Kashi, Y., Nave, A., Darvasi, A., Gruenbaum, Y., Soller, M., & Beckmann, J. S. . (1994).
How is it that microsatellites and random oligonucleotides uncover DNA fingerprint patterns?.
Mamm Genome,
5(9), 525-30. presented at the 1994 Sep.
AbstractMinisatellites, microsatellites, and short random oligonucleotides all uncover highly polymorphic DNA fingerprint patterns in Southern analysis of genomic DNA that has been digested with a restriction enzyme having a 4-bp specificity. The polymorphic nature of the fragments is attributed to tandem repeat number variation of embedded minisatellite sequences. This explains why DNA fingerprint fragments are uncovered by minisatellite probes, but does not explain how it is that they are also uncovered by microsatellite and random oligonucleotide probes. To clarify this phenomenon, we sequenced a large bovine genomic BamHI restriction fragment hybridizing to the Jeffreys 33.6 minisatellite probe and consisting of small and large Sau3A-resistant subfragments. The large Sau3A subfragment was found to have a complex architecture, consisting of two different minisatellites, flanked and separated by stretches of unique DNA. The three unique sequences were characterized by sequence simplicity, that is, a higher than chance occurrence of tandem or dispersed repetition of simple sequence motifs. This complex repetitive structure explains the absence of Sau3A restriction sites in the large Sau3A subfragment, yet provides this subfragment with the ability to hybridize to a variety of probe sequences. It is proposed that a large class of interspersed tracts sharing this complex yet simplified sequence structure is found in the genome. Each such tract would have a broad ability to hybridize to a variety of probes, yet would exhibit a dearth of restriction sites. For each restriction enzyme having 4-bp specificity, a subclass of such tracts, completely lacking the corresponding restriction sites, will be present. On digestion with the given restriction enzyme, each such tract would form a large fragment.(ABSTRACT TRUNCATED AT 250 WORDS)
Frumkin, A., Pillemer, G., Haffner, R., Tarcic, N., Gruenbaum, Y., & Fainsod, A. . (1994).
A role for CdxA in gut closure and intestinal epithelia differentiation.
Development,
120(2), 253-63. presented at the 1994 Feb.
AbstractCdxA is a homeobox gene of the caudal type that was previously shown to be expressed in the endoderm-derived gut epithelium during early embryogenesis. Expression of the CDXA protein was studied during intestine morphogenesis from stage 11 (13 somites) to adulthood in the chicken. The CDXA protein can be detected during all stages of gut closure, from stage 11 to 5 days of incubation, and is mainly localized to the intestinal portals, the region where the splanchnopleure is undergoing closure. In this region, which represents the transition between the open and closed gut, the CDXA protein is restricted to the endoderm-derived epithelium. At about day 5 of incubation, the process of formation of the previllous ridges begins, which marks the beginning of the morphogenesis of the villi. From this stage to day 11 expression of CDXA is localized to the epithelial lining of the intestine. In parallel, a gradual increase in CDXA protein expression begins in the mesenchyme that is close in proximity to the CDXA-positive endoderm. Maximal CDXA levels in the mesenchyme are observed at day 9 of incubation. During days 10 and 11 CDXA levels in the mesenchyme remain constant, and by day 12 CDXA becomes undetectable in these cells and the epithelium again becomes the main site of expression. From day 12 of incubation until adulthood the CDXA protein is present in the intestinal epithelium. Until day 18 of incubation expression can be detected along the whole length of the villus with a stronger signal at the tip. With hatching the distribution along the villi changes so that the main site of CDXA protein expression is at the base of the villi and in the crypts. The transient expression of CDXA in the mesenchyme between days 5 and 11 may be related to the interactions taking place between the mesenchyme and the epithelium that ultimately result in the axial specification of the alimentary canal and the differentiation of its various epithelia. The main CDXA spatial distribution during morphogenesis suggests a tight linkage to the formation and differentiation of the intestinal epithelium itself. CDXA appears to play a role in the morphogenetic events leading to closure of the alimentary canal. During previllous ridge formation the CDXA protein is transiently expressed in the mesenchymal cells thought to provide instructive interactions for the regionalization and differentiation of the gut epithelium.(ABSTRACT TRUNCATED AT 400 WORDS)
Spann, P., Ginsburg, M., Rangini, Z., Fainsod, A., Eyal-Giladi, H., & Gruenbaum, Y. . (1994).
The spatial and temporal dynamics of Sax1 (CHox3) homeobox gene expression in the chick’s spinal cord..
Development,
120(7), 1817-28. presented at the 1994 Jul.
AbstractSax1 (previously CHox3) is a chicken homeobox gene belonging to the same homeobox gene family as the Drosophila NK1 and the honeybee HHO genes. Sax1 transcripts are present from stage 2 H&H until at least 5 days of embryonic development. However, specific localization of Sax1 transcripts could not be detected by in situ hybridization prior to stage 8-, when Sax1 transcripts are specifically localized in the neural plate, posterior to the hindbrain. From stages 8- to 15 H&H, Sax1 continues to be expressed only in the spinal part of the neural plate. The anterior border of Sax1 expression was found to be always in the transverse plane separating the youngest somite from the yet unsegmented mesodermal plate and to regress with similar dynamics to that of the segregation of the somites from the mesodermal plate. The posterior border of Sax1 expression coincides with the posterior end of the neural plate. In order to study a possible regulation of Sax1 expression by its neighboring tissues, several embryonic manipulation experiments were performed. These manipulations included: removal of somites, mesodermal plate or notochord and transplantation of a young ectopic notochord in the vicinity of the neural plate or transplantation of neural plate sections into the extraembryonic area. The results of these experiments revealed that the induction of the neural plate by the mesoderm has already occurred in full primitive streak embryos, after which Sax1 is autonomously regulated within the spinal part of the neural plate.