Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots

Abstract

Semiconductor quantum dots, due to their small size, mark the transition between molecular and solid-state regimes, and are often described as ‘artificial atoms’ (13). This analogy originates from the early work on quantum confinement effects in semiconductor nanocrystals, where the electronic wavefunctions are predicted4 to exhibit atomic-like symmetries, for example ‘s ’ and ‘p ’. Spectroscopic studies of quantum dots have demonstrated discrete energy level structures and narrow transition linewidths5,6,7,8,9, but the symmetry of the discrete states could be inferred only indirectly. Here we use cryogenic scanning tunnelling spectroscopy to identify directly atomic-like electronic states with s and p character in a series of indium arsenide nanocrystals. These states are manifest in tunnelling current–voltage measurements as two- and six-fold single-electron-charging multiplets respectively, and they follow an atom-like Aufbau principle of sequential energy level occupation10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning tunnelling microscopy and spectroscopy of a single InAs nanocrystal 32 å in radius, acquired at 4.2 K.
Figure 2: Size evolution of representative tunnelling dI /dV versus V characteristics, displaced vertically.
Figure 3: Correlation of optical and tunnelling spectroscopy data for InAs nanocrystals.

Similar content being viewed by others

References

  1. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Kastner, M. A. Artificial atoms. Phys. Today 46, 24–31 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Ashoori, R. C. Electrons in artificial atoms. Nature 379, 413–419 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Brus, L. E. Electron-electron and electron-hole interaction in small semiconductor crystallites. The size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Norris, D. J., Sacra, A., Murray, C. B. & Bawendi, M. G. Measurement of the size dependent hole spectrum in CdSe quantum dots. Phys. Rev. Lett. 72, 2612–2615 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Leon, M., Petroff, P. M., Leonard, D. & Fafard, S. Spatially resolved visible luminescence of self-assembled semiconductor quantum dots. Science 267, 1966–1968 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Homogenous linewidths in the optical spectrum of a single gallium arsenide quantum dot. Science 273, 87–90 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Empedocles, S. A., Norris, D. J. & Bawendi, M. G. Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots. Phys. Rev. Lett. 77, 3873–3876 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Banin, U. et al. Size dependent electronic level structure of InAs nanocrystal quantum dots: Test of multiband effective mass theory. J. Chem. Phys. 109, 2306–2309 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Herzberg, G. Atomic Spectra and Atomic StructureCh. 3 (Prentice-Hall, New York, (1937).

    Google Scholar 

  11. Guzelian, A. A., Banin, U., Kadavanich, A. V., Peng, X. & Alivisatos, A. P. Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots. Appl. Phys. Lett. 69, 1432–1434 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Mucic, R. C., Storhoff, J. J., Lestinger, R. L. & Mirkin, C. A. ADNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  ADS  Google Scholar 

  13. Alivisatos, A. P. et al. Organization of nanocrystal molecules using DNA. Nature 382, 609–611 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconductor polymer. Nature 370, 354–357 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Klein, D. L., Roth, R., Lim, A. K. L., Alivisatos, A. P. & McEuen, P. L. Asingle electron transistor made from a cadmium selenide nanocrystal. Nature 389, 699–701 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Colvin, V. L., Goldstein, A. N. & Alivisatos, A. P. Semiconductor nanocrystals covalently bound to metal surface with self-assembled monolayers. J. Am. Chem. Soc. 114, 5221–5230 (1992).

    Article  CAS  Google Scholar 

  17. Grabert, H. & Devoret, M. H. (eds) Single Charge Tunneling (Plenum, New York, (1992).

    Book  Google Scholar 

  18. Alperson, B., Cohen, S., Rubinstein, I. & Hodes, G. Room-temperature conductance spectroscopy of CdSe quantum dots using a scanning force microscope. Phys. Rev. B 52, R17017–R17020 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Porath, D., Levi, Y., Tarabia, M. & Millo, O. Tunneling spectroscopy of a single C60molecule in the presence of charging effects. Phys. Rev. B 56, 9829–9833 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Wiesendanger, R. Scanning Probe Microscopy and Spectroscopy (Cambridge Univ. Press, (1994).

    Book  Google Scholar 

  21. Ekimov, A. I. et al. Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions. J. Opt. Soc. Am. B 10, 100–107 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Fu, H. & Zunger, A. Excitons in InP quantum dots. Phys. Rev. B 57, R15064–R15067 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Bertram, D., Micic, O. I. & Nozik, A. J. Excited state spectroscopy of InP quantum dots. Phys. Rev. B 57, R4265–R4268 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Banin, U., Lee, J. C., Guzelian, A. A., Kadavanich, A. V. & Alivisatos, A. P. Exchange interaction in InAs nanocrystal quantum dots. Superlattices Microstruct. 22, 559–567 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Alperson, B., Hodes, G., Rubinstein, I., Porath, D. & Millo, D. Energy level tunneling spectroscopy and single electron charging in individual CdSe quantum dots. Appl. Phys. Lett.(in the press).

Download references

Acknowledgements

We thank B. Alperson, G. Hodes and I. Rubinstein for discussions. This work was supported in part by the Israeli Academy of Sciences and Humanities. U.B. acknowledges the support of an Alon fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oded Millo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banin, U., Cao, Y., Katz, D. et al. Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots. Nature 400, 542–544 (1999). https://doi.org/10.1038/22979

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22979

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing