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I. INTRODUCTION 

The study of the dynamics and relaxation of simple chemical and photo- 
chemical reactions in solution is essential for the understanding of solution 
phase chemistry in its entirety. This study is part of an extensive experi- 
mental and theoretical effort aimed at gaining insight into the mechanism of 
photochemical reactions in solution. The strategy followed is to reduce the 
complexity of the mechanism by following the photodissociation dynamics 
in real time, so that the elementary steps can be studied sequentially. The 
photodissociation dynamics of I; in different solvents has been chosen as a 
test case for this study. The significance of this system rises from the abil- 
ity to observe coherent motion in the condensed phase on a sub-picosec- 
ond time scale, utilizing ultrafast pump-probe spectroscopy. This temporal 
resolution enables the separation in time of major events, which are basic 
to the understanding of condensed phase chemical dynamics, such as the 
intramolecular motion leading to bond cleavage, and energy flow between 
solute and solvent. In particular, direct access to the temporal evolution of 
photoproducts is made possible by these techniques allowing reconstruc- 
tion of the time-dependent electronic and nuclear density operator. In turn, 
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this extremely detailed description of dynamics provides a stringent testing 
ground of various theoretical descriptions of dissipative phenomena of highly 
excited molecules in solution. 

A. Experimental Background 

The photoinduced dynamics of I; are inferred from a combination of CW and 
pump pulse spectroscopic measurements. The parent triiodide ion is linear 
and symmetric in solution, and stable in many polar solvents. The absorption 
spectra of I; in solution consists of two bands, peaked at -290 and -350 
nm, whose spectral assignment has been the subject of debate. The most 
common explanation is that excitation leads to dissociative states correlat- 
ing with I;(2CL) in the ground state, and I (2P1/2,3/2) in either of its lowest 
spin-orbit states. The photoproduct’s diiodide electronic absorption spectrum 
is composed of two bands-one in the near UV, partly overlapping the I; 
absorption spectra, and the other in the near IR, centered at -740 nm. The 
separate spectral bands for reactant and product enable a direct interpretation 
of the pump-probe spectroscopy. The absorption spectrum of I; and I; are 
shown in Fig. 1. 

In the experimental system, solvated I; is subjected to an intense, short 
UV pump pulse, which dissociates it into I; + I*. A weak probe pulse in the 
visible region, in resonance with the nascent I; product absorption, interro- 
gates the photoproduct. A probe pulse in the UV region in resonance with 
the I; absorption interrogates the photoinduced dynamics on the ground elec- 
tronic surface of Is (Fig. 2). At the application of the pump pulse, a sud- 
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Figure 1. Absorption spectrum of 1; and I;, showing the two absorption bands of I; 

and of I;. 
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Figure 2. The energy bands associated with the 1; system. The UV pump initializes 
two separate processes. The first is photodissociation to I s ,  which is probed in the visible 
region. The second is the RISRS process, which is probed in the UV region. In the TRISRS 
experiment, the I i  photoproduct can be invigorated by a push pulse and probed again in the 
visible region. The dashed levels show other possible routes to pump probe experiments. 

den rise in absorption of the visible probe is observed, followed by a rapid 
reduction in absorption that lasts for nearly 300 fsec. During the following 
stages a slight increase of absorption is observed, which is accompanied by 
weak damped oscillations in the optical density [l]. The parameters of these 
oscillations strongly depend on the solvent (Fig. 3). The first instantaneous 
appearance of absorption is associated with the excited state of I;. The stage 
of rapid reduction in the optical density is assigned to the process of bond 
fission, and emergence of the nascent fragments. The spectral modulations 
are attributed to the product state, in which a coherent population oscillates 
in and out of resonance with the probe, meaning that the 1, vibration is 
synchronized with the bond cleavage. Different probe wavelengths will cor- 
respond to different phases in the vibration [Fig. 12(c)]. Experimentally this 
is evident through a ?r phase shift of the spectral modulations, when probing 
with a blue and red shifted pulses (Fig. 4) [l]. 

Probing in the UV range reveals a similar phenomena, assigned to res- 
onant impulsive stimulated raman scattering (RISRS) of the ground state 
population. This process can be visualized as a coherent “hole” created in 
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Figure 3. Transient transmission at short delays for three molecular solvents. 

the reactant by lost product. Since the “hole” is not stationary it oscillates 
with the ground surface frequencies (Fig. 5) .  The spectral modulations of the 
“hole” shed light on the excitation stage [2]. This vibration can be correlated 
to the Raman spectrum of I; (Fig. 6 )  [3]. 

The energetics of the photodissociation of 1, are such that 1.4 eV of excess 
energy has to be dissipated by the solvent, In an isolated system, kinematic 
considerations for a linear homonuclear triatomic molecule suggest that 5 
of the excess energy appears as vibration. The observed frequency of the 
modulations suggests a much lower vibrational excitation in the product, so 
part of this energy must be dissipated into the solvent during the dissociation 
stage. The rest of the excess energy will be dissipated by the product until 
thermal equilibrium is reached. 

In order to study the evolving vibrational product distribution, at different 
delay times after the pump pulse, a second intense “push” pulse is applied 
to the system. The push pulse is in resonance with the nascent 12 product 
absorption, and so initiates a transient RISRS (or TRISRS) process, which 
sets a coherent motion in the 1; ground state population [4]. This motion is 
observed by modulations in the absorption of a third, weak probe pulse. The 

I 
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Figure 4. Transient transmission measurements at two probe wavelengths shifted to the 
blue (620 nm) and to the red (880 nm) of the maximum absorption wavelength for the near IR 
band of 1;. The solvent is water. There is a T radians phase shift of the oscillations between 
the two probe wavelengths. 

parameters of the modulations (frequency, decay time) depend on the delay 
period between the pump and push pulses (Fig. 7), and so contain infor- 
mation about the vibrational dynamics of the transient species at the push 
instant. A schematic illustration of the possible pump-probe experiments is 
depicted in Fig. 2. 

The experimental investigation of the Is system is an ongoing story. Dis- 
sociation of 15 to I, has recently been induced on the lower absorption band 
of 350 nm showing similar qualitative behavior [5]. To study the influence 
of initial symmetry, the photodissociation of I2Br- to I, + Br [6] has been 
investigated and shows strong spectral modulations. The analysis presented 
here can also be applied to other photodissociation processes in solution, 
such as the dynamics of HgI,, which has been studied both in the gas phase 
[7, 81 and in solution [9, 101. Even at this stage, the degree of detail in the 
experiments requires an expansion of our theoretical descriptions and visual- 
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Figure 5. The resonant impulsive stimulated Raman scattering (RISRS) on 1; using a UV 
pump and probe pulse. The spectral modulation corresponds to the symmetric stretch motion 
of the ground surface. 

ization of the underlying chemical physics. This report concentrates on recent 
developments in this direction. 

B. Theoretical Background 

The dynamical process describing photodissociation in solution involves 
many degrees of freedom of the ion-molecule and the surrounding solvent. A 
full quantum mechanical simulation of the process is therefore prohibitively 
expensive. For this reason there are two types of approaches to a theoretical 
investigation of the process: 

Including all relevant degrees of freedom in an approximate fashion. 
Treating the problem exactly within a reduced dimensional model. 

To date the theoretical analysis of such systems has proceeded along 
both these paths. The first approach is usually formulated via the classical 
mechanics molecular dynamics (MD) setup [ 111. If nonadiabatic processes 
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Figure 6.  Resonant Raman spectra of 15 in three different solvents at 299 nm. v 1  is 
the symmetric stretch frequency; u 3  is the anti-symmetric stretch frequency, visible only in 
ethanol. 

are involved or nuclear quantum phenomena are important, different formu- 
lations of quantum-classical simulations have been developed [ 12, 13, 14, 
15, 16, 171. 

In this study, the second approach is followed. Even though the partici- 
pating iodine atoms are heavy and their behavior is expected to be classi- 
cal. the ultrashort nature of the matter-radiation interaction induces coherent 
superpositions of quantum states, which should be dealt with in a quantum 
mechanical framework. An effort was made to include the entire process 
in this framework. Especially important is the inclusion of the solvent as a 
quantum species (even if this is only achieved phenomenologically), as it 
has a profound effect both as a stabilizer and as a destroyer of this quantum 
coherence. 
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Figure 7. TRISRS data recorded at push delays of 2, 2.7 and 4 ps. 

The current work summarizes and expands previous efforts along this 
direction. The purpose is to supply a complete picture of the theoretical con- 
siderations that have been developed in analyzing the 15 photodissociation 
process. The previous theoretical efforts included quantum wave-packet sim- 
ulations of the photodissociation dynamics [ 1, 181, analysis of the dynamical 
“hole” in connection to the RISRS experiments [2, 191, and analysis of the 
TRISRS experiment utilizing a master equation simulation of the relaxation 
dynamics [4]. These results are now connected with solvent-induced relax- 
ation dynamics with the purpose of supplying a complete picture. 

C. Objective 

The main purpose of this work is twofold: 

0 To develop a complete and general method for a fully quantum mechani- 

To apply this method to a concrete experimental example, to unravel 
cal simulation of photodissociation processes in solution. 

the underlying chemical physics of the processes in the reaction 
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in solution. 

Some additional objectives are: 

Development of a simple uniformly convergent global propagation tech- 
nique applicable to both Hermitian and non-Hermitian operators. This 
makes it possible to elegantly calculate all the different types of dynam- 
ics involved using a single algorithm. 
Visualization of the quantum state of the system in a way that makes 
the different components of the dynamics obvious and intuitive. 
Explaining the influence of different dissipation mechanisms on the 
observed modulations of a nonharmonic oscillator. 

D. Outline of the Paper 

The guiding principles of the quantum simulation and analysis are the fol- 
lowing: 

The system can be represented by a state vector (in the pure case) or a 
density matrix (when dealing with a statistical ensemble). 
Forces acting on the system are formulated as operators, which induce 
a change in the state of the system as it evolves in infinitesimal time. 
These operators generate the dynamics of the system. 
Physical observables are formulated as operators, whose average values 
(with respect to the state of the system) are the observed measurements. 

In Section I1 the theoretical framework for the quantum mechanical sim- 
ulation of an impulsive photodissociation process in solution is developed. 
First, the system should be reduced to a numerically feasible quantum 
mechanical model, and its initial state must be defined (Section 1I.A). Sec- 
ond, the operator that generates the dynamics is constructed from the differ- 
ent forces acting within the system. By recursively applying the generator 
to the initial state, all the dynamical behavior can be reconstructed (Section 
1I.B). Last, the experimentally measurable operators (observables) are con- 
structed and their average value calculated (Section 1I.C). 

In Section I11 the above framework is applied to an experimental system: 
the photochemical decomposition of tri-iodide. 

The simulation is broken into four parts. In the first, the system is described 
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by a state vector and follows dissociation induced by the pump pulse (Sec- 
tion 1II.B). In the second and third, the system is described by a density 
matrix, demonstrating the influence of the solvent on the spectral modula- 
tions observed by two probe pulses: one in the UV (Section III.C), the other 
in the visible (Section 1II.D). In the last part, the effect of a delayed push 
pulse is studied (Section 1II.E). 

Finally, in Section IV, the main results are summarized, and potential 
extensions and limitations are indicated. 

11. METHODS 

In this section the theoretical framework for a quantum mechanical simu- 
lation and analysis of an impulsive photodissociation process in solution is 
described. 

A. Statics 

The representation of a complex quantum mechanical system is discussed. 
The state of the system should be described in a way that can be processed 
by computers and visualized by humans. Once this is achieved, the initial 
state of the system can be cast in this way, as the starting point for the next 
section. 

1. Describing the State of the System 

To describe a quantum mechanical state, the Hilbert space of all possible 
states should be identified by defining the relevant degrees of freedom. Then 
a basis for this space is chosen. By expanding the state as a linear combi- 
nation of the basis elements, it can be written as a vector (for a pure state) 
or a matrix (for a statistical ensemble). A discrete Fourier transfonn is used 
to change representations between conjugated basis sets. 

a. Degrees of Freedom. The full description of a photodissociating 
molecule in solution contains the following degrees of freedom (DOF): 

Radiation field (photons) DOF 
Nuclear and electronic DOF for every solvent atom in interaction with 
the photodissociating species 
Molecular DOF: 

- Electronic 
- Nuclear-translation, rotations, vibrations. 

Unlike classical mechanics, which is a local theory and therefore scales lin- 
early with the number of DOF, quantum mechanics is a global theory and 
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scales exponentially with this number. It becomes prohibitively time-con- 
suming to make a full quantum description of all DOF, and several approx- 
imations must be made to reduce the dimensionality of the problem. 

The first approximation is to separate the radiation field from the system, 
and treat it as an external time-dependent variation. The radiation field is 
taken to be a classical electromagnetic wave, using the rotating wave approx- 
imation (RWA). This is a good approximation considering the intensities 
usually used in photodissociation experiments. 

The most drastic reduction in dimensions is gained by separating the DOF 
of the solvent molecules from the DOF of the photodissociating molecular 
system, by changing the definition of the system from a closed one (sol- 
vent + solute) to an open system (solute only) surrounded by a bath (solvent 
only). This is done formally by taking a partial trace over the solvent DOE 
If no correlations exist between the solvent and solute, the reduced system 
would remain a pure state, but if such correlations exist, the partial trace will 
transform the reduced system into a mixed state, and measurements made 
on the reduced system alone will prove it to be a statistical ensemble. The 
approximation is not in the trace operation (which is exact, formally), but in 
the neglect of the correlations with the bath in the dynamics. The bath can 
be incorporated into the dynamics of the open system by the Liouville von 
Neumann equation, as a dissipative part formulated within the dynamical 
semigroup approach [20, 211. This approximation is good when the “mem- 
ory” of the bath for correlations with the reduced system is shorter than 
the timescale of interest. The partition between the system and bath modes 
is arbitrary. The quality of the approximation improves if more degrees of 
freedom are included in the primary system. In particular, in solution the 
“cage” degrees of freedom should be included [22] .  In practice, the number 
of degrees of freedom in the primary system is dictated by the computer 
resources available. 

In the molecular system, the Born-Oppenheimer approximation is used 
to separate electronic from nuclear DOF, again on the basis of different 
timescales of the dynamics, The much faster electronic movement creates 
an effective potential for each configuration of the nuclei, and can be treated 
as a potential surface in which the nuclei move. Photodissociation experi- 
ments involve more than one electronic state simultaneously. In this study a 
simplifying assumption is used in which only two electronic states are cou- 
pled by the pulse at one time, so the electronic DOF can be reduced to the 
formalism of a two-level system.’ This approximation is good as long as the 
electronic potential surfaces do not cross. 

’Using pseudo;spin notation, I-) and I + )  are the lower and upper stat:s o,f th? system, 
P- = /-)(-I and Pt = [+)(+I are tbe p!ojection operators on those states, S,, S,, S, are the 
angular momentum operators, and S- , St are the lowering and raising operators, respectively. 
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Finally, only the molecular nuclear DOF remain. Here, each system should 
be studied to obtain the relevant DOF by comparing the timescales of the 
different motions (for example, rotations are usually much slower than vibra- 
tions, and can be neglected from the calculations). 

b. Grid and Eigenstate Representations. Two different representations for 
the nuclear DOF are used throughout this work. The first representation is 
based on the Fourier method [23]. The state is taken to be a wave function 
in coordinate space (r), its values sampled on an evenly spaced grid. The 
spatial extent of the grid is chosen so that the wave function decays expo- 
nentially to zero outside its boundaries (finite support). Its density (Ar) is 
chosen to be such that the Fourier transform of the wave function decays 
exponentially to zero for absolute momentum values IpI greater than the 
Nyquist frequency pmax = h/2Ar (band limited). If these conditions are met, 
the grid representation is equivalent to expansion on a continuous basis of 
&functions in coordinat: space { Ir)}. This basis is a set of eigenstates of 
the coordinate operator R. 

The second representation is a discrete basis expansion. The basis is taken 
as a set of eigenstates of the molecular Hamiltonian operator for the bound 
ground state, denoted by Iu). Since u has the meaning of the energy level of 
a periodic motion (vibration or rotation), its conjugated variable (via Fourier 
transform) is the phase of the motion &. This pair is known in analytical 
classical mechanics as action angle variables. 

A unitary transformation matrix T : r -+ u is constructed by finding the 
grid representation of the eigenstate wavefunctions, using the relaxation 
method (Eq. 2.42): 

T(u, r) = u(r) = (ulr) (2.1) 

The transformations T and T' are used to convert states and operators 
between the two representations. 

c. State Vectol: The state of the system is represented simultaneously on 
two electronic surfaces: the initial ground surface and the electromagneti- 
cally coupled excited surface. When the system is a pure state Q, it can be 
represented as a pseudo-spin vector 

where Ic/g, $ e  are the nuclear wave functions on the ground and excited sur- 
faces, respectively. These wave functions can be expanded as a linear com- 
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bination of the aforementioned basis sets, and represented as a vector of 
complex numbers, which are the coefficients of this combination. If there 
are n degrees of freedom in the system, this vector will be n-dimensional. 
When expanded in coordinate representation, the coefficients will be denoted 
by $(r) = (rl$), and in eigenstate space by $(u) = (u l$).  

d. Density Matrix. When the system is a mixed state, it is no longer pos- 
sible to represent it as a single state vector. The most general representation 
is by a density matrix $ 

where jg, f i e  are the nuclear populations on the ground and excited surfaces, 
respectively, and ic is the nuclear coherence between these surfaces. These 
nuclear terms can be expanded as a linear combination of operators of the 
form 1 b) (b’ 1, where { I b)}  is a basis set. When expanded in coordinate repre- 
sentation, the coefficients form a matrix p(r, r’) = (rli lr’), and in eigenstate 
space p(u, u’) = ( u l i  Iu’). If there are n degrees of freedom in the system, 
those matrixes will be n2-dimensional. 

e. Conjugated Basis Sets. Given a representation of a state vector I $) or a 
density matrix in a basis set, it is easy to transform it to its representation 
in the conjugated basis and back by using a discrete Fourier transform. For 
the (r,p) pair 

and similarly for the (u,&) pair. These transformations can be calculated 
very efficiently using parallelized fast Fourier transform (FFT) algorithms. 
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2. Visualizing the State of the System 

To gain insight on the processes under study, it is important to be able to 
visualize the quantum mechanical state of the system. Two ways are pre- 
sented to extract graphical information from the nuclear parts of the system 
M g ,  J / e ,  P g 9 P e ) .  

4 Single Basis Picture. Each basis is a set of eigenstates { Ib)} of an operator 
0. Once a basis set is selected, and the state I$) is expanded in this basis, 
tFe probability of finding the result associated with Ib) in a measurement of 
0 is I$@)( .2 For a density matrix 6 ,  this probability is the diagonal element 
p(b,b). Plotting these probabilities gives a picture of the distribution with 
respect to a single basis: coordinate distribution for the { lr)} representation, 
momentum distribution for { Ip)}, energy distribution for { Iu)}, and phase 
distribution for {I&)}. 

Phase Space Picture. A broader picture can be constructed by crossing the 
information gained from two conjugated representations, revealing the cor- 
relations between the conjugated properties. This is done by constructing 
a phase-space picture of the density matrix,2 using the Wigner distribution 
function [24] 

) d Y  (2.8) 
1 1 

2n 2 2 
~ ( r , p )  = - J’ eiPYp ( r  - - y ,  r + - y 

The naive interpretation of W(r,p)[W(u, is the probability of finding the 
system simultaneously at position r and momentum p [energy u and phase 
4J. Care must be taken when using this interpretation, as there is no meaning 
for an area smaller than h in phase space, because of Heisenberg’s uncertainty 
principle. Therefore the meaning of probability is associated with integration 
on an area, not with a specific value (which can be negative!). In particular, 

(2.10) 

21n the case of a state vector I$), it can easily be transformed into its associated pure state 
density matrix I$) ($ I. 
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(2.11) 

(2.13) 

i.e., the projections of the Wigner distribution function on a basis give back 
the single basis picture. 

The two phase space pictures W ( r , p )  and W(u, 4") are complimentary, 
and reveal different aspects of the dynamics, so both are used side by side 
in this work. Fig. 8 shows the relation between the two coordinate sets. 

3. Initial States 
Before the application of the laser pulse, the system is in thermal equilibrium 
with the bath, which is a mixed state i .  Because of the large energy gap 
between electronic surfaces, at room temperature it resides entirely on the 
ground electronic surface: 

;e = 0 
i c = 0  

(2.14) 
(2.15) 

Figure 8. The Wigner distribution function W,(r,p) and W,(u,Cpu) of an artificially 
mixed state of 1; (this distribution is only for illustration, and bears no physical significance). 
Depicted are two totalIy dephased states (a, b centered at u = 80, 40), two coherent states (c, 
d centered at u = 20 and dU = n/3, 0) and the ground state (e) which is compact in ( r ,p )  but 
phase independent in (u,&,). The ridges of the two dephased states in ( r , p )  mark the energy 
iso-lines, which in ( ~ , 4 ~ )  are straight lines through the respective ridges at u = 40, 80. The 
angle between the peaks of the two coherent state: and the ground state in ( r , p )  is!he distance 
between their peaks in (u,  Cpu) .  Distances are in A, and the momentum units are A/ps. 
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which also means that no correlation exists between the ground and excited 
electronic surfaces. The statistical mechanical postulate that at equilibrium 
the phase of all quantum states is random, means that pg(u, u')  is diag~nal .~ 
In an open system, the diagonal elements obey the Boltzmann distribution: 

(2.16) 

where E, is the energy of the eigenstate Iu). 

B. Dynamics 

The dynamics of a quantum system is governed by one of the following 
equations: The Schrodinger equation, Eq. (2.17), for a state vector, and the 
Liouville von Neumann equation, Eq. (2.18), for a density matrix. 

(2.17) 

(2.18) 

where H is called the Hamiltonian operator, and 2 is the Liouvillian super- 
operator. In the case of a closed syst$m, the dynamics are purely Hamilto- 
nian, and 2 is derived directly from H 

E = 2 H ( &  = [H, ;] (2.19) 

In an open system, a dissipative term is added to the Liouvillian which 
describes the interactions with the bath 

This section deals with the dynamics originating from the above equa- 
tions. The structure of the Hamiltonian and the dissipative super-operators 
of the Liouvillian will be presented, followed by a numerical algorithm for 
propagating a state in time. 

3This can be seen by calculating the Wigner distribution function of a diagonal matrix 
p(u,u). This gives W(uo,&) = const, i.e., for a given eigenstate lug) ,  all phases are equally 
probable. 
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1 .  The Hamiltonian Operator 

The evolution of a state can be divided into periods that are influenced by 
the radiation field, and of field-free evolution. In the field-free periods, there 
is no coupling between the electronic components of the state, therefore each 
nuclear component can be propagated independently. In this case, two sep- 
arate Hamiltonians are used for the propagation of the ground and excited 
surface components. These are simply a sum of the kinetic and potential 
energy operators 

(2.21) 

where Vg(r) and Ve(r) are the ground and excited state potential surfaces, 
respectively. 

In the presence of the electromagnetic field, the two surfaces are coupled 
with the interaction of the field with the dipole moment operator 

H = Hg 0 P- + He 0 9, + E ( t ) i  8 s+ + E(t)*; 8 s- 

- - ( € H i  (2.22) 

A 

where Helg are the surface Hamiltonians, E(t) is the time-dependent field, and 
is the electronic transition dipole. Using the rotating-wave approximation, 

the field can be written as: 

where W L  is the carrier frequency of the laser, and E(t) is the envelope of 
the pulse. To avoid the fast oscillating carrier frequency, a rotating-frame 
approach is used. A rotation operator is defined to transform the state 

(2.24) 

(2.25) 

(2.26) 
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In this representation, the equation of motion for a state vector is4 

Thus, workiFg in the rotating frame, we can substitute the Hamiltonian of 
the system H with an effective Hamiltonian 

(2.28) 

In the effective Hamiltonian the potential surfaces are closer by an amount 
equal to the photon energy AWL, and the time dependence is only in the 
slowly varying pulse envelope. 

Calculating the Hamiltonian in Coordinate Representation. An efficient way 
for numerically calculating the operation of the Hamiltonian for a state in the 
coordinate representation is the Fourier method [23]. It is based on two facts: 
First, the Hamiltonian is composed of operators that are local in either the 
coordinate or momentum representations as in Eq. (2.21); second, there is an 
efficient way to transform a state between the two representations as in Eqs. 
(2.4-2.7). A local operator means that its representation in the appropriate 
basis reduces to a diagonal matrix. Specifically, applying the kinetic energy 
operator to a state in the coordinate representation requires: 

41t iskelpful to note that & , R ( O J  = (1  ; e',B)$,R(O) and [ $ - , R ( O ) ]  = (1  - 8 ' ) $ - R ( O ) ,  
so that [H, R(O)] = F(t);(e-"St + el's- - 2S,)R(O). 
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1 .  Transforming the state into momentum representation as in Eq. (2.4). 
2. Multiplying each momentum grid point p by p2/2m. 
3. Transforming the state back into coordinate representation as in Eq. 

Applying the potential energy operator to a state in the coordinate represen- 
tation is simpler: just multiply each grid point by the value of the potential 
at that point. 

(2.5). 

Calculating the Hamiltonian in Eigenstate Representation. In eigenstate rep- 
resentation the Hamiltonian takes the form a matrix. Its operation on a state 
vector or a density matrix is simply done by matrix-vector or matrix-matrix 
multiplication (for which optimized parallel algorithms exist). The Hamilto- 
nian matrix is constructed from the respective matrix elements 

H(u’, U) = ( u ’ ~ H ~ u )  (2.29) 

where the operation H ~ u )  is calculated in coordinate representation using the 
Fourier algorithm. 

2. The Dissipative Super-Operators 
The relaxation dynamics under study involves the dynamical behavior of a 
quantum mechanical molecular system in a solvent. On a purely Hamiltonian 
level, the overall system can be described by the Hamiltonian 

H = H i s  + H B  + HSB (2.30) 

Here fir, HB, and HSB stand, respectively, for system, bath and system-bath 
interaction. To obtain a traceable computation scheme the full dynamics is 
replaced with an appropriate reduced dynamics within the subspace of the 
quantum mechanical system. The interaction of the system with the bath can 
be represented in the form 

(2.3 1) 

where ri is the interaction strength, and qi, Bi are operators of the sys- 
tem and of the bath, respectively. By reducing these interaction terms to the 
system coordinates alone, the influence of the bath can be described by a dis- 
sipative term LO. Using general arguments based on positivity and causality, 
the semi-group analysis derives for the dissipative term LD in the form [20, 
21, 251 
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(2.32) 

where the parameters y i  are amplitudes describing the relaxa$on. This is a 
general formulation, and the parameters y and the operators V i  characterize 
the dissipation process. 

In analyzing dissipative processes in solution, there are three specific, 
important cases of Eq. (2.32) that should be considered: 

1. If V is unitary, Eq. (2.32) collapses to 

(2.33) 

This form is appropriate for what might be referred to as Poisson pro- 
cesses: i.e., for processes in which the system suffers isolated changes 
due to sudden interactions with the environment-the isolated binary 
collision ?ode1 is an obvious example. Under these conditions, the 
operator Vi becomes the S matrix of a collision with particles of the 
environment. The process is characterized by a sum of independent 
uncorrelated scattering events acting on the molecular subsystem at a 
rate yi. 

2. By setting i ' i  to be Hermitian, Eq. (2.32) becomes 

(2.34) 

The form is characteristic of a system strongly driven by a Gaussian 
random process. It can be derived directly for a quantum system cou- 
pled to a stochastic process [26], or driven by a &correlated random 
noise [27]. 

3. The third common case of Eq. (2.32) is of energy pooling. This case 
describes a relaxation through resonant energy transfer between tke 
system and bath. It is best described by choosing as the operator Vi 
in Eq. (2.32) as the raising or lowering operators of the systems man- 
ifold. Figure 9(a, b) demonstrates the energy relaxation of a harmonic 
oscillator starting from a coherent state. It should be noticed that the 
shape of the probability density stays compact throughout the process. 
The dephasing accompanying the energy relaxation can be interpreted 
as a geometric effect of increase of solid angle as the density moves 
toward the origin. 
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Figure 9. Relaxation dynamics of a harmonic oscillator. An initial coherent state posi- 
tioned at the outer turning point is propagated for one period. A stroboscopic display is shown, 
in which the first and last states are enhanced by a factor o,f 10. The upper panels show an 
energy relaxation process in Eq. (2.32), where the operator V = fi describes relaxation to zero 
temperature. The relaxation parameter y = 0 . 3 ~ ,  the oscillator frequency. A time interval of 
1/10w-' between snapshots is used. The left panels show the Wigner distribution W(r,p),  
while the right panels show the Wigner distribution W ( U , + ~ ) .  Notice in panel (b) that energy 
relaxation is accompanied by broadening in the phase distribution due to the approach of the 
distribution to the zero energy origin. The lower panels shows a combined dephasing, as in 
Eq. (2.35), and energy relaxation process, y d  = 0.015~ '. A time interval of 1/5w-' between 
shapshots is used. 

A pure dephasing process is defined by an energy conserving dissipation 
process. Based on the Poisson and Gaussian dissipation, a pure dephasing 
crocess can be constructed. In a Gaussian proceshs this ?mounts to choosing 
Vi to be a function of the Hamiltonian operator Vi =f(H). Keeping only the 
linear term leads to 

(2.35) 

Figure 9(c, d )  demonstrates a Gaussian dephasing process of the harmonic 
oscillator. This dissipative process can be derived from &correlated random 
fluctuations in the oscillator's frequency. 

A pur: dephasing roisson process can be constructed from the unitary 
operator Vi = exp(- ~ H T ) ,  leading to 

(2.36) 
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where 7 is a characteristic time parameter. The origin of this process can 
be elastic collisions of the system with solvent particles. Considering 7 to be 
from a Gaussian distribution, p(7)  = 1/& exp(-7*/20:), the dephasing 
generator becomes 

where the exponent is interpreted as a power expansion. The leading term 
of Eq. (2.37) is equivalent to Eq. (2.35); therefore only Gaussian dephasing 
processes will be considered in this study. 

The three dissipative processes are the building blocks for constructing 
the dissipative superoperator for the photo-induced dynamics of I;. 

A phase space approach to dissipative dynamics in solution and its relation 
to classical mechanics has been the subject of a recent effort by Kohen and 
Tannor [28]. 

An alternative to the present approach is to construct the dissipative super- 
operator through a second-order perturbation expansion in the system-bath 
coupling constant. This expansion relates the dissipative constants yi to 
Fourier transforms of bath correlation functions [29, 30, 21, 31, 321. This 
approach has been employed by Pugliano et al. [lo] to calculate the relax- 
ation coefficients in a master equation calculation for the vibrational relax- 
ation of IHgI. The correlation functions are then calculated by a MD sim- 
ulation of the solvent. For the 1; system, detailed knowledge of the bath 
correlation functions and the system-bath interactions is lacking. This justi- 
fies, at this stage, the phenomenological approach; in the future, the results 
can be related to detailed information on the solvent. 

3. The Evolution Operator 

From the differential equations in Eq. (2.17) and (2.18) an integral evolution 
operator and super-operator are constructed 

In the case of a time-independent Hamiltonian, the integration is simple 

C(t, t + At)  = e-kHAt (2.40) 

(2.41) - ‘ L A t  Q(t ,  t + At)  = e 
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and is exact for any At. A small variation onjhis equation is used to find the 
eigenstates of the ground state Hamiltonian H, I&) = E,  I&). Since {I&)} is 
a basis set, an arbitrary state can be written as I $)(O) = Enan I$,). Using an 
imaginary time step in Eq. (2.41) results in 

n 

(2.42) 

The decay of contributions from eigenstates with higher energy is exponen- 
tially faster than for ones with a lower energy, so Eq. (2.42) will quickly 
converge to 

which is the lowest eigenstate. Taking I$’) = I$) - (&,\$)l&,) as the initial 
state will result in the next eigenstate I$,), and so on. 

When the evolution is induced by the radiation field, the Hamiltonian 
becomes time-dependent and Eq. (2.41) has to be amended by time order- 
ing. The first-order Magnus expansion was employed [33] to approximate 
the evolution operator 

(2.44) i l ( , , t + A t ) = e x p [ - i  (It H(t’) At dt‘ ) -At ] .  

d ( t , t + A t ) = e x p  -- [ I, (ItrtAt At 

This amounts to averaging the Hamiltonian over each time step, so At should 
be small in comparison with the rate of change in the pulse amplitude. 

All the equations for the evolution operator and super-operator have the 
same functional form 

The basic idea underlying the propagation algorithm is that approximating 
a function of an operator is equivalent to approximating a scalar function 
in the domain of eigenvalues of this operator [34]. The scalar function is 
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approximated by the Newton interpolation polynomial: 

where the xj’s are interpolation points in which the value off(xj) is sampled, 
and the an’s are the expansion coefficients calculated to give f ( x j )  P(xj).  

If the approximation is good for all the scalars that are equal to eigen- 
values of an operator, then it is a good approximation for the function of 
this operator. For this procedure to work, a uniformly convergent method 
has to be applied to sum the power series into the different final results. The 
Chebychev polynomial expansion [35] has uniform convergence properties 
and therefore has been utilized in both time-dependent and time-independent 
calculations, but its interpolation domain lies on the real axis, so it has a very 
limited support for non-Hermitian operators. Since the dissipative terms in 
the Liouville von Neumann equation are anti-Hermitian, a different method 
had to be developed, in which the interpolation points reside in the com- 
plex plane. This method is the Newton interpolation with Leja interpolation 
points [18], which is detailed in the Appendix. 

Once the interpolation points are chosen and the coefficients calculated, 
the function of the operator can be calculated by recursively applying the 
operator to an initial state, and summing the resulting polynomial. For exam- 
ple, if 2. is the time-independent Liouvillian of the system, and 

for all z, residing in the complex eigenvalue range of 2, then 

i ( t  + A t )  = ??(t, t + At)C(t) = P ( i > i ( t )  (2.49) 

C. Interpretation 

The primary interrogation tool of the photodissociation dynamics is 
light-matter interaction. A combination of CW and pump-probe spectro- 
scopic experiments are then to be used. Theoretically, physical measurements 
applied to the system can be calculated through the use of observables, which 
are operators associated with the measurement process. The ability to sep- 
arate the dynamics from the observation is based on the use of weak elec- 
tromagnetic interactions, for which the perturbation of the system is lim- 
ited. This section describes the construction of the relevant observables for 
a pump-probe photodissociation experiment. 
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1. The Impulsive Excitation Picture 

When the pulse is short on the timescale of nuclear motion, and long com- 
pared to the timescale defined by the electronic excitation, the construction of 
observables associated with this pulse can be simplified using the impulsive 
two-level coordinate-dependent approximation. 

a. The Coordinate-Dependent Two-Level Approximation. The starting 
point is a rearrangement of the effective Hamiltonian [Eq. (2.28)] defining 
the difference potential 

This leads to the modified Hamiltonian 

(2.51) 
A 0  

W -A 0 Hg 

where the time-dependent transition operator W = -?I;. is also defined. This 
partition of the effective Hamiltonian is the basis for the definition 

using spin notation 

HI = H, 8 i HZ = i\(r) 8 i H 3  = 2W(r, t) 8 gx+2&r) 8 iz (2.52a) 

The original Hamiltonian has been partitioned into a direct product of spa- 
tially dependent operators and spin operators. 

The partitioning of the Hamiltonian is the basis for approximating the 
evolution operator that propagates the wave function for a pulse duration tf , 
as a product of terms 

The approximation is based on the Trotter formula [36]. Its use is well known 
in the split operator propagation method for the time-dependent Schrodinger 
equation introduced by Fiet and Fleck [37, 381. The approximate evolution 
operator in Eq. (2.53) is used to propagate an initial wave function that is 
exclusively on the ground surface, for a pulse duration tf 
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(2.54) 

4 simple case is of an initially stationary wave function at t = 0, i.e., 
Hgt,bg(r, 0) = Eg+g(r, 0). The operation of the propagator eCHlf on 9(0 )  will 
lead to a global phase shift 

- i HZtf The next step is to propagate with e f i  

(2.56) 

The operator exp(-i A(r)tf) causes a momentum change in rc/g, since A(r) 
is a function of r .  

The final step is to operate withAexp(-iH3tf) on *2. Since H3 is not 
diagonal in the g/e representation, H3 is diagonalized for each position r. 
At this point it is assumed that the field envelope Fais constant. This amounts 
to a square pulse shape. For a nonsquare pulse, W(r,t) is approximated as 
[39]: 

(2.56a) 

Closed form expressions can be obtained also for E(t) = Fsech(t)/.r [40]. The 
eigenvalue equation of the Hamiltonian H3 becomes (X + A)( h - A )  - W = 0, 
leading to 

X l , J  = +Jizz (2.57) 

The diagonalization matrixes can be described as a rotation matrix for each 
position r [41] 

(2.58) 

where: tan B(r) = y. With this form the propagator for each spatial point r 
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becomes 
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(2.59) 

For convenience the spatial dependent Rabi frequency is defined as 

1 
tt 

(2.60) (r) = - d W 2  + A(r)2 

and also the angles 

(2.61) 
A 

cos e = 
I WI sin 8 = diK-3’ m 

Combining the successive contributions of the propagator in Eq. (2.53) 
onto the initial wave function leads to the wave function at t = tf after the 
pulse. The ground surface wave function becomes 

$#, f f )  = e-iEg‘fe-i4‘f [cos(Q tf ) + i cos 0 ~in(Qtf)]$~(r,  0) (2.62) 

and the excited surface wave function becomes 

where 2) f f  + - 7r 

2 
(2.63a) 

Equations (2.63) and (2.62) constitute extremely useful interpretive tools for 
analyzing impulsive pump-probe experiments. 

b. The Ground Suq$ace Dynamical “Hole” and the Excited Suq$ace DensiQ. 
We now consider the amplitude of the wave function in coordinateAspace. 
The amplitude transferred to the excited surface, A2(r) = sin2 8 sin2<ntf), is 
missing in the ground surface creating a dynamical “hole.” Once created, the 
“hole,” which is not stationary, evolves, due to ground surface dynamics. The 
RISRS experiment monitors by a probe pulse this photo-induced dynamics. 

In momentum space the picture is more involved. Due to cycling of ampli- 
tude between the ground and excited surfaces the wave functions gain a coor- 
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dinate dependent phase that induces a momentum kick 

(2.64) 
1 1 .  
A A 

9, = -- E,tf - - At, + arctan[cos O(r) tan(Q(r)t,)] 

and 

(2.65) 

On the excited surface, the wave function gains momentum linearly in time 
due to the coordinhate-dependent phase ae(r). Since for mo;t photodissoci- 
ation situations aA/ar is negative, the momentum kick 6P = Aa9//ar is 
positive. 

A more involved situation exists on the ground surface. For short times 
the change in momentuq is zero, since the positive momentum change of 
the term that is linear in A in Eq. (2.64) is exactly compensated by the next 
term. This is in accordance with the Frank-Condon picture, in which the 
momentum of the ground surface is not affected by transfer of population to 
the excited surface. Far from resonance, the coordinate-dependent Rabi fre- 
quency Q becomes very large, leading to rapid cycling. This rapidly changes 
the direction of the momentum shift from negative to positive, leading to the 
average asymptotic momentum shift of 

w=t, a A  6 P = - -  - 
2 d  a7 

(2.66) 

This expression has also been obtained by Cina and Smith [42], using the 
classical Frank approximation. Detuned from resonance, this momentum 
shift provides the excitation interaction for impulsive stimulated Raman scat- 
tering (ISRS) [43]. On resonance (r = rh), the cycling is slower and can lead 
first to a significant negative momentum shift. A semiclassical estimation of 
the momentum kick becomes 

This negative momentum kick causes the “hole” to move in the positive 
direction of bond extension. For more intense pulses where fl (rh) . tf exceeds 
n, the momentum kick changes sign and becomes positive. An interesting 
effect is obtained for a 2n pulse, where the “hole” in coordinate space fills 
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up, and a significant positive momentum change is acquired by the ground 
surface wave function. 

A more rigorous definition of the dynamical “hole” is obtained by an 
orthogonal decomposition of the ground surface density ; ( t f )  into a static 
part and a dynamical part 

where ;s = Z-’ exp(-PH,) is the equilibrium stationary density operator, 
and the scalar product between operators is defined as (A. B) = t r{At B}. 
This definition casts the full dynamics of the density operator, including the 
dissipative relaxation, and leads to full thermal equilibrium. For the RISRS 
experiment this is usually the initial density operator &. The decomposition 
can be done by requiring that the dynamical part ,6d be orthogonal to the 
stationary density is. This leads to the overlap functional 

(2.69) 

Since the decomposition of Eq. (2.68) is linear, all the dynamical observa- 
tions depend only on i d  the “hole” density. It is important to notice that the 
dynamical “hole” is not a pure state, even when pure wave function dynam- 
ics can be applied [2]. 

A quantitative measure of the created coherence is an important tool in 
the analysis. The integrated square density of the dynamical “hole” creates 
a natural definition of this measure 

(2.70) 

E 

4 

E 

5 -  

Figure 10. The ground surface wave packet immediately after a short 15-fs pulse, show- 
ing the creation of the “hole.” The left panel shows the absolute value of the wave function 
in position space for 7r (solid) and 27r (dashed) pulses. The right panel shows the same wave 
function in momentum space. The gray background shows the wave function prior to the appli- 
cation of the pulse. 
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The coherence measure can be interpreted as the self-dynamical expectation 
of the dynamical “hole” i d .  

2, Power Absorption of a Laser Pulse 

The main observable in a pump-probe experiment is the power absorbed 
from the pulse. With the time-dependent Hamiltonian, Eq. (2.22), the power, 
or change in energy becomes [441 

(IC/elillC/g) - ) = -2Re ( ( p  A OS,) A - 2 )  (2.71) d t  d t  

where the last line is appropriate for a density operator description. 

the change in population [44, 451 
Under the conditions of the RWA, the power is linearly proportional to 

(2.72) 

The integrated power per pulse, which is the total energy absorbed, can be 
related to the change in population 

r.1 

AE = J T dt’ = -AwAN, 
0 

(2.73) 

a. Transient Absorption of a Weak Pulse. The power absorbed by a probe 
pulse can be calculated using the linear relation between the integrated power 
and the change in population Eq. (2.73), using the impulsive two-level coor- 
dinate dependent approximation (Section II.C.1). In most cases a weak probe 

Figure 11. The dynamical “hole” t d  in I;-shown as a Wigner distribution in phase space. 
The left panel shows the dynamical “hole” created by a T pulse. The point of resonance is in 
middle of the absorption band. Qualitatively the shape of the “hole” does not change up to 
intensities of 7r. Notice that the hole is centered at p = 0. The right panel shows the dynamical 
“hole” for 271. pulse. Notice the rotation in phase space in the “hole’s” shape from position to 
momentum. 
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pulse is used (W cc A(r)), so the population transfer at a position r after a 
time of rpr becomes 

This expression can be rearranged and written as a sinc window function 
W(r,  r )  = P(r), which is a diagonal operator in coordinate space: 

(2.75) 

To obtain the absorption signal at time t ,  the local population at each r should 
be multiplied by the transfer probability and integrated over all r ,  to give the 
total population transfer AN,(t). This amounts to using the window function 
as the observable which measures the total power absorption of the pulse: 

For a short probe pulse within the impulsive limit, the observation window 
is influenced by electronic dephasing. A modified window operatorzan be 
calculated by simulating the absorption process starting from ;, = I using 
the full dynamics, including dissipation. Projecting out the excited surface 
density operator ie and propagating backward in time to>he instant of the 
peak of the pulse defines the modified window operator W. 

b. Other Transient Spectroscopies. A different type of probe is obtained, 
if, after the pulse propagates through the medium, it is dispersed and its 
spectrum is compared to the spectrum of a reference pulse [46, 471. In gen- 
eral, this problem is quite difficult, since it requires the solution of both 
Maxwell’s and Schrodinger’s equations simultaneously. The difficulty is less- 
ened if the absorption process takes place in a thin sample and the pulse is 
only slightly depleted. In addition, due to fast electronic dephasing in solu- 
tion, it is assumed that the dipole created by the pump pulse has decayed 
by the time the probe pulse has arrived. In order to relate the observation 
to a molecular property, the absorbed power represented by Eq. (2.73) is 
integrated. The total amount of energy absorbed from the field becomes 
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Defining the Fourier transforms of the instantaneous dipole expectation 

and using the Fourier transform of the field E(w), the energy absorption can 
be written as [48] 

00 

A E ~  = - 2 ~ e  (J iw(b  €3 S+)(w) - E * ( w )  dw ) (2.79) 
-m 

This suggests the decomposition of energy to frequency components 

(2.79a) 

Normalizing each frequency component to the energy density of the pulse 
leads to the expression 

This expression resembles the one presented by Pollard and Mathies [46], 
and Yan and Mukamel [49], but its derivation is not based on a perturbation 
expansion, and therefore it is correct for strong Gelds. The main ingredient 
of the calculation, the instantaneous dipole (b €3 S+) ( t ) ,  is extracted directly 
from the numerical integration of the Liouville von Neumann equation. 

Another option for probing the transient motion is to collect the dispersed 
emission after the probe has propagated through the medium. The emission 
is a consequence of the induced dipole or polarization created by the probe 
pulse, which continues to radiate even after the pulse is over. The erpission 
is proportional to the acceleration of the dipole observable a'(; 0 S , ) / d t 2  
[48]. This leads to the expression for the dispersed emission 

Since interest is in the transient features, the static dispersed emission is 
subtracted from the transient one. 
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The same molecular quantity, the instantaneous dipole, governs all 
light-matter interactions. This is also true if the instantaneous dipole main- 
tains coherence up to the time of the probe pulse [50, 51, 52, 45, 531. The 
analysis of this quantity makes it possible to interpret coherent pump-probe 
spectroscopies. The key point is that any full numerical simulation of a 
pump-probe sequence automatically imposes a phase-locked pulse sequence. 
As a result, the instantaneous dipole induced by the first pulse can interfere 
with the second pulse. This is the basis of the heterodyne experiment [54, 
551. In a recent paper, Domke [56] has shown how to derive the observables 
of four-wave mixing using a nonperturbative approach based on the calcu- 
lation of the instantaneous dipole. Due to fast electronic dephasing of the 
molecular 15 in solution, this type of spectroscopy has not been applied. 

3. Absorption Spectrum 
The initial conditions for the absorption spectrum are that all amplitude is 
in an eigenstate of the ground electronic surface. The main assumption is 
that the field is weak and that only a very small fraction is transferred to 
the excited surface. Under these conditions the absorption spectrum can be 
derived directly from the transient power expression Eq. (2.7 1) [57]. With 
these assumptions, the evolution of the wave function on the ground surface 
is not altered by the field 

(2.82) 

where E, is the ground state energy. The excited surface wave function is 
obtained using the time-dependent first-order perturbation theory 

Using the RWA-CW field e(t) = EoeeiWL', Eqs. (2.82) and (2.83) are inserted 
into the power expression Eq. (2.71) 
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By changing the integation variable from t - 7 to t ,  extending the integration 
to t -w,  and using the time reversal symmetry the well-known formula 
obtained by Heller [58] from the time-independent Golden-Rule expression, 
Eq. (2.85) is obtained the expression 

where l$( t ) )  = i l $ g ( t ) )  is the wave function propagated on the excited sur- 
face, oL is the laser frequency, and hw is the energy of I gg). The absorption 
cross section is proportional to the Fourier transform of the autocorrelation 
function. The steeper the excited surface is, the faster this function decays 
to zero, and the wider will be its Fourier transform. This correlates the slope 
of the excited surface at the Frank-Condon region with the bandwidth of the 
electronic spectrum. 

Equation 2.85 can also be written as 

(2.87) 

The observable fi  is a function of the Hamiltonian of the excited surface, 
and is interpolated using the Newtonian interpolation method described in 
Appendix A. 

4. Raman Spectrum 

In a similar way, the Raman cross section for an induced transition from an 
initial state I $J to a final state I $f) is 

where W L  is the laser frequency, and IRi (w~))  is called the Raman wave 
function. 

where r(t) is a phenomenological lifetime. If the energies of 1 $i) and l $ f )  are 
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tzwi and hwf , respectively, the frequency of the scattered light resulting from 
this transition is w,  = w~ + w i  - wf .  The operator that creates the Raman wave 
function from l$J, is a function of the Hamiltonian of the excited surface, 
and is interpolated using the Newtonian interpolation method described in 
Appendix A. 

D. Method Summary 

The methods described follow orthodox quantum mechanics and include 
three parts: the state vector, the dynamical evolution, and the observables 
represented by operators. The computational methods supply a phase space 
picture of the state, based on a discrete representation. The state is followed 
in time by constructing the evolution operator approximated as a polyno- 
mial. The dynamics evolution includes the radiation field as a time-depen- 
dent influence, as well as the dissipative influence of the solvent. Finally the 
relevant spectroscopic observables are cast into the form of observables that 
can be directly calculated from the state of the system. 

111. APPLICATION 

To gain insight into the photodissociation event of 15, the calculation fol- 
lows the sequence of events in time, from the initial thermal state on the 
ground surface to the final product 1, + I. Due to the heavy mass of iodine, 
quantum calculations are computationally intensive; therefore the computa- 
tional model has to be carefully constructed. The strategy followed is to first 
use wave-packet simulations. These calculations serve as a guide to Liou- 
ville dynamics, which include the dissipative solvent effects. Following the 
methods developed in the previous section, a model of the encounter is set, 
involving a limited number of degrees of freedom. Within this model a fully 
converged quantum mechanical calculation is carried out by the following 
sequence: 

An initial state is prepared. 
Evolution in time is simulated. 
Experimental measurements are predicted. 

The simulation is broken into four parts. In the first, the act of excitation of 
I; by the pump pulse leading to dissociation is studied. The same pump pulse 
photo-induced ground surface dynamics is studied in the second part. In the 
third part, the system studied is the hot and coherently vibrating nascent 12, 
interrogated by a delayed ultrafast probe pulse. In the last part, the dissipa- 
tion of the excess vibrational energy from the system is investigated by a 
delayed push pulse, acting on the spectroscopically decayed 1, population. 
Insight into the photodissociation process can be obtained by comparing the 
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calculated observables with the experiment. A single set of potential energy 
surfaces unifies all calculations. 

All the parameters used in the simulations can be found in Appendix €3. 

A. Electronic Potential Energy Surfaces 

Common to all types of simulations are the electronic potential energy sur- 
faces and transition dipole functions, which interpolate smoothly from reac- 
tant I; to product 12 and to the excited I; used for interrogation. 

The solvent free ground surface potential of I; can be calculated to rea- 
sonable accuracy by ab initio methods [Fig. 12(a)]. The colinear structure 
of the molecule is reconstructed and the three vibrational frequencies calcu- 
lated are within 1% of the experimental values [59].  In the calculation, the 
potential was fit to a harmonic potential in the symmetric (111 cm-') and 
antisymmetric (143 cm-' ) stretching modes. This description is appropriate 
for low vibrational excitation energies, as in a thermal distribution at room 
temperature. If recombination events are studied, where high excitation of 
the ground surface vibration is anticipated, the present description should be 
replaced with the full ab initio potential. 

The experimental change in these vibrational frequencies for different sol- 
vents is also within 1%. Nevertheless the antisymmetric stretch vibration is 
accompanied by a charge redistribution of the molecular ion. In polar sol- 
vents this charge redistribution may lead to loss of symmetry, which is rep- 
resented by a double well potential. 

The excited electronic energy surfaces of I; are very difficult to calculate. 
Preliminary calculations show a multitude of excited surfaces [60], which 
split further due to spin-orbit interactions. As an interim solution, the upper 
excited potential energy was fit to a LEPS functional form using the absorp- 

. ,  

Figure 12. Approximate potential surfaces for the I; -. 1, reaction. (a) A contour map of 
the ground binding state of I; (From Yamashita et al. [60]). The symmetric and antisymmetric 
stretching mode coordinates are shown. (b) The excited dissociative state of I;, with two 
symmetrical exit channels leading to I; + I* (the LEPS potential is shown). (c) The potential 
curves for the ground and excited states of I;. The arrows represent the probe resonance, 
which is blue- (solid arrow) and red- (dashed) shifted from the center of absorption. (a) and 
(b) are drawn in Jacoby mass-scaled coordinates (Eq. 3.4). 
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tion spectra and the asymptotic I; potentials, [ l]  [Fig. 12(b)]. The absorption 
spectrum of 15 shows only a small variation in different solvents, in accor- 
dance with ab initio calculations, which show a very small change in the 
charge distribution of 13 upon excitation. 

The ground and excited surface potentials of I; were taken from the gas 
phase experiments [61]. The potential energy surfaces have been calculated 
extensively and show good agreement with the experimental results [62]. 
The solvent can induce a charge distribution symmetry breaking of I; that 
can modify these potentials significantly. Nevertheless, there is only a small 
observed solvent dependence of the absorption spectrum of I;. A more elabo- 
rate treatment would include a solvation coordinate also [63,64]. The ground 
and excited potential energy surfaces of 12 used in the present calculation 
are shown in Fig. 12(c). 

B. Photodissociation of I,: The “Pump” Pulse 

The initial stage of the photolysis is now studied, when the electromag- 
netic perturbation initiates the photodissociation journey of the molecule. 
The impulsive nature of the excitation creates conditions at the very begin- 
ning of the trip, whose consequences are still evident much later down the 
road. 

1. Statics 

Degrees of Freedom. The model is based on the fact that 13 is a linear tri- 
atomic molecule. The calculation therefore concentrates on the symmetric 
and antisymmetric vibrational modes of the molecule, denoted rs and r,, 
respectively. As no bending mode overtones appear in the experimental res- 
onance Raman spectrum, it is concluded that bending is not a major compo- 
nent at the early stages of the reaction coordinate, and the bending modes are 
excluded from the calculation. The rotation of the molecule is also neglected 
since a separation of timescales exists between the rotational and vibrational 
motion. These two global coordinates are transformed into atomic coordi- 
nates 

These are further transformed into mass-weighted Jacoby coordinates 
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This last set of coordinates is asymptotically equivalent to 1; vibration and 
relative translation of the photofragments. In these coordinates, the equations 
of motion for the three atoms reduce to a single equation for a pseudoparticle, 
with the mass of an iodine atom, moving in a two-dimensional world. In 
the Jacoby representation, the symmetric stretching mode is a line in the 
direction of 30" from the x axis, and the antisymmetric stretching mode is 
perpendicular to it (see Fig. 12). 

Initial State. A density matrix in a two-dimensional world is a four-dimen- 
sional entity. The amount of CPU time and storage required for a four-dimen- 
sional simulation prohibit such calculations. To keep the calculation on a 
two-dimensional scale, the interaction with the solvent is neglected, so the 
dynamics do not mix pure states, and a state vector representation is ade- 
quate. This approximation is reasonable only for very short times, before the 
photofragments hit the walls of the solvent cage. 

At room temperature, many of the excited vibrational states of the 1, 
ground electronic surface are populated. The initial density matrix in Eq. 
(2.16) is divided into its pure state components, which are the eigenstates 
of the ground surface, each multiplied by a Boltzmann weight according to 
its energy. The simulation starts with an initial set of these wave functions, 
represented on a two-dimensional grid and propagated independently. At the 
end of the simulation, each wave function is transformed back to a density 
matrix representation of a pure state, and the sum of these matrixes gives 
the final mixed state. 

The ground electronic surface is considered to be harmonic in both vibra- 
tional modes, so the grid representation of the initial wave functions was 
calculated analytically. These wave functions will be denoted by their sym- 
metric and antisymmetric excitations, respectively, i.e., I u l , ~ )  means a state 
with one quantum in the symmetric stretching mode and at ground state with 
respect to the antisymmetric motion. The initial states are shown in Fig. 13. 

All vibrational levels up to an energy of 300 cm-' were calculated. This 
means that at room temperature 61% of the population was accounted for in 
the simulation. It will be shown that this subset of the population is dominant 
in the experimental observations (see Tables I and 11). 

2. Dynamics 

a. Electromagnetic Field. The laser pulse plays a major part in setting the 
dynamics in motion, by coupling the two surfaces, thus creating a popula- 
tion on the excited surface and leaving a population vacancy on the ground 
surface (to be studied in the next section). The excitation is tuned to the 
I; -+ 1, + I* electronic transition, slightly red-shifted from the center of 
absorption at 308 nm. It is taken to be circularly polarized, according to 
the rotating-wave approximation. In the resulting effective Hamiltonian of 
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Eq. (2.28) the excited state potential crosses the ground potential surface at 
the line of resonance, and the coupling between the shifted surfaces E(t)l;. 
becomes a slowly varying Gaussian field of 60 fs FWHM (full width half 
maximum). 

b. Propagation Results. The initial states (Fig. 13) were propagated using 
the time-dependent evolution operator in Eq. (2.45) with a time step of At 
= 5 fs for a total time of tf = 240 fs. Under the experimental conditions, 
the intensity is large enough that a significant fraction of the population is 
transferred to the excited surface. Considering individual initial vibrational 
states, the fraction transferred depends primarily on the symmetric stretch 
excitation. This effect is summarized in Table I. The maximum quantum 
efficiency with a 308-nm pump is for u = 1 in the symmetric stretching mode. 
The pulse is not exactly in resonance with the maximum thermal absorption, 
which occurs at the peak of the I U O , ~ )  eigenstate [Fig. 13(a)], but coincides 
with the upper right lobe of the Iul,o) state [Fig. 13(b)]. Further excitation 
of the symmetric stretching mode will move the main population away from 
the line of resonance [Fig. 13(d)]. The Boltzmann weights of more excited 
states further lowers their contribution in the final product (Table 11), so the 
initial states used are sufficient to describe the experimental results. 

The pump pulse used in the experiment was long in comparison to dynam- 
ics in the symmetric stretching mode on the excited surface. Significant cou- 
pling is present for a duration of -180 fs [Fig. 14(a-d)]. This means that pho- 
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Figure 13. 
Iuo,o), Iui,o), Iuo, I) ,  Iv2,0), ( u i ,  I) ,  I u o , ~ ) ,  respectively. The scaling is in angstroms. 

Contour maps of eigenstates of the ground electronic surface. ( a ) - ( f )  are 
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TABLE I 
The Influence of the Initial Vibrational Excitation 

on the Population Transferred 
to the Excited Surface' 

S 0 1 2 3 
A 

0 18.6% 41.6% 27.3% 5.0% 
1 17.1% 40.4% 
2 15.8% 

S = excitation in the symmetric stretch mode. 
A = excitation in the anti-symmetric stretch mode. 

todissociation dynamics proceeds while amplitude is still fed to the excited 
surface. For this pulse duration, the impulsive approximation (Section 1I.C. 1) 
has only qualitative meaning. Most of this motion is along the symmetric 
stretching mode as opposed to dynamics leading toward bond cleavage, i.e., 
motion along the antisymmetric stretch, which is small (see Figure 12a). 

Once the pump pulse is over, the dynamics on the ground and excited sur- 
faces decouple. Since the focus of the calculation is shifted to the products, 
free propagation of the wave function is carried out on the excited surface 
alone. The excited wave functions I ~ & ~ ) ( t f )  induced by the excitation pulse 
from the initial state I$g)(0) = Ius,,), were used as the initial states. The 
propagation was carried out by the time-independent evolution operator in 
Eq. (2.41) generated by a time-independent Hamiltonian Eq. (2.21) with a 
time step of At = 2000 a.u. Intermediate 50-fs snapshots of the evolving 
wave functions were stored. Since both potentials are symmetric along the 
atomic coordinates [Eq. (3.2)], so are all the wave functions, throughout the 
propagation. This means that it is enough to follow the dynamics of just one 
of the product channels, leading to IA + (I&)-. To save memory and com- 

TABLE I1 
The Boltzmann Distribution of the 

Initial Vibrational Statesa 

S 0 1 2 3 
A 

0 20.5% 12.0% 7.1% 4.1% 
1 10.3% 6.0% 3.5% 2.1% 
2 5.2% 3.0% 1.8% 1 .O% 
3 2.6% 1.5% 0.9% 0.5% 

S = excitation in the symmetric stretch mode. 
A = excitation in the anti-symmetric stretch mode. 
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Figure 14. Propagation of the wave packet during a 60-fs pump pulse. The initial state 
shown is (uo, 1). (a) The wave function on the ground state at the very beginning of the pulse. 
(b) The excited surface wavefunction. (c) The wave function at the peak of the pulse. (d )  The 
wave function after most of the pulse is over. The scaling is in angstroms. 

putation time, and this exit channel is fully described by the grid. The other 
channel is blocked by an absorbing boundary condition5 [65], which makes 
it possible to take the grid twice as far in the x direction as in the y direction. 
Figures 15 and 16 show several snapshots starting from two different initial 
wave functions. 

SAbsorbing boundary condition is a pseudopotential +&orbing added to the Hamiltonian. 
This potential is zero on most of the grid, and negative imaginary on the boundary. Any part 
of a wavefunction propagating under the influence of this anti-Hermitian potential will decay 
exponentially to zero before it can overflow the grid boundary. 
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At the early stage of the dynamics the motion is along the direction of 
the symmetric stretch, down the potential slope, across the saddle point, and 
“up hill” in the direction of the three-body dissociation. Only when the wave 
function crosses the saddle point, does motion in the direction of the antisym- 
metric stretching become significant. This motion, is an essential component 
of the reaction coordinate leading to bond cleavage. 

The wave function that was initiated as an antisymmetric eigenstate on the 
ground surface is “better suited” for such motion, and enters the second stage 
earlier, falling rapidly into the exit channels without ascending deep into 
three-body dissociation [Fig. 16(a)]. On the other hand, the wave function 
that started as a symmetric eigenstate has most of its population centered 
along the symmetric stretching mode, so it continues ascending much further 
before bifurcating into the exit channels (Fig. 15(a)]. 

The wave function enters the exit channels with much excess energy, 
which translates into two asymptotic modes: vibration of the I; fragment, 
and translation of the I atom away from the 12 molecule. Coherent vibrational 
motion of the antisymmetric wave function is seen clearly in Fig. 16(b), and 
less evideritly in Fig. 15(b). 

After longer propagation, the wave function is no longer compact because 
of the large distribution in translational energy, which smears the wave 
packet into a long “snake” Figs. 15(c) and 16(c). The total excess energy 
is relatively well defined by the photon energy dispersion in the pump (0.04 
eV). This imposes an obvious correlation between vibrational and trans- 
lational degrees of freedom in the evolving product. The long serpentine 
appearance of the wave packet initially in I u l , ~ )  indicates an extremely large 
dispersion of the wave packet, whose initial dynamics is primarily along the 
symmetric stretch. The shape of the wave packet at long delays also indi- 
cates that the portion entering earlier into the exit channel is characteristic 
of high translational and low vibrational energy content; whereas the more 
delayed portions are poor in translation and highly excited vibrationally. This 
dispersion is much less apparent in the case of I; initially excited in the anti- 
symmetric stretching mode. This initial displacement of density away from 
the ridge of perfect symmetry tends to direct the population into the exit 
channels in a much more compact and uniform fashion, limiting the degree 
of dispersion in vibration and translation. One should keep in mind that, in 
a solvent, the translational motion will be rapidly dissipated due to hitting 
with the solvent molecules. 

3. Interpretation 

It is evident that the shape of the wave packet at very long times still bears 
a memory of its early history, at times shorter than a few hundred fem- 
toseconds, in which the dynamics are governed by the electromagnetic pulse 
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Figure 15. Propagation of the wave packet I$b”)(t) generated by the pump pulse, on the 
excited surface. The initial state lgg)(0) is I u l , ~ ) .  The first wave function in (b)  is “chopped” 
at the top of the frame by an absorbing potential. The scaling is in angstroms. 
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Figure 16. Propagation of the wave packet l$$ ' ) ( t )  generated by the pump pulse, on 

the excited surface. The initial state IGg)(O) is (uo, 1) .  The scaling is in angstroms. 
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and the Franck-Condon region of the excited potential. There are two other 
observables that correlate with the same part of the potential: the electronic 
absorption spectrum and the Raman spectrum. 

a. Absorption Spectrum. The slopes of the excited potential surface in 
the Frank-Condon region have a major influence on the width of the elec- 
tronic absorption spectrum. Calculation of the absorption spectrum, using Eq. 
(2.87), then gives the calculated measure for this slope. Fitting the calculated 
spectra with the experimental one has served to calibrate the parameters of 
the LEPS potential. 

b. Raman Spectrum. A complementary probe of the first stages of the dis- 
sociation dynamics is recovered from the Raman spectra. Raman wave func- 
tions were calculated for all initial vibrational states using Eq. (2.89), inte- 
grating to a time of 75 fs. The excitation energy EL is on resonance with the 
transition. 

The Raman wave function shown in Fig. 17 is very similar to the wave 
packet created by the pump pulse [Fig. 14(c)]. Thus the Raman spectra 
and the RISRS experiment carry complimentary information on the initial 
stage of the photodissociation. Individual Raman spectra were extracted from 
the Raman wave functions using Eq. (2.88), and then Boltzmann averaged 
according to the initial vibrational energies. Figure 18 shows the resulting 
Raman spectrum at T = 300 K. 

The main features in the spectrum correspond to harmonics of the sym- 
metric stretching frequency, and so are attributed to the population of highly 
excited states of the symmetric stretching mode by the Raman process. In 
the time domain, this correlates to the long propagation along this mode. 

Figure 17. The Raman wavefunction ex- 
cited from Ivl,o) on the LEPS potential. The 
scaling is in angstroms. 3 3.5 4 
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The simulated Raman spectrum at T = 300 K of 1; calculated with the LEPS 

The odd harmonics of the antisymmetric stretching frequency are symme- 
try forbidden, so only the second harmonic is expected in the spectrum, as 
the propagation along the antisymmetric mode is very small. On examining 
the spectrum, it can be seen that the second harmonic of the antisymmetric 
stretch has, indeed, only a very small signature. 

The Raman spectrum is sensitive to the shape of the excited potential, as 
can be seen by comparing the above results with preliminary work on the 
ab initio potential. This potential induces spreading along the antisymmetric 
stretching mode as well (Fig. 19). The resulting spectrum (Fig. 20) differs in 
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Figure 19. The Raman wave function 
cited from Iu l ,o )  on the ab initio potential. 
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Figure 20. The simulated Raman spectrum at T = 300 K of 1; calculated with the ab 
initio potential. 

two ways from the previous one. First, the decay of the signal correspond- 
ing to the higher harmonics of the symmetric stretch is more rapid. Second, 
the second harmonic of the antisymmetric stretch has a more pronounced 
signature, which increases for higher Raman shifts (corresponding to longer 
propagation times on the excited surface). This is consistent with the shape 
of the Raman wave function, in which the motion along the antisymmetric 
stretch mode is larger at later times. 

C. Dynamics of the Photo-Induced “Hole” in I; 

The photoinduced density on the excited surface leading to photodissociation 
is missing on the ground surface. The missing density or the coherent “hole” 
is nonstationary and will therefore continue to ring long after the pump pulse 
has turned off. Observation of this ringing sheds light on the interaction of 
the reactant I; with its solvent. 

1 .  Statics 

a. Degrees of Freedom. The initial position of the {ynafical “!ole” 
is determined by the ground-excited difference potential 2A = V,(r) - V,(r> 
- tzwL in Eq. (2.50). The gradient of the difference potential along the anti- 
symmetric stretch is almost zero; therefore this mode can be excluded from 
the calculations. The simulation of the excitation stage in Section III.B.2 has 
verified this assumption. For this reason a one-dimensional representation in 
the symmetric stretching coordinate is an adequate description. 

These consideration should be reevaluated for a shorter pump pulse and 
the sharpe; ab initio potential of Fig. 20 is used. In this case the difference 
potential A will include a contribution from the antisymmetric stretching 
mode. The induced “hole” in this direction will have inversion symmetry, in 
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accordance with the Raman spectrum; therefore the fundamental frequency 
will not be excited. A modulation with a period of the first overtone = 100 
fs will be a signature of this motion. 

b. Initial State. The dynamical “hole” density is recreated by solving the 
Liouville dynamics for the symmetric stretching mode. The initial state was 
a thermal density on the ground surface at 300 K. The pump field amplitude 
used in the simulation corresponds to 1 . 1 ~  pulse conditions on resonance 
for the 60-fs pulse. The total depletion of the ground surface population in 
these conditions is 8%. Electronic dephasing has a profound influence on the 
amount of coherence generated on the ground surface and, as a result, on the 
depth of the observed modulations. This dephasing process can be thought 
off as limiting the time during which the two surfaces are coupled by the 
radiation. In accordance with Section TI, Eq. (2.35), a Gaussian dissipative 
model is used, leading to 

(3.4) 

The electronic coherence lifetime y;’ is estimated to be in the range of 
10-100 fs. Finally a Gaussian vibrational dephasing process was also added 

The dephasing characteristic time was set at Tdg = (w iyg) - ’  = 960 fs. 
With this timescale the vibrational dephasing has only a small effect on 
the creation of the dynamical “hole.” Fig. 21(a) displays the dynamical 
“hole” immediately after the pump pulse. Under these conditions the result- 
ing dynamical “hole” is mainly a shift of density along the position coordi- 
nate, with relatively weak contribution of direct shift along the momentum 
direction. 

2. Dynamics 
The dynamics of the “hole” ;d are studied directly by propagating ;g 

obtained above after the excitation pulse has turned off. The evolution oper- 
ator is generated by the ground surface Hamiltonian and the vibrational 
dephasing term in Eq. (3.5). Figure 21 shows phase space snapshots of the 
dynamical “hole” at different time delays after the pump pulse. Note that 
the phase space distribution consists of balanced positive and negative parts, 
since the integrated phase space volume of the “hole” is zero (;; is trace- 
less). The dynamics is influenced by the ground surface Hamiltonian and 
the vibrational dissipation. The ground surface Hamiltonian rotates the dis- 
tribution in phase space-a full cycle corresponds to one vibrational period 
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Figure 21. Snapshots of the Wigner distribution function W d ( r , p )  of the dynamical 
“hole.” The initial density is a Boltzmann distribution at 300 K, pumped by a pulse of 60 
fs FWHM and wavelength of 308 nm. T is the period of the vibration. 

[Fig. 21(a-e)]. Since the “hole” in this case is created in an initial thermal 
distribution at the bottom of the 15 potential there is no anharmonic contri- 
bution to the dynamics. Therefore only the dissipative terms eliminate the 
“hole” by smoothing it out. In the present case, the major effect of dissipation 
is assumed to be vibrational dephasing, which manifests itself in smearing 
the lobe and anti-lobe of the dynamical “hole” while they undergo circular 
motion in phase space. Energy relaxation processes are assumed not to con- 
tribute in view of the longer timescale of vibrational relaxation found for the 
1, in Section 1II.E. 

In a pump-probe experiment, many experimental measurements are taken 
at different delays between the pulses. The idea is that the strong pump pulse 
prepares the molecules in a nonstationary state, and the weak probe pulse 
serves as a tool for measuring the evolved state at a certain point in time. 
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After the measurement takes place, these molecules are regarded as gone 
(they either dissociate to give a different molecule, or recombine and cool 
back to their initial state). The next pulse pair encounters the same initial 
conditions as the last, prepares the molecules at the same nonstationary state, 
and measures the evolved state at a different point in time. Only the power 
absorbed by the probe is calculated; thus, the state of the system on the 
excited surface after its interaction with the probe pulse has no experimental 
significance, and is therefore eliminated. 

3. Interpretation 

A full simulation of the probe signal in a pump-probe absorption experiment 
is shown in Fig. 22. The modulations are fit to an exponentially decaying 
sin(t) function. The decay time, 960 fs, agrees with the decay time of the 
coherence measure. It is important to stress that the ability to directly mea- 
sure the rate of vibrational dephasing from the decay of oscillations in optical 
density is not at all trivial. 

Figure 23 compares the results of the full simulation of the pump-probe 
experiment (Fig. 22) with the experimental results in ethanol. The expo- 
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Figure 22. The coherence measure as a function of time (upper panel) for a full sim- 
ulation of the pump-probe experiment. An electronic dephasing time of 5 fs and vibrational 
dephasing time of 960 fs have been used. The calculated signal is shown in the bottom panel. 
The solid line is a fit to an exponentially decaying sin function of w u  = 112 cm-l and decay 
time Tdg = 960 fs. 
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Figure 23. Comparison of the experimental results in ethanol (solid points) with the sim- 
ulation of the pump-probe experiment (open circles). The baseline is identical for both signals. 
The slow background exponential decay, obtained from the fit to the experimental data, was 
added also to the simulated result. The frequency, phase, and decay time of the simulated 
signal agrees with the experimental data. 

nentially decaying sine function affords a good fit to both the measured 
and calculated signals, allowing the extraction of various molecular and 
solvent-dependent parameters. The frequency of the experimental and simu- 
lated spectral modulation matches the ground state symmetric stretching fre- 
quency. The absolute phase of the spectral modulations reflects the position 
in phase space of the coherent “hole” and is identical, within experimental 
error, to the simulations. Finally the decay rate of the spectral modulation 
allows the extraction of a dephasing constant, assumed in the simulation to be 
due to purely vibrational dephasing. Identifying the decay rate with changes 
of the coherence measure in the molecular system has been verified in Fig. 
22. 

The major discrepancy between the calculated and experimental signal 
is the depth of modulation. This might be due to propagation effects of the 
radiation through a dense medium; these are not considered in the simulation. 

The RISRS experiment is able to measure the ground surface vibrational 
frequency of the solvated system and the vibrational dephasing rate. With a 
shorter pump and probe higher harmonics can be observed. 
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D. Dynamics of Nascent Ii: The “Probe” Pulse 

The role of the probe laser pulse in this section is that of a silent observer, 
quietly recording the details of the trip of hot 12 to equilibrium. 

1. Statics 
a. Degrees of Freedom. The system at hand is the nascent 1, molecule. 
The model for I; is one-dimensional, including the single vibrational mode 
of the diatomic molecule (I&-. This mode can be represented in coordinate 
space by the y tacoby coordinate in Eq. (3.4), or expanded in eigenstate space 
{ I uj)},  where Hg I ui) = Ei 1 ui). The relative translation of the photofragments 
(the x Jacoby coordinate), will be shortly discarded as it bears no effect on the 
experimental observables. As for I;, the rotations are once again neglected 
due to the divergence of timescales. 

Since the system has just one dimension, it can be represented as a density 
matrix, and the influence of the solvent can be added to the dynamics through 
the open system formalism developed at the previous section. 

b. Initial State. The final states of Section III.B.2 serve as the starting point 
for the current calculations. Each final state $;“(x,y) is first transformed to 
momentum representation along the x coordinate by an FFT as in Eq. (2.4), 
and then to the 12 vibrational eigenstate representation along the y coordinate, 
using a unitary basis transformation from { I  y)} to {Iq)} as in Eq. (2.1), 
resulting in $$‘( p ,  u). A density matrix was constructed from each of these 
wave functions 

A partial trace over the momentum degree of freedom ( p )  was taken, result- 
ing in the desired one-dimensional representation in u space P ; ~ ( U ,  u’).  The 
effect of this reduction on the measured observables was checked by com- 
paring the transient absorption of $$ ‘ (x ,y )  and P ; ~ ( U ,  u’), and the difference 
was found to be negligible. This can be attributed to the strong correlation 
between u and p ,  as seen in Fig. 16(c) and Fig. 15(c), meaning that each 
u collects contributions from a very narrow band of p’s  in the partial trace 
process, and has no coherence with p’s outside this band. 

The initial state for the 1, relaxation study was created by Boltzmann 
averaging over all initial wave functions: 

where E,Ss a is the energy of the eigenstate I us, a )  of the ground surface of I;. 
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The time instant chosen for the reduction was set at t = 680 fs in which 
the dissociation process already separated the wave function into the asymp- 
totic channels. In order to compensate for the dissipation at earlier times the 
initial density was propagated backwards in time under dissipation-free evo- 
lution to a time o f t  = 255 fs. This time is estimated as the time at which the 
molecular ion 12 has separated from the I atom and can be considered as a 
separate motion influenced by the solvent. The state pg(u,  u’)  at t = 255 fs 
was then used as the initial state for the dissipation studies. Figure 24 shows 
the Wigner plots of the initial distribution. The left panel shows the Wigner 
function W,(r ,p )  and its projections on the coordinate and momentum coor- 
dinates. On examining the figure it is clear that a very broad initial distribu- 
tion is created. The right panel shows the initial Wigner function W,(u, &), 
which reveals that the I; photoproduct is created in a vibrationally hot state, 
with a mean energy of 0.55 eV. The projection on the vibrational state dis- 
plays a very wide vibrational distribution peaked at 0.4 eV (u = 34). The 
dissipation of this energy by the solvent will be the main subject of the next 
section. 

2. Dynamics 

The probe pulse is not to be incorporated into the Hamiltonian, and only 
its experimental outcome, the total power absorbed, is calculated in Section 
III.D.3. 

a. Potential and Interaction with the Solvent. The ground and excited 
potential curve of 1; has been described in Section 1II.A. The excited sur- 
face does not take part in the dynamics, as there is no coupling between the 

Figure 24. The Wigner distribution function W,(r,p) and Wg(u,  &) of the initial density 
at time t = 255 fs. The projections on the variables are also shown, displaying the initial 
position, momentum, vibratiotal energy, and phase distributions. Distances are in angstroms, 
and the momentum units are A/ps. 
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surfaces (the electromagnetic field of the probe is excluded from the Hamil- 
tonian), so only ig will be considered in the dynamics. 

During its nuclear motion the nascent I; molecule is constantly influenced 
by the bath. This influence can be caused by direct impact on the nuclei 
due to collisions with the bath molecules, or by solvent dipoles interacting 
with the electrons of the molecule. The solvent’s influence can be divided 
into a static part, described by a modification of the effective potential, and 
a dynamical part, which, viewed by the reduced molecular system, has a 
stochastic nature, so each I; molecule “feels” random collisions and dipole 
fluctuations. To describe these processes, the phenomenological framework 
of Section II.B.2 is used. The dissipation process are divided in two cate- 
gories: 

Relaxation: Processes that allow energy flow between the system and 
the bath. They will be referred to as T1 processes. 
Dephasing: Elastic processes that conserve the energy of the system, but 
erase the coherence between the different populations in cg. These will 
be termed Tz processes. 

The dissipative part of the Liouvillian is likewise divided into two categories 

where i~~~ is the nuclear energy relaxation term and i~~~ is the nuclear 
dephasing term. 

In general the dissipative energy exchange process is described by 

(3.9) 

where Pij is a projection from state (Ujl to state Iuj), P i j  = IUj )  (u i l ,  and yjj is 
a rate constant Detailed balance is imposed when the rate constants obey the 
relation yij/y,i = e-(Ej-Ei) /kBT.  In this study the source of the energy relax- 
ation is the cage effect of solvent molecules pushing against the 12 ion. It is 
therefore reasonable to assume that the relaxation rate is proportional to the 
vibrational amplitude. A linear relation of the rate y jj  with vibrational ampli- 
tude was therefore assumed. Since the oscillator is anharmonic, the rate was 
chosen to be proportional to the classical vibrational amplitude of the energy 
of level i. Specifically, only nearest-neighbor transitions were included in 
the calculation. Finally, the rate coefficients were all proportional to a global 
parameter r that empirically determines the relaxation rate T ~ ~ .  For low exci- 
tation energies the relaxation model matches the energy relaxation rate of a 
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harmonic oscillator. The energy relaxation parameters were adjusted to the 
harmonic model used previously with T ~ , .  = 3ps [2]. 

Random elastic collisions of the solvent with the molecule, which are 
fast on the vibrational time scale, are described by a Gaussian random pro- 
cess;Thishprocess leads to a dephasing of the vibrational motion. By choos- 
ing Vi = H, in Eq. (2.34) the nuclear dephasing term is obtained 

(3.10) 

where T ~ ~ ( u )  is the dephasing time constant of the vibrational level u, and 
w(u) is the vibrational frequency of thaJ level. The value of T n d ( 0 )  was Laken 
to be 960 fs. In the Heisenberg picture H, is a constant of motion (lh,(H,) = 
0), so this term represents a process where the system on the ground surface 
does not exchange energy with the bath. A similar dephasing term was used 
to describe the dissipative dynamics of the “hole” in the reactant I;. 

Since the nuclear relaxation term is easily constructed in terms of the 
ground surface eigenstates, the eigenstate representation was used for the 
Hamiltonian as well, which is diagonal in its own basis representation 

(3.12) 

b. Propagation Results. To obtain insight concerning the different mecha- 
nisms of dissipation, different types of dynamics were studied and compared. 
As a benchmark, the dissipation-free Hamiltonian dynamics were simulated. 
The free dynamics were contrasted with dissipative evolution that includes 
energy relaxation processes [ T I ,  Eq. (3.9)]. Finally dephasing processes were 
also included [TI  + T z ,  Eq. (3.10)]. 

Figure 25 compares snapshots of the Wigner function W,(r ,p)  of the dif- 
ferent dynamical processes. The free evolution is described in the left panel. 
The motion observed is a winding motion, since the outer energy shells 
have a lower vibrational frequency due to anharmonicity. As a result the 
free dynamics stretches the initial distribution around the zero energy point 
( r  - req), p = 0. The anharmonic effect is more readily understood by exam- 
ining Fig. 26, which displays the Wigner function in action angle variables. 
The phase velocity of the higher quantum numbers (higher action) is slower 
than the lower ones, because of the anharmonicity of the 1; potential. As a 
result the dynamics can be visualized as a winding motion of the distribution 
around a cylinder whose axis represents the action. The observable conse- 
quence of the anharmonic motion is scrambling of the phase compactness. 
This leads to a reduction of the amplitude of the spectral modulations of the 
probe pulse. 



Figure 25. Snapshots of the Wigner distribution function W g ( r , p ) :  (a) Hamiltonian 
dynamics only; (b) Dynamics with energy relaxation ( T I  ); (c) Dynamics with energy relaxation 
and dephasing (Ti + Tz).  Times are in femtoseconds where the panels correspond to approx- 
imately O,m 4, 4, 1 ,  2, 4 vibrational periods. Distances are in angstroms, and the momentum 
units are A/ps. 
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I -7  255 I =: sxs 

Figure 26. Snapshots of the Wigner distribution function in action angle coordinates, 
W,(v,q&,): (a) Hamiltonian dynamics only; (b)  Dynamics with energy relaxation ( T I ) ;  (c )  
Dynamics with energy relaxation and dephasing ( T I  + T2) .  
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The energy relaxation process is described in Figs. 25(b) and 26(b). In 
the ( r , p )  phase space, energy relaxation is manifested by the distribution 
W,(r,p)  approaching the origin. In the action angle representation, the relax- 
ation moves the distribution W,(u, &) towards lower action values, thus 
decreasing the loss of phase due to anharmonicity. The effect of removing 
energy is enhancement of the modulation in phase, as can be seen by com- 
paring panels ( a )  and (b) of Fig. 26 at t = 1660 fs. 

Finally the right panel (c) in Figs. 25 and 26 shows the added influence 
of dephasing on the dynamics. As can be seen in Fig. 26 the features along 
the phase coordinate at a time of t = 1660 fs are smoother in panel (c), so 
that the observed modulation would be smaller. 

3. Interpretation 

The different types of dynamics have a profound effect on the transient 
observables, specifically on the measured transient spectrum of a weak probe 
pulse. Two different wavelengths were used, one blue-(at 620 nm) and one 
red-(at 880 nm) shifted from the center of the absorption band (at 740 nm), 
which induces a transition to a dissociative state of I;. To obtain the absorp- 
tion signal of the probe pulse, the impulsive limit in weak fields is employed 
[Eq. (2.76)], where rpr = 60 fs. A phase space image of the window functions 
associated with the two probe pulses is shown in Fig. 27. 

The window function is momentum independent, but it is almost 6 corre- 
lated in the r coordinate (actually, it is sinc correlated), with a sharp peak at 
the resonance point (3.1 A for 620 nm and 3.4 A for 880 nm). T.hese points 
are equal to the classical inner (620 nm) and outer (880 nm) turning points 
of u = 2. This correlation is reflected in the phase coordinate at low u values, 
where the window is centered around h for 620 nm and around 0 for 880 
nm, which are the phases of the inner and outer turning points, respectively. 
For u > 2 the lines at r = 3.1 A and at r = 3.4 A cross the iso-energy lines at 
two points each (compare Fig. 27 and Fig. 8), corresponding to inward and 
outward motion at the resonance point, which explains the bifurcation of the 
phase dependency for larger energy values. Because of the oscillatory shape 
of the eigenstates, the window in the u representation is a wide oscillatory 
function, with a large peak at u = 3, but on the average the window is more 
sensitive to the lower vibrational states. 

a. Transient Spectrum of Individual States. The effect of the initial vibra- 
tional state on the resulting spectral modulations was studied first. The trans- 
ient absorption for the different P ; ~ ( u ,  u’) was calculated with a dissipation- 
free Hamiltonian. Examining Fig. 28 it is clear that the modulations of the 
probe signal increase upon excitation of the antisymmetric stretching mode. 
The phase of the signal is also shifted to earlier times because the wave 
packet enters the exit channel earlier. 
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Figure 27. The Wigner distribution function W , ( r , p )  and W,(u,&,) of the window func- 
tion in Eq. (2.75) of a 60-fs pulse with central frequency of (a)  620 nm and (b) 880 nm. The 
projection on the position and vibrational energy coordinates is also shown. 

O J  
400 800 1200 1600 

Time (fsec) 
Figure 28. The transient absorption of the I i  products originating from different initial 

wave packets. The evolution was carried out with a dissipation-free Hamiltonian, and the spec- 
trum calculated for a probe pulse of 60-fs duration and a wavelength of 620 nm. All signals 
are normalized with respect to the excited state population The solid lines repre- 
sent the pure symmetric stretch excitations I u o , ~ ) ,  lu l ,o)  and I v ~ , o ) ,  which all bunch together. 
The antisymmetric stretch excitations are represented as broken lines: Iuo, 1) (dotted), Iu1, 1) 

(dashed line) and Iuo, 2) (long dashed line). 
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Figure 29. Transient absorption of a 60-fs probe pulse at 620 nm as a function of the 

time delay between the photodissociation pump and the probe. (a) Free Hamiltonian dynamics; 
(b)  dynamics including energy relaxation processes (Ti  ); (c) dynamics including vibrational 
dephasing processes ( T I  + T2). 

b. Transient Spectrum Under Dissipation Conditions. To see the effect of 
the different dissipation mechanisms on the observed spectrum, the total pop- 
ulation pg(u, u')  was probed during propagation under the influence of the 
bath operators. Observing Fig. 29, the spectral modulations in the signal of 
the free evolution dynamics decay, due to the anharmonic nature of the poten- 
tial, causing the winding motion in Fig. 26(a). The suprising observation is 
that addition of energy relaxation causes the modulations to become more 
persistent. The reason is that the high vibrational part of the distribution, 
which is prone to anharmonic motion, is pushed to the lower more harmonic 
part of the potential and refocused [Figure 26(b)]. This transfer is obtained 
without wiping out the vibrational coherence. The baseline of the modula- 
tion also increases, due to the flow of amplitude from the high vibrations into 
the observation window. As expected when dephasing is added, the spectral 
modulations decay [Fig. 26(c)]. This observation makes it possible to assign 
the decay of spectral oscillation primarily to dephasing processes. 

c. Transient Spectrum at Different Probe Wavelengths. The last calculation 
(transient spectrum including T I  and T2 processes) was repeated for the red- 
shifted probe, expecting an anti-phased modulation as in the experiment (see 
Fig. 4). The resulting signal is shown, along with that resulting from the 
blue-shifted probe, in Fig. 30. 

There are two deviations from the experimental scan. The first is the 
appearance of a double frequency second harmonic part for the red-shifted 
probe, which disappears after the second modulation (a dephasing process 
timescale). The second is the phase difference, which only approaches 7r at 
the end of the scan (a relaxation process time scale). Examining the window 
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Figure 30. Transient absorption of a 60-fs probe pulse as a function of the time delay 

between the photodissociating pump and the probe. (a) Probe wavelength at 620 nm. (b) Probe 
wavelength at 880 nm. 

functions of the probe pulses (Fig. 27), the source of the double frequency 
is obviously the large bifurcation of the phase dependency at 880 nm. As 
long as the phase distribution of the population is narrower than this bifur- 
cation [this is true at short times-Fig. 26(a)], the distribution crosses the 
window twice at each cycle of its winding motion. This behavior vanishes 
as the distribution broadens, due to anharmonicity and dephasing processes 
[Fig. 26(c)]. The absence of this feature from the experimental scan might 
indicate the existence of earlier dephasing mechanisms not accounted for 
in the calculation, such as electronic dephasing during the pump pulse, or 
collisions with the cage prior to bond cleavage. It is also possible that this 
behavior is obscured by the sharp fall in absorption at the beginning of the 
scan, attributed to a transition to a higher electronic surface, which is not 
included in the model. The discrepancy of the phase difference between the 
different wavelengths is also explained by the shape of the window func- 
tions, in which a n phase difference is only present for very low values of u. 
Only when the distribution cools enough so that a significant portion of the 
population occupies the lower energy region would an anti-phased behavior 
appear. This suggests that the initial experimental distribution is cooler than 
the one obtained from the calculations of the pump pulse. 

E. Vibrational Excitation of Relaxed I;: The “Push” Pulse 

vpically the dephasing rate is faster, or even much faster, than the energy 
relaxation rate. The observable consequence is that the spectral modulations 
have decayed long before the vibrational distribution reaches equilibrium. 
In order to regain the observable, the spectral modulations are reinvigorated 
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by adding a push pulse that transfers amplitude to the dissociative excited 
surface while leaving a dynamical “hole” in the ground surface. Once cre- 
ated, the dynamical “hole” will oscillate, creating new spectral modulations. 
This phenomena is analogous to the RISRS experiment in the parent 15 
molecule. The transient frequency of these oscillations can be associated with 
the energy distribution of the system, and the decay of the modulations can 
be associated with the dephasing rate. Since both the energy distribution and 
the phase coherence manifest themselves in the frequency and decay rate of 
the spectral modulations of the same observable, this experiment makes it 
possible to measure T I  and T2 simultaneously. 

1. Statics 

As in the previous section, the system under study is the I; molecule, so 
the same degrees of freedom apply here as well. The difference is that the 
ground and excited electronic states are coupled by the push pulse, so the 
full dual-surface representation of the density matrix is needed to represent 
the system. 

The initial state for the dynamics is i g ( t )  of the previous section, where 
t is taken to be 2, 4, 6, 8, and 10 ps before the application of the pulse, 
p e  = pc = 0. 

Figure 3 l(a) demonstrates the state of the system after the dephasing pro- 
cess has smoothed out the initial phase dependence (as seen from the flat 
projection on r#~”), and with that eliminated the spectral modulations. At the 
same time, the relaxation process is still far from completion, as seen from 
the projection on u which peaks at u = 10 and has almost no population at 
u = 0. 

The energy distribution of the population is slowly decaying toward a 
Boltzmann distribution due to T I  processes, but even after as much as 10 
ps thermal equilibrium is still not reached. Figure 32 shows the diagonal 
elements of the density ( u l i l u ) ,  which are the relative populations at each 
energy level, for all initial states. 

2. Dynamics 
a. Interaction with the Solvent and Electromagnetic Field. In view of the 
two electronic surfaces involved the dissipation mechanisms are divided into 
electronic and nuclear dissipative processes: ED = + i~ , ,~ ,  where &el 

is the electronic dephasing term and  ED,,^ is the nuclear dephasing. Nuclear 
relaxation processes are neglected for the duration of the pulse, to simplify 
the calculations. This is justified by the larger time scale of these processes 
(= 3 ps) in comparison with the pulse’s duration. 

The main electronic dissipative process is dephasing. The mechanism 
involved originates from fast fluctuations of the dipoles in the solvent, which 
induce fluctuations in the energy gap between the ground and excited sur- 

A A  
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face. This results in fluctuations of the transition frequencies between the 
surfaces [compare Eq. (2.60)], and the wave packet looses the :ohe:en:e 
(jc) between its lower and upper parts (i8 and je). By choosing Vi = I @  Sz 
in Eq. (2.34) the electronic dephasing term is obtained 

The relaxation coefficient can be related to the electronic dephasing time 
yel = 1 / ~ ~ l .  The electronic dephasing time 7 , ~  was taken to be 30 fs. On 
the timescale of the experiment nonradiative decay process are negligible, 
therefore no other electronic dissipative terms are included in the calculation. 
For simplicity, the nuclear dephasing term is set as a pure dephasing term 
of the ground surface [Eq. (3.10)] 

Th? Hamiltonian is constructed in the eigenstate representation. The oper- 
ator H, is the same diagonal matrix as in the previous seciion, but since 
{Iui)} are not eigenstates of the upper surface Hamiltonian, He is not diag- 
onal and its matrix elements are calculated using Eq. (2.29). 

The push pulse has the same characteristics as the pump pulse in Section 
III.B, except for the carrier frequency, which is attuned to the 12 -1- + I 
electronic transition, slightly blue-shifted from the center of absorption at 
616 nm. When the electronic surfaces are coupled by the pulse, population 
is fed to the upper repulsive potential, and quickly propagated very far from 
the Frank-Condon region. This “runaway” population is the dissociated I + 
I-, which is not probed by the experiment. It will be discarded at the end 
of the pulse, when the focus of attention is back on the ground 12 state. To 
avoid the need to represent these long propagations, an absorbing boundary 
condition was imposed on the excited surface.6 The boundary was set in the 
eigenstate representation for large values of u, since the highest vibrational 
states of the ground surface correspond to large propagation distance when 
projected on the excited surface. 

Once the pulse is over and the electronic surfaces decouple, the system 
can be again treated as in Section III.D, considering only bg and setting 
A A  

L D  = L D n r  + LDnd.  

6The abs!rbing boundary condition for a density matrix is a sFper-operator of the form 
&(;) = {i,  Vabsorbing}+ added to the Hamiltonian. The value of Vabsorbing is zero on most 
of the grid and negative imaginary on the boundary. Any part of the density propagating under 
the influence of this anti-Hermitian potential will decay exponentially to zero before it can 
overflow the grid boundary. 
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Figure 31. (a) The Wigner distribution function Wg(u,  4v) after 4 ps. Notice that although 
the vibrational energy has not reached equilibrium the distribution is phase independent. (b)  
The same distribution function after the application of a push pulse of 60 fs at 616 nm, which 
photodissociated 20% of the I; population. (c, d )  The dynamics of the hole after 100,200 fs. 
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Figure 32. The energy distribution as a function of time delay from the pump pulse 
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b. Propagation Results. The application of the push pulse in Fig. 3 1 (b) has 
“drilled a hole” in a specific area in the phase coordinate (around rtn), which 
will travel across 4, [Fig. 31(c)] until smoothed out by the dephasing [Fig. 
3 l(d)]. The winding motion along the phase coordinate renews the spectral 
modulations. As seen earlier (Fig. 26), the velocity of this motion depends 
on u, because of the anharmonicity of the vibrational manifold. Thus, the fre- 
quency of observed spectral modulations will change with the initial energy 
distribution at the onset of the push pulse. This phenomena was observed 
in experiment [4], and recreated in simulation by applying the push pulse at 
different time delays from the pump, and observing the resulting transient 
spectrum. The ( r , p )  picture of the same process is shown in Fig. 33. Notice 
that the push pulse has drilled two holes in the distribution [Fig. 33(b)], at 
the crossing of the energy iso-line and the resonance line at 3.1 A (cf. Fig. 
27). The hole travels clockwise along the iso-energy line [Fig. 33(c)], until 
smoothed out by the dephasing [Fig. 33(d)]. 

Figure 33. (a) The Wigner distribution function W , ( r , p )  after 4 ps. (b)  The same distri- 
bution function after the application of a push pulse of 60 fs at 616 nm, which photo dissociated 
20% of the 1; population. (c, d )  The dyn:mics of the hole after 100,200 fs. Distances are in 
angstroms, and the momentum units are A/ps. 
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3 Interpretation 

The transient spectra for different pump-push delays are shown in Fig. 34. 
As in the experiment, there is an initial decrease in the absorption during the 
application of the pulse (due to loss of IT population via photodissociation), 
followed by a decaying spectral modulation. The percent of photodissociated 
population falling within the pushing window function increases with time 
as the population cools and enters the center of the absorbing part of the push 
window function at lower vibrational levels (cf. Fig. 27 and Fig. 32). The 
same cooling process is also responsible for the observed increment in the 
frequencies of the spectral modulations. The modulations were fitted with a 
decaying harmonic behavior (Fig. 35), and the fit results are compared with 
the experiment in Table 111. 

The observed decay times of the modulations are very short (fast decay) 
for the hot populations measured at short delays, and saturate at a much 
longer value at longer delays. This trend is seen both in experiment and in 
simulation. The decay time of the modulations (T t )  is smaller at high energies 
because there are contributions to the loss of coherence from the anharmonic- 
ity effect (cf. Fig. 29) as well as from the dephasing processes. The slight 
decrease in T t  at longer delays can be attributed to the fact that the rate of 
the dephasing process varies as the square of the oscillator frequency in Eq. 
(3.11), which is larger at lower vibrational energies. It is satisfying to note 
that this trend will eventually lead to the chosen parameter T , ~ ( O )  = 1 ps, 

Figure 34. The transient absorption as a function of time showing the perturbation of 
the push pulse at different times on the dynamics. The dashed line shows the unperturbed 
dynamics. The pump pulse is at 308 nm, the push and probe at 616 nm. 
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Figure 35. The transient absorption as a function of time delay after the push pulse for 
different push delays. The middle section was fitted to the function C + A . e&'r sin(wrt + 
4) + B * t .  

meaning that the asymptotic damping rate of the modulations can be asso- 
ciated with a pure dephasing mechanism. 

The values for the frequencies are harder to interpret, as their associated 
energies do not follow an exponential decay law (as should be expected from 
a T I  process), in both experiment and theory. This can be explained by exam- 

TABLE I11 
Fitted Parameters for the TRISRS Spectral Modulations 

Experimental [4] Calculated 

No push 
2.0 
2.67 
4.0 
6.0 
8.0 

10.0 
13.4 

97 f .2 0.4 f .01 
102 i- 4 0.4 f .2 99 k .2 0.7 f .02 
105 f 3 
112 k 2 1.2 f .3 106 f .1 1.1 f .02 
112 i- 2 1.7 f .4 108 i- .2 1.3 f .05 

1.2 f .07 
1.1 f .08 

0.9 f .2 

109 f .3 
110 f .4 

113 i- 2 1.2 f .2 
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Figure 36. Sensitivity of the probe pulse to the vibrational quantum number, obtained 
from the diagonal elements of the window function in the u, u' representation. Some typical 
vibrational frequencies of different vibrational levels are also shown. 

ining the sensitivity of the probe pulse to different vibrational levels. As was 
seen in Fig. 27, the sensitivity is not a smooth function of the vibrational 
level, but rather oscillatory, with large peaks at low vibrational levels. The 
behavior at the lower end of the spectrum is magnified in Fig. 36. 

By comparing Fig. 31, Fig. 36, and Table 111, it is clear that the observed 
modulation frequency is associated not with the mean energy of the distri- 
bution, but rather with its lower energy tail, because of the preference of 
the window function for lower energies. While the average energy obeys an 
exponential decay law, its lower energy tail quickly reaches the highest peak 
in the window at u = 3, and stays there throughout the relaxation process, 
thus masking the continuing decay of the rest of the distribution. 

F. Application Summary 

The key point in understanding the results of this section is that photoin- 
duced events in the past propagate and influence the outcome of observables 
at later times. These events have a finite memory span due to electronic 
and nuclear dissipative processes induced by the solvent. The decay of the 
spectral modulations is due to a combination of dephasing and loss of com- 
pactness due to unharmonic dynamics. The energy relaxation processes are 
able to enhance the spectral modulations by transferring the population to 
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lower more harmonic regions of the potential without losing the vibrational 
coherence. When the dephasing rate is larger than the energy relaxation rate, 
spectral modulations are invigorated by a push pulse, shedding light on the 
full scope of vibrational relaxation in solution. 

IV. SUMMARY 

A. Critical Evaluation 

1. Theoretical Framework 

The calculation methods developed and applied to the photodissociation 
dynamics of 1; are based on the strict rules of quantum mechanics. In 
Wigner’s terminology “orthodox” quantum mechanics is followed, starting 
from state vectors to describe the system and operators to describe mea- 
surable observables. The evolution of the system is described by differen- 
tial generators either H for a closed system or 2 for an open quantum sys- 
tem. All the methods applied are numerically exact, meaning that within the 
model, the measurable observables converge exponentially with respect to 
the numerical parameters. Moreover, the interaction with the radiation field 
is included explicitly and not perturbatively. Employment of these methods 
assures that the finite precision of the computation can be ruled out as a 
source of discrepancy with the experiment. The main difficulty in following 
such a program lies in the exponential scaling of quantum calculations with 
the number of degrees of freedom. This fact severely limits the scope of the 
calculation to a small number of modes. Under these conditions, one may 
wonder, can converged quantum calculation become relevant to an extremely 
complex scenario such as the photoreaction of I; in solution? 

2. Relevance to Experiment 

The relevance of the simulation is closely tied to the experimental condi- 
tions under study. The photodissociation of I; is characterized by a series of 
timescale separations. This situation enables the use of the impulsive limit 
in which the pulse duration is long compared to the electronic transition 
time, but short compared to the vibrational and rotational periods (see Table 
IV). Under these circumstances a carefully constructed reduced dimensional 
quantum description is able to capture the essential dynamics. 

The main asset of the computational methods developed in this study are 
their flexibility in addressing different types of experimental probes. These 
can be time-dependent, such as the spectral modulations of the product; or 
time-independent, such as the absorption and Raman spectrum. Each probe 
gives information on different aspects of the dynamics: The absorption spec- 
trum is associated with the Frank-Condon area of the excited surface; the 
Raman spectrum covers further ground down the dissociative slope, and can 
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TABLE IV 
Timescales Involved in the I i  Photodissociation 

Physical Entity Timescale 

Electronic transition 
Electronic dephasing 
Pulse fluctuations 
Pulse duration 
Pump Probe Delay time 
Bond cleavage 
Vibrational period 
Vibrational dephasing 
Vibrational relaxation 
Reorientation 

1 fs 
5-60 fs 
100 fs 
30-60 f S  

100-8000 fs 
250 fs 
300 fs 
400-1000 fs 
3-10 PS 

10-100 ps 

distinguish between motions along the different coordinates; the transient 
spectrum has an accumulated memory of the entire potential all the way to 
dissociation, and may serve as a probe for those parts not covered by absorp- 
tion and Raman spectra. Crossing the information gained from all probes is 
made possible because they are bundled together as the outcome of a unified 
framework. 

The current simulations are able to point to the experimental levers that 
are the most relevant to understand the dynamics. The effects of the ini- 
tial vibrational excitation in the reactants were found to be important. The 
extremely large effect that the excitation in the antisymmetric stretching 
mode has on every aspect of the photochemical outcome, be it vibrational 
excitation in the products, the emergence time of isolated fragments, or the 
depth of modulation in the transient spectrum, underscores this clearly. The 
antisymmetric excited population propagates in the antisymmetric direction 
from the very beginning of the dynamics. This leads to faster bond cleavage 
and lower vibrational excitation in the products, and helps to keep a compact 
wave packet for longer times, which enhances the observed spectral modu- 
lations. Of special interest here is the strong effect of symmetry breaking on 
the chemical evolution of the system. This is a particular example of a more 
general phenomena. The intimate nature of the mutual interaction between 
the system and the solvent in the present case underlines the prominent role 
that asymmetric solvation must play in determining the outcome of the reac- 
tion. 

The calculated Raman spectrum associates the appearance of overtones of 
the antisymmetric stretch with early motion along the antisymmetric direc- 
tion, which was shown to have a major part in the creation of spectral mod- 
ulations. Such overtones, as well as the appearance of the fundamental anti- 
symmetric frequency, were measured experimentally by Anne Meyers and 



300 GUY ASHKENAZI ET AL. 

coworkers [31 in resonance Raman spectra of 15 in several organic solvents, 
and proved to be solvent dependent. This indicates that the solvent has a 
significant influence on the early stages of the dynamics, and can encour- 
age motion in the antisymmetric direction, by inducing nonsymmetric dipole 
fluctuations, thus breaking the potential symmetry. In other words, the sol- 
vent “helps” the molecule to decide which nuclei are primed to pair up to 
give the diatomic product. The appearance of the fundamental antisymmetric 
frequency (which is symmetry forbidden) in protonated solvents (alcohols 
and water) suggest that these solvents prefer an asymmetric configuration 
of the ion. Such help from the solvent was shown to be as valuable to the 
creation of coherent modulations as the impulsive nature of the pulse. 

After its emergence, the photoproduct is subjected to various forces which 
influence the observed spectral modulations. There are energy transfer and 
dephasing processes originating from interaction with the bath, and there 
is the anharmonic nature of the I; potential well. The latter makes differ- 
ent components of the wave packet travel at different phase velocities, thus 
loosing its compact shape, causing a damping of the modulations. Consider- 
ing only the anharmonic effect, the wave packet is still fully coherent, and 
if no dissipation processes were taking place as well, a full revival [66] of 
the compact shape would be expected at a later time. Since dephasing pro- 
cesses are present, destroying the coherence between different populations, 
such recurrence is impossible. This makes the anharmonic effect practically 
(experimentally) indistinguishable from the damping caused by the dephas- 
ing process, and both contribute to the total decay of the oscillating sig- 
nal. The TRISRS technique is the key for separating the two components: 
the anharmonic contribution decreases as the population cools, bringing the 
measured total decay rate to an asymptotic value equal to the pure dephasing 
rate. 

The role of the energy relaxation in this process is somewhat surpris- 
ing, as it enhances, rather than decreases, the observed modulations. This is 
because the relaxation narrows the energy band in which the product popula- 
tion exists, and does so in a coherent fashion, preserving the existing phase 
dependence and only diminishing the anharmonic effect. The stronger the 
coupling between the molecular system and the solvent bath, the more effi- 
cient this process. It might be that this mechanism is responsible for the more 
persistent modulations observed experimentally in the highly polar water, in 
contrast with the rapidly decaying modulations measured in the less polar 
isobutanol. 

The present analysis of the TRISRS signals contains for the first time 
a complete representation of all dissipative mechanisms influencing the 
observables. The results confirm the conclusion of earlier analysis and 
demonstrate that this spectroscopy unveils the evolving vibrational density. 
As pointed out there, this method is especially well adapted for probing 
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highly excited vibrational ensembles, complementing information obtained 
from the time-dependence of fragment absorption spectra. It is important to 
point out, however, that due to the strong bias any single probe frequency has 
toward detecting a specific region of the vibration ladder, it is highly recom- 
mended that this spectroscopy be implemented with multipole frequencies 
both of “push” and of probe pulses [4]. 

3. Imagery 

Following events in time naturally submits itself to the use of visual tools. 
The phase space snapshots are chosen as the primary display. Without losing 
the full quantum picture one is able to directly compare classical and semi- 
classical calculations. The extension of the phase space image to action-angle 
representation supplies a new viewpoint at these complex dissipative pro- 
cesses. In particular it allows one to follow the role of phase and phase relax- 
ation directly. This imagery further underlines the limited information con- 
tent of any single spectroscopic probing method in capturing the full dynamic 
picture. It is often the case that the phase space picture shows dynamic rich- 
ness and complexity, yet a given spectroscopic probe shows only a marginal 
evolution. Unraveling this richness is an immense experimental challenge 
and requires a multitude of probing techniques. 

4. Theoretical Alternatives 

The fully quantum approach applied to the 1; photoreaction is in no way 
exclusive. The exponential scaling of quantum calculations has served as 
the primary motivation for the development of a multitude of approximate 
methods. The most common of which is classical molecular dynamics [ll]. 
Quantum effects are then introduced by employing semiclassical methods or 
a series of approximate mixed quantum-classical methods [12, 13, 14, 15, 
16, 171. These methods can be related on a mean field approach, usually 
formulated within the TDSCF approximation [67, 68, 691. Although these 
methods are usually applied under uncontrollable approximations conditions, 
they are able to incorporate many degrees of freedom. Bearing in mind that 
the purpose of the calculation is to gain insight on the system under study, 
these methods can become extremely useful. The present approach limits the 
scope of the calculation in order to obtain a controllable model. Under these 
circumstances specific effects and their influence on the observables can be 
studied. 

5. Dissipative Model 

The dissipative quantum dynamics in this study attempts to reach beyond the 
well-studied two-level system coupled to a bath [32, 70, 71, 721. The experi- 
mental conditions are, such that a vast amount of energy has to be dissipated 
from the highly excited vibrational manifold, thus multilevel excitation is 
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observed. Under these conditions phase coherence is maintained between 
many levels simultaneously. 

The present approach to vibrational relaxation proves to be conceptu- 
ally more straightforward than alternative treatments based on an eigenvalue 
decomposition of the density operator and its interactions [73]. In particular, 
conservation of coherence despite ongoing energy relaxation arises naturally 
from following the change in observables in time. This is a particular exam- 
ple of the advantages of an explicit time-dependent approach in studying 
transient phenomena. 

The current dissipative model is based on a phenomenological approach 
that classifies and parameterizes a small class of dissipative mechanisms. 
The drawback of this approach is that the solvent properties are only implic- 
itly addressed. It is possible by using the connection between the semigroup 
approach and the weak coupling limit [21, 30, 73, 741 to relate the semi- 
group parameters with Fourier transforms of bath correlation functions. This 
approach has been used by Pugliano et al. [9] to obtain Master equation 
parameters for the relaxation of IHgI in solution. 

A key point in applying a reduced dynamical approach is where to posi- 
tion the partition between the system and bath. This partition determines 
which degrees of freedom are treated explicitly and which implicitly. The 
choice in this study, based primarily on computational considerations, was 
to follow the molecular identities, therefore the primary degrees of freedom 
are the ones associated with iodine. The large mass mismatch and the simi- 
larities of many spectroscopic observables in different solvents partly justify 
this choice. There is growing tendency to include in the primary zone at 
least one collective solvation mode. This approach is used in the Brownian 
oscillator model [75] to couple the electronic and nuclear dissipative dynam- 
ics. A collective solvent mode has also been used in the description of the 
recombination dynamics of 12 [64, 76, 771. The addition of a cage or sol- 
vent degree of freedom to the present calculation seems a natural extension. 
Its inclusion would also correct for inhomogeneous effects not considered 
presently. 

6. Potentials 
Another drawback of current computation model is the inability to calculate 
good ab initio potentials for this electronic complex system. The hypothe- 
sis underlying all the computations in this work, namely that the photodis- 
sociation reaction only involves two electronic surfaces, is naive. Prelim- 
inary calculations show that the large number of electrons and the strong 
spin-orbit coupling create a multitude of intercrossing surfaces and recom- 
bination paths, which should be incorporated in the simulation. The addition 
of more electronic surfaces is easily achieved within the developed frame- 
work, and is not very costly: the computation scales as the square of the 
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number of surfaces, and not exponentially with it (as is the case with addi- 
tional degrees of freedom). The effect of the solvent on the potential energy 
surfaces also has to be addressed. The charge distribution in the ions is the 
key quantity. Progress in this direction is on its way. 

B. Conclusions 

The causal approach of following events in time is the key in gaining insight 
into a complex dynamical encounter of the photodissociation of I; in solu- 
tion. Therefore the combination of ultrafast spectroscopic methods and time- 
dependent quantum mechanical methods naturally fit together to study a pro- 
cess that is characterized by a series of timescale separations. 
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APPENDIX A: NUMERICAL METHODS 

1. Approximating Functions of Operators 

Iterative propagation schemes have become the methods of choice in quan- 
tum dynamical modeling and simulations. The reason is their superior effi- 
ciency when the size of the problem increases. These schemes are based on 
the ability to perform numericaJly the elementary step of mapping a state vec- 
tor by an operator (e.g., 14) = HI$)), or a density matrix by a super-operator 
(e.g., i? = 26).7 The propagators are defined by their recursive application of 
the elementary mapping step [34]. This amounts to approximating a function 
of the Hamiltonian as a polynomial. 

The original propagation scheme [78], was developed Lo solve the time- 
dependent Schrodinger equation. The evolution operator U(t) = e-iHt/h was 
approximated as a polynomial. A spectral expansion based on the Chebychev 
orthogonal polynomial was used leading to 

7Since the algebra of vectors and operators is isomorphic to the algebra of matrixes and 
superoperators, a general notation will be used from here on. 5 will represpt a generalized 
state, and 0 a generalized operator, so [ 4 )  and 0 might as well be read as 5 and 8. 
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where the expansion coefficients become u,(a) = i"(2 - Gno)Jn(a) and 
T,(x)  are the Chebychev polynomials: T,(cos 0)  =Acos(n8) [3$]. For sta- 
bility in Eq. (A.l) the Hamiltonian is normalized: H,,,, = 2(H - H ) / A E  
where % = (Eman + E,j,)/2 is the center of the eigenvalue spectrum and 
AE = (Emax - E m i , )  is the eigenvalue range of H. The normalized Hamilto- 
nian has its eigenvalues distributed on the real axis between - 1 and 1. 

Examining Eq. (A.1) it can be noticed that the time variable only appears 
in the expansion coefficients a,. The computationally intensive part, which 
is the evaiuation of the mapping induced by the Chebychev polynomial: 
&, = T , ( H n o r m ) $ ( O )  is time-independent. This observation has led to the 
development of propagation schemes for other functions of the Hamiltonian. 
Examples include the Green function, allowing the calculation of Raman 
spectra [35], or reactive scattering cross sections [79, 801; the delta function, 
allowing the calculation of absorption spectra [81] and density of states [82, 
831; propagation in imaginary time [84] and filter diagonalization [85, 86, 
871, allowing the calculation of eigenstates. The method can be classified as 
a spectral expansion of a function of the Hamiltonian operator. 

For approximating an analytic function f(z) the spectral expansion 
possess exponential convergence [78]. Comparison of the Chebychev propa- 
gator with other propagation schemes has shown that the Chebychev expan- 
sion is usually superior in both accuracy and efficiency to other methods 
[881. 

These findings have led to a prolification of the use of the algorithm and to 
the exploration of its range of validity. It was found that the original Chcby- 
chev algorithm can become unstable when the Hamiltonian operator H is 
not Hermitian. A complex non-Hermitian Hamiltonian arises naturally when 
absorbing boundary conditions are introduced [65, 89, 90, 91, 92, 93, 941. 
The reason for the instability is that support for the Chebychev polynomi- 
als is on the real axis. Although the Chebychev method can tolerate some 
complex character [90], large complex eigenvalues of the Hamiltonian cause 
severe instability. Complex eigenvalues are also obtained for the Liouville 
super-operator in a dissipative environment [20, 211. Solving the Liouville 
von Neumann equation for dissipative open systems was the motivation for 
developing an alternative propagation scheme that could tolerate complex 
eigenvalues [95]. 

The new propagator was based on the Newtonian interpolation polyno- 
mial. The support points or interpolation points were located on a polygon 
in the complex plane, and therefore tolerated complex eigenvalues of the 
Liouville super-operator that are contained within the polygon. Using the 
theory of interpolation in the complex plane it can be shown that a uniform 
converging interpolation in a domain D is obtained when the interpolation 
points are located on the circumference of the domain. 
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The choice and ordering of the points is crucial to the stability of the algo- 
rithm. Evenly distributed points on the exterior of the polygon were obtained 
by a conformal mapping of the polygon onto a circle, where evenly dis- 
tributed points are easily obtained by symmetry considerations. An inverse 
transform distributed the points back onto the polygon. Ordering the points 
was found to be crucial to the stability of the algorithm and to directly influ- 
ence the calculation of the divided difference coefficients. It was found that 
to obtain stability a complete staggering of points was required [95]. The 
scheme was applied to the evolution operator in simulating photoinduced 
processes in solution [45, 21 and photoinduced desorption from metal sur- 
faces [96]. Another application has been the calculating of the S matrix in 
reactive scattering using absorbing boundaries [97, 981. 

In practical applications the Newtonian-based propagator was found to be 
hard to use. The difficulty could be traced to the Schwartz-Christoffel con- 
formal mapping algorithm [99], which is required to obtain the uniformly 
distributed points on the circumference of the interpolation domain. The 
mapping algorithm severely limited the order of the Newtonian interpolation 
polynomial in the complex plane. This is in contrast to Newtonian interpo- 
lation on the real axis, where no limit to the order of the polynomial was 
found [34, 1001. In this work a new approach to defining the interpolation 
points (termed Leja points [ lo l l )  is used. This method is able to overcome 
the difficulty in locating the interpolation points. 

In parallel with these developments, the original Chebychev expansion 
was generalized, first by shifting the support from the real axis to a line 
shifted into the complex plane [83]. This shift greatly enhances the stability 
of the method. The domain of stability becomes an ellipse in the complex 
plane. Another alternative is to modify the recursion relation of the Cheby- 
chev polynomial by adding a damping term [102]. A more rigorous fix to the 
problem is to define a spectral expansion in the complex plane. The Faber 
polynomials that are a generalization of the Chebychev polynomials consti- 
tute such a set. With the use of the Faber polynomial it has recently been 
shown that a stable uniform approximation in the complex plane is possible 
[103]. 

Before continuing, a brief comparison of the two methods is appropriate. 
If for the Newtonian propagator the zeros of the Chebychev polynomial are 
chosen as sampling points, the two methods are numerically equivalent [34]. 
Formally, if the expansion coefficients in the Chebychev series are calculated 
by a Gaussian-Chebychev quadrature rule, then the expansion becomes an 
interpolation formula mathematically equivalent to the Newtonian interpo- 
lation formula [34]. For the practitioner it will be shown that the Newto- 
nian method is more flexible when different functions of the Hamiltonian 
are required simultaneously. 
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2. Newton’s Interpolation Method 

The propagation method is based on the Newtonian interpolation formula in 
which an analytic function f ( z )  is approximated as a polynomial 

N - 1  n - 1  

n = O  j = O  

By definition, at the sampling points xj , f ( x j )  = P(xj ). The coefficient an is 
the nth divided difference coefficient [ 1041 defined as 

The advantage of this method is the complete freedom in choosing the func- 
tionf(z). The only demand is the ability to calculate its value at the sampling 
points so it is even possible to interpolate an integral of a function that can 
be only integrated numerically, e.g., Eq. (2.89), which is not solvable in the 
Chebychev method. 

When interpolating the function of an operator, rather than of a scalar, the 
same divided difference coefficients are used in the expansion 

N - 1  n - 1  

n=O j = O  

The choice and order of the interpolation points, xj is the crucial step in the 
algorithm. 

3. Leja’s Interpolation Points 

The first step is to establish the domain D of eigenvalues of 6,8 and shift it 
on the real axis so it is symmetric with respect to the imaginary axis. Once 

*For !he Han$ltonian operator H, the extent of D on the real axis is fro? H m i n  = to 
H m a x  = Vmax  + PLa,/2m. The extent on the imaginary axis is from 0 to -Vzororbing. For the 
Liouville superoperator 2, th: real extent is from 2p = H min ’ - H 
and the imaginary from 0 to L r ,  which is negative. 

max to 2 p  = +in, 
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the domain is defined the algorithm used to generate the interpolation points 
can begin: 

1. A line encircling the domain D in the complex plain is defined. For 
practical purposes it will be chosen as a polygon. The domain is scaled 
in size, without changing its shape, to make the interpolation process 
stable. While its exact size will be fixed in step 4, initial coordinates 
should be of the order of 1. 

2. Trial points { yi } are calculated to be equally distributed on the cir- 
cumference contour of the domain D. The number of trial points is 
1.5 to 3 times the number of requested interpolation points. 

3. The interpolation points {xi }:=i’ are chosen from { y i  }. The first inter- 
polation point can be chosen arbitrarily 

Other interpolation points are chosen so they maximize the denomina- 
tor of Eq. (A.4). After choosing n such points, the product 

is calculated for each trial point yi .  The trial point for which J ,  Eq. 
(A.7), is maximal becomes x,. If Eq. (A.7) goes to zero or infinity for 
large n’s, the size of D should be adjusted to correct that [e.g., scaled 
down if Eq. (A.7) overflows]. 

4. The optimal interpolation points are calculated by normalizing the size 
of D. A point z in the center of the domain is chosen arbitrarily, and 
a normalizing factor is calculated by 

N -  1 

p = n ( z -  Xj) ’ ”  

j = O  

Each of the xj’s is then divided by p ,  to yield i;. . The result is N sam- 
pling points on the contour of a scaled domain b. The normalization 
is essential to keep Eq. (A.2) stable. If b is too small this will result in 
divergence of the divided differences (the ak’s), while if it is too large 
it will diverge the product term in Eq. (A.2). 

4. Application to Operators 

After choosing the interpolation points, the operator is shifted and scaled so 
all of its eigenvalues reside inside the domain b 



308 GUY ASHKENAZI ET AL. 

Here, a is the ~ h i f t , ~  and u is a scaling factor. To compensate for the change 
from 0 to 0, the interpolation polynomial is used to approximate a scaled 
function j ( z >  = f(za + a) 

with the &'s residing on the contour of 5, and the ak's calculated by 

a0 =.7(io) (A. 11) 

To calculate the product terms in Eq. (A.10) a recursive relation is used 

The final result is obtained by accumulating the sum 

(A. 13) 

(A. 14) 
n = O  

The sum is truncated when the residuum a, I I I$), 1 I is smaller than a pre- 
sp5cified tolerance. Since the quality of the approximation of the function 
f(0) is equivalent to a scalar function in the domain D, before performing the 
actual calculation the accuracy can be checked on the scalar function. Figure 
37 shows contour maps of the accuracy of the interpolation for some test 
cases. A few guidelines for choosing the interpolation points can be deduced 
from experience and from these figures: 

1. It becomes obvious that when using interpolation points residing only 
on the real axis (as in the original Chebychev algorithm) the domain 

9The real extent of the eigenvalues of 2 is symmetric with respect to the imaginary axis, 
so 8 is identically zero in this case. 
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Figure 37. Contour maps for the accuracy of the Newtonian interpolation. The approx- 
imated function is an evolution operqor as in [Eq. (2.41)], with a time step of 100 a.u. and 
a Hamiltonian with AE = Hmax - Hmin = 0.5 am. The inner line is the boundary of the 
domain in which the relative error of the interpolation is less than lo@, the outer line is for 
relative error larger than 1 (stability boundary). (a) and (b) were calculated with the Chebychev 
algorithm, with interpolation points on the real axis; (c)-(f) were calculated with Newtonian 
interpolation, with interpolation points on the dotted rectangle. The number of points used in 
each map is: (a) 64; (b) 128; (c) 64 chosen from 96; (4 200 chosen from 300; ( e )  64 chosen 
from 67; ( f )  200 chosen from 210. 



310 GUY ASHKENAZI ET AL. 

of stability is a small region around the real axis. Choosing the same 
number of points on the circumference of a rectangular domain leads 
to a much better coverage in the complex plain. If the domain contains 
all of the eigenvalues of the interpolated operator, stability is assured 
for very long time steps. Figure 37(a) and Fig. 37(b) show the domain 
of convergence of the Chebychev scheme. 

2. The number of trial points has to exceed the number of actual interpo- 
lation points. If too few trial points are used, the interpolation becomes 
inaccurate, especially in the vicinity of the sharp corners of the domain. 
Higher order interpolation polynomials require more trial points, since 
the density of the points increases, making the divided difference terms 
more sensitive to the choice of the interpolation points. The actual 
number of trial points needed for a low order ( N  < 100 terms) polyno- 
mial is 1.5 times the number of interpolation points, while for higher 
order polynomials the ratio will be bigger (for an 800-term polynomial 
a ratio of 1 : 3 was needed). Too many trial points will slow the calcula- 
tion, but this calculation is performed only once before the propagation 
cycle. Comparison of Fig. 37(c) with Fig. 37(e) and of Fig. 37(d) with 
Fig. 3 7 ( f )  shows the effect of not choosing enough trial points on the 
convergence domain. 

3. Employing more interpolation points than is required for obtaining the 
desired accuracy inside the domain hampers the calculation. As a result 
the stability area shrinks and if some eigenvalues reside outside, but 
close to, the domain the accuracy is degraded. This is the reason why 
the Chebychev algorithm is stable only for short time steps when an 
absorbing potential is employed, but diverges when using larger time 
steps that require higher order polynomials. For comparison, the results 
in Section III.B.2 were calculated using 2000 a.u. (atomic units) time 
steps (700 terms in the polynomial). The same calculations carried out 
with the Chebychev algorithm diverged for time steps larger than 100 
a.u. (64 terms). This effect can be seen by comparing Fig. 37(a) with 
Fig. 37(b), or Fig. 37(c) with Fig. 37(4. 

APPENDIX B: SYSTEM PARAMETERS 

TABLE B.1 
Potential Surfaces Parameters in Atomic Units 

Ground Potential Surface for I j  I l l ]  
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Ground Potential for 1; [4]  

Excited Potential for 1; [4]  

V,x(r> = D + Ve-0"- req)  

req = 6.104 /3 = 1.852 D = 4.04 . V = 2.168 . 

Absorbing Potential [651 

TABLE B.11 
Electromagnetic Field Parameters in Atomic Units 

Pump Pulse [ I ]  

w = 0.1479 A = 2.5 . 7 = 2400 to = 4800 
Dipole function = a . i a = 3.7 
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Push Pulse [4]  

w = 7.396. A = 5.9 - T = 2400 to = 4800 
Dipole function = a I a = 2.24 

TABLE B.111 
Typical Parameters of Propagation in Atomic Units 

Mass Scaled Grid 

AX = 1.2 N ,  = 1024 xmin = 6.24 

Mass 2.315 - lo5 
A y =  1.2 Ny = 512 ymin = 3.42 

Propagation 

With pulse At = 200 Order = 70 
Without pulse At = 1000 Order = 200 
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