ploetz, E., Hohlbein, J., Cordes, T. & Weiss, S. A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement-Förster-Type Resonance Energy Transfer (PIFE-FRET). J Phys Chem B 120, 6401–6410 (2016). Publisher's VersionAbstract
Single-molecule, protein-induced fluorescence enhancement (PIFE) serves as a molecular ruler at molecular distances inaccessible to other spectroscopic rulers such as Förster-type resonance energy transfer (FRET) or photoinduced electron transfer. In order to provide two simultaneous measurements of two distances on different molecular length scales for the analysis of macromolecular complexes, we and others recently combined measurements of PIFE and FRET (PIFE-FRET) on the single molecule level. PIFE relies on steric hindrance of the fluorophore Cy3, which is covalently attached to a biomolecule of interest, to rotate out of an excited-state trans isomer to the cis isomer through a 90° intermediate. In this work, we provide a theoretical framework that accounts for relevant photophysical and kinetic parameters of PIFE-FRET, show how this framework allows the extraction of the fold-decrease in isomerization mobility from experimental data, and show how these results provide information on changes in the accessible volume of Cy3. The utility of this model is then demonstrated for experimental results on PIFE-FRET measurement of different protein-DNA interactions. The proposed model and extracted parameters could serve as a benchmark to allow quantitative comparison of PIFE effects in different biological systems.
2014
Orevi, T., Lerner, E., Rahamim, G., Amir, D. & Haas, E. Ensemble and single-molecule detected time-resolved FRET methods in studies of protein conformations and dynamics. Methods Mol. Biol. 1076, 113–169 (2014). Publisher's VersionAbstract
Most proteins are nanomachines that are selected to execute specific functions and therefore should have some degree of flexibility. The driving force that excites specific motions of domains and smaller chain elements is the thermal fluctuations of the solvent bath which are channeled to selected modes of motions by the structural constraints. Consequently characterization of the ensembles of conformers of proteins and their dynamics should be expressed in statistical terms, i.e., determination of probability distributions of the various conformers. This can be achieved by measurements of time-resolved dynamic non-radiative excitation energy transfer (trFRET) within ensembles of site specifically labeled protein molecules. Distributions of intramolecular segmental end-to-end distances and their fast fluctuations can be determined, and fast and slow conformational transitions within selected sections of the molecule can be monitored and analyzed. Both ensemble and single-molecule detection methods can be applied for data collection. In combination with synchronization methods, time-resolved FRET was also used for studies of fast conformational transitions, in particular the folding/unfolding transitions.
Lerner, E., Orevi, T., Ben Ishay, E., Amir, D. & Haas, E. Kinetics of fast changing intramolecular distance distributions obtained by combined analysis of FRET efficiency kinetics and time-resolved FRET equilibrium measurements. Biophys. J. 106, 667–676 (2014). Publisher's VersionAbstract
Detailed studies of the mechanisms of macromolecular conformational transitions such as protein folding are enhanced by analysis of changes of distributions for intramolecular distances during the transitions. Time-resolved Förster resonance energy transfer (FRET) measurements yield such data, but the more readily available kinetics of mean FRET efficiency changes cannot be analyzed in terms of changes in distances because of the sixth-power dependence on the mean distance. To enhance the information obtained from mean FRETefficiency kinetics, we combined the analyses of FRET efficiency kinetics and equilibrium trFRET experiments. The joint analysis enabled determination of transient distance distributions along the folding reaction both in cases where a two-state transition is valid and in some cases consisting of a three-state scenario. The procedure and its limits were tested by simulations. Experimental data obtained from stopped-flow measurements of the refolding of Escherichia coli adenylate kinase were analyzed. The distance distributions between three double-labeled mutants, in the collapsed transient state, were determined and compared to those obtained experimentally using the double-kineticstechnique. The proposed method effectively provides information on distance distributions of kinetically accessed intermediates of fastconformational transitions induced by common relaxation methods.
2013
Nag, S., et al. A folding transition underlies the emergence of membrane affinity in amyloid-β. Phys Chem Chem Phys 15, 19129–19133 (2013). Publisher's VersionAbstract
Small amyloid-β (Aβ) oligomers have much higher membrane affinity compared to the monomers, but the structural origin of this functional change is not understood. We show that as monomers assemble into small n-mers (n < 10), Aβ acquires a tertiary fold that is consistent with the mature fibrils. This is an early and defining transition for the aggregating peptide, and possibly underpins its altered bioactivity.
Lerner, E., et al. Preparation of homogeneous samples of double-labelled protein suitable for single-molecule FRET measurements. Anal Bioanal Chem 405, 5983–5991 (2013). Publisher's VersionAbstract
Preparation of pure and homogenous site specifically single- and double-labelled biopolymers suitable for spectroscopic determination of structural characteristics is a major current challenge in biopolymers chemistry. In particular, proper analysis of single-molecule Förster resonance energy transfer measurements is based on the spectral characteristics of the probes. Heterogeneity of any of the probes may introduce errors in the analysis, and hence, care must be taken to avoid preparation of inhomogeneous labelled biopolymer samples. When we prepared samples of Escherichia coli adenylate kinase (AK) mutants labelled with either Atto 488 or Atto 647N, the products were spectrally inhomogeneous and the composition of the mixture changed gradually over time. We show here that the inhomogeneity was not a result of variation in the dye interaction with neighbouring side chains. Rather, the slow drift of the spectral characteristics of the probes was a characteristic of an irreversible chemical transformation probably due to the hydrolysis of the succinimide ring of the attached dye into its succinamic acid form. Overnight incubation of the labelled protein in mild basic solution accelerated the interconversion, yielding homogeneous labelled samples. Using this procedure, we obtained stable homogenous AK mutant labelled at residues 142 and 188.
2009
Huang, F., et al. Multiple conformations of full-length p53 detected with single-molecule fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. U.S.A. 106, 20758–20763 (2009). Publisher's VersionAbstract
The tumor suppressor p53 is a member of the emerging class of proteins that have both folded and intrinsically disordered domains, which are a challenge to structural biology. Its N-terminal domain (NTD) is linked to a folded core domain, which has a disordered link to the folded tetramerization domain, which is followed by a disordered C-terminal domain. The quaternary structure of human p53 has been solved by a combination of NMR spectroscopy, electron microscopy, and small-angle X-ray scattering (SAXS), and the NTD ensemble structure has been solved by NMR and SAXS. The murine p53 is reported to have a different quaternary structure, with the N and C termini interacting. Here, we used single-molecule FRET (SM-FRET) and ensemble FRET to investigate the conformational dynamics of the NTD of p53 in isolation and in the context of tetrameric full-length p53 (flp53). Our results showed that the isolated NTD was extended in solution with a strong preference for residues 66-86 forming a polyproline II conformation. The NTD associated weakly with the DNA binding domain of p53, but not the C termini. We detected multiple conformations in flp53 that were likely to result from the interactions of NTD with the DNA binding domain of each monomeric p53. Overall, the SM-FRET results, in addition to corroborating the previous ensemble findings, enabled the identification of the existence of multiple conformations of p53, which are often averaged and neglected in conventional ensemble techniques. Our study exemplifies the usefulness of SM-FRET in exploring the dynamic landscape of multimeric proteins that contain regions of unstructured domains.
Huang, F., et al. Time-resolved fluorescence resonance energy transfer study shows a compact denatured state of the B domain of protein A. Biochemistry 48, 3468–3476 (2009). Publisher's VersionAbstract
The B domain of protein A (BDPA), a three-helix bundle of 60 residues, folds via a nucleation-condensation mechanism in apparent two-state kinetics. We have applied a time-resolved FRET (tr-FRET) approach to characterize the ensembles of BDPA during chemical denaturation. The distribution of the distance between residues 22 and 55, which are close and separated by helices 2 and 3 in the native state, was determined by global analysis of the time-resolved fluorescence decay curves of the probes. Narrow distributions were observed when the protein was equilibrated in guanidinium chloride (GdmCl) concentrations below 1.5 M (native state, N) and above the transition zone at 2.6-3.0 M GdmCl (denatured state, D). Considerably broader distributions were found around the transition point (2.0 M GdmCl) or much higher GdmCl concentrations (>3.0 M). Comparative global analysis of the tr-FRET data showed a compact denatured state of the protein, characterized by narrow distribution and relatively small mean distance between residues 22 and 55 that was observed at mild denaturing conditions (<3 M GdmCl). This experiment supports the two-state folding mechanism of BDPA and indicates the existence of effective nonlocal, probably hydrophobic, intramolecular interactions that stabilize a pretty uniform ensemble of compact denatured molecules at intermediate denaturing conditions.